
An Internet-based Architecture Supporting
Ubiquitous Application User Interfaces

Heiko Desruelle1, Simon Isenberg2, Dieter Blomme1, Krishna Bangalore3, and
Frank Gielen1

1 Ghent University – iMinds,
Dept. of Infomation Technology – IBCN, Ghent, Belgium

{heiko.desruelle, dieter.blomme, frank.gielen}@intec.ugent.be
2 BMW Forschung und Technik GmbH, Berlin, Germany

simon.isenberg@bmw.de
3 Technische Universität München, Garnich, Germany

krishna.bangalore@in.tum.de

Abstract. Maintaining a viable balance between development costs and
market coverage has turned out to be a challenging issue when develop-
ing mobile software applications. The diversity of devices running third-
party developed software applications is rapidly expanding from PC, to
mobile, home entertainment systems, and even the automotive indus-
try. With the help of Web technology and the Internet infrastructure,
ubiquitous applications have become a reality. Nevertheless, the vari-
ety of presentation and interaction modalities still limit the number of
targetable devices. In this chapter we present webinos, a multi-device ap-
plication platform founded on the Future Internet infrastructure. Hereto
we describe webinos’ model-based user interface framework as a means
to support context-aware adaptiveness for applications that are executed
in such ubiquitous computing environments.

Keywords: ubiquitous web; model-driven user interfaces; adaptation

1 Introduction

The diversity of personal computing devices is increasing at an incredible pace.
In result, people are often using a multitude of consumer electronic devices that
have the ability to run third-party developed applications. Such devices can range
from desktop PC, to mobile and tablet devices, to home entertainment and even
in-car units. However, the fragmentation of devices and usage contexts makes it
for applications particularly difficult to target a broad segment of devices and
end-users. From a development perspective, the greatest common denominator
amongst the available multi-device approaches is the Web. By adopting the Web
as an application platform, applications can be made available whenever and
wherever the user wants, regardless of the device type that is being used.

Nevertheless these clear advantages, existing Web application platforms are
generally founded on the principles of porting traditional API support and oper-
ating system aspects to the Web. The evolution towards large-scale distributed



service access and sensor usage is often not supported [1]. In result, the true im-
mersive nature of ubiquitous web applications is mostly left behind. To enable
developers to set up Web applications and services that fade out the physical
boundaries of a device, the webinos platform has been proposed. Webinos is a
virtualized application platform that spans across the various Web-enabled de-
vices owned by an end-user. Webinos integrates the capabilities of these devices
by seamlessly enabling the distribution of API requests.

In this chapter, we elaborate on the webinos platform’s innovation and in
particular its ability to dynamically adapt application user interfaces to the
current delivery context. The remainder of this chapter is structured as follows.
Related work and background on adaptive user interfaces are covered in Section
2. Section 3 provides a high-level introduction to the webinos platform, as well
as a more in-depth discussion of its adaptive user interface approach. Section 4
highlights the proposed approach via a use case on dynamic adaptation of an
application’s navigation structure. Finally, our conclusions and future work are
presented in Section 5.

2 Model Based User Interfaces

Model driven engineering (MDE) aims to accommodate with high-variability
aspects of software systems. This development methodology is characterized by
the separation of concerns, as it embodies a well accepted technique to reduce
the engineering complexity of a software system [2]. A vast number of Web en-
gineering approaches incorporate partial support for model-based development
(e.g., UWE, WSDM, HERA, WebML, etc.). With a model driven engineering ap-
proach, software development is started with an abstract platform independent
model (PIM) specification of the system [3]. A transformation model is in turn
applied to compile the PIM to a platform-specific model (PSM). The transfor-
mation process is at the heart of the methodology’s flexibility. For this purpose,
MDE can use transformation languages such as the Query-View-Transformation
standard (QVT) or the ATLAS Transformation Language (ATL) for specifying
model-to-model transition rules [4].

