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Abstract

This paper retrospectively analyzes the progress of
event-based capability and their applicability in vari-
ous domains. Although research on event-based ap-
proaches started in a humble manner with the intention
of introducing triggers in database management systems
for monitoring application state and to automate appli-
cations by reducing/eliminating user intervention, cur-
rently it has become a force to reckon with as it �nds use
in many diverse domains. This is primarily due to the
fact that a large number of real-world applications are
indeed event-driven and hence the paradigm is apposite.

In this paper, we brie�y overview the development
of the ECA (or event-condition-action) paradigm. We
brie�y discuss the evolution of the ECA paradigm (or
active capability) in relational and Object-oriented sys-
tems. We then describe several diverse applications
where the ECA paradigm has been used effectively. The
applications range from customized monitoring of web
pages to speci�cation and enforcement of access control
policies using RBAC (role-based access control). The
multitude of applications clearly demonstrate the ubiqui-
tous nature of event-based approaches to problems that
were not envisioned as the ones where the active capabil-
ity would be applicable. Finally, we indicate some future
trends that can bene�t from the ECA paradigm.

1. Introduction
In the mid and late eighties, the inability of database

management systems (DBMSs) to monitor and trigger
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alerts and noti�cations even for conventional applica-
tions such as inventory control (e.g., a part needs to
be reordered when quantity on hand decreases below a
certain number) prompted the work on automating the
above to reduce or eliminate user intervention. At that
time, process control applications had the capability to
monitor system state and take appropriate actions. How-
ever, most of these systems were custom-developed and
optimized for real-time operation and did not use a gen-
eral framework for the purpose of monitoring and au-
tomation. A number of efforts at that time examined a
large number of applications from diverse domains such
as process control, power distribution, stock trading and
portfolio management, network management, and the
use of database in monitoring applications with the goal
of developing a framework that could be used for all
monitoring applications. Timeliness, near real-time re-
sponse, well-de�ned semantics, and the ease of manage-
ment of the system were the goals of this research and
development.

The early explorers of the rule/trigger concept for
monitoring were: HiPAC [1], Postgres [2], and ETM [3].
Although all of them had the same broader goal, their
approaches and how they addressed the problem were
very different. HiPAC, perhaps, took the most general
approach of incorporating monitoring into a DBMS by
assessing the impact on all components of a DBMS:
knowledge model (or speci�cation), query optimization,
transaction management and recovery. The separation of
an event from condition and action was promoted based
on the role of their semantics as compared to other extant
approaches of that time. The event component was sep-
arated for the �rst time and event operators (disjunction,
sequence, and closure) were proposed. Coupling modes
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between event, condition, and actions were proposed
and their effects were analyzed on transaction manage-
ment. ECA paradigm was seen as a �exible mecha-
nism for automating a number of diverse functionality
in a DBMS, such as view materialization, constraint en-
forcement, situation monitoring, and access control. The
Postgres work, on the other hand, concentrated on in-
corporating triggers into the Postgres framework. ETM
(or event/trigger mechanism) explored the notion of ac-
tive capability in the context of enforcing constraints in
design databases using triggers and events. There was
some activity among the DBMS vendors as well and the
�rst commercial DBMS to incorporate triggers was sur-
prisingly Interbase [4] which developed a DBMS from
scratch in the late eighties.

The nineties saw a large amount of academic research
activity in the application of active capability in the form
of the ECA (event-condition-action) paradigm to object-
oriented, object-relational, and Relational DBMSs. A
large number of prototype systems were developed dur-
ing that period. Since event component was the least
understood part as compared to conditions and actions
(conditions correspond to queries, and actions corre-
spond to transactions), there were a number of event
speci�cation languages that were proposed along with
their semantics and algorithms for their detection. Seam-
less integration of the ECA paradigm into Object-
oriented and other systems were examined in detail to
facilitate its incorporation into a number of systems. In
addition, various implementation alternatives, such as
integrated [5], agent-based [6, 7], and wrapper-based
[8] systems for supporting the ECA paradigm were ex-
plored. Without differentiating between the event spec-
i�cation languages and the systems that included events
and triggers, efforts in the literature to support active ca-
pability included (in alphabetical order):

ACOOD [9], ADAM [10], Alert [11], A-RDL [12],
Ariel [13, 14], COMPOSE [15], Hipac [16], ODE
[17, 18], REACH [19], Rock & Roll [20], RuleCore
[21], SAMOS [22, 23], Snoop/Sentinel [24, 5], SEQ
[25], STARBURST [26], UBILAB [27], and [28, 29]. A
comprehensive introduction and description about most
of these systems can be found in [30, 31] and an anno-
tated bibliography on active databases up to 1994 can be
found in [32].

