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Summary

Radiation therapy relies in great extent on delineations of tumour and organs
on medical images. These delineations are essential for the entire treatment.
Unfortunately manual delineations are both prone to variation. At the same
time the manual delineation process is time-consuming. This thesis represents a
work within the automatic definition of organs and tumours. The thesis includes
a description of cancer and radiation therapy as well as a summary of the prior
methods employed for automatic segmentation. Variation within and between
manual and automatic segmentation methods is documented in the thesis. The
first included article of the thesis analyses treatment outcome difference due
to manual delineation variation. 3 articles follow, which describes automatic
segmentation algorithms of different areas of application for radiation therapy.
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Resumé

Str̊alebehandling afhænger i høj grad af indtegning af organer og tumor p̊a
medicinske billeder. Disse indtegninger er afgørende for behandlingen. Imidler-
tid er disse manuelle indtegninger følsomme overfor variation mellem indtegnere.
Samtidig er manuelle indtegninger tidskrævende. Denne afhandling omhandler
arbejde inden for automatisk definition af organer og tumorer. Afhandlingen
omfatter en beskrivelse af kræft og str̊alebehandling samt et resumé af de kendte
metoder til automatisk indtegning. Variation imellem manuelle og automatiske
segmentering metoder er dokumenteret i afhandlingen. Den første omfattede
artikel i afhandlingen analyserer resultatet i behandling p̊a grund af manuel in-
dtegningsvariation. 3 artikler følger, som beskriver automatiske indtegningsal-
goritmer til anvendelse indenfor forskellige omr̊ader af str̊alebehandling.
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Preface

This thesis was prepared and finished at Rigshospitalet and at the Department of
Informatics and Mathematical Modelling, the Technical University of Denmark
in fulfilment of the requirements for acquiring the Ph.D. degree in engineering.
The thesis deals with different aspects within radiotherapy and image analysis.
The thesis consists of a summary report and a collection of four research papers
written during the period 2009–2012.
The thesis starts out with a general introduction. In the next chapter some of
the methods used in the included papers are discussed along with the future
possibilities for automatic image segmentation in radiotherapy.
Hereafter follows the four papers which are the foundation of the thesis, first a
paper describing the variation of manual contours and its impact on treatment
planning, secondly a paper describing an automatic method for the segmenta-
tion of the parotid gland, thirdly a paper describing the segmentation of gross
tumour volume using symmetry and lastly a paper describing the continuous
segmentation of lung tumours using electric flow lines for graph cuts.

Lyngby, November 2012

Christian Hollensen
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Chapter 1

Introduction

Computed tomography (CT) and positron emission tomography (PET) are
modalities of increasing clinical application for radiation therapy. The com-
bination of the images supplies the medical personnel with information about
both anatomy and physiology. This information is indeed important in the clin-
ical workflow of radiation therapy in the treatment of cancer.
Radiation therapy is a complex discipline which involves clinical personnel of
many different professions, as nurses, chemists, physicists, dosimetrists as well
as nuclear medicine physicians, radiation oncologists and radiologists. The in-
clusion of all these professions requires cooperation and understanding as well
as a clear clinical workflow.
The process of planning and delivering radiation treatment requires images in all
parts of the workflow. The different regions of interest are contoured on images,
the dose delivery plan is optimized on the basis of images, quality assurance is
based on images and the position of the patient is ensured using images.
With the introduction of new imaging technologies and the streamlining of older
imaging modalities the amount of image data has increased dramatically. The
increased amount of data increases the load of conventional manual methods in
the clinic. This combined with the ever increasing demand on healthcare sys-
tem to increase efficiency and quality without increasing costs has increased the
demands for smarter procedures and application of technologies that reduces
the workload of healthcare personnel.
Image analysis seems to be one of the solutions for this problem in radiation



2 Introduction

therapy. Automatic segmentation can deliver quantitative contours and de-
crease the workload of physicians when contouring organs and pathologies on
images. Registration can find points of correspondence between images of the
same patient at different time points for treatment evaluation. Registration can
also find points of correspondence between images of different patients allowing
quantitative comparison between patients. Extraction of features of dose plans
and manual contours also allows an evaluation of errors in the clinical workflow.
The overall objective of this thesis is the examination of the applicability of im-
age analysis for the analysis of CT and PET images in planning and evaluation
of radiation therapy.

1.1 Cancer

Cancer is a multifaceted disease, which can occur in almost every part of the
body. An elaborate description of cancer is outside the scope of this thesis. This
section is meant as a short introduction to cancer. It describes some of the basic
mechanisms of developing cancer as well as some of their characteristics[144].
The section ends with a description of the head and neck cancer volume, and
why this subject is the main theme of the thesis.

1.1.1 Origin of cancer

Cancer is a disease that arises, when the cells of our body starts proliferating
at an abnormal level without any regards to the normal boundaries within our
body[144]. This state is called neoplasia, new (neo) formation/creation (plasia)
in greek. Neoplasia is the last step of a change process, that a cell undergoes
towards becoming a cancer cell, which can be seen sketched in figure 1.1. The
process usually starts with stress,that damages the cell in some way. The stress
can arise from heat, physical damage, infection, ionizing radiation, chemical in-
teraction and the functions of the cell itself. In response to the irritation the
cell repairs itself and typically goes into the state of metaplasia.
Metaplasia is a reversible process, where the cell changes (in greek: meta) from
one type to another type, that is more capable of withstanding the stress. An
example could be the interaction between the epithelium (surface) in the res-
piratory passages and cigarette smoke, which after chronic irritation changes
into squamous epithelium, where the cells are more capable to resist the patho-
logical interaction of the smoke. The degree of stress, which is necessary for
a cell to change, is cell type dependent and also different from individual to
individual. In general cells, which have a higher frequency of cell division, are
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Figure 1.1: A general schematic of the pathway from normal cell to neoplasia.

more vulnerable to ionizing radiation. This is caused by the vulnerability of the
cell DNA, when the cell is in the mitosis process, where the cell separates the
chromosomes in the cell into two identical sets in two seperate nuclei. In this
phase the DNA repair mechanisms are decreased, and the replication of DNA
makes small changes even more risky.
A more persistent or severe stress or irritation of the cell can induce dysplasia
(greek: malformation). Dysplasia is an irreversible alteration of the cell, and
cells with signs of dysplasia are often categorized as a precursor of cancer by
pathologists when seen with a microscope in a tissue sample. The cells with dys-
plasia have often lost some of their original characteristics. Cells with dysplasia
will display unequal size and abnormal shape within same tissue, heightened
levels of DNA in the cell and higher number of dividing cells.
There are several grades of dysplasia, going from mild disorder to a severe grade,
which is hard to distinguish from neoplasia. The definition of dysplasia is de-
pendent on site and on cell type. Cells with dysplasia do not necessary alter into
neoplastic cells. It is dependent on the environment of the cells and their own
DNA. If the alterations of the cell are too severe, it develops into a neoplasia,
which we normally call cancer.
The mechanism, which alters a cell from one of the above mentioned states,
are not fully understood. But it has been possible to identify environmental
factors which promote the alterations such as excessive UV radiation, burned
meat , smoking and certain vira, see figure 1.2. Even though these risk factors
have been identified, their interaction and promotion of cell alterations are not
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Figure 1.2: Percent of cancer cases in the UK attributable to different exposures.
The pie does only account for 42.7 % of all incident cancer cases. [112]

always understood.

1.1.2 Genetics of cancer

Cancer cells lack some of the characteristics of normal cells, which would stop
the cell from developing into uncontrolled growth[144]. The characteristics are
generally related to either the development or activation of oncogenes on the
DNA or the lack of tumour suppressor genes as it can be seen in figure 1.3.
The oncogenes code for proteins that stimulate cell growth, differentiation and
proliferation. These genes are then responsible for the uncontrolled rise in cell
number and the differentiation of the cells. The increase in cancer cells can
eventually spread the cancer and provide a pressure on surrounding tissue and
tissue boundaries. The differentiation of the cell increases the alterations in
DNA. These alterations can increase the number of oncogenes or deactivate tu-
mor suppressor genes making the cancer even more dangerous. It can also alter
the cell, so that it can survive in other environments, than it normally was sup-
posed to, and change its appearance making it less vulnerable to the immune
system.
The tumour suppressor genes are genes, which code for proteins, that repress
genes, which are essential for the cell cycle, or couple the cell cycle to DNA
damage, inhibiting cell division. Tumour suppressor genes include genes that
code for DNA repair proteins, which can repair mutations on the DNA. The
cell should normally initiate apoptosis (programmed cell death), if it does not
succeed in repairing damage to the DNA. Some tumour suppressor genes are
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Figure 1.3: The mechanisms of cancer oncogenes and tumor suppressor genes
modified from [112].

necessary for this initiation.
A last group of tumour suppressor genes code for adhesion proteins, that are
responsible for cell adhesion, hereby inhibiting metastasis. As it can be seen,
the loss or reduction of these functions will increase the risk of cancer.

1.1.3 Cancer spread

Cancer cells proliferate at an increased rate compared normal cells without any
regard to its surroundings[144]. The growth will result in a mass of cell con-
centration, the tumour. The tumour cells will consume an increased amount of
glucose to ensure the increased amount of cell proliferation. The cell growth of
the tumour can even be so high, that it stops the supply-arteries for the core
cells, either killing the cells or inducing a state of hypoxia, the deprivation of
oxygen.
It is possible for the tumour to spread to nearby tissues by tumour growth into
bordering tissue. It is also possible for cancer cells to spread to other tissues
using the transport systems of the human body, which is called metastasis. The
process of metastasis is complex and requires further mutations of the cancer
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cell as inhibition of adhesion proteins and invasion of bordering nodes or blood
vessels. Common sites and symptoms of metastasis are illustrated in figure 1.4.
The lymph vessels of the immune system can be used by metastasising cells.

Figure 1.4: Common sites and symptoms of cancer metastasis [144].

The tumour cells can penetrate the boundaries of the nearby lymph nodes, and
if the adhesion of the cells is lacking the cancer cells will spread through the
lymph node. Since the lymph nodes are regional the cancer cells entering the
lymph node can only spread to a certain volume of the body.
The cancer cells can also invade nearby veins or arteries. This allows the spread
of the cancer cells to distant parts of the body. Cancer cells will usually have a
difficulties surviving outside its original tissue. Accordingly metastasising cells
will situate in organs with similar characteristics as their origin tissue.
Metastasis will usually decrease the probability of tumour management dra-
matically since it increases the spread of cancer and decreases the number of
effective treatments.

1.1.4 Classification of cancer

Cancer is classified in multiple manners. The most common classification is
between benign and malign tumours. Benign tumours are usually characterised
by their lack of invasive properties. Usually a benign tumour has some kind of
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sheath covering it. Even though benign tumours lack the invasive property they
can provide a health risk by compression of vessels and vital tissue. Some benign
tumours also possess the hormone secretion properties of its origin tissue and
can pose a danger by oversecretion of these hormones. Malign tumours include
all other cancer tumours and are typically more dangerous.
The TNM system describes the extent of cancer spread in the body[94]. T
describes the primary tumour size, N the regional lymph nodes involved and M
the metastasis spread.
The primary tumour size is ascribed from 0 to 4, where 0 signifies no sign of
primary tumour and 4 is the largest possible extension of the tumour for involved
tissue. The regional lymph node description is given from 0 to 3, where 0 signifies
no nodal involvement and 3 is a spread to all regional nodes.
Metastasis is given as 0 or 1 respectively signifying none or present metastasis.
Dependent on the primary tumour location all TNM classification has a direct
correlation to the cancer staging system which ranges from 0 to 5. Stage 0
signifies a carcinoma in situ, i.e. cells which have the risk of development into
cancer. Stage 5 denotes the spread of cancer to another organ.

1.1.5 World Cancer Burden

For the human race no one single disease is as encompassing as cancer. Cancer is
one of the deadliest human diseases, responsible of 7.6 million deaths in 2008[1].
It is hereby responsible for 13 % of all deaths in the world. Furthermore there
are over 12 million new incidences of cancer every year[86]. And the burden of
cancer will increase further due to population growth and aging, and by 2030
the number of incidences is predicted to increase by 75 % relative to 2008[21].