Recent research on model driven engineering has been particularly active
in the domain of user interface (UI) engineering. The CAMELEON Reference
Framework (CRF) defines an important foundation for this type of approaches
[5]. The framework specifies a context-sensitive user interface development pro-
cess, driven by an intrinsic notion of the current user context, the environment
context, as well as the platform context. According to the CRF approach, an
application’s user interface development consists of multiple levels of abstrac-
tion. Starting from an abstract representation of the interface’s task and do-
main model, a PSM of the user interface is subsequently generated by means
of a chained model transformations based on contextual knowledge. A number
of major UI languages have adopted CRF, e.g., UsiXML [6], and MARIA [7].
Moreover, the World Wide Web Consortium (W3C) charted the Model-Based
UI Working Group (MBUI-WG) as part of its Ubiquitous Web Activity (UWA)



to investigate the standardization of context-aware user interface authoring [8].
Its goal is to work on standards that enable the authoring of context-aware
user interfaces for web applications. The MBUI-WG aims to achieve this type
of adaptivity by means of a model driven design approach. In this context, the
semantically structured aspects of HTML5 will be used as key delivery platform
for the applications’ adaptive user interface.

The CAMELEON Reference Framework, more specifically, relies on a model
driven approach and structures the development of a user interface into four
subsequent levels of abstraction:

– Specification of the task and domain model, defining a user’s required activ-
ities in order to reach his goals.

– Definition of an abstract user interface (AUI) model. The AUI model defines
a platform-independent model (PIM), which expresses the application’s in-
terface independently from any interactors or modalities within the delivery
context’s attributes.

– Definition of a concrete user interface (CUI) model, a platform-specific model
(PSM) which generates a more concrete description of the AUI by including
specific dependencies and interactor types based on the delivery context.

– Specification of the final user interface (FUI), covering the code that cor-
responds with the user interface in its runtime environment (e.g., HTML,
Java, etc.).

Fig. 1: Model-to-model transformation approach for the adaptation of a model-based
user interface [6]

As documented by Schaefer, various approaches can be used to express the
adaptation of a model-based user interface [9]. In essence, three types of adapta-
tion approaches can be distinguished: model-to-model transformations, transfor-
mations on the XML representation of models, and code transformations. The



model-to-model approach relies on the fact that most MBUI models can be de-
signed based on a directed graph structure. In result, adaptations between two
models are specified with model mappings by means of graph transformation
rules. As depicted in Fig. 1, transformation rules consist of a Left Hand Side
(LHS) condition matching the current UI model represented by graph G [6]. To
add expressiveness, one or more Negative Application Condition (NAC), which
should not match G, can be defined. Based on the matching of these conditions
a Right Hand Side (RHS) defines the transformation result by replacing LHS
occurrence in G with RHS. This substitution operation results in an adapted UI
model represented by graph G’.

Furthermore, for UI models represented with XML, XSLT transformations
can be used as a more declarative way to define adaptations [10]. The transfor-
mation process takes a XML based document as input together with an XSLT
stylesheet module containing the transformation rules. Each transformation rule
consists of a matching pattern and an output template. Patterns to be matched
in the input XML document are defined by a subset of the XPath language
[11]. The output after applying the appropriate transformations can be stan-
dard XML, but also other formats such as (X)HTML, XSL-FO, plain text, etc.

3 Multi-device Adaptive User Interfaces

3.1 The webinos Platform

To enable application developers to set up services that fade out the physical
boundaries of a device, we propose the webinos platform. Webinos defines a
federated Web application platform and its runtime components are distributed
over the devices, as well as the cloud. Fig. 2 depicts a high-level overview of
the platform’s structure and deployment. The system’s seamless interconnection
principle is cornered around the notion of a so called Personal Zone.

The Personal Zone represents a secure overlay network, virtually grouping a
user’s personal devices and services. To enable external access to and from the
devices in this zone, the webinos platform defines a centralized Personal Zone
Hub (PZH) component. Each user has his own PZH instance running in the
cloud. The PZH is a key element in this architecture, as it contains a centralized
repository of all devices and contextual data in the Personal Zone. The PZH
keeps track of all services in the zone and provides functionality to enable their
discovery and mutual communication. This way, the PZH facilitates cross-device
interaction with personal services over the Internet. Moreover, PZHs are feder-
ated, allowing applications to easily discover and share data and services residing
on other people’s devices. Webinos achieves this structure by incorporating two
service discovery abstraction mechanisms. On a local level, webinos supports
various fine-grained discovery techniques to maximize its capability to detect
devices and services (e.g., through multicast DNS, UPnP, Bluetooth discovery,
USB discovery, RFID/NFC, etc.). Secondly, on a remote level, the local discov-
ery data are propagated within the Personal Zone and with authorized external