In addition to the above, there were a number of other
projects that used the concept of events � CORBA [33]
being one of the earliest. The notion of events at a low
level were being used in network management systems
and TIBCO had an event-based system that was used for
noti�cation. In addition to the above, graphics user inter-
faces (GUIs) used event-based callbacks to carry out ac-
tions based on the movement of the cursor on the screen.
Although the notion of events were used in many of the

above systems, their semantics, composition, and execu-
tion aspects were not precisely de�ned. Other systems
that have some notion of events include Weblogic [34],
ILOG Jrules [35], and Vitria BusinessWare Automator
[36].

The impact of all of the above was that all of the com-
mercial DBMS vendors incorporated the notion of trig-
gers into their products. In addition, SQL3 [37] further
re�ned the speci�cation of triggers and now it is part of
the SQL standard. Unfortunately, the trigger capability
supported in DBMSs is not used as much as it could be
on account of the lack of support from the vendors. A de-
tailed study [38] indicated that banks and other targeted
users who could really bene�t from this feature were not
using them because: i) there is not enough support from
the vendors on the use of triggers, ii) methodology and
guidance for the usage of triggers were not available, and
iii) the performance aspect of the DBMS with the usage
of large number of triggers has been largely ignored by
the vendors. If the performance disadvantage continues,
it is unlikely that the trigger mechanism will see a wide
use in real-world applications.

Beyond the above, work continued on distributed
event speci�cation, semantics, and detection [39, 40, 41,
42, 43]. Sentinel [5] developed a complete global event
detector (or GED) that had well-de�ned semantics and
used it for a number of real-world applications, such as
monitoring multiple DBMSs to check on the viability
of war- and peace-time plans that could change dynami-
cally based upon changes to independent databases such
as weather, intelligence information, maintenance of ve-
hicles required for operation of plans, etc. A number
of tools for the ease of speci�cation of events and rules
as well as their analysis were developed by the Sentinel
group (event/rule visualization [44], dynamic rule ed-
itors [45, 46], and rule analysis concepts and systems
were developed [47, 48]).

At the same time, the power and utility of the ECA
paradigm on non-database applications were being rec-
ognized. Even within the database realm, it was shown
that the ECA paradigm can not only be used for moni-
toring the state of user-de�ned objects, but can also be
used for monitoring the system state. This lead to the
support of multiple transaction models in a �exible man-
ner [49, 50] using rule sets that could be changed at run
time. These rule sets were de�ned on interesting sys-
tem events such as acquire lock, release lock etc. Be-
yond this, the local event detector was decoupled from
its DBMS bondage and re-implemented in Java so that it
can be used with any stand-alone application written in
Java [51]. Today, the notion of active capability does not
connote anymore the usage in the context of databases
but has been accepted and recognized as a functionality
that can be used for any event-driven real-world applica-
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tion. Not surprisingly, it is �nding usage in many appli-
cations (e.g., work �ow, access control, information in-
terchange) as a large number of applications are indeed
event-driven.

Today, there is consensus in the database and other
communities on the ECA rules as being one of the most
general formats for expressing rules in an event-driven
application. The semantics of event speci�cation has un-
dergone some extensions from point-based (or detection)
semantics to Interval-based semantics. More than that,
the number of diverse applications for which it is being
used in some form is the real testimony for ubiquitous
nature of the abstraction and is the focus of this paper.

The rest of the paper is organized as follows. Section
2 brie�y describes the de�nition of events, the need for
interval-based semantics, and event detection. Section 3
provides a brief eposure to novel applications that have
adapted the ECA paradigm in unforeseen ways. Section
4 contains where this concept is headed and Section 5
has conclusions.