1.1.6 Head and Neck cancer

Head and neck cancer is the main focus of this thesis. The volume of head and
neck was chosen because of the difficulties mentioned below and the absence of
tools to support the manual contourer of the tumour.
The head and neck volume includes the head and neck except the brain, esoph-
agus (commonly known as the gullet) and the vertebrae. All tumours of this
volume are normally classified to an origin in oral cavity, oropharynx, nasophar-
ynx, hypopharynx and larynx. All the volumes can be seen in figure 1.5. The
volume is characterized by predominantly soft tissue and a high density of vital
organs. The first feature makes HN (Head and Neck) cancer extremely hard to
delineate, since the edge contrast between different the soft tissues is difficult to
perceive on the CT-scan. The second feature emphasizes the need for reliable
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Figure 1.5: The anatomy of the head-and-neck volume. Illustration produced
by Rigshospitalet for clinical purposes

contours of the gross tumour volume (GTV) as well as the normal tissues, which
are vulnerable to the radiation, such as the spinal cord and the parotid glands.
This is reflected in the fact that approximately 50 % of the patients are dead
5 years after treatment[74]. Another feature is the fact, that none of the de-
lineations based on imaging modalities such as MR, CT and PET are capable
of capturing the entire volume of gross tumour infiltration [35], and that the
delineations are subject to large inter- and intra-operator variation [27][22][123]
compared to other volumes[137].

1.2 Imaging Modalities

In this section a short description of the different image modalities is presented.
The image modalities presented are part of the work included in this thesis as
well as other imaging modalities of interest in radiotherapy.

1.2.1 Computed tomography (CT)

Computed tomography is built upon the principle of x-ray imaging. X-rays are
photons with a wave length between 0.01 to 10 nanometers with energies rang-
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ing from 100 eV to 100 keV. X-ray radiation is electromagnetic radiation.
X-rays are produced in an x-ray tube, as illustrated in figure 1.6 below. Inside
the tube a vacuum exist with only two other components inside: a cathode and
an anode. The cathode is a wire with a current, which is heated, and the anode
is usually made from a material with a high atomic number such as tungsten.
There is high voltage in the circuit, which connects the anode and cathode.

Figure 1.6: Illustration of the x-ray tube.

The voltage and heating of the cathode promotes release and acceleration of
electrons from the cathode towards the anode. The speed of the electrons is
proportional with the voltage. The electrons interact with the anode when they
hit it. Two different interactions, the atomic processes of x-ray fluorescence and
Bremsstrahlung, create the x-rays.
The x-rays produced are emitted from the anode and usually directed towards
the object under investigation, i.e. an extremity with suspected breakage or the
lungs. A proportion of the x-rays are absorbed by the tissue through photo-
electric processes. The probability of these processes increases with the electron
density of the tissue. This signifies that tissue with low atomic number, such
as air, allows passage of a high proportion of rays. Tissue with a high atomic
number such as bone only allows passage of low proportion of the x-rays. The
ability to block the x-rays is also called the attenuation of the tissue.
An x-ray sensor is necessary to get a depiction of the attenuation of the tissue
of investigation. A x-ray sensor, as a photographic film or scintillation detec-
tor, is placed underneath the object of investigation. Hereafter it is possible to
get a two-dimensional depiction of the object, that the rays have been passing
through.
On photographic films a proportion of the x-rays interact when hitting the film,
and hereby colouring it. In a scintillation detector the interacting x-ray photon
is converted into a visual photon, which can be detected by a photomultiplier
delivering an electric signal. The resulting image signal will be inversely propor-
tional to the electron density of the tissue, that the x-rays have passed through.
Collimators are placed between the x-ray sensor and the object to ensure, that
the x-ray sensor does not detect scattering x-rays from the interaction between
the object and the incident x-rays. An example of a x-ray image can be seen
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Figure 1.7: An x-ray of the thorax acquired from Rigshospitalet.

in figure 1.7. The same technique is used in CT to extract electron density of
the entire volume. The x-ray tube is rotated around the object while emitting
x-rays in a fan shaped beam. An x-ray sensor is located at the other side of the
rotation circle opposite the object. Figure 1.8 is photo of a CT scanner from
Rigshospitalet. It is possible to make a tomographic, 3-dimensional, reconstruc-

Figure 1.8: CT-scanner at Rigshospitalet.

tion of the object from these projections, using methods like filtered backpro-
jection (FBP)[46], algebraic reconstruction[7] or Ordered Subset Expectation
Maximization (OSEM)[81]. The reconstruction depicts the mean attenuation of
the object in discrete locations, the voxels of the scan. The attenuation is given
on the Hounsfield scale, which spans from -1024 to 3071 Hounsfield units (HU),
where 0 HU is the attenuation of water, -1000 HU is the attenuation of air, and
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bone attenuation ranges between 400 and 2000 HU.
Modern CT-scanners use helical rotation of x-ray tube and sensor on a gantry
to increase the speed of the image acquisition. The image quality from these
scanners is dependent on the pitch of the scan, i.e. the length of the table trav-
elled per rotation divided by the x-ray beam width. Increasing the pitch will
decrease the quality of the images and decrease the amount ionizing radiation
and scan time.
CT scanners produce images with high contrast between different tissues of dif-
ferent material content. They excel at the distinction between soft tissue, bone
and air cavities. Organs are easy to locate and allows a reasonable distinction of
tissue by adjusting the spectrum of the HU, that is visualised on the image. A
good visualisation can be acquired by injecting contrast liquids into vessels prior
to the scan. The acquisition time of the scan image is relatively short(minutes
for a full body scan on modern scanners) making it possible for a fast visualiza-
tion of the entire body.
But CT scans are also limited by their own technology. They can only visualize
boundaries between tissues of different densities. This is especially problematic
in volumes with soft tissue, where there is small or no differences in density.
Another issue with CT as an imaging modality is the ionising radiation dose
delivered to the patient, which can range from 1-30 mSv in effective dose [97]
[131], thus increasing the risk of inducing cancer.

1.2.2 Cone Beam Computerized Tomography (CBCT)

During the last decade a new form of clinical CT scanners has been introduced
to radiotherapy, where the beam of the x-ray tube is cone shaped[84]. The cone
beam computerized tomography (CBCT) scanner is usually part of an integrated
scanner and delivery system, see figure 1.9. Having a scanner integrated with
the delivery system does provide some advantages regarding setup of the patient,
But the new geometry also poses some new reconstruction obstacles [46]. The
images are usually characterized by inferior quality due to increased scatter and
reduced contrast [17]. It is possible to increase image quality by increasing the
number of sample angles, while increasing the dose to the patient. The dose
distributed to the patient is lower than conventional CT [154].

1.2.3 Megavoltage Computerized Tomography (MVCT)

The patient can also be visualized by detecting the photons that passes though
the body by using a linear accelerator. Acquiring projections at different an-
gles around the patient provides the possibility for megavoltage computerized
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Figure 1.9: Integrated cone beam CT and medical linear accelerator at Rigshos-
pitalet.

tomography (MVCT). These photons produced by a linear accelerator are of a
higher energy than the conventional CT, typically 6 MeV compared with the
normal level of about 30 KV in a conventional CT.
The image acquisition technique is similar to conventional CT or CBCT depen-
dent on the delivery system. A conventional linear accelerator is placed on an
arm, that is rotated around the patient, while helical tomotherapy deploys a
linear accelerator on a ring gantry. The images from an MVCT image provide
inferior tissue contrast compared to kilovoltage CT (KVCT) as it is seen in figure
1.10. But the attenuation coefficients in MVCT are more closely proportional
to the attenuation coefficients of the treatment energy. Unfortunately the dose
due to imaging using MVCT are higher than KVCT[154].

(a) (b)

Figure 1.10: Two images of the same patient acquired with conventional CT (a)
and MVCT(b).
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1.2.4 Positron Emission Tomography (PET)

The imaging modalities mentioned above all provide structural and anatomical
information about the patient, but none of the conventional images from the
other modalities provide functional information about the physiological pro-
cesses in the tissue. One way of acquiring volumetric functional imaging is
positron emission tomography.
In PET a radioisotope is injected into the patient. The radioisotope will usu-
ally be incorporated with a tracer molecule with biological properties building
a tracer compound. Once injected into body, e.g. through the veins of the
patient, the molecule with the radioisotope will distribute itself throughout the
body. The distribution of the tracer will depend on the biological properties of
the tracer. The different radioisotopes used in PET are discussed below.
The radioisotope undergoes positron emission decay at a given time and emits
a positron. The positron travels a short distance, until it interacts with an elec-
tron. Since the two particles have opposite charges, they are both annihilated
by the encounter. This annihilation produces a pair of gamma photons with
opposite direction and energy of 511 keV, the energy equal to the mass of the
positron or electron, the process is illustrated in figure 1.11. A ring of detectors

Figure 1.11: Illustration of a PET scan. The scan is performed after injection of
the radioisotope. Upon annihilation of the positron and electron, two photons
are emitted and detected by the ring of detectors[107].

are surrounding the patient in a PET scanner. The detectors of the ring resem-
ble the scintillation detectors of the CT scanner. If two photons of 511 keV are
registered at the same time in the detector ring, it is possible to infer a straight
line of coincidence between the two blocks of the ring. It is assumed that the
positron decay has taken place on that line of coincidence. Though false posi-
tives are possible, the knowledge about opposite direction and the energy of the
photons provides a higher signal-to-noise ratio.
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Table 1.1: Overview of the tracer compounds used in oncology [157] [26]
Tracer compound Targeted process

F18-fluorodeoxyglucose (FDG) Glucose metabolism
C11-methionine (MET) Amino-acid transport and metabolism

transport and metabolism
F18-fluoride Bone remodelling

C11-Thymidine DNA synthesis
F18-fluormisonidazole (FMISO) Hypoxia

O15-water Perfusion
F18-fluorthymidine DNA synthesis

F18-fluorethylthyrosine Amino-acid
C11-choline Choline metabolism

F18-fluormethyltyrosine Amino-acid transport
I124-iodo-fluoro-deoxy- Herpes simplex thymidine

arabino-furanosyl-uracil (FIAU) kinase gene expression
CU60-diacetyl-bis Hypoxia

(N4-methylthiosemicarbazone) (CU-ATSM)

The image can be reconstructed using FBP and OSEM, but the calculations are
somewhat complex because of the decreased number of coincidences compared
with CT. It is possible to improve the image quality by making

• Correction for random coincidences

• Estimating and compensating for scattered photons

• Compensating for detector dead-time

• Detector sensitivity correction

• Decay correction

• Attenuation correction based on CT acquired prior to the PET scan.

The functionality of PET depends on the radioisotope and the tracer molecule,
that has been used. A number of different radioisotopes are used in PET imaging
the most usual being C11, N13, O15 and F18. Not all tracers can be combined
with the different radioisotopes. A list of radioisotopes and tracer compounds
and their targeted process can be seen in table 1.1. The most widely used tracer
compound for PET imaging is by far FDG. FDG is applicable for oncology but
also for functional analysis of brain, heart and lungs.
FDG is a glucose analogue, and it is taken up by most tumours because of their
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increased cell proliferation, that increases their uptake of glucose to abnormal
levels. Once inside the cell it stays there, because it cannot be metabolised like
normal glucose.
The half-life of F18 of 110 min makes it an ideal radioisotope. It allows time
for a half hour distribution after injection of the compound in the body before
the actual scan. Normally a patient should have been fasting at least 6 hours
before the injection to ensure low blood sugar. During the distribution time of
the compound the patient should be physically inactive to reduce the signal of
muscles.
A typical dose of FDG is 400 MBq. The FDG scan usually visualizes a tumour
quite clearly, as it is seen in figure 1.12. As it is noticed from the figure, the
voxels of PET are somewhat larger than the voxels of CT, which arises from the
uncertainties of PET image acquisition arising from factors as positron travel
length and detector block size. Since the amount of blood volume differs between

Figure 1.12: CT/PET image of a head and neck cancer patient with cancer at
hypopharynx. The CT image is given in black and white while the PET image
is superposed as color coding from 0 SUV in dark blue to 5 SUV in red. The
tumor is lighted up on the PET image.

patients, and hereby changes the concentration of the compound in the blood
from patient to patient. To get a quantitative signal, which can be compared
between patients a standardized uptake value (SUV) has been introduced[18].
SUV is defined as,

SUV =
Ac

Dose/BW
(1.1)

where Ac is the measured decay corrected activity in kBq/g, Dose is the injected
dose in MBq and BW is the body weight of the patient given in kg. As it can
be seen SUV does not have any unit. As described before, SUV should make it
possible to quantitatively compare image values.
Unfortunately SUV is prone to differences between patients due to 3 different
factors[18]
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• Biological factors as blood glucose level, uptake period, patient motion,
patient comfort and inflammation

• Manual factors as lack of cross calibration between PET instruments,
residual activity in injection syringe, incorrect synchronisation between
instruments, use of injection time for decay correction and paravenous
injection

• Technical factors as scan acquisition parameters, image reconstruction set-
tings, region of interest definition and use of contrast agents in the CT for
attenuation correction

To reduce the influence of these factors a strict protocol must be composed and
complied for every scan as well as routines for calibration and quality assurance
of both scanner and dose calibration instruments.
When introducing PET imaging or introducing SUV in a clinical setting Boel-
laard et al.[18] has provided excellent reviews describing both influencing factors
and a protocol for standardised PET image acquisition and quantitative data
analysis.