Fig. 2: High-level overview of webinos’ ubiquitous application platform

PZHs. Based on webinos’ aim for flexible Personal Zones in terms of scalabil-
ity and modifiability, the overlay network is designed in line with the callback
broker system pattern [12]. With this pattern, the availability of locally exposed
services is communicated throughout the Personal Zone via a service broker in
the PZH. Moreover, the platform’s high-level communication infrastructure is
founded on a direct handle tactic via JSON-RPC (JavaScript object notation -
remote procedure call), which is invoked over HTTP and WebSockets.

On the device-side, a Personal Zone Proxy (PZP) component is deployed.
The PZP abstracts the local service discovery and handles the direct commu-
nication with the zone’s PZH. As all external communication goes through the
PZP, this component is responsible for acting as a policy enforcement point and
managing the access to the device’s exposed resources. In addition, the PZP is a
fundamental component in upholding the webinos platform’s offline usage sup-
port. Although the proposed platform is designed with a strong focus on taking
benefit from online usage, all devices in the Personal Zone have access to a lo-
cally synchronized subset of the data maintained by the PZH. The PZP can thus
temporarily act in place of the PZH in case no reliable Internet connection can
be established. This allows users to still operate the basic functionality of their
applications even while being offline and unable to access the Internet. Through
communication queuing, all data to and from the PZP are again synchronized
with the PZH as soon as the device’s Internet access gets restored.

The Web Runtime (WRT) represents the last main component in the webi-
nos architecture. The WRT can be considered as the extension of a traditional
Web render engine (e.g., WebKit, Mozilla Gecko). The WRT contains all nec-



essary components for running and rendering Web applications designed with
standardized Web technologies: a HTML parser, JavaScript engine, CSS proces-
sor, rendering engine, etc. Furthermore, the WRT maintains a tight binding with
the local PZP. The WRT-PZP binding exposes JavaScript interfaces, allowing
the WRT to be much more powerful than traditional browser-based application
environments. Through this binding, applications running in the WRT are able
to securely interface with local device APIs and services. In addition, the PZP
also enables the runtime to connect and synchronize with other devices in the
Personal Zone through its binding with the PZH.

3.2 Adaptive User Interface Framework

Within webinos, the process for adapting user interfaces to the active delivery
context is regulated by the local PZP. For this particular purpose, the PZP
contains an Adaptation Manager component (see Fig. 3). The Adaptation Man-
ager aggregates all available adaptation rules, analyzes them, and feeds them
to a Rule Engine for evaluation. In turn, the Rule Engine aims to match the
applicability of each rule by comparing its conditions with the context data ex-
posed by the PZP’s internal services. Once an applicable rule is identified, the
adaptation process is fired by sending its transformation instruction to the Web
runtime. Moreover, by applying the RETE algorithm for executing the reasoning
within the Rule Engine, the worst case computational complexity of this process
remains linear

O
(
R · FC

)
, (1)

with R the average number of rules, F the number of facts in the knowledgebase
that need to be evaluated, and C the average number of conditions in each rule
[13].

Fig. 3: Component diagram of webinos’ UI adaptation framework

In order to accommodate webinos with support for dynamically triggered
adaptations based on at runtime contextual changes, the used rule syntax com-
plies with the Event Condition Action (ECA) format. The structure of an ECA
rule consists of three main parts.



on [event] if [conditions] do [action] (2)

The event part specifies the system signal or event that triggers the invocation
of this particular rule. The conditions part is a logical test that, if evaluated to
true, causes the rule to be carried out. Lastly, the action part consists of invo-
cable JavaScript instructions on the resource that needs adaptation. In result,
adaptation requirements can be expressed in terms of events or other context
changes which might occur during the application’s life cycle (see the case study
in Section 4 for elaborating examples on adaptation rules).

For each ECA rule, the Adaptation Manager analyzes the rule’s trigger event.
Based on the event type, it subsequently feeds the rule to a dedicated instance
of the Rule Engine, which is registered with the appropriate webinos services
for a callback so it can launch the condition evaluation when the event occurs.
For rules triggered by the application.launch event, the Rule Engine instance is
initiated right away. The active instance matches the rules’ conditions based on
context properties fetched from webinos services such as the Device Status API
[14].

