1,159 research outputs found

    Machine Learning and Quantitative Imaging for the Management of Brain Metastasis

    Get PDF
    Significantly affecting patients’ clinical course and quality of life, a growing number of cancer cases are diagnosed with brain metastasis annually. Although a considerable percentage of cancer patients survive for several years if the disease is discovered at an early stage while it is still localized, when the tumour is metastasized to the brain, the median survival decreases considerably. Early detection followed by precise and effective treatment of brain metastasis may lead to improved patient survival and quality of life. A main challenge to prescribe an effective treatment regimen is the variability of tumour response to treatments, e.g., radiotherapy as a main treatment option for brain metastasis, despite similar cancer therapy, due to many patient-related factors. Stratifying patients based on their predicted response and consequently assessing their response to therapy are challenging yet crucial tasks. While risk assessment models with standard clinical attributes have been proposed for patient stratification, the imaging data acquired for these patients as a part of the standard-of-care are not computationally analyzed or directly incorporated in these models. Further, therapy response monitoring and assessment is a cumbersome task for patients with brain metastasis that requires longitudinal tumour delineation on MRI volumes before and at multiple follow-up sessions after treatment. This is aggravated by the time-sensitive nature of the disease. In an effort to address these challenges, a number of machine learning frameworks and computational techniques in areas of automatic tumour segmentation, radiotherapy outcome assessment, and therapy outcome prediction have been introduced and investigated in this dissertation. Powered by advanced machine learning algorithms, a complex attention-guided segmentation framework is introduced and investigated for segmenting brain tumours on serial MRI. The experimental results demonstrate that the proposed framework can achieve a dice score of 91.5% and 84.1% to 87.4% on the baseline and follow-up scans, respectively. This framework is then applied in a proposed system that follows standard clinical criteria based on changes in tumour size at post-treatment to assess tumour response to radiotherapy automatically. The system demonstrates a very good agreement with expert clinicians in detecting local response, with an accuracy of over 90%. Next, innovative machine-learning-based solutions are proposed and investigated for radiotherapy outcome prediction before or early after therapy, using MRI radiomic models and novel deep learning architectures that analyze treatment-planning MRI with and without standard clinical attributes. The developed models demonstrate an accuracy of up to 82.5% in predicting radiotherapy outcome before the treatment initiation. The ground-breaking machine learning platforms presented in this dissertation along with the promising results obtained in the conducted experiments are steps forward towards realizing important decision support tools for oncologists and radiologists and, can eventually, pave the way towards the personalized therapeutics paradigm for cancer patient

    Brain Tumour Detection Using Resnet 50 and Mobilenet

    Get PDF
    The scientific community defines a brain tumour as  a mass or growth of abnormal cells in the brain. A brain tumour is a development of abnormal cells, some of which may develop  into cancer. MRI scans are the most common way to find brain  tumours and are used to detect brain cancer. There are different  types of tumours exist. They are cancerous(malignant)and non- cancerous(benign) in the brain identification of unchecked tissue growth in MRI may help us diagnose brain cancer. Machine Learning and Deep Learning algorithms are used to identify this tissue growth. When these algorithms are applied to MRI scans, a faster prediction of brain tumours is made, and   a better degree of accuracy aids in treating patients. MRI scans   allow us to perform rapid analysis and identify the exact location of unwanted tissue growth. Various uses include image   recognition and identifying objects, image classification, segmentation, neural network and data processing. The proposed model successfully classified the MRI image into four   classes: glioma, meningioma, and pituitary tumour and no tumour, indicating that the given brain MRI has no tumour. In  this paper the proposed models are MobileNet and Resnet50 and gives accuracy of 0.98. These models classifies the type of tumour very accurately