2. Event Semantics, and Detection
An event is de�ned [52] to be an instantaneous,

atomic (happens completely or not at all) occurrence of
interest and the time of occurrence of the last event in
an event expression (composition of events using event
operators) was used as the time of occurrence for the en-
tire event expression. An event, which is an indicator
of happening was classi�ed into primitive (e.g., deposit-
ing cash in a bank) or composite (e.g., depositing cash,
followed by withdrawal of cash). Primitive events occur
at a point in time (i.e., time of depositing). Composite
events occur over an interval (i.e., the interval starts at
the time cash is deposited and ends when cash is with-
drawn). The primitive event that starts an event was
termed initiator and the primitive event that completed
the event was termed the terminator. Since the event ex-
pression (or a composite event) was detected as of the
time of occurrence of the terminator, this was called de-
tection or point-based semantics. For a primitive event,
initiator is also the terminator. All event speci�cations
assumed the above and detected composite events using
different approaches. The operators of Snoop subsumed
most of the event speci�cation proposed in the literature.

Snoop identi�ed, proposed, and developed the se-
mantics and detection for a large number of event opera-
tors based on the applications analyzed in HiPAC and ad-
ditional applications analyzed later. The most general se-
mantics (termed unrestricted or general) detected a large
number of composite events in the presence of multiple
occurrences of the same event. This seemed unnecessary
for a large class of applications. Hence the notion of pa-
rameter contexts (aka event consumption modes) were
proposed in Snoop [53, 52, 54] to constrain the number

of events detected without affecting the application se-
mantics. These were identi�ed after considering classes
of applications with certain common properties. For ex-
ample, sensor applications generate events (e.g., temper-
ature, pressure values) where each occurrence re�nes the
previous value and hence the latest value is of interest
when multiple occurrences are present. This observation
can be effectively used to prune the events that will not
be needed and retain only those that are relevant. This
has an impact both on the space requirements as well as
the complexity of algorithms used for event detection.
The following event consumption modes were de�ned
and supported in the local event detector (or LED) that
implemented the detection of Snoop expressions.
• Recent: only the most recent occurrence of the ini-

tiator for any event (primitive or composite) that has
started the detection of that event is used (useful for
sensor class of applications)

• Chronicle: the initiator-terminator pair is unique
for an event occurrence (applications where there
is a need to match events, such as bug report and
bug �x)

• Continuous: each initiator of an event starts the
detection of that event (for applications requiring
moving window concept, such as stock monitoring)

• Cumulative: all occurrences of an event type are ac-
cumulated as instances of that event until the event
is detected (applications such as a bank where ac-
cumulated events are applied at the end of the day)

The operators supported in Snoop are: disjunction
(OR), conjunction (AND), Sequence, Periodic (with a
cumulative variant), Aperiodic (with a cumulative vari-
ant), non-occurrence (NOT), and temporal (both abso-
lute and relative). The primitive events were domain spe-
ci�c (�nite and pre-de�ned for a domain) and the event
expressions were domain independent. For example, re-
lational domain consisted of insert, delete, and update
events whereas in an object-oriented domain invocation
of any method of any class acted as an event. To add
expressive power, begin and end events were de�ned so
that start and end of a function (or any interval) could be
broken up into separate events.

Rules in the form of condition and action were asso-
ciated with primitive as well as composite events. Multi-
ple rules could be associated with an event and a priority
could be speci�ed. Concurrent and cascaded execution
of rules were supported. Execution models were devel-
oped to support rule execution semantics [1, 55, 56]

With point-based semantics, LED [5] uses an event
detection graph (or EDG) as shown in Figure 1 for repre-
senting an event expression speci�ed using Snoop. This
representation is in contrast to other approaches such as
Petri nets used by Samos [22, 23] or an extended �nite
state automata used by Compose [15]. By combining
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event trees on common sub expressions, an event graph
is obtained. Data �ow architecture is used for the propa-
gation of primitive events to detect composite events. All
leaf nodes in an event tree are primitive events and inter-
nal nodes represent composite events. By merging com-
mon subgraphs, the same event is not detected multiple
times. In addition to reducing the number of detections,
this approach saves a substantial amount of storage space
(for storing partial event occurrences and their parame-
ters), thus leading to an ef�cient approach for detecting
events. Event occurrences �ow in a bottom-up fashion.
When a primitive event occurs and is detected, it is sent
to its leaf node, which forwards it to one or more parent
nodes (as needed) for detecting one or more composite
events. When composite events are detected, associated
rules are triggered. This representation is similar to the
query graph used for query evaluation in a DBMS and al-
lows set-based computation (or multiple events detected
at a node). Optimizations can be performed by rewriting
event expressions and generating the event graph after
the optimizations are performed.