Fig. 4: Sequence diagram for the lookup of applicable UI adaptation rules at application
launch



The sequence diagram in Fig. 4 provides a more detailed overview of how
the adaptation process is handled. By bootstrapping webinos at the launch of
an application, a communication interface is established between the Web run-
time environment and the local PZP. This interface allows for the injection of an
Adaptation Client component in the WRT. The Adaptation Client executes all
the UI adaptation instructions it receives from the PZP’s Adaptation Manager.
As the Adaptation Client runs within the WRT, it has access to the applica-
tion’s DOM (Document Object Model) [15]. Moreover, this component is thus
able to access and adapt the application’s content, structure and style via the
manipulation of DOM structures and properties.

4 Case Study: Adaptive Navigation Bar

This section elaborates on a case study for using webinos’ UI framework to dy-
namically adapt the presentation of an application’s navigation structure. For
this adaptation case study, the HTML skeleton code in Listing 1.1 will serve as a
sample application. This basic application is semantically enhanced with HTML
element attributes to guide the adaptation process. The application skeleton
contains a navigation menu component and a number of application specific
subviews. As shown in Fig. 5 and Fig. 6, the presentation of this application’s
navigation component can be optimized based on various parameters such as
the device’s operating system, input modalities screen size, screen orientation,
etc. Taking these contextual characteristics into account is necessary in order
to ensure the adaptive usability requirements of a multi-device ubiquitous ap-
plication, but also, e.g., for meeting existing safety regulations regarding user
distraction in-vehicle applications [16].

Fig. 5: Application navigation bar adaptation for an in-vehicle infotainment setup

For such an in-vehicle infotainment (IVI) system, adaptation rules can be set
to display the application’s navigation bar fullscreen (see rule in Listing 1.2).
This can be done on application startup (i.e., application.launch event trigger



combined with an IVI-based system as rule condition). All other UI elements
are hidden to further decrease the risk for user distraction. Moreover, based on
the specific interaction modalities provided by an IVI system, displaying the
application’s navigation bar can also be triggered by pressing the MENU button
on its controller module. The interaction controller depicted in Fig. 5 is BMW’s
iDrive controller, which internally maps to the combination of a jog dial and
four-way scroller device.

Listing 1.1: Sample HTML application skeleton

1 <body>
2 <div class=‘‘menu’’>
3 <!−− list menu items −−>
4 </div>
5 <div class=‘‘page’’ id=‘‘home’’>
6 <!−− home screen content −−>
7 </div>
8 <div class=‘‘page’’ id=‘‘settings’’>
9 <!−− settings screen content−−>

10 </div>
11 ...
12 </body>

Listing 1.2: Vehicular adaptation rule

1 <rule description=‘‘vehicular menu’’>
2 <event>application.launch</event>
3 <condition>device.type == ‘‘ivi’’</condition>
4 <action>
5 <!−− spread menu items over the headunit’s screen −−>
6 <!−− map and link iDrive controller buttons −−>
7 <!−− hide all page elements −−>
8 </action>
9 </rule>

However, when accessing the same application from a mobile or tablet de-
vice, other presentation and interaction requirements come into play. The case
depicted in Fig. 6 provides an adaptation example based on changes a device’s
screen orientation (i.e., landscape or portrait mode). In the event of a touch-
screen device that is being rotated to landscape mode, adaptation rules are set
to transform the navigation bar in a vertically organized list that is moved to
the lefthand side of the display. Moreover, on the right side of the screen only
one page element is shown. All other page elements can be accessed via its ap-
propriate link in the navigation bar (see rule in Listing 1.3). In case the device is
rotated to portrait mode, the navigation bar is reduced to a collapsible UI ele-



ment located on the top of the screen. Finally, a running multi-device prototype
of this case is depicted in Fig. 7.