1.2.5 Magnetic Resonance Imaging (MRI)

Even though magnetic resonance imaging (MRI) is not used in any of the studies
for this thesis it is still included because of its large importance and applicabil-
ity. The theory behind image acquisition and generation of the signal as well as
the vast amount of different acquisition types is outside the scope of this thesis.
Here follows a brief description of the imaging mechanism and the anatomical
pictures of MRI usually acquired for radiation oncology.
MRI uses a strong magnet to align the spin of specified nuclei type within the
body of the patient. A constant magnetic field is applied along one direction.
A magnetic pulse is then induced by the magnet and the following signal from
the patient is measured by receiver coils. The signal arises due to the relaxation
of the spin nuclei, which had just been aligned in the magnetic field and now is
returning to the direction of the constant field. The sequence of magnetic pulses
is repeated while measuring resulting radio frequency from the nuclei spin it is
possible to get image values for the entire patient.
Applying magnetization across the entire body of the patient makes the inter-
connection between spin signal and its actual location in the patient a complex
problem. This is solved by applying different field gradient phases and frequen-
cies along the three axes of the patient.
The two signals, which are measured in conventional MRI, are T1 and T2. Both
of these signals arise as the hydrogen nuclei are manipulated by the induced
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magnet field. The T1 image reflects the time to reduce the difference between
a longitudinal magnetization and the equilibrium magnetization, the so-called
spin-lattice relaxation time or T1. The T2 image reflects the rotation of the
nuclei spin in the transverse plane. A magnetization is applied in the transverse
plane orthogonal to the equilibrium field. While the nuclei spin returns to the
equilibrium state it will emit radio frequency signal in the transverse plane. The
relaxation time of this spin-spin signal is the T2 signal.
The T1 and T2 images are dependent on the water concentration in the spe-
cific location of the body. As such the image quality of MRI is better to locate
boundaries between soft tissues. As mentioned above MRI allows many different
anatomical and functional imaging capabilities. Furthermore patients do not re-
ceive ionizing radiation, when scanned, opposed to the other imaging modalities
of this section.
Unfortunately the MRI does not provide the same clear boundaries between
bone and surrounding tissue. At the same time MRI does not provide attenua-
tion coefficients for the tissue. This means that the MRI modality is not suitable
for the attenuation necessary for PET and for radiotherapy planning. Practical
solutions for these problems are emerging, and they can eventually be solved
by segmenting the image into different tissue types and distribute attenuation
coefficients according to tissue type.

1.3 Radiation therapy

Radiation therapy is a therapy strategy with increasing application for cancer
patients. The radiation dose can be administered in two ways: from outside the
body or inside the body. In the first case, called external beam radiotherapy, a
linear accelerator gives a beam of radiation dose either consisting of photons or
particles, as electron or protons. In the second case, called brachytherapy a ra-
diation source is distributed close or inside the cancer volume. The advantages
of radiation therapy compared with alternatives as surgery and chemotherapy
lie in the absence of direct intervention/surgery and the ability to concentrate
treatment at the tumour volume.
In this section of the thesis the mechanisms of radiation therapy is summarized.
A description of the clinical workflow of radiation therapy is included with spe-
cial emphasis on the contouring process. At the end of the section the treatment
delivery and treatment adaption is briefly described.
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1.3.1 Mechanism of Radiation Therapy

The principle behind radiation treatment is the capability of ionizing radiation
to damage the DNA of cells. The damage either kills or causes the cells to
reproduce more slowly. Ionizing radiation has a larger effect on cancer cells,
since they reproduce more frequently. Cells in general are more vulnerable to
ionizing radiation during cell division also called mitosis. Therefore the organs
with high cell proliferation are also more vulnerable to ionizing radiation. Can-
cer cells also have reduced repairing mechanisms of the DNA. This means that
damage to the DNA, which could be repaired in normal cells, can be lethal for
cancer cells. The radiation dose can be spread over time, giving the dose in frac-
tions with smaller doses. This allows normal tissue to repair between radiation
dose fractions in a higher degree than the cancer cells.
In the history of radiation treatment there has been a ongoing controversy be-
tween hypofractionation, few treatment sessions with large dose, and hyper-
fractionation, more treatment sessions with lower dosis. On the practical side
in clinical workflow the hypofractionation scheme poses benefits regarding pa-
tients, since fewer treatment sessions require less setup time for the patient. The
patient also benefits from fewer sessions both regarding attendance at the clinic
and psychological stress of treatment. Furthermore the progress in technology
has increased the potential to direct the high dose of ionizing radiation to the
tumour while sparing the surrounding tissue to some degree[100].
But regarding normal tissue complication hypofractionation has some demands
to the course of treatment. The cells of the normal tissue, which receive ionizing
radiation, must be allowed to repair between the treatment sessions [16].
Hyperfractionation is still the preferred strategy for some tumours. For head
and neck cancer patients hypofractionation has so far not shown any benefit[34],
regarding cure or after-effects of the treatment. This could be due to the con-
centration of critical organs in the head and neck volume[74]. Furthermore the
normal tissue is not adequately spared or given enough time to repair itself under
a hypofractionation strategy. But common to all treatment strategies, ionizing
radiation always kills normal cells in the body. Consequently the success of the
treatment and complication prevention depends on the capability to administer
a sufficiently strong dose to the tumour while reducing dose to normal tissue to
levels with the lowest risk of normal tissue complication. That makes the defi-
nition of tumour and tissue a vital step in the preparation of radiation therapy.
Radiation treatment can also be given with palliative intent, where the intention
is not cure. This form of treatment seeks to relieve symptoms and suffering of
cancer for the patient. This is usually done to shrink tumours close to organs
such as the brain, spine or esophagus.



1.3 Radiation therapy 19

1.3.2 Clinical Workflow

The clinical workflow varies from clinic to clinic. Some of the differences are due
to the technical capabilities of the clinic, i.e. not having imaging modalities as
MR and PET to guide treatment planning. Other clinics do not own advanced
delivery equipment, and hence they are not using them. Preparation, planning,
execution and quality assurance also varies among clinics, and a description of
the variation between clinical settings is out of the scope of this thesis.
In the following sections a general description of the clinical workflow at Rigshos-
pitalet for radiation therapy is given. The description is based upon the practical
experiences and knowledge of the author.

1.3.2.1 Clinical Diagnosis and Examination

The initial diagnosis or suspicion of cancer is usually conceived at the primary
medical caretaker of the patient. The patient usually arrives at the caretaker
with a suspicion based on general symptoms in the body such as pain. Localized
growth or the discovering of ”lumps” in parts of body such as breast or skin can
also be the first sign of cancer.
The primary medical caretaker, which is usually the general practitioner of the
patient, will examine the patient and then refer the patient to an oncology
department.
In head and neck cancer the suspicion can also arise at the dentistry upon
examination of the teeth and oral cavity. The patient is usually referred to
an ear-nose and throat specialist, who will refer the patient to an oncology
department upon positive findings.
Upon arrival to the oncology department the patient will be given a clinical
examination. A systematic examination of the patient function and symptoms
will be performed both by manual examination and questioning of the patient.
With head and neck cancer suspicion the oral cavity is examined as far down as
the larynx as well as the outside of the neck and nose cavity. In figure 1.13 an
example of the usual depiction sheets can be seen, which are used to visualize
the location of the suspected cancer, which have been found at the examination
of the patient.

1.3.2.2 Imaging and Staging

The patient is hereafter referred to the imaging modalities, which are relevant
for the patient. For all patients with suspected cancer a CT scan is a minimum.
PET is also taken for certain patient groups, where it has been proved [48] or
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(a) (b) (c)

Figure 1.13: Depiction sheet for tumour location in three different patients from
Rigshospitalet. Left picture pharynx and the oral cavity is seen, center picture
the head from the right and right picture the neck seen from below the head.

supposed beneficial as with head and neck cancer at Rigshospitalet. An MRI
scan is usually carried out with volumes of soft tissue involved as in brain or
cervical cancer. All scans in preparation for radiotherapy should be performed
on a flatbed, so that the scan situation resembles the treatment situation as
much as possible. In the same way the patient should wear any immobilization
equipment during the scans.
Based on the images and the clinical examination the patient is then staged and
assigned for a treatment. The referred treatment depends on the cancer site and
spread. Localised tumors with no suspected spread, which are easily accessible,
should be removed by surgery if possible followed by chemotherapy to handle
any risk of microscopic invasion.
Radiation treatment combined with chemotherapy is the conventional treatment
for head and neck cancer with lymph node involvement. Any patients with
metastasis should not go through radiation treatment with the intent of a cure.

1.3.2.3 Treatment Planning

The following section gives a general summary of the elements associated with
the definition of volumes of interest (VOI). The volumes described below is
sketched in figure 1.14. The patient is usually scanned with the techniques
available and suitable for the suspected disease volume. The tumour volumes
and normal tissue is defined on the CT-scan. It is elected for radiation therapy
planning because of its inherent properties:

• It visualizes the volume of the body
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Figure 1.14: Presentation of the different volumes of interest (VOI). Gross tu-
mour volume (GTV), clinical target volume (CTV), planning target volume
(PTV) and organ at risk (OAR).

• The edges between soft and hard tissue are clearly visualised (e.g. between
muscle and bone)

• It provides the linear attenuation coefficient in the visualized tissue. This
enables a computation of the distributed radiation dose in the body.

The VOI are outlined by a radiation oncologist or a radiologist, hereafter de-
noted the contourer.

1.3.2.4 Gross Tumour Volume (GTV)

The GTV includes the gross demonstrable extent and location of the tumour[83].
The contour is defined on two dimensional slices by the contourer.
The GTV is contoured on the basis of all imaging modalities available and
the results of the clinical examination of the patient. The GTV comprises the
volume of the primary tumour along with any metastatic regional nodes and
distant metastasis, which can be differentiated by the system, and naming the
volumes accordingly.
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1.3.2.5 Clinical target volume (CTV)

The clinical target volume (CTV) is defined after the GTV. The CTV includes
the GTV and tissue, that contains ”a subclinical malignant disease with a certain
probability of occurrence relevant for therapy”[83]. The volume should include
all areas with suspected microscopic disease. It is contoured on the basis of the
probability of pathologic lymph node involvement [62]. Like the GTV it can be
differentiated into volumes of different risk. The delineation of CTV is, like the
delineation of GTV, based on the individual and collective clinical experience,
making it vulnerable to variation.
Among some radiation oncologist there is a belief that the CTV should include
a subjective margin to compensate for contour variation. If it was possible to
subjectively assess the possible variation subjectively the contourer should just
automatically include the tissue in question as suspected tumor.