Point-based semantics worked well for most appli-
cations. However, when certain operators were com-
posed in a particular way, Galton [57] pointed out that
the point-based semantics failed and detected compos-
ite events which were non-intuitive. This, for example,
happens when the sequence operator is composed twice.
This brought out the limitation of the point-based seman-
tics and the need for a more complex semantics that used
intervals instead of a point for composite events. As a re-

sult, SnoopIB [58, 59, 60, 54] was developed for all the
operators and event consumption modes (except chroni-
cle) of Snoop.

Brie�y, interval-based semantics associated two time
points with each event: start time and end time. For
primitive events, both are same. For composite events,
the start time of the initiator and the end time of the ter-
minator are used as the interval in which the composite
event occurs. Allen's [61, 62] temporal combinations
are used to determine the relevance of the intervals for
a particular operator. Neither the event graph nor the
detection approach changes with the introduction of the
interval-based semantics. Only the algorithms used at
each node is different and in fact both point- and interval-
based semantics can be supported in the same system.

3. Novel Applications of the ECA Paradigm
As discussed in Section 1, the ECA paradigm has

been used in databases as well as stand-alone applica-
tions. A number of products support the paradigm in var-
ious ways at different levels of abstraction in distributed
information exchange, topic-based event noti�cation, as
part of information bus, etc. As we will brie�y discuss
later (Section 4), events and rules are being incorporated
into XML and other standards for wider usage and ap-
plicability.

In this section, we will discuss four novel applications
where we have effectively used the ECA paradigm with
minor modi�cations and adaptation. In fact, we have
been able to reuse the entire LED code base (in Java) for
these applications.

Information �ltering [63, 64, 65, 66, 67] is the process
of extracting relevant or useful portions of documents
from continuous streams of textual data based on rela-
tively static user-provided patterns. On the other hand,
Information Retrieval [68, 69, 70, 71] is the process of
extracting relevant or useful portions of documents from
a relatively static collection of documents based on a
stream of incoming user patterns (or queries). Extant in-
formation �ltering systems and search engines support
only keyword searches and Boolean operator queries.
Monitoring text streams for complex patterns have far
reaching implications, such as tracking information �ow
among communications, web parental control, and busi-
ness intelligence.

Consider a real world example where an analyst is
tracking information streaming from various resources.
He/she is interested in the occurrence of the word
�bomb followed by the word �ground zero occurring
twice, along with the word �automotive or its synonyms
(i.e., ((�bomb FOLLOWED BY �ground zero) occurring
twice) AND �automotive (or its synonyms)). This pat-
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tern contains keywords, sequence (FOLLOWED BY),
phrase, frequency, synonyms, and a Boolean operator.
This pattern cannot be expressed using current informa-
tional query retrieval languages (IRQLs) [69] as they
do not support the following: i) quanti�cation of mul-
tiple occurrences (or frequency) of patterns and complex
compositions, ii) arbitrary composition of pattern opera-
tors, and iii) a user cannot include synonyms in the pat-
tern, and is required to explicitly list all the synonyms as
separate patterns.

Pattern Speci�cation: PSL, an expressive pattern
speci�cation language based on Snoop operators and
interval-based semantics, allows the speci�cation of
complex patterns. Patterns are classi�ed into simple and
composite types. A simple pattern is either a word such
as �ltering, a phrase such as information �ltering sys-
tems or a simple regular expression (regular expression
on a single word) such as info*. The occurrence of a
simple pattern is denoted by P[Os, Oe], where Os = Oe
(i.e., the starting and ending offset of a simple pattern
is the same). PSL supports two types of simple pat-
terns, system-de�ned (e.g., BeginDoc and BeginPara)
and user-de�ned (single word, phrase and regular ex-
pression). A composite pattern is an expression con-
structed using simple patterns, previously constructed
composite patterns, PSL operators and options. PSL
provides a comprehensive set of operators, OR, non-
occurrence (NOT/N), sequential (FOLLOWED BY/N),
structural (WITHIN/N), frequency (FREQUENCY/N),
proximity (NEAR/N) and the option SYN that allow
users to compose complex patterns. Table 1 shows var-
ious operators and their functionalities with examples.
For detailed explanation of PSL, please refer [72]. The
semantics of the operators are exactly the same as that
of Snoop except that the offset from the beginning of the
document is used instead of time. In addition, N speci�es
the maximum distance between the begin offset and end
offset. From the table, it is straightforward to infer the
similarity between Snoop operators and PSL operators.
Frequency is a new operator introduced for information
�ltering. When we analyzed the requirements of this do-
main with respect to the multiple occurrence of the same
pattern, it was clear that the recent context was not ap-
propriate. In information �ltering, you want to not only
use the last closest occurrence, it does not make sense
to reuse the same pattern for another composite pattern
detection. As a result, the recent context was modi�ed
to the proximal-unique. A new context was added to the
algorithms of the interval-based semantics. For details
refer to [72].