    Quantitative Analysis of Radiation-Associated Parenchymal Lung Change

    Get PDF
    Radiation-induced lung damage (RILD) is a common consequence of thoracic radiotherapy (RT). We present here a novel classification of the parenchymal features of RILD. We developed a deep learning algorithm (DLA) to automate the delineation of 5 classes of parenchymal texture of increasing density. 200 scans were used to train and validate the network and the remaining 30 scans were used as a hold-out test set. The DLA automatically labelled the data with Dice Scores of 0.98, 0.43, 0.26, 0.47 and 0.92 for the 5 respective classes. Qualitative evaluation showed that the automated labels were acceptable in over 80% of cases for all tissue classes, and achieved similar ratings to the manual labels. Lung registration was performed and the effect of radiation dose on each tissue class and correlation with respiratory outcomes was assessed. The change in volume of each tissue class over time generated by manual and automated segmentation was calculated. The 5 parenchymal classes showed distinct temporal patterns We quantified the volumetric change in textures after radiotherapy and correlate these with radiotherapy dose and respiratory outcomes. The effect of local dose on tissue class revealed a strong dose-dependent relationship We have developed a novel classification of parenchymal changes associated with RILD that show a convincing dose relationship. The tissue classes are related to both global and local dose metrics, and have a distinct evolution over time. Although less strong, there is a relationship between the radiological texture changes we can measure and respiratory outcomes, particularly the MRC score which directly represents a patient’s functional status. We have demonstrated the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible

    Evaluating and Improving 4D-CT Image Segmentation for Lung Cancer Radiotherapy

    Get PDF
    Lung cancer is a high-incidence disease with low survival despite surgical advances and concurrent chemo-radiotherapy strategies. Image-guided radiotherapy provides for treatment measures, however, significant challenges exist for imaging, treatment planning, and delivery of radiation due to the influence of respiratory motion. 4D-CT imaging is capable of improving image quality of thoracic target volumes influenced by respiratory motion. 4D-CT-based treatment planning strategies requires highly accurate anatomical segmentation of tumour volumes for radiotherapy treatment plan optimization. Variable segmentation of tumour volumes significantly contributes to uncertainty in radiotherapy planning due to a lack of knowledge regarding the exact shape of the lesion and difficulty in quantifying variability. As image-segmentation is one of the earliest tasks in the radiotherapy process, inherent geometric uncertainties affect subsequent stages, potentially jeopardizing patient outcomes. Thus, this work assesses and suggests strategies for mitigation of segmentation-related geometric uncertainties in 4D-CT-based lung cancer radiotherapy at pre- and post-treatment planning stages

    IMAGE PROCESSING, SEGMENTATION AND MACHINE LEARNING MODELS TO CLASSIFY AND DELINEATE TUMOR VOLUMES TO SUPPORT MEDICAL DECISION

