970 research outputs found

    System Support for Managing Invalid Bindings

    Full text link
    Context-aware adaptation is a central aspect of pervasive computing applications, enabling them to adapt and perform tasks based on contextual information. One of the aspects of context-aware adaptation is reconfiguration in which bindings are created between application component and remote services in order to realize new behaviour in response to contextual information. Various research efforts provide reconfiguration support and allow the development of adaptive context-aware applications from high-level specifications, but don't consider failure conditions that might arise during execution of such applications, making bindings between application and remote services invalid. To this end, we propose and implement our design approach to reconfiguration to manage invalid bindings. The development and modification of adaptive context-aware applications is a complex task, and an issue of an invalidity of bindings further complicates development efforts. To reduce the development efforts, our approach provides an application-transparent solution where the issue of the invalidity of bindings is handled by our system, Policy-Based Contextual Reconfiguration and Adaptation (PCRA), not by an application developer. In this paper, we present and describe our approach to managing invalid bindings and compare it with other approaches to this problem. We also provide performance evaluation of our approach

    Teleo-Reactive policies for managing human-centric pervasive services.

    No full text
    Event-Condition-Action (ECA) policies are often used to manage various aspects of adaptation and execution of pervasive systems. Such policies are well suited for services where: 1) given actions are reliably executed when they are requested, 2) there is no priority ordering amongst multiple available actions, and 3) execution is instantaneous with respect to the validity of conditions under which they were initiated. However, for a pervasive service that integrates human agents and human activities, these assumptions do not generally hold. Humans may misbehave by postponing the execution of certain actions or ignoring them all together. Performing an action may take a long time so that the action is no longer needed or more important actions may need to be executed. Managing such behaviours through ECA policies is complex and difficult to implement. This paper introduces a new management policy type, called a Teleo-Reactive policy, whose semantics are based on continuous monitoring of the environment and prioritising available actions. The semantics result in more flexible and concise formulation of management policies for human-centric pervasive services. We demonstrate how these policies can be applied in a real-world use case scenario set in a nursing home and describe the underlying implementation based on the Androids Java platform. © 2010 IEEE

    Towards a lightweight mobile semantic-based approach for enhancing interaction with smart objects

    Get PDF
    This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules

    Supporting policy-based contextual reconfiguration and adaptation in ubiquitous computing

    Get PDF
    In order for pervasive computing systems to be able to perform tasks which support us in everyday life without requiring attention from the users of the environment, they need to adapt themselves in response to context. This makes context-awareness in general, and context-aware adaptation in particular, an essential requirement for pervasive computing systems. Two of the features of context-awareness are: contextual reconfiguration and contextual adaptation in which applications adapt their behaviour in response to context. We combine both these features of context-awareness to provide a broad scope of adaptation and put forward a system, called Policy-Based Contextual Reconfiguration and Adaptation (PCRA) that provides runtime support for both. The combination of both context-aware reconfiguration and context-aware adaptation provides a broad scope of adaptation and hence allows the development of diverse adaptive context-aware applications. However, another important issue is the choice of an effective means for developing, modifying and extending such applications. The main argument forming the basis of this thesis is that we advocate the use of a policy-based programming model and argue that it provides more effective means for developing, modifying and extending such applications. This thesis addresses other important surrounding issues which are associated with adaptive context-aware applications. These include the management of invalid bindings and the provision of seamless caching support for remote services involved in bindings for improved performance. The bindings may become invalid due to failure conditions that can arise due to network problems or migration of software components, causing bindings between the application component and remote service to become invalid. We have integrated reconfiguration support to manage bindings, and seamless caching support for remote services in PCRA. This thesis also describes the design and implementation of PCRA, which enables development of adaptive context-aware applications using policy specifications. Within PCRA, adaptive context-aware applications are modelled by specifying binding policies and adaptation policies. The use of policies within PCRA simplifies the development task because policies are expressed at a high-level of abstraction, and are expressed independently of each other. PCRA also allows the dynamic modification of applications since policies are independent units of execution and can be dynamically loaded and removed from the system. This is a powerful and useful capability as applications may evolve over time, i.e. the user needs and preferences may change, but re-starting is undesirable. We evaluate PCRA by comparing its features to other systems in the literature, and by performance measures

    Exploiting rules and processes for increasing flexibility in service composition

    Get PDF
    Recent trends in the use of service oriented architecture for designing, developing, managing, and using distributed applications have resulted in an increasing number of independently developed and physically distributed services. These services can be discovered, selected and composed to develop new applications and to meet emerging user requirements. Service composition is generally defined on the basis of business processes in which the underlying composition logic is guided by specifying control and data flows through Web service interfaces. User demands as well as the services themselves may change over time, which leads to replacing or adjusting the composition logic of previously defined processes. Coping with change is still one of the fundamental problems in current process based composition approaches. In this paper, we exploit declarative and imperative design styles to achieve better flexibility in service composition

    Ubiquitous Nature of Event-Driven Approaches: A Retrospective View

    Get PDF
    This paper retrospectively analyzes the progress of event-based capability and their applicability in various domains. Although research on event-based approaches started in a humble manner with the intention of introducing triggers in database management systems for monitoring application state and to automate applications by reducing/eliminating user intervention, currently it has become a force to reckon with as it finds use in many diverse domains. This is primarily due to the fact that a large number of real-world applications are indeed event-driven and hence the paradigm is apposite. In this paper, we briefly overview the development of the ECA (or event-condition-action) paradigm. We briefly discuss the evolution of the ECA paradigm (or active capability) in relational and Object-oriented systems. We then describe several diverse applications where the ECA paradigm has been used effectively. The applications range from customized monitoring of web pages to specification and enforcement of access control policies using RBAC (role-based access control). The multitude of applications clearly demonstrate the ubiquitous nature of event-based approaches to problems that were not envisioned as the ones where the active capability would be applicable. Finally, we indicate some future trends that can benefit from the ECA paradigm

    Autonomic Pervasive Applications Driven by Abstract Specifications

    Get PDF
    Conference in conjunction with ICAC 2012 (International Conference on Autonomic Computing)International audiencePervasive application architectures present stringent requirements that make their development especially hard. In particular, they need to be flexible in order to cope with dynamism in different forms (e.g. service and data providers and consumers). The current trend to build applications out of remote services makes the availability of constituent application components inherently dynamic. Developers can no longer assume that applications are static after development or at run time. Unfortunately, developing applications that are able to cope with dynamism is very complex.Existing development approaches do not provide explicit support for managing dynamism. In this paper we describe Rondo, a tool suite for designing pervasive applications. More specifically, we present our propositions in pervasive application specification, which borrows concepts from service-oriented component assembly, model-driven engineering (MDE) and continuous deployment, resulting in a more flexible approach than traditional application definitions. Then the capabilities of our application model are demonstrated with an example application scenario designed using our approach
    • 

    corecore