Pattern Detection: A user pattern is represented as
a pattern detection graph (same as the event detection
graph). Simple patterns form leaf nodes. Composite pat-
terns form intermediate nodes. Grouping of subpatterns

“bomb” [SYN]Keyword synonymsSYN

Frequency/5(“Iraq”)Define minimum number of occurrences 
of a pattern

FREQUENCY

(“information”NEAR “retrieval”) 
WITHIN (BeginPara, EndPara)

(“information”NEAR/2 “retrieval”) 
WITHIN (“InfoFilter”, “Psnoop”)

Define the scope of detection within a 
document, a paragraph or a sentence 

Define a range for detecting patterns 
within a document.

WITHIN

“data” FOLLOWED BY/2   “structures”

“data structures ” FOLLOWED BY  
“algorithm”

Detect patterns that occur in certain order 
within n words of each other 

Detect patterns that occur together in 
certain order within the same document

FOLLOWED BY

“information” NEAR/2  “filtering”

“information” NEAR/2  “filtering”

Detect patterns that occur within n words 
of each other

Detect patterns that occur within the same 
document

NEAR

NOT (“retrieval”) (“information”, “
filtering”)

NOT/2 (“retrieval”) (“information”, 
“query language ”)

NOT(“information”FOLLOWED BY/4 
“retrieval”) (BeginPara, “EndPara”)

Exclude patterns that are not to be 
detected

Exclude patterns with number of pattern 
occurrences exceed a user specified 
number

Exclude patterns within predefined simple 
patterns

NOT

“bomb” OR  ”explosive”

(“bomb”NEAR/3 “automotive”) OR 
(“bomb”NEAR “building”)

Provide optional criteria in specifying 
patterns

OR

ExamplesPurposeOperators

is also done for ef�ciency. Data �ow is used to notify
the occurrence of simple patterns to leaf nodes, which
in turn propagate them to intermediate nodes. To handle
synonyms, WordNet [73] is used to determine the syn-
onyms of the patterns, if the synonym option is speci�ed.
The incoming stream is processed to generate simple
patterns to be fed to the pattern detection graph. Words
are also sent to WordNet for extracting their synonyms.
Once the synonyms are extracted, they are stored and
compared with incoming words using a suf�x trie. Given
a stream, tokens (corresponding to patterns) are gener-
ated along with their offset and are noti�ed to the leaf
nodes. Detection of composite patterns is the same as
the detection of a composite event.

The above system designed earlier for streams has
been extended to handle stored data as well [71]. The
stored data (e.g., web directory) is indexed where the in-
dex keeps the offset information of each word along with
the word. With this, it is possible to search for patterns
using a stored index instead of streaming. Most of the
system is common to these two except for a couple of
modules. For details, refer to [71].

A number of situations require monitoring changes
that are made to one or more documents in a large dis-
tributed repository (e.g., select web pages). This is es-
pecially useful in the context of web where, currently,
a signi�cant amount of time and resources are spent by
individuals for monitoring changes to web pages manu-
ally. By automating this approach, relevant, useful, and
timely noti�cations can be sent to users.

WebVigiL is a pro�le based change detection and no-
ti�cation system that monitors changes to structured and
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unstructured documents. Currently it handles HTML
and XML documents. WebVigiL architecture is modular
and extensible. It has been designed to handle expressive
change speci�cation, provide truly asynchronous ap-
proach to manage user's requests, detect actual changes,
and notify changes � all using active capability. Figure 2
illustrates the architecture of WebVigiL.