    Get PDF
    Techniques for processing and analysing images and medical data have become the main’s translational applications and researches in clinical and pre-clinical environments. The advantages of these techniques are the improvement of diagnosis accuracy and the assessment of treatment response by means of quantitative biomarkers in an efficient way. In the era of the personalized medicine, an early and efficacy prediction of therapy response in patients is still a critical issue. In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high quality detailed images and excellent soft-tissue contrast, while Computerized Tomography (CT) images provides attenuation maps and very good hard-tissue contrast. In this context, Positron Emission Tomography (PET) is a non-invasive imaging technique which has the advantage, over morphological imaging techniques, of providing functional information about the patient’s disease. In the last few years, several criteria to assess therapy response in oncological patients have been proposed, ranging from anatomical to functional assessments. Changes in tumour size are not necessarily correlated with changes in tumour viability and outcome. In addition, morphological changes resulting from therapy occur slower than functional changes. Inclusion of PET images in radiotherapy protocols is desirable because it is predictive of treatment response and provides crucial information to accurately target the oncological lesion and to escalate the radiation dose without increasing normal tissue injury. For this reason, PET may be used for improving the Planning Treatment Volume (PTV). Nevertheless, due to the nature of PET images (low spatial resolution, high noise and weak boundary), metabolic image processing is a critical task. The aim of this Ph.D thesis is to develope smart methodologies applied to the medical imaging field to analyse different kind of problematic related to medical images and data analysis, working closely to radiologist physicians. Various issues in clinical environment have been addressed and a certain amount of improvements has been produced in various fields, such as organs and tissues segmentation and classification to delineate tumors volume using meshing learning techniques to support medical decision. In particular, the following topics have been object of this study: • Technique for Crohn’s Disease Classification using Kernel Support Vector Machine Based; • Automatic Multi-Seed Detection For MR Breast Image Segmentation; • Tissue Classification in PET Oncological Studies; • KSVM-Based System for the Definition, Validation and Identification of the Incisinal Hernia Reccurence Risk Factors; • A smart and operator independent system to delineate tumours in Positron Emission Tomography scans; 3 • Active Contour Algorithm with Discriminant Analysis for Delineating Tumors in Positron Emission Tomography; • K-Nearest Neighbor driving Active Contours to Delineate Biological Tumor Volumes; • Tissue Classification to Support Local Active Delineation of Brain Tumors; • A fully automatic system of Positron Emission Tomography Study segmentation. This work has been developed in collaboration with the medical staff and colleagues at the: • Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi (DIBIMED), University of Palermo • Cannizzaro Hospital of Catania • Istituto di Bioimmagini e Fisiologia Molecolare (IBFM) Centro Nazionale delle Ricerche (CNR) of Cefalù • School of Electrical and Computer Engineering at Georgia Institute of Technology The proposed contributions have produced scientific publications in indexed computer science and medical journals and conferences. They are very useful in terms of PET and MRI image segmentation and may be used daily as a Medical Decision Support Systems to enhance the current methodology performed by healthcare operators in radiotherapy treatments. The future developments of this research concern the integration of data acquired by image analysis with the managing and processing of big data coming from a wide kind of heterogeneous sources

    Radiomics risk modelling using machine learning algorithms for personalised radiation oncology

    Get PDF
    One major objective in radiation oncology is the personalisation of cancer treatment. The implementation of this concept requires the identification of biomarkers, which precisely predict therapy outcome. Besides molecular characterisation of tumours, a new approach known as radiomics aims to characterise tumours using imaging data. In the context of the presented thesis, radiomics was established at OncoRay to improve the performance of imaging-based risk models. Two software-based frameworks were developed for image feature computation and risk model construction. A novel data-driven approach for the correction of intensity non-uniformity in magnetic resonance imaging data was evolved to improve image quality prior to feature computation. Further, different feature selection methods and machine learning algorithms for time-to-event survival data were evaluated to identify suitable algorithms for radiomics risk modelling. An improved model performance could be demonstrated using computed tomography data, which were acquired during the course of treatment. Subsequently tumour sub-volumes were analysed and it was shown that the tumour rim contains the most relevant prognostic information compared to the corresponding core. The incorporation of such spatial diversity information is a promising way to improve the performance of risk models.:1. Introduction 2. Theoretical background 2.1. Basic physical principles of image modalities 2.1.1. Computed tomography 2.1.2. Magnetic resonance imaging 2.2. Basic principles of survival analyses 2.2.1. Semi-parametric survival models 2.2.2. Full-parametric survival models 2.3. Radiomics risk modelling 2.3.1. Feature computation framework 2.3.2. Risk modelling framework 2.4. Performance assessments 2.5. Feature selection methods and machine learning algorithms 2.5.1. Feature selection methods 2.5.2. Machine learning algorithms 3. A physical correction model for automatic correction of intensity non-uniformity in magnetic resonance imaging 3.1. Intensity non-uniformity correction methods 3.2. Physical correction model 3.2.1. Correction strategy and model definition 3.2.2. Model parameter constraints 3.3. Experiments 3.3.1. Phantom and simulated brain data set 3.3.2. Clinical brain data set 3.3.3. Abdominal data set 3.4. Summary and discussion 4. Comparison of feature selection methods and machine learning algorithms for radiomics time-to-event survival models 4.1. Motivation 4.2. Patient cohort and experimental design 4.2.1. Characteristics of patient cohort 4.2.2. Experimental design 4.3. Results of feature selection methods and machine learning algorithms evaluation 4.4. Summary and discussion 5. Characterisation of tumour phenotype using computed tomography imaging during treatment 5.1. Motivation 5.2. Patient cohort and experimental design 5.2.1. Characteristics of patient cohort 5.2.2. Experimental design 5.3. Results of computed tomography imaging during treatment 5.4. Summary and discussion 6. Tumour phenotype characterisation using tumour sub-volumes 6.1. Motivation 6.2. Patient cohort and experimental design 6.2.1. Characteristics of patient cohorts 6.2.2. Experimental design 6.3. Results of tumour sub-volumes evaluation 6.4. Summary and discussion 7. Summary and further perspectives 8. Zusammenfassun