1.3.2.6 Planning target volume (PTV)

The administration of the radiation dose is the subject of variation due to ge-
ometrical errors. They are generally divided into preparation and execution
errors. The nomenclature of error is a broad definition, which also includes un-
certainties and variation. The errors, which occur in the preparation process,
become systematic errors. They originate from:

• Imaging, including errors caused by imaging modality and difference be-
tween imaging setup and treatment setup

• Image fusion, when using multiple modalities

• VOI delineation

Sources of errors in the execution phase are:

• Patient setup error

• Movement during and/or between treatment sessions

It is essential to avoid and minimize the influence of any errors, but there
is a difference in between the consequences of systematic and random errors,
which arise from preparation and execution errors respectively. Systematic er-
rors causes geometrical miss of the intended target. This applies for all or, in the
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case of inter-fraction system errors, for all remaining treatment fractions. As
the name indicates, random errors cause geometrical miss of a random volume.
It is possible to take precautionary measures against the errors by including a
margin on the target volume[147]. This implies, that the magnitude of the error
is known or estimated. The planning target volume (PTV) is the concept of
this assumption.
The PTV was introduced to ensure that the CTV absorbs the prescribed dose.
The concept was introduced in ICRU Report 50[82] but without any recom-
mendations for magnitude of the margins that should be applied. Bel et al.[13]
introduced the first method for margin estimation on the basis of a quantifica-
tion of the translations. During the next 6 years, 6 other studies were published
with recommendation for margins around the CTV [8][98][111][138][146][148].
At the same time recommendation for the PRV margins was published [44][43]
[99][149]. These margins are implemented to account for execution and some
preparation errors. The most widely accepted margin definition is given by van
Herk et al [148] as :

mPTV = α · Σ + β · σ − β · σp (1.2)

where α is derived from a chi-square distribution which is dependent on the
desired dose confidence level (in percent of patients) and the dimension of the
systematic errors, Σ is the standard deviation of the systematic error, β is
derived from a one-side cumulative normal distribution which is dependent on
the desired CTV dose level (as percentage of the prescribed dose), σ is the
execution errors magnitude and σp is the standard deviation describing the
effect of the penumbra of the delivery beam.
It was not until 2012 that the impact of CTV shape variation was estimated[104].
In the study the shape variation of CTV but only to account for difference due
to repeated delineation. The author recommends an increase of α from 2.5 to
3.2 to assure 95 % of the prescribed dose to 90 % of the patients.
An uniform dose level is then prescribed to the PTV. In head and neck it
is usually 66 Gy. Since the delivery techniques of the clinical practice seldom
provide a uniform dose over the entire PTV, it is generally reported using a dose
volume histogram (DVH). The DVH describes the minimal cumulative dosage,
that the VOI have received An example can be seen in figure 1.15. The PTV
can be divided into different subvolumes like the GTV and the CTV, which
are prescribed a dose reflecting the proximity of an organ at risk (OAR) or
knowledge about the tumour, that justify a decreased dosage, while retaining
the same tumour control probability (TCP). TCP is defined as the probability
of cure, given a certain treatment[165]. Cure is here defined as the long-term
recurrence-free survival of the patient. TCP increases with increasing dosage
level and coverage[39], and is governed by tumour type and cell density.
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Figure 1.15: Example of a dose volume histogram (DVH) for a lung cancer
patient. It is seen the gross tumour volume (GTV) and planning target vol-
ume (PTV) receives a high uniform dose. The prescribed dose for stereotactic
body radiation therapy (SBRT) is 45 Gy. The normal tissue has a lower and
heterogenous dose as it can be seen in the lower left of the figure.

1.3.2.7 Organs at risk

The ambition of radiation therapy is the highest degree of TCP. This can be
achieved by increasing margins and prescribed dosage. But that comes with a
price for the surrounding normal tissue. The normal tissue complication prob-
ability (NTCP) describes the probability of normal tissue complication due to
radiation dose [24] . NTCP behaves like the TCP, but varies between tissue
types due to the difference in cell types, reflecting cell division rate among other
things, and tissue organisation, parallel and/or serial[159].
Delineation of OAR is therefore vital for the treatment success, defined as both
cure and lowest impact on vital body function due to the radiation treatment.
In clinical practice this does not mean a delineation of all organs in the body,
but rather a delineation of the organs, that have vital function. This is again in-
fluenced by the therapy. Adding an uncertainty margin allows the contourer to
delineate the planning organ-at-risk volume (PRV), which represents the the-
oretical location of the organ - due to errors. Dosage given to the OAR is
represented in the DVH as with the PTV. In head and neck cancer the OAR
will typically be the salivary glands, the spinal cord and the optic nerve. An
example of some of the VOIs can be seen in figure 1.16.
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Figure 1.16: VOIs for head and neck cancer in a head and neck cancer patient.
In red the gross tumour volume, magenta the parotid gland, blue the mandible,
cyan nodes and in green the spine.

1.3.2.8 Defining the planning objectives

After the all VOI has been identified the rest of the treatment planning is
executed mainly by a medical physicist or dosimetrist working closely with a
radiation oncologist. Defining the planning objectives is an important step of
the treatment planning. The objectives should increase the TCP as much as
possible while decreasing the NTCP.
To reduce the dimensions of the outcome criteria, the objectives for the VOI are
generally given in terms of the DVH. The objective for the PTV is usually set
to a uniform dose at the prescribed level. For the OAR, as described above, the
levels differ. The objectives for a serial organ with vital function, such as the
spinal cord, are set to dosage below a critical dose level, because organ function
can be influenced with radiation damage to a single subunit of the organ. The
objectives for a parallel organ, such as the parotid gland, should be set as low as
possible. But they could allow a high dose levels, given to part of the volume,
so that the function of the organ can be maintained, even though subunits are
damaged by the received radiation.
The objectives of PTV and OAR are also weighted according to the success
criteria of the treatment. Delivering the prescribed dose to the PTV should have
a higher significance than lowering dose to an organ, like the parotid gland. This
is due to risk recurrence of tumour if not treated adequately, while a decreased
salivary function of the parotid gland is not necessarily lethal.
The delivery plan are usually given as the amount of dose, that a proportion of
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an organ should receive or not receive, e.g. all of the PTV must receive at least
95 % of the prescribed dose, or half of PRV should not receive more than 30 %
of the prescribed dose.

1.3.2.9 Optimising the treatment plan

The treatment plan is then optimised. Given the weights and the objectives it
is possible to define an objective function, which depends on the dose given to
PTV and PRV. The dose plan is calculated as a result of the delivery parameters.
Delivery parameters depend on the delivery technique. The parameter settings,
e.g. number of beams, beam direction, collimator settings, beam strength. The
dose distribution is calculated using these parameters in a treatment-planning
system.
Calculating the dose distribution can be done on several complexity levels rang-
ing from pencil based to Monte Carlo methods[133]. Since the objective can
be non-convex, the resulting optimised parameters are dependent on the initial
parameter settings and potential locked settings.

1.3.2.10 Evaluation of the treatment plan

The plan is then finally evaluated in the third iteration step. It is evaluated,
whether the treatment plan meets the initial objectives to an acceptable level.
The need for additional VOI (due to the resulting treatment plan) is assessed,
and it is evaluated, whether the objectives should be constrained or relaxed
to have a suitable treatment plan. It is also assessed, whether the optimised
parameters are a result of a local minimum in the objective function based on
the initial settings of delivery parameter.
In the clinical setting this is usually done subjectively on the basis of experience
with the optimisation software and data on NTCP and TCP. The planning
objectives are then redefined, and the treatment plan is reoptimized, until it
satisfies the clinical demands.

1.3.2.11 Treatment delivery

There are many different methods for delivering radiation therapy. This section
describes intensity modulated radiation therapy (IMRT). In IMRT ionizing ra-
diation is delivered with high precision using multi-leaf collimators and using
radiation beams from several angles. A quality assurance of the treatment plan
must be made prior to any treatment delivery. The dose plan must be controlled
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with a phantom. First the dose plan is recalculated for the phantom geometry.
The plan is then delivered to the phantom while measuring the given dose at
several locations in the phantom, see figure 1.17. If the measured dose varies
from the prescribed dose the dose plan must be rechecked and eventually opti-
mized again. If the measures and prescribed dose continues to vary the delivery
system must be checked for errors. The treatment can be delivered to the pa-

Figure 1.17: The phantom for the quality assurance of tomotherapy. The two
cables going into the phantom are for the ion chambers that measure the deliv-
ered dose. Picture taken at the University of Wisconsin, Madison, Department
of Human Oncology

tient using a medical linear accelerator(linac), see figure 1.18. The linac delivers
a photon beam in a manner, that resembles the x-ray tube. The electron is
produced by an electron gun. After this it is accelerated using an accelerating
waveguide. The accelerated electron is directed by a bending magnet to the
photon source. The impact of the electron on the photon source produces pho-
tons, which are stopped, unless they pass toward the patient through a primary
collimator. Hereafter the beam gets a uniform strength by using a flattening
filter. In the end the photon beam is modulated using a secondary collimator,
called a multi leaf collimator. The linac can also deliver an electron beam by
removing the photon source. The gantry of the linac rotates around the patient
delivering the beam from different angles. To reduce errors in the delivery of the
treatment the patient is placed in the same position at every treatment session.
In head and neck cancer the patient is immobilized using an immobilization
mask possibly a biting block. Patient position relative to the delivery system
is also ensured using lasers on the scanner and in the treatment room. For
tumors which moves due to breathing it is also necessary to ensure breathing
control which ensures that treatment is delivered during the same timing of the
breathing phase.
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Figure 1.18: Medical linear accelerator and an overview of the components[151].

1.3.2.12 Treatment Adaption

The shape, size and location of the tumor can change during treatment in re-
sponse to the received dose. The tumor can shrink because of cell death and
immune response due to the ionizing radiation. At the same time the surround-
ing tissue also changes due to the treatment. Cancer patients also generally
loose weight during the course of the treatment. It is necessary to adapt to
these changes to ensure tumor coverage and minimize NTCP.
Therefore imaging capabilities have been introduced to the delivery room. These
can produce either CBCT or MVCT images. These images are used primarily
to check the position of the tumour and surrounding tissue. If the tumor ap-
pearance or position shift dramatically during treatment, it will be necessary to
replan the patient. This includes new contours of the patient on the new images
and reoptimizing the dose plan for the new situation.

1.4 Manual Contours

In this section we will touch upon the subject of manual contours. Firstly some
results in the literature for intra- and inter-operator variation is presented for
the head and neck cancer whereafter the standards for tumour evaluation is
described.
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1.4.1 Contour Variation

The variation for manual contours can be divided into inter- and intra-operator
variation. Inter-operator variation is the variation between different contourers
delineating the same VOI, i.e. doctor A, B C, and so on delineating a GTV.
The difference between contourers arises from the different education and expe-
rience of the different contourers. The inter-operator variation can be seen as a
systemic variation.
Intra-operator variation is the difference between delineations by the same con-
tourer, i.e. doctor A delineating a GTV at time t1, t2, t3, and so on. The
intra-operator variation is to some degree a random error unless the contourer
is provided additional information.
In head and neck cancer, Breen et al.[22] estimated the inter-operator varia-
tion to 2.21 cm3 and intra-operator variation was estimated to 2.04 cm3 for
GTV contours on CT. There are other studies of variation for contours, [101]
[122][79][85][27], but it is generally difficult or impossible to compare the varia-
tion of these studies since they report different metrics of variation. Furthermore
the available imaging modalities vary as well as the number of patients and con-
tourers. Chao et al.[27] showed that the inter-operator variation decreases when
the contourers are given a preliminary contour.

1.4.2 Evaluation of contours

The evaluation of contours is a challenge in relation to GTV. In opposition to
normal tissue, which has visible boundaries to some degree, tumour is charac-
terized by microscopic infiltration of bordering tissue. These infiltrations are
impossible to detect on any image modality[35]. This leaves only two methods
for evaluation of the contours: specimen or board of experts.

1.4.2.1 Specimen

The gold standard of contour evaluation is the comparison with a surgical spec-
imen. This means that the patient get the appropriate image scans and then
the tumour is surgically removed along with certain degree of the surrounding
tissue [35]. After surgery the specimen is placed in a container and frozen down
for a couple of days. Hereafter the specimen is cut into slices in the same plane
as the images. A pathologist evaluates the slices hereafter for gross tumour
infiltration. In the end the slices are coregistered to the image plane of the
imaging modalities. The process is complex and requires consistent preparation
and implementation.
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This procedure requires severe ethical consideration to the patient certifying
that the patient is receiving the optimal treatment for his or her specific dis-
ease. If surgical removal is not the conventional treatment at the clinic it is
highly unadvisable. Furthermore all steps of the procedure must be prepared
and any error risk must be eliminated or decreased as much as possible. Any
error throughout the procedure will be systematically increased with every fol-
lowing step.