WebVigiL accepts pro�les (or sentinels) from users
and monitors for user-speci�ed changes in an intelli-
gent manner (using a combination of intelligent pull and
push) and noti�es the user in a timely manner of the
changes. The pro�le (given by the user) can include
monitoring over a period of time, speci�es one or more
url's to be monitored, and the types of changes to be
monitored (any change, keyword, phrase, link, image),
and how the changes should be noti�ed. Even compos-
ite changes such as conjunction, disjunction, and non-
occurrence can be speci�ed. The versions of the pages
on which change needs to be computed (pair-wise, every
n, moving n) can also be speci�ed.

Of all the modules shown in Figure 2, the change de-
tection module is central to the system and heavily uses
the active capability (actually LED and modi�ed LED
for change detection) in a novel way. Change detection
module contains ECA rule generation, Change Detection
graph, CH-Diff [74, 75] and CX-Diff [76, 77, 78] as its
sub-modules. ECA rule generation module is responsi-
ble for activation and deactivation of pro�les, generating
fetch rules for retrieving pages, detecting events of inter-
est and to generate time-based noti�cation of changes.
Change Detection Graphs reduce the amount of informa-
tion stored, if more than one user requests for different
types of changes on the same page. CH-Diff supports
change detection in HTML pages where as CX-Diff is
for XML pages. The change detection is done by ex-

tracting appropriate objects from the pages based on the
change type speci�ed by the user. The objects are then
compared for changes and if there are any, they are re-
ported to the noti�cation module.

In order to monitor the page speci�ed by the user, it
has to be fetched using the speci�ed periodicity. In We-
bVigiL, we use the periodic event to achieve this fetch
in an asynchronous manner. A periodic event is an event
that repeats itself within a constant and �nite amount of
time. The initiator and terminator are the start and end
events of a sentinel and t is the interval with which the
page should be monitored. The actual fetch of the page
is performed by the rule associated with the periodic
event. Pro�les in WebVigiL can be classi�ed into two
categories: Fixed fetch-Interval and On-Change. The
rules associated with all the events (absolute, relative,
plus and periodic) generated are executed in the imme-
diate coupling mode. In this manner, ECA rules are used
to asynchronously activate (enable) and deactivate (dis-
able) pro�les at run time. Once the appropriate events
and rules are created, the local event detector handles
the execution at run time. Fetching of a page is consid-
ered an event that starts the process of change detection.
Each type of detected change is considered an event that
is propagated to detect composite events. The WebVigiL
system detects these events for each document (page) on
which a pro�le is set. The system also detects composite
events. A composite event is an event expression com-
prising a set of events related through one or more event
operators such as NOT, AND, OR.

WebVigiL has adapted and extended the event de-
tection graph approach used in Snoop for detecting
primitive as well as composite changes. Primitive
change detection involves detecting changes to links,
images, phrases, keywords, etc., in a page. The sys-
tem has been implemented and is available for use at
http://itlab.uta.edu/berlin:8080

Event processing and lately stream data processing
[79, 80, 81, 82, 83, 84] have evolved independently
based on situation monitoring application needs. As
we have discussed, several event speci�cation languages
for specifying composite events have been proposed and
triggers have been successfully incorporated into rela-
tional databases and applications. Recently, stream data
processing has received a lot of attention, and a num-
ber of issues � from architecture [79, 81, 82, 83, 85]
to scheduling [86, 87, 88, 89] to Quality-Of-Service
(QoS) management [90, 91, 92] � have been explored.
Although both of the above topics seem to be differ-
ent on the face of it, we believe, based on the applica-
tions we have analyzed, that they augment/complement
each other very well in terms of computational needs of
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real-world applications. As it turns out, the computation
model used for stream data processing (data �ow model)
is not very dissimilar from some of the event processing
models (e.g., event graph), but developed with a different
emphasis.