    Radiomics for Response Assessment after Stereotactic Radiotherapy for Lung Cancer

    Get PDF
    Stereotactic ablative radiotherapy (SABR) is a guideline-specified treatment option for patients with early stage non-small cell lung cancer. After treatment, patients are followed up regularly with computed tomography (CT) imaging to determine treatment response. However, benign radiographic changes to the lung known as radiation-induced lung injury (RILI) frequently occur. Due to the large doses delivered with SABR, these changes can mimic the appearance of a recurring tumour and confound response assessment. The objective of this work was to evaluate the accuracy of radiomics, for prediction of eventual local recurrence based on CT images acquired within 6 months of treatment. A semi-automatic decision support system was developed to segment and sample regions of common post-SABR changes, extract radiomic features and classify images as local recurrence or benign injury. Physician ability to detect timely local recurrence was also measured on CT imaging, and compared with that of the radiomics tool. Within 6 months post-SABR, physicians assessed the majority of images as no recurrence and had an overall lower accuracy compared to the radiomics system. These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. These appearances detected by radiomics may be early indicators of the promotion and progression to local recurrence. This has the potential to lead to a clinically useful computer-aided decision support tool based on routinely acquired CT imaging, which could lead to earlier salvage opportunities for patients with recurrence and fewer invasive investigations of patients with only benign injury

    Improving nuclear medicine with deep learning and explainability: two real-world use cases in parkinsonian syndrome and safety dosimetry

    Get PDF
    Computer vision in the area of medical imaging has rapidly improved during recent years as a consequence of developments in deep learning and explainability algorithms. In addition, imaging in nuclear medicine is becoming increasingly sophisticated, with the emergence of targeted radiotherapies that enable treatment and imaging on a molecular level (“theranostics”) where radiolabeled targeted molecules are directly injected into the bloodstream. Based on our recent work, we present two use-cases in nuclear medicine as follows: first, the impact of automated organ segmentation required for personalized dosimetry in patients with neuroendocrine tumors and second, purely data-driven identification and verification of brain regions for diagnosis of Parkinson’s disease. Convolutional neural network was used for automated organ segmentation on computed tomography images. The segmented organs were used for calculation of the energy deposited into the organ-at-risk for patients treated with a radiopharmaceutical. Our method resulted in faster and cheaper dosimetry and only differed by 7% from dosimetry performed by two medical physicists. The identification of brain regions, however was analyzed on dopamine-transporter single positron emission tomography images using convolutional neural network and explainability, i.e., layer-wise relevance propagation algorithm. Our findings confirm that the extra-striatal brain regions, i.e., insula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal cortex, superior frontal lobe, and pons contribute to the interpretation of images beyond the striatal regions. In current common diagnostic practice, however, only the striatum is the reference region, while extra-striatal regions are neglected. We further demonstrate that deep learning-based diagnosis combined with explainability algorithm can be recommended to support interpretation of this image modality in clinical routine for parkinsonian syndromes, with a total computation time of three seconds which is compatible with busy clinical workflow. Overall, this thesis shows for the first time that deep learning with explainability can achieve results competitive with human performance and generate novel hypotheses, thus paving the way towards improved diagnosis and treatment in nuclear medicine
    • …
    corecore