1.4.2.2 Board of Experts

It is also possible to use manual segmentations to evaluate the quality of a
GTV contour. If the evaluation is just done between contours made by different
contourer we only acquire inter-operator variation as mentioned above. Another
strategy is to let a board of experts make the evaluation contour together. But
some assumptions are taken when using a board of experts as evaluation of
contours.

• The combined experience will decrease their risk of disregarding parts of
the tumour or including normal tissue in the GTV

• The board of experts are less prone to the intra-operator variation.

To this authors knowledge there is no studies which can confirm either of these
assumptions. Taking the board of experts does not necessarily improve the
evaluation of a contour but it should provide some sort of quantitative manner
of evaluating contours by a single contourer.

1.4.3 Comparison measures

Several comparison methods exist for the evaluation of contours[67]. The sim-
plest way of comparing contour of two volumes is the estimation of the simple
volume. The simple volume can be assessed by simply adding the combined
area of the contour on all slices and multiplying with its slice thickness. The
simple volume of a contour can also be extracted estimating a three-dimensional
shape of the contours and then estimating the simple volume of this shape. No
matter how the simple volume is extracted it does not pose a good comparison
measure. It is possible to acquire the extract the same estimation of the simple
volume for two different contours which have different shapes or locations.
Another way of method of comparing volumes is the centre of mass. Comparing
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the centre of mass is also a very poor comparison measure since it is possible
for two contours with the same centre of mass to have no overlap. Illustration
of the problem with this measure is illustrated in figure 1.19.
The overlap measures typically reported in radiation therapy are Jacard Index

Figure 1.19: Problems regarding comparison measures. Both pairs of contours
have the same centre of mass marked by the black mark. All three shapes have
the same area.

and Dice coefficient

Jacard(A,B) =
|A
⋂
B|

|A
⋃
B|
Dice(A,B) =

2|A
⋂
B|

|A|+ |B|
(1.3)

wher |A| is the simple volume of contour and |A
⋂
B| is the simple volume of the

overlap of A and B, see figure 1.20. For both of these measures a total overlap
renders the same result and no overlap renders 0. The difference between these
measures is the mathematical term used to divide the volume of the overlap,
where Jacard index uses the volume that encompasses both volumes and Dice
coefficient uses the mean of the volume. These measures have a problem regard-
ing the clinical significance of them. Another method of assessing comparing

Figure 1.20: Illustration of the overlap situation overlap.
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two volumes is mismatch and disconcordance index

Mismatch(A,B) = A− |A
⋂
B|

|B|
Disconcordance(A,B) = 1− |A

⋂
B|

|A|
(1.4)

The advantage of these mismatch is its correlation with the difference in the
final dose plan[78].

1.5 Segmentation of Normal Tissue

Normal tissue segmentation is important to decrease NTCP. The following sec-
tion describes the general approach of normal tissue segmentation, with a pri-
mary emphasis on registration, followed by a short description of the contribu-
tion to the field.
Segmentation of normal tissue is a general segmentation problem, where the def-
inition of a VOI inside an object is requested. Using the normal characteristics
of the VOI it is possible to define the outer contour of itself. These characteris-
tics are usually the boundary of the organ tissue, similar intensity values inside
the organ, known location and shape variations.
In radiotherapy for HN cancer correspondence is computed between images
with a given VOI and the object without VOI delineation, the so-called atlas
approach. The problem has two general approaches:

• Atlas based, where correspondence is found between objects with known
definition of the VOI and the object without definition of the VOI

• Model based, where a model of the VOI requested is constructed from
data

Both approaches assume has two presumptions:

• Data is available, which describes the object and/or VOI

• That the VOI and object has a level of variation which is possible to define

For automatic segmentation of normal tissue in radiotherapy the data consists
of CT or MR scans of previous patients with manual delineations of the normal
tissue. These are usually based on the former experience of the contourer and
anatomical knowledge of the human body.
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1.5.1 Atlas Segmentation

In atlas based segmentation the correspondence is defined between two objects,
one with defined VOI, the template, and one without, the reference, using
registration[124]. The desired result is the obtainment of the geometrical trans-
formation, which gives point correspondence from every point on the reference
to the template. The registration transformation is obtained by performing the
following minimization.

min
T

(∫
x

D (IR (x) , IT (x+ x̃)) +R (x̃) dx

)
(1.5)

where D is a dissimilarity measure, IR is the reference image, IT is the tem-
plate image, x̃ is the geometrical transformation and R is a regularizer of the
transformation. The geometrical transformation is optimised using a optimiza-
tion algorithm [12] until convergence or another preset criterion. The process is
depicted in figure 1.21.

1.5.1.1 Dissimilarity

The dissimilarity measure forces the registration towards a transformation with
the most similarity. The dissimilarity measure increases with increasing image
dissimilarity. Minimal value of dissimilarity should imply that the transformed
image is identical or absolute similarity. The typical measures of dissimilarity
are:

• Sum of squared difference (SSD)

• Correlation coefficient (CC)

• Normalized mutual information (NMI)

In medical registration SSD is a basic way of finding correspondence when using
the same image modality on similar objects, e.g. patients scanned with the same
scanner. CC can be applied for images coming from different scanners using the
same or similar imaging modality which will produce correlated intensity values
at corresponding locations, e.g. CT-scanners with different energies. NMI is a
an advanced and computationally heavier dissimilarity measure which can be
used to perform registration across image modalities[118].
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(a) (b)

(c) (d)

Figure 1.21: Depiction of the registration process from one patient to another.
(a) is the reference and (b) is the template image. (c) is the affine transformed
template image and (d) is the template image after non-rigid transformation.
Registration is performed in 3 dimensions. Point correspondence is not neces-
sarily present between (a) and (b).

1.5.1.2 Geometrical transformation

Geometrical transformation gives the displacement, x̃ , of a point x between two
images. Geometrical transformations are typically divided into linear transfor-
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mations and non-linear transformations. The linear transformations are char-
acterized by simple linear functions with few parameters with a low level of
sophistication. Non-linear transformations, also called deformable or non-rigid,
are a group of transformations which can perform non-linear transformation
with a higher level of sophistication.

1.5.1.3 Linear transformations

The linear transformations are

• Rigid

• Similarity

• Affine

Rigid transformation is a relatively simple transformation, which allows rotation
and translation, i.e. 3 rotation and 3 translation parameters in 3 dimensions. A
similarity transformation allows scaling, contraction or expansion, between the
two objects and therefore includes yet another parameter which scales the trans-
formation, i.e. allowing registration between large and small objects with similar
appearance. Affine transformations, in this nomenclature, allows shearing and
hereby adds another 5 parameters compared to the similarity transform[135].

1.5.1.4 Non-linear transformation

All the linear transformations described maintain linear correspondence, as
straightness of lines. Since correspondence between similar locations on im-
ages of different subject, or even the same subject at different time, are not
necessarily linear, a non-linear geometrical transformation can be used instead.
The non-linear transformations can offer an increase in the degrees of freedom.
Registration using non-linear transformation functions is usually denominated
non-rigid registration.
The non-linear transformation is parameterised using a given mathematical
function, usually called basis functions. Among the basis functions used are
fourier series [6], thin plate splines[59], b-splines[91], piecewise linear splines[49],
multiquadrics [127] or Gaussian [9]. The function used in a specific image reg-
istration application is usually chosen because of their solvability, efficiency,
differentiability and locality influence.
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It is also possible to make a non-linear transformation which is non-parametric.
The most popular implementation is an analogy to Maxwell’s demon. A demon
is placed inside each pixel or voxel of the template image which is attracted
to similar voxels in the reference image[143]. To some degree the difference
between the parametric and non-parametric methods lie more in the degree of
discretization and the number of points which are evaluated.

1.5.1.5 Regularizer

The non-linear transformations allow registration of increased flexibility. But
this increased flexibility may also allow inconsistencies in the transformation
arising from folding of the transformation. Folding due to the transformation is
usually indicated by negative Jacobian determinant of the transformation,|∇T |.
Negative Jacobian determinants arise when the transformation collapses part of
the image.
If the registration represents a change for a subject, the transformation should
also be bounded by the possible physical restrictions. When making registration
between subjects it is also desired to achieve a transformation with the same
structures to a certain degree.
The regularizer is included to restrict the transformation to be reasonable. The
regularizer should penalise transformation inconsistencies. A simple implemen-
tation is a quadratic penalty on the displacements. Further more advanced and
complex regularizers are elastic [11], fluid [23] and diffusion[80]. It is possible
to vary the regularizer for different materials reflecting the different physical
attributes of the visualised material[126].
Consistency of the achieved transformation can also be achieved by reducing
invertibility errors. These errors can be minimized by ensuring that it is possi-
ble to perform a transformation a consistent transformation both ways between
template and reference. This is achieved by including another constraint on the
optimization [30]. Since an atlas can be built from the collection compilation of
several patient atlases a transitivity error can be taken into account by including
a transivity constraint[31].

1.5.1.6 Segmentation Strategies

A single transformation between reference and template can produce a segmen-
tation of the desired VOI[89]. But normally the variation of all possible patients
is not represented in one atlas. Therefore an average atlas is constructed[32]
which is then used as template. There exist several procedures to combine the
different segmentations. A simple approach is voting, where the segmentation
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is the volume segmented by a certain proportion of the transformed atlases.
It is also possible to weight the atlas according to its similarity with the ref-
erence using a measure like the measure of dissimilarity defined above [125].
The simultaneous truth and performance level estimation (STAPLE) [155] com-
putes a probabilistic estimate of an assumed true segmentation on the basis of
maximum-likelihood estimation using an expectation-maximization algorithm.

1.5.2 Model Segmentation

Model segmentation builds on the assumption that a training data set is avail-
able. As opposed to atlas segmentation there is no assumption of correspondence
between the individual VOI in the training set and the VOI. Instead it is as-
sumed that the model contains the possible variation of the VOI.
One approach for model based segmentation is the active shape models (ASM)
and active appearance models(AAM)[73]. The distinction between these two
approaches is the difference between modelling the contour only, ASM, and the
entire appearance of the object, AAM. The general approach to model segmen-
tation consists of the following steps:

• Alignment of delineations putting them into the same frame of reference,
e.g. using Procrustes alignment [60] [56]

• Finding point correspondence between the two shapes or volumes [139]

• Dimensionality reduction of the delineation, reducing the number of pa-
rameters necessary to represent the variation of the delineations, e.g. using
principal component analysis [38]

• Finding point of correspondence between the model volume/mesh and the
new VOI by minimizing a measure of dissimilarity by model parameters
optimization.

The model segmentation is generally chosen if the objective is not only a contour
of the VOI but also information about the VOI. These information can be
extracted from the model parameters. Where atlas segmentation provides the
correspondence between the whole object and provides every VOI in the atlas,
model segmentation usually focuses on a single VOI.
The two approaches employ the same mathematical tools and are sometimes
closely related. It is also possible to construct hybrids using elements from
both approaches. Since contours are the general requisite for radiotherapy the
methods employed here have generally been atlas segmentation.
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Table 1.2: Result of the literature review for normal tissue segmentation
OAR Atlas Model Hybrid

Mandible [64] [167] [168] [10] [88] [66] [57] [120]
Thyroid [28] [66]
Parotid [27] [65] [76] [121] [167] [161] [66] [55] [58] [120]

Submandibular [66] [120]
Brain stem [27] [64] [167] [10] [88] [66] [58] [120]
Spinal cord [27] [167] [66]
Masseter [66]

Nodal [33] [142] [167] [119] [29] [66] [120]

1.5.3 State-of-the art

The volumes which have been segmented automatically in head-and-neck cancer
patients are generally the OAR for radiotherapy. These volumes with their
respective relevance and complications in case of radiation are:

• Mandible: Bone destruction

• Parotid and submandibular (spit) glands: Digestion and teeth dysfunc-
tions as well as xerostomia.