As many of the stream applications are based on sen-
sor data, they invariably give rise to events that need to
be composed to detect composite (or complex) events on
which some actions need to be taken. In other words,
many stream applications not only need computations
on streams, but these computations also generate inter-
esting events (e.g., car accident detection and noti�ca-
tion, network congestion control, smart homes, network
fault management) and several such events may have to
be composed, detected and monitored for taking appro-
priate actions. Currently, to the best of our knowledge,
none of the work addresses the speci�cation and compu-
tation of the above two threads of work and the issues
that need to be addressed. A number of sensor database
projects, Cougar [93, 94], TinyDB [95, 96] have tried to
integrate the event processing with query processing un-
der a sensor database environment. However, the event-
driven queries proposed in TinyDB, for example, is used
to activate queries based on events from underlying op-
erating systems. Our focus in this work is to process
large number of high volume and highly dynamic event
streams generated from continuous queries for the ap-
plications that need complex event processing and CPU-
intensive computation (i.e., CQs) for generating events.
Our premise is that although each one is useful in its
own right, their combined expressiveness and synergis-
tic integration are critical for a large class of current and
future applications of stream data processing.

Our integrated model [97, 98, 99] shown in Figure
3 consists of four stages: 1) CQ processing stage used
for computing CQs over data streams, 2) event genera-
tion stage that is responsible for generating events that
are only of interest to the event processing stage (using
the notion of masks and other constraints), 3) event pro-
cessing stage that is used for detecting composite events,
and 4) rule processing stage that is used to check condi-
tions, and to trigger prede�ned actions once events are
detected.

The above architecture is possible as both of our
stream and event processing models use the same data
�ow architecture and the operators form an event graph
or a query graph. Use of other event detection ap-
proaches, such as Petri nets and extended automata
would have made the architecture more complex and af-
ford less scope for seamless integration. The interface
between the two has been designed to avoid interprocess
communication and seamless speci�cation of continuous
queries and event expressions that can be combined in
arbitrary ways.
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The LED has been used almost unchanged for the
above integration. The event generation stage was added
to combine the two relatively easily. Of course, a num-
ber of additional issues still need to be addressed in the
above integration which can be found in [97, 98].

Controlling access decisions for resources is critical
in any system or environment. Dynamically monitoring
the state changes of an underlying system or environ-
ment, detecting and reacting to changes without delay
are crucial for the success of any active security and ac-
cess control enforcement mechanism. With their inher-
ent nature, ECA rules are prospective candidates to carry
out change detection and to provide both access control
and active security. Role-Based Access Control (RBAC)
has been considered as a viable alternative to both dis-
cretionary and mandatory access control and is shown as
cost effective and is being employed in various domains
on account of its characteristics: rich speci�cation, pol-
icy neutrality, separation of duty relations, principle of
least privilege, and ease of management.

Enterprises can model access control policies using
either the RBAC standard [100] or any of its extensions.
Both the speci�cation and enforcement are critical in em-
ploying these policies in real-world systems. Most of
the research has explored and extended RBAC. On the
other hand, most of the current systems have concen-
trated mostly on policy speci�cations and very little on
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the ease of their enforcement. ECA or Active rules not
only have a well-de�ned semantics, they can be added to
existing systems and executed to enforce access control
policies if the policies can be mapped to active rules. We
have shown how active authorization rules or extended
ECA rules can be used to enforce RBAC and its ex-
tensions such as temporal, and control �ow dependency
constraints in a uniform way [101].

Constraints such as time-based, context-aware and
others play a vital role in providing �ne grained access
control and realizing RBAC over diverse domains. We
have extended the standard RBAC with constraints based
on event patterns (generalized event expressions) that
are not supported by current systems. Event patterns
with complex events and simple events as constituent
events were used to model constraints such as tempo-
ral, context, precedence, dependency, non-occurrence,
and their combinations. We have extended event detec-
tion graphs as event registrar graphs to incorporate all
the event generalizations and for capturing event occur-
rences and keeping track of event ordering. We have
shown how enhanced ECA rules and LED are used for
enforcing RBAC standard together with the proposed ex-
tensions in a uniform and transparent manner.

In this application, we have extended and generalized
the ECA paradigm. Attribute-based semantics, masks,
and other constraints were needed to specify complex
access control policies. The extension of the ECA
paradigm has also resulted in some extensions to the
event detection graph. The main advantage of our ap-
proach (over other extant approaches) is that ours pro-
vides a uniform framework for specifying RBAC poli-
cies as well as enforcing them directly in the underlying
system. A number of advantages including separation
of policy from system code, ability to change rule sets
dynamically, accrue from our approach.