Listing 1.3: Touch-based adaptation rule

1 <rule description=‘‘touch−based menu landscape’’>
2 <event>device.orientationchange</event>
3 <condition>
4 device.inputtype == ‘‘touchScreen’’ &&
5 screen.orientation == ‘‘landscape’’
6 </condition>
7 <action>
8 <!−− resize menu items to fit the screen’s height −−>
9 <!−− move menu to the lefthand side −−>

10 <!−− hide all page elements but the active −−>
11 </action>
12 </rule>

Fig. 6: Application navigation bar adaptation for mobile and tablet devices based on
screen orientation



Fig. 7: Running multi-device prototype of the application navigation case

5 Conclusion

In this chapter we presented the webinos application platform and its aim to
enable immersive ubiquitous software applications through adaptive user inter-
faces. Webinos does so by leveraging the fundamental cross-platform opportu-
nities offered by the Web as well as the Future Internet infrastructure. With
the introduced Personal Zone concept, applications developers are enabled to
create software that transcends the executing device’s physical boundaries by
simultaneously accessing the capabilities of multiple devices. In order to ensure
users a comparable and intuitive quality in use throughout all their devices, the
presentation and interaction modalities of the applications’ user interface can be
adapted accordingly. Based on the contextual knowledge available in the webi-
nos Personal Zone, rule-based adaptation decisions can be made as a means to
dynamically optimize the applications user interfaces to the executing device’s
characteristics.

The developed webinos technology aims to influence the Future Internet ar-
chitecture and its related frameworks. Collaboration has hereto been established
with various Future Internet projects such as FI-WARE and FI-CONTENT. Fu-
ture work for the webinos project includes further exploring the possibility to use
the webinos platform as a generic enabler for these initiatives and to seamlessly
connect ubiquitous devices on an application level [17].

Acknowledgments. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7-ICT-2009-5,
Objective 1.2) under grant agreement number 257103 (webinos project). The
authors thank all Webinos project partners, as this chapter draws upon their
work.



References

1. Desruelle, H., Lyle, J., Isenberg, S., Gielen, F.: On the challenges of building a Web-
based ubiquitous application platform. In: 14th ACM International Conference on
Ubiquitous Computing, pp. 733–736. ACM, New York (2012)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1976)

3. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of model-driven Web engi-
neering and the MDA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web
Engineering: Modelling and Implementing Web Applications. Human-Computer
Interaction Series, pp. 353–382. Springer, London (2008)

4. Koch, N.: Classification of Model Transformation Techniques used in UML-based
Web Engineering. Software, IET. 1:3, 98–111 (2007)

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi-Target User Interfaces. Interacting
with Computers. 15, 289–308 (2003)

6. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-Jaquero, V.:
USIXML: A language supporting multi-path development of user interfaces. In:
Bastide, R., Palanque, P., Roth, J. (eds.) EHCI-DSVIS 2005. LNCS, vol. 3425, pp.
200–220. Springer, Heidelberg (2005)

7. Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM TOCHI. 16:4, 19 (2009)

8. Cantera, J.M. (ed.): Model-Based UI XG Final Report. W3C Incubator Group
Report (2010), http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui

9. Schaefer, R.: A Survey on Transformation Tools for Model Based User Interface
Development. In: Jacko, J.A. (ed.) HCII 2007. LNCS, vol. 4550, pp. 1178–1187.
Springer, Heidelberg (2007)

10. Kay, M. (ed.): XSL Transformations (XSLT) Version 2.0. W3C Recommendation
(2007)

11. Berglund, A. Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J.,
Simeon, J. (eds.): XML Path Language (XPath) 2.0 (Second Edition). W3C Rec-
ommendation (2010)

12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: A system of patterns. John Wiley & Sons, West
Sussex (2001)

13. Forgy, F.: On the efficient implementation of production systems. PhD thesis,
Carnegie-Mellon University (1979)

14. Webinos Device Status API, http://dev.webinos.org/specifications/new/

devicestatus.html

15. Le Hors, A., Le Hegaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne,
S. (eds.): Document Object Model (DOM) Level 3 Core Specification. W3C Rec-
ommendation (2004)

16. Faily, S., Lyle, J., Paul, A., Atzeni, A., Blomme, D., Desruelle, H., Bangelore, K.:
Requirements sensemaking using concept maps. In: Winckler, M., Forbig, P., Bern-
haupt, R. (eds.) HCSE 2012. LNCS, vol. 7623, pp. 217–232. Springer, Heidelberg
(2012)

17. Allott, N.: Collaboration Opportunities: FIWARE and webinos, http:

//www.webinos.org/blog/2012/11/14/collaboration-opportunities-fiware-

and-webinos/