• Thyroid gland: Hormone dysfunction

• Brain stem: Cognitive problems

• Spinal cord: Perception or movement dysfunction

• Masseter and pterygoid (jaw) muscles: Digestion and talking dysfunction

• Node regions: Immune system and possible tumour involvement

A literature review of normal tissue segmentation for head neck cancer using
the Population-Intervention Comparison Outcome (PICO)-approach was per-
formed 1/5 − 2010 and again 1/7 − 2012. The review returned the following
studies categorised according to OAR and approach in table 1.2.
It is quite difficult to compare most the methods in the table above. [64], [168],

[10], [88] and [57] were all part of the same workshop MICCAI clinical challenge
to automatically segment the mandible and the brainstem. The goal of the chal-
lenge is to quantatively evaluate segmentation algorithms on the same data set.
Han et al.[64] segmented both of the organs better than the other groups. The
approach separated itself from the other proposed methods by using STAPLE
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[155] to fuse the transformed atlases. The dense mutual-information deformable
registration between the atlas image and the new patient was accelerated com-
pared to the other methods using the computational efficiency of the graphical
processing unit. The mandible segmentation was refined using a deformable
surface model. Even though the method excelled all the other proposed meth-
ods it did not fulfil the clinical target of the challenge.
In the following workshop challenge the parotid gland was the target for seg-
mentation. [65], [76], [121], [161], [55] and [58] participated in this challenge.
Han et al.citeHan2010 performed better than the other proposed methods. The
method was similar to [64] except that a deformable model was used to refine
the surface of the parotid gland. Chen et al. [28] performed an evaluation of the
strategy for atlas combination. None of the approaches performed significantly
better than all the other approaches. Using the weighted correlation coefficient
between the images as a weight for the combination of atlases gave the best
result for both overlap and distance to the manual contour.

1.6 Segmentation of Gross Tumor Volume

This part of the thesis deals with autosegmentation of the gross tumour volume
for head and neck cancer. Segmentation is a large field within image analysis.
The emphasis of the first section lies on the state-of-the-art implementations
which have been developed for the head-and-neck volume. The systems for
evaluation of segmentation algorithms are then described. In the end the con-
tribution is introduced.

1.6.1 State-of-the-Art

The segmentation methods for GTV in HNC patients are generally developed
for PET/CT images. The methods can generally be divided into the following
groups:

• Thresholding

• Background ratio

• Feature based

• Markov Random Fields

• Deformable model
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1.6.1.1 Thresholding

Thresholding methods use a fixed level PET-signal for segmentation which de-
termine the segmentation[129]. All voxels with a value above the fixed PET-level
is segmented. The method can be implemented automatically using a preset
fixed level, either retrieved from phantom experiments or clinical experience.
The method can also be implemented semi-automatically where a user defines
the threshold level based on the patient.
Thresholding methods are the simplest methods to automatically determine the
GTV and are the least computationally expensive methods. It is sensitive to
partial volume effect. Partial volume effect is the perceived decrease in activity
due to volumes sizes and resolution of the imaging modality. There is severeal
thresholding levels implemented in published studies but no rational approach
to determine the fixed level for threshold exists.

1.6.1.2 Background ratio

The background ratio methods considers the background signal inside the bode
of the PET-image and the actual tumour volume[36]. The methods are all based
on a phantom experiment with a water-filled cavity with spherical containers of
different volumes. The spherical containers are filled with a radioactive activity
in the range of clinical signal-to-background range. The optimal threshold or
background ratio is calculated on the basis of the signal to background ratio
between the spherical containers of different volumes. The problem with the
phantom experiments is that they do not represent the actual GTV situation.
The tracer does seldom distribute uniformly over the GTV. The method might
miss microscopic infiltration which needs to be treated.

1.6.1.3 Feature based

Feature based methods computes texture features from the available image
scans[164]. A texture feature is a numerical appearance representation or de-
scription which describes a neighbourhood of voxels. The features can be divided
into order dependent on their dimensionality:

• First order features are simple measures like mean, variance or kurtosis.
First order features lacks any ordering information.

• Second order features represent the connection between the voxels in the
neighbourhood. A matrix is constructed which represent the connection
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between all the voxels in the neighbourhood. These matrices are called
gray level coocurrence, gray level difference and gray level sum[69]. The
features are computed by performing statistics on the matrices.

• Higher order features can be calculated by constructing gray level run
length matrices[141], neighbouring level dependence matrices[140], neigh-
bourhood level matrices[5]. The features are also computed by performing
statistics on the matrices. Fourier features can also be extracted locally as
features of the image. There exist an abundant amount of feature types
which can be used to extract descriptors of the image volume.

Having a feature or descriptor does not deliver an automatic segmentation. A
classification must be derived which distinguishes between tumour and tissue
specific voxels. This is usually performed using machine learning. In machine
learning for classification you typically have a training data set with known la-
bels. In our instance the labels would be either tumour or another non-tumour
label.
The machine learning algorithm then derives a classifier based on the given
training set which determines which voxels are segmented as tumour and tissue.
Feature based segmentation is never better than the training set from which it
is built.
Using machine learning on features that have no anatomical or functional mean-
ing can make it hard to comprehend the resulting classification. Furthermore if
the initial training set does not adequately represent the system or the classifica-
tion of it is uncertain you risk magnifying the uncertainty of your segmentation.
Features in medical images vary with scanner and reconstruction setting[51].
This poses a problem for feature based segmentation across institutions.

1.6.1.4 Markov Random Fields

Markov random field segmentation is performed using a Bayesian framework[96].
Having the image Y we want to extract the desired segmentation X. Both image
and segmentation are ruled by random processes. We then want to maximize
the joint distribution of P(X|Y), the likelihood of having the segmentation X
given the image Y. This requires an estimation of probability of the different
classes of the image, tumour and background in the simplest case, and a spatial
correlation between voxels. This information is used to construct a connectional
graph with specified costs of assigning a voxel to one or the other class. The
segmentation can be achieved by using a graph-cut algorithm[19].
Markov random fields methods allow segmentations where the connectional in-
formation of the voxels are taken into account. Furthermore using graph cut
ensures that you have an optimal solution to the problem that you defined. The
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Achilles Heel of the approach is of course the parameter specification. The suc-
cess of the method is dependent upon the process where the model, the a priori
parameters and the initializations are estimated or specified.

1.6.1.5 Deformable model

Deformable model methods require that you define an objective function[135].
The function can be governed by forces that arise either from outside the de-
formable model, as image intensities or gradients, or from the deformable model
itself, as the shape of the deformable model. One of the popular segmentation
approaches for 3-dimensional volumes is the level set methods. In level set meth-
ods you define a level set function. The function is defined in the same domain
as the image. The level set function value is initially set to the distance of every
voxel to an initial segmentation shape. Hereby all the voxels, with a level set
value of zero, are the outer bounds of the segmentation. The value is signed
so that the inside of the shape is set to negative values and the outside is set
to positive values. The level set function is then set free to evolve according
to a speed function. The speed function consists of different forces, which are
defined according to the desired segmentation. For a description of formulation
and practical implementation the reader is referred to [135].

1.6.1.6 Application of segmentation

Segmentation algorithms often use elements from different methods even though
a distinction between methods has been made above. A Markov random field
implementation will use a machine learning algorithm to estimate parameters.
A feature based method could use deformable models to refine a segmentation.
A subset of the implementations of GTV segmentation is categorized according
to the primary algorithm of the approach in table 1.3. In [166] a comprehensive
survey of the methods PET guided delineation methods is provided. To use a
contour as evaluation reflects a pragmatic approach to the topic of segmenta-
tion evaluation. The available automatic segmentation methods should not be
automatically implemented but rather used as a first guess and a time saver for
the clinician[92].
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Table 1.3: Categorisation of implementations for GTV segmentation for radio-
therapy. The method marked with * are head and neck implementations.

Method PET PET/CT CT
Thresholding [103] [61]* [108]

Background ratio [36] [145] [54]* [53]* [152] [35] [90]
Feature based [14] [163]* [164]*

Markov random field [70] [72] [71] [63]*
Deformable model [102] [95]
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Chapter 2

Contributions

This chapter describes the 4 different contributions that are part of this thesis.
The contributions are shortly introduced followed by a discussion of the results
based on the knowledge of the author.

2.1 Differences in Radiotherapy Delivery and Out-
come Due to Contouring Variation

The study was designed to answer some of the questions posed in the first chap-
ter of the thesis regarding margins and operator variation. Using delineations
from a study of inter-operator variation for lung tumour patients [116] dose dif-
ferences were used to quantify the differences in dose and the differences in TCP
given that one of the volumes is the true GTV.
The paper presents that the conventional compensation is not adequate for inter-
operator variability and that TCP increases if the assumption of the approach
is correct. This means that the inter-operator variation can have severe impli-
cations if adequately compensation is not made. The foreground-to-background
ratio between tumour and the air cavity is high for lung cancer tumour. Con-
sequently lung tumours are typically the easiest to contour. This indicates that
the problem could be larger for other tumour sites. It is already a problem
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that the variation is reported in so many diffent ways making it even harder to
compare the variation between studies.
In the future a more thorough analysis of contour variation should be performed.
The analysis should include margins for setup errors and the using monte carlo
simulations for the delivered dose to a phantom tumour like Van Herk et al.[148].
The phantom should simulate the contour variation by simple quantitative dif-
ferences, such as spherical harmonics.

2.2 Segmenting the Parotid Gland Using Regis-
tration and Level Set Methods

This article describes an application for segmentation of the parotid gland us-
ing non-rigid cubic-spline registration for a preliminary segmentation and then
a refinement using level set methods. The approach was constructed to be able
to segment 10 patients online at the conference workshop within 30 minutes.
The approach would be able to contribute additional OAR if provided in the
training data set. All the algorithms of the challenge delivered results which
were clinically unsatisfactory. The proposed algorithm delivered inferior results
compared to the winner of the clinical challenge. The winning algorithm[65] dif-
ferentiated itself from the contributed algorithm by using NMI as dissimilarity
measure and using the GPU for registration.
The contributing algorithm of this thesis had already been accelerated by par-
allel distribution of the cubic-spline registration computations on the CPU, but
it is certain that the computing time could be further decreased by distributing
the registration computations to the GPU. Han et al. describes how the GPU
implementation gives a speed-up of 25 times to the registration. This increased
computation capability could also be used to increase the number of levels for
the registration or to implement NMI as a dissimilarity measure. NMI was ini-
tially rejected as a dissimilarity measure because it increased the computation
time above the time constrains of the clinical challenge.
The proposed algorithm could be improved, by optimizing the parameters of
the cubic b-spline registration method in a more quantitative method. The pa-
rameters used for the clinical challenge was estimated using a grid search. Some
parameters and settings were already set on the basis of a qualitative assessment
between two patients in the training set. The preset settings were the number
of levels for the cubic-spline registration(3), the resolution of the downsampling
(8,4,2) and the distance between cubic-spline knots on each level(32,16,8). These
parameters should also have been optimized instead it was only the amount of
regularization for each registration level and the parameters of the level set
method that were optimized.
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It can be seen from the figure 5.1 and 5.3 that the registration apparently misses
the boundary head for some of the registered patient atlases since part of the
resulting segmentation is situated outside the head. This could also suggest that
the registration did not work properly for all of the patients. The winning algo-
rithm also distinguished itself by using the STAPLE algorithm for combination
of the transformed atlases where the contributing algorithm uses majority vote.
On the basis of the results of Chen et al.[28] it could be interesting to analyse
the effect of using the weighted correlation coefficient for the combination of the
transformed atlases.
The deformable model of Han et al. seems to differ on the number evaluation
points. Where the level set method evaluates the function in all the voxels,
in our approach only the voxels close to the boundary are evaluated. Hereby
the method only evaluates voxel and not discrete points The alternative algo-
rithm seems to evaluate the energy function only in the points of the surface
and should have subvoxel precision. It can be argued that a method that has
sub-voxel precision produces a better segmentation of the parotid gland. The
performance for the clinical challenge was evaluated on the basis of a delivered
binary matrix. Therefore there was no incentive to acquire a subvoxel segmen-
tation. Furthermore it is possible to extract a discrete surface from the level set
function if necessary.

2.3 Segmentation Using Symmetry

This contribution is a novel method for GTV segmentation. It features a novel
registration-based approach to derive symmetrical descriptors of the image. The
method reflects to some degree the situation in the clinic where the radiologist
evaluates high-dimensional descriptors as image symmetry and tissue expansion.
The image is compared to the impression of normality given from the atlas.
A lot of parameter testing was performed before choosing the final parameters
for the algorithm. It is always possible to examine the parameters of the reg-
istration method and change the number of registration levels, downsampling,
spacing between and regularization. All these parameters were optimized using
a grid search on the phantom and the method which parameter settings were
the least suspectible to noise, rotation and translation.
It was chosen to represent segmentation only by thresholding. This was per-
formed to reflect the value of the method by itself and not its implementation
with another segmentation algorithm. The extracted symmetry feature can be
used as input to more advanced segmentation methods as deformable models,
machine learning and markov random fields methods.
So far the algorithms proposed in this field for segmentation uses either the raw
intensity image values or classical texture features of both the CT and PET
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images. A new segmentation algorithm would benefit from a thorough data
mining process to identify features for tumour classification. An algorithm was
implemented on the patients from Rigshospitalet which did improve the results
of conventional automatic PET segmentation methods[77]. The algorithm pro-
vided improvement of segmentation results similar to the published algorithms
using textural features[164]. But the algorithm had some problems with arte-
facts in the images with features that resemble tumours usually identified as
inflammation of normal tissue
The new feature should be extracted along with typical texture feature and
then tested against other features using machine learning algorithms such as
adaboost[50] or random forest[75]. In order to increase the robustness of the
algorithm the bootstrap-like method should be applied to examine whether the
certain feature selections are influenced by outliers.

2.4 Lung Tumor Segmentation Using Electric
Flow Lines for Graph Cuts

(a) (b)

Figure 2.1: Illustration of the simulated phantom with electric flow lines. (a)
The contour points and electric flow lines. (b) The volume of phantom.

This contribution consists of an article describing adaptable segmentation frame-
work for lung cancer patients. The method uses electric flow lines to construct a
segmentation graph. The change in the cancer type reflects the available image
type available. On megavoltage computerized tomography (MVCT) images the
outline between different types of soft tissue is almost non-existent and there-
fore it is laborious to manually contour the GTV for head and neck cancer.
Furthermore these contours would be prone to larger intra- and inter-operator
variation. Therefore an easier cancer type was chosen for the development and
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evaluation of the method. Lung cancer is easier to contour since the tumours
are surrounded by air to a certain degree.
The parameters of the approach was estimated using a simulated phantom il-
lustrated in figure 2.1. The parameters were estimated after simulation of di-
lation/expansion of the volume, rotation of the volume, translation and signal-
to-noise levels. The phantom consists of a sphere with 2 hemispheres and 2
pyramid. The two different types of surface features were included to check
whether the method would robust against rotation. The surface features were
placed 90 degrees apart for different kinds of surface features, i.e. pyramid to
hemisphere, and 180 degrees apart for surface feature of the same kind.
The study shows that a method that is adaptive to the shape of the tumour
is better for adaptive segmentation of tumour. Reflecting on the conventional
method of non-rigid registration you realise that the argument for this relative
failure maybe lies in definition of the problem when using non-rigid registration.
Lung tumours does retain some of the shapes characteristics from the CT to
later MVCT images. But the image quality does make it hard to find point
correspondence and sometimes the theoretical question would be whether the
point correspondence is achievable under these conditions.

2.5 General Perspective

Coming from the discipline of science and working in the twilight zone of biology,
physics, and pathophysiology you generally yearn for a piece of golden truth
to improve and evaluate your methods. In the instance of image analysis for
radiation therapy this is generally hard to ascertain. Even in the instance of
surgical removal of tumour specimen the procedure to acquire the sample and
points correspondence are attached with many potential errors. Even so, all the
studies presented in this thesis should be evaluated using the highest possible
evidence before using them in a clinical setting. The performance ambition
of developing automatic methods for segmentation should be higher than the
conventional and manual methods already applied in the clinic.

2.5.1 Segmentation algorithms

As it can be seen from the thesis and the reviews in table 1.2 and 1.3 there is
presently a high number of different segmentation algorithms available. With
increasing number of algorithms the need for a criterion of robustness and per-
formance must be developed[93].
In [130], 30 different contouring methods are evaluated on 7 different VOIs.
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Four of the VOI are coming from an phantom which has been created to re-
sembled a patient but with the knowledge of the geometry and control of the
activity. The remaining 3 VOI are coming from 3 different patients. Unfortu-
nately the number of VOIs is not high enough to clearly distinguish the different
methods. They report that future studies should involve more data and they
report that they would make the evaluation data available in the future.
Another commendable initiative has been the grand challenge of the MICCAI
conference[113][114]. In this setting all the involved algorithms get the same
data set and the same amount of time to do the segmentation of the normal
tissue. The same challenges could be performed for tumour segmentation if re-
liable GTV contours were available.
The American Association of Physicists in Medicine has started a task group
with the aim to classify PET segmentation methods according to assumptions,
algorithmic approach, detail, complexity and goal[2]. The task force expires by
the end of 2012 and should provide a report on the subject by then.
But the field of radiation therapy should increase cooperation on collecting pa-
tient scans with reliable segmentations. Having scans available from multiple
institutions with tumor definition would enable identification of the most reli-
able algorithms for different segmentation tasks. The methods developed for
this thesis are good candidates and does not involve any assumptions which
makes it suitable for the data coming from other institutions.
Implementation of the algorithms in the clinic is not straightforward. Before
clinical introduction, segmentation algorithms should be adequately tested to
evaluate their impact on clinical practice. [136] shows an example of evaluation
of a lymph segmentation method. In this study the VOI is countoured man-
ually and automatically whereafter the automatic segmentation were manually
modified. The results show that it is possible to reduce manual variability. Sim-
ilar studies should be performed before implementing automatic segmentation
methods.

2.5.2 Future of radiation therapy planning

The development of automatic segmentations and better understanding of tu-
mour specific image features allows a new approach to VOI definition. It allows
a progression within radiation therapy towards a new understanding of target
definition. Since surgical specimen removal is the only approach which deliv-
ers an absolute definition of tumour infiltration, segmentation methods should
rather deliver probabilities of tumour presence. Different components of the
segmentation or delineation do not have the same level of uncertainty. This
is illustrated in figure 2.2 with manual segmentations. The internal core of the
segmentation should have a lower level of uncertainty than the exterior parts. In
the same way tumour definition arising from one image modality should have a



2.5 General Perspective 51

lower level of confidence than a definition which is seen on several image modal-
ities and in the clinical examination. An quantitative algorithm should deliver
the uncertainty information of the VOI segmentation and not only a binary
segmentation.
The other components of the planning procedure of radiation therapy already

(a) (b)

Figure 2.2: Illustration of the GTV probability. 6 manual contours of the same
GTV in different colours. The underlying image coulour defines a theoretic GTV
probability on the basis of the contours. (a) and (b) illustrates the difference
between a tumour with respectively a low and high level concordance.

work with uncertainties of the dose delivery and treatment execution. Using
the new segmentation probabilities in the frame of treatment planning could
increase adaptability for the individual patient. Today the dose plan is de-
fined due to a specified GTV location given the uncertainties of preparation
and execution errors. At this level the uncertainty of the segmentation is partly
disregarded. Instead an increase of the margin is included to account for any
uncertainty. The future dose plan should be defined due to the probability of
GTV location given the uncertainties of execution and planning errors. The
new method would reflect the actual segmentation situation and the underlying
images while increasing planning complexity. Specification of GTV probability
necessitates automatic segmentation since manually it is only practically pos-
sible on the basis of a multitude of time consuming manual delineations from
several experts using STAPLE [155]. The GTV probability could rely on the
result from several algorithms. The algorithms would then be weighted on their
performance of on data sets from different institutions consisting of images with
a reliable GTV definition.
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Chapter 3

Conclusion

This thesis descibes the use of algorithms for automatic segmentation along
with their subject area. It is shown that it is possible to automatically seg-
ment tumour volumes and organs. It is also shown that great care must be put
into the construction of these volumes since they have great importance for the
treatment outcome. If the variation due to manual contouring is not adequately
compensated it can lead to decreased TCP.
It was shown that it is possible to segment GTV and normal tissue using auto-
matic segmentation. The automatic methods should always be supervised and
edited upon need. Even so they have the potential for increasing the workflow of
the contouring of normal tissue and GTV and decreases the bottleneck it poses
for the modern radiation treatment clinic.
Furthermore a new method for adaptive contours has been presented. The
method is less susceptible to the image quality than the conventional methods
for this application. These images taken during the course of treatment does
have a lower quality than the conventional CT and therefore it is important to
use methods that are less prone to the image quality.
The work of this thesis is a step towards the application of more advanced image
analysis in the clinic to improve care of the patients and decrease the need for
manual labour for radiation treatment planning.
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Chapter 4

Differences in Radiotherapy
Delivery and Outcome Due to

Contouring Variation

4.1 Abstract

Gross tumor volume (GTV) delineation is central for radiotherapy planning. It
provides the basis of the clinical target volume and, ultimately, the planning
target volume which is used for dose optimization. Manual GTV delineations
are prone to intra- and inter-operator variation and automatic segmentation
methods also produce different results. There is no consensus on how to ac-
count for the contouring uncertainty, but it has been suggested to incorporate
it into the planning target volume (PTV) margin. Current recipes for the PTV
margin are based on normal distribution assumptions and are more suitable for
setup and execution errors. In this study we use the GTV delineations made
by 6 experienced clinicians to create delineation-specific dose plans. These dose
plans are then used to calculate theoretic tumor control probabilities (TCP) dif-
ferences between delineations. The results show that current margin recipes are
inadequate for maintaining the same TCP despite manual delineation variation.
New methods to account for delineation variation should be developed.
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4.2 Introduction

Cancer is one of the deadliest human diseases, responsible of 7.6 million deaths
in 2008 [1]. The yearly incidence is 12.7 million new cancer cases annually and
with cancer incidence rising along with the worldwide increasing life expectancy,
it is one of the largest large burdens upon the health systems of the world.

Treatment of cancer with radiotherapy has increasing application in the mod-
ern clinic. Radiotherapy is based on a specification of the tumor volume called
the Gross tumor volume (GTV). In the present day clinic this volume is man-
ually contoured by a radiologist and/or a radiation oncologist. The GTV
is contoured upon the basis of the physical examination of the patient and
available images from different modalities such as Computerized Tomography
(CT), positron emission tomography (PET) and magnetic resonance imaging
(MRI) [83]. The delineation of the GTV is subject to both inter- and intra-
operator variation [137] [67].

After the GTV has been defined a clinical tumor volume is defined to account
for volumes with suspected or probable microscopic malignant disease. Finally
a planning target volume (PTV) is defined to account for geometrical errors
both systematic and random. These errors arise due to uncertainties in delin-
eation, setup and equipment. Several studies have been performed with the aim
of determining margin recipes for PTV [147]. These models all build on the
assumption of random normal distributed errors, which might not be correct for
delineation variation that arises from manual delineation.

When the (PTV) is finally constructed it is possible to make a dose plan with
a dosimetric goal for the tumor. The radiotherapy delivery parameters such as
field size, position, and dose profile are then optimized to create a plan with an
optimal tumor control probability (TCP) and the lowest possible normal tissue
complication probability (NTCP). NTCP refers to the damage of organs at risk
(OAR) due to radiation which will cause complications with some probability.
The whole radiotherapy workflow is shown in figure 4.1.

For all these steps from the tumor delineation to the dose plan, the present study
evaluates the practical implication of different contours on the final treatment
plan. We use manual contours on images from previously treated patients to
compute dose plans. With the differences in dose plans available it is also
possible to quantify the difference in TCP assuming that each of the contoured
GTVs represents the true tumor volume.
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Figure 4.1: Illustration of the radiotherapy workflow. The red marking indicates
the parts which are handled in this study. Adapted from [83]

4.3 Methods

The workflow theory of the present study is defined and the experiments made
are explained in this section. With a GTV contour, GTV(p,c), for patient p made
by the manual contourer c the PTV, PTV(p,c), can be calculated as

PTV(p,c) = GTV(p,c)
⊕

M (4.1)
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where
⊕

is a morphological dilation and M is the margin dilation volume, which
can be dependent on location. To acquire a margin of x width M should be
a sphere with radius x but it is also possible to use other volumes to account
for other margin definitions. When the PTV(p,c) is acquired it is possible to
optimize a dose plan, D(r(p,c)). The radiotherapy delivery parameters, r(p,c),
are then optimized to acquire the plan with the highest TCP and lowest NTCP.
TCP can be defined as

arg max
r(p,c)

= wTCP · TCP
(
r(p,c)

)
− wNTCP ·NTCP

(
r(p,c)

)
. (4.2)

where wTCP and wNTCP are parameters weighting for TCP and NTCP, respec-
tively. TCP is defined as [156]

TCP (D) =
∏

v∈GTV
exp[−ρ(v) · s · exp (−α(v) ·D(v))] (4.3)

where v is a volume size inside the tumor volume(could be a voxel), ρ is the
density of cells, s is the size of the voxel, α(v) is the cell survival term from the
linear-quadratric model [39] and D and D(v) are the doses given to the whole
volume and the subvolume.
In practice, TCP is not calculated in the clinic, but the optimization is performed
by setting constraint parameters for the DVH [42], a 2D summarization of the
3D dose distribution. These constraints emphasize the importance of a high dose
to the tumor and low dose to the OAR. These constraints and their weighting
are set from experimental in vitro data and analyses of dose plans and outcomes
from historical patients. Using D(r(p,c)) for the different clinicians it is possible
to calculate the relative risk in TCP due to contours as

∆TCP (c1, c2, p) =
∏

v∈GTV (p,c1)

exp
[
−ρ(v) · s ·

(
exp(−α(v)D(r(p,c1))(v))

− exp
(
−α(v)D(r(p,c2))(v)

))]
(4.4)

c1 and c2 are the two contours for which the dose plans are being evaluated. If
100 % TCP is expected using c1 then 4.4 gives the new TCP when c2 is used to
create the dose plan.

4.3.1 Experiments

The data consisted of contours and images from 10 patients referred for stereo-
tactic body radiotherapy in 2008. All patients had NSCLC and were treated at
our institution. All patient tumors were delineated independently by 3 radiolo-
gists and 3 oncologists who had CT images and the PET information on each
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Figure 4.2: Examples of the contours for three patients. (A), (B) and (C)
illustrate the transaxial plane of two different patients. The delineations are
shown in different colors.

patient. PTVs were constructed by dilating all delineations using an ellipsoid
volume. The ellipsoid was constructed to satisfy margin recipe [148] with errors
calculated from the contours [115]. An example from two patients can be seen
in figure 4.2.
Each of the PTVs were the imported into the Eclipse planning system and the
dose plans were optimized using the software. The plans were made using the
settings for both IMRT and RA delivery methods. These two methods repre-
sent the most widely used delivery methods. IMRT has a number of beams to
give the radiotherapy where RA delivers the radiation over an arc therefore fur-
ther accommodating the radiation field to the planning volumes. Therefore we
evaluated both methods to survey any differences between the methods. Con-
straints for normal tissues and tumors were kept uniform for all the patients.
Normal tissue sparing was performed for the lungs and the spinal cord. The
dose plans were then evaluated using equation 4.4 with α = 0.35 from in vitro
experiments [39] The cell concentration was set isotropic to 10−7cm3 within
the GTV with decreasing cell concentration towards the last centimetre to the
edge. Since we are only interested in TCP reductions from c1 to c2 we ignore all
contributions from voxels , vn, with a dose larger than the minimal dose within
the GTV. I.e.

vn ∈
{
v|
(
D(r(p,c2))(v) ≥ min

v∈GTV (p,c1)

(
D(r(p,c1))(v)

))}
(4.5)

Hereafter the TCP differences were tested using a one-way student t-test with a
significance level of 0.05. The data is probabilities between 0 and 1 so the data is
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logit transformed to satisfy normal assumptions. Comparisons were only made
between dose plans optimized for the same delivery methods.

4.4 Results

Figure 4.3: Examples dose plans and their variation. (A) and (B) 3-dimensional
view of the same patient with a dose plan optimized for two different delin-
eations. (C) 2-dimensional view of the variation between all the dose plans for a
single patient on a slide with the original GTV contours given in magenta. The
color indicates the standard deviation for each voxel between the dose plans.

120 plans were optimized for the ten patients. An example of the plans is shown
in figure 4.3. There were dose differences between the PTVs of the different de-
lineations and they varied both between methods and patients.
The TCP calculation gave a mean of 81 %, standard deviation of 32 %, median
of 96 %, and a range of [0−100] for RA and a mean of 77 %, standard deviation
35 %, median of 98 %, and a range of [0−100] for IMRT. A student t-test re-
jected the null hypothesis with p<0.0001 for both delivery methods with ranges
of [0.96-0.99] and [0.94-0.99], for IMRT and RA respectively. The 600 TCP
results (10 patients · 6 contours · 5 comparisons · 2 delivery methods) are seen
summarized in figure 4.4.
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Figure 4.4: Box plot illustrating the inter-delineation TCP for intensity-
modulated radiation therapy and Rapidarc c©. On each box the central red
mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers corresponds to approximately 2.7 SD, outliers are plotted as a line
individually. The notches correspond to the confidence interval of the median.

4.5 Discussion

The results of this study show that current methods to employ margins to ac-
count for delineation variation are not sufficient to ensure the same level of TCP
with contours done by different physicians. Generally a even larger TCP relative
risk can be expected as lung tumors have relatively high tumor contrast and are
easily contoured with less variation than tumors in other sites.
But there are also several assumptions underlying these calculations. First of
all we assume that all delineations are correct by themselves in the calculation
of TCP. However, this is definitely not correct since there exist only one tumor
volume. The assumption is made just to show the implication of different de-
lineations on the final dose plan.
Furthermore it is assumed that there is a perfect setup and execution of the
dose delivery. This means that the margins only have to account for delineation
errors. This assumption is due to the purpose of the study. Adding other mar-
gins would increase the TCP results but these margins account for other errors
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and should not be employed to account for delineation errors. The margins
are constructed on the basis of a margin recipe [147] which is determined using
normal distribution errors, and the margin recipe was originally constructed to
account for setup and execution errors.
There are also biological assumptions about the tumor biology which are not
necessarily true. However, these parameters are extracted from the only avail-
able experimental data and therefore they are the most appropriate for this
study. An isotropic cell density throughout the tumor. This is probably not
true but it has not been possible to find applicable data to account for this.
The assumption of isotropic cell density and biology should give a conservative
measure of the actual TCP implication.
The present study indicates that new methods to account for delineation vari-
ation should be developed. It should be possible to find tumor specific margins
which depend on both tumor- and nodal-stage. Furthermore delineation studies
might reveal image features which correlate with delineation variation. It also
shows the need for additional studies which correlate image data with actual
tumor specimen taken from patients as [35] and [150]. Studies which correlate
tumor probability with image feature could be a stepping stone to a sophis-
tication towards probabilistic definition of tumor cells instead of the current
tumor/not tumor definition. It is important though, that these studies are per-
formed across institutions. This would ensure that the results are not biased
by specific patient populations and especially equipment, which has been shown
to give variations in image features [51]. These studies should be performed on
a larger scale and across institutions so the obtained features do not reflect a
single scanner.
The present study does not touch upon the subject of NTCP calculation. Using
the same method it is also possible to look at the NTCP differences arising from
delineation variation of GTV and OAR definition. The NTCP is also influenced
by delineation variation but with increasing distances from the GTV to the
OAR the effect would be negligent.

4.6 Conclusion

This study shows that current methods are not sufficient to account for delin-
eation variation arising from inter-operator delineation variation. Better margin
recipes specifically constructed for delineation variation are needed.
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Segmenting the Parotid Gland Using
Registration and Level Set Methods
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Chapter 5

Segmenting the Parotid Gland
Using Registration and Level

Set Methods

5.1 Abstract

The bilateral parotid glands were segmented using a registration scheme followed
by level set segmentation. A training set consisting of computerized tomography
from 10 patients with segmentation of the bilateral glands was used to optimize
the parameters of registration and level set segmentation. The method was
evaluated on a test set consisting of 8 corresponding data sets. The attained
total volume Dice coefficient and mean Haussdorff distance were 0.61 ± 0.20
and 15.6 ± 7.4 mm respectively. The method has improvement capabilities for
potential clinical introduction.

5.2 Introduction

Cancer is the greatest killer worldwide accounting for more than 7,5 million
deaths[52]. Radiotherapy has become a large part of the clinical treatment of
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cancer. Newer, more sophisticated and intelligent methods for applying radia-
tion has allowed clinicians to radiate volumes precisely with greater doses[15].
This leads to a demand for precise contouring methods for cancer tissue as well
as healthy tissue which should be spared from the harmful radiation. Manual
contouring on computerized tomography (CT) images has been the prevalent
method used in the clinic for delineating volumes of interest (VOI).
But manual contouring has shown to have several drawbacks. The method
shows variability both inter-subject and intra-subject in contouring tumors[22]
as well as healthy tissue[136]. The method is also time consuming in a clinic
with increasing patient flow and a high emphasis on budget control. Automatic
segmentation methods seem to be the solution to these problems [66]. These
methods could pre-process the images of the patient creating contours for VOI.
Leaving the radiation oncologist to evaluate and modify the contours instead of
manual contouring.
In this paper we show that automatic contouring of the bilateral parotid glands
is possible by combining registration and level set methods. The registration
method uses a diffusive regularizer and uses basis functions to interpolate the
image[68]. All patients with segmented parotid glands are registered into the
patients with unknown segmentations. The volume where most of the trans-
formed segmentations are located is taken as an initial guess for the level set
segmentation. The level set segmentation is based on the work by Osher and
Sethian[110] and is dominated by extrinsic and intrinsic forces.

5.3 Data

The provided data set consisted of 18 CT datasets from Princess Margaret
Hospital representing a subset of a real clinical patient population. The CT
resolution was 0.98 mm in both direction of the transversal plane and 2.0 mm
along its axis. The data was given as values between 0 and 4096 with a value
of 1000 regarded to be 0 HU. In the transversal plane the dimensions were 512
by 512 voxels and with 108-191 slices along the transversal axis.

10 of the datasets were supplemented with manual segmentations of the bilateral
parotid glands, henceforth called the training set. The manual segmentations
had been created by a clinical expert using standard manual delineation tools.
The segmentations were provided as a volumetric binary mask with the same
dimensions as the corresponding CT. The remaining 8 datasets without segmen-
tations are referred to as the test set.
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5.4 Methods

To decrease the computational load of the registration the CT data were initially
reduced. The reduction was performed automatically to remove slices below the
upper part of the neck and above the lower part of the nose. The coronal axis
was cut at the front of the mandibles and in the back around the ears. The
saggital axis included all of the head.

5.4.1 Image Registration

The registration used in this work is shortly summarized in this section. For
more extensive information about the methods used the reader is referred to[68].
The registration consists of two individual transformations. A preliminary affine
registration to align head position and size followed by a cubic b-spline regis-
tration to align organs, bones, and surfaces. The parameters of the registration
was found by minimization of the objective function

C[R, T ;φ] = D[R, T ◦ φ] + αS[φ], (5.1)

where R is the reference image, and T is the template, with a segmentation,
which we will transform into the reference. φ is the transformation, D is the
dissimilarity measure, in this instance sum of squared difference, S is the regu-
larizer described below, and α is a trade-off constant.
The scale space of the image was used for the registration to avoid a local min-
imum solution. Afterwards the CT data was interpolated by combinations of
1 dimensional cubic b-splines. The knots of the splines were placed at each
sampling point and provided spatial derivatives. In order to find the coefficients
of the splines a linear system was set up

Bw = I , (5.2)

where B is a sparse matrix consisting only of the spline basis for one knot along
each row, w is a matrix consisting of the spline coefficients, and I is the image
matrix that we are interpolating.
Afterwards the transformation of the template could procede. Each of the trans-
formations are parametrically defined as

φ(x; p) = x + u(x; p) = x + A(x)g(p), (5.3)

where x is the position vector, p is the transformation parameter vector, A is
the spatial basis, and