Above, we have described the adaptation of the ECA
paradigm for several newer applications. The diversity
of applications indeed indicate the ubiquitous nature of
this paradigm and how it can be adapted meaningfully
for event-driven as well as other applications. As a mat-
ter of fact, in addition to the above applications, we have
also shown how the ECA paradigm can be used as a
mechanism for executing work �ow instances by acti-
vating and synchronizing task executions using Snoop
operators and ECA rules [102]. We have also shown the
suf�ciency of Snoop operators for supporting work �ow
speci�cation recommended by WMC (Work�ow Man-
agement Coalition) [103].

4. Current and Future Trends
In addition to the extensive development and appli-

cation of the event-based rules in conventional and non-
traditional applications, there has been a steady use of
these concepts in several commercial products beyond
CORBA and other earlier systems. JavaBeans [104],
for example, incorporated attribute level events for each
attribute of a class using standard interface. InfoBus
is an extension of JavaBeans with advanced dynamic
interfaces for exchanging data. Vendors such as We-
blogic, TIBCO, and others have used event-driven ap-
proaches (if not the ECA format and the use of com-
posite events and other extensions) in their systems to
provide �exibility for event-driven applications. In addi-
tion to these systems ECA rules provide active capabil-
ity for applications in several other domains including
XML [105, 106], RDF [107], semantic web [108], sen-
sor databases [109], ubiquitous computing [110], P2P
database systems [111], and active spatial data mining
[112].

The DMTF Common Information Model (CIM)
[113] is a conceptual information model for describing
computing and business entities in enterprise and Inter-
net environments. It provides a consistent de�nition and
structure of data, using object-oriented techniques. The
CIM Schema establishes a common conceptual frame-
work that describes the managed environment. The CIM
Event Model de�nes the Event-related abstractions. It
describes the CIM Indication hierarchy and the use of
Indications to model Events. The Event Model also de-
scribes the use of subscriptions to register to receive In-
dications. This is another area where we will see the
utilization of the ECA paradigm coming to fruition.

Autonomic computing has become extremely impor-
tant. To manage interdependent usage of various re-
sources (may they be DBMSs, web gateways, communi-
cation pipes), there is a need for managing various poli-
cies that govern individual resources, but have an im-
pact on policies of other resources. So it is extremely
important to manage policies in a distributed environ-
ment. Several groups including IBM and other players
are working on the �exible management of policies in
an autonomic computing environment. Here again the
advantages of the ECA paradigm and rules are quite ev-
ident. Work along the lines of policy analysis, identify-
ing con�icts, dynamic change of policies, and triggering
policy changes based on distributed state of the system
will become extremely important.

As XML is a widely used standard for information
exchange (self-describing format), there have been at-
tempts at incorporating ECA paradigm [105] and other
event-related features into XML. In addition, a num-
ber of companies are working together for de�ning web
services policies (WS policies) [114] now using XML,
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SOAP, and WSDL extensible models. There is on-
going work on de�ning declarative policy speci�cation
languages for web using Rule Markup language (or
RuleML) [115].

Both stream processing (e.g., Streambase [116],
Apama [117] MavEstream [99]) and pervasive comput-
ing are poised to take off on account of the availability of
smart sensors (e.g., RFID's) for use in large quantities.
This will increase the amount of data that will be gen-
erated which will have to be aggregated and abstracted
in novel ways. Both stream processing and concomitant
event processing will play critical role in the successful
deployment of these technologies.

5. Conclusions
The purpose of this paper was to trace the history of

event-based computation over the past 2+ decades and
how it has been used in many diverse applications. Due
to space constraints, we did not discuss earlier work on
exceptions in programming languages and operating sys-
tems and some of the work in AI that formed as precur-
sors to the development of this paradigm. It is amaz-
ing that the work which started out with the intention
of automating a number of applications in simple ways
has lasted this long and it only seems to be gaining mo-
mentum. All the applications and associated systems de-
scribed in this paper have been implemented as proof-of-
principle systems.

Beyond the applications brie�y outlined from the
viewpoint of the usage of the ECA paradigm, currently,
we are working on various capabilities that utilize ECA
rules: extending and adapting the ECA rules for use
in information assurance, attribute-based semantics for
event operators for utilizing in advance applications,
synergistic integration of distributed events and their de-
tection (or the global event detector or GED) with stream
processing system, and embedding ECA capability into
XML for supporting business policies, negotiations and
access control/security aspects of e-commerce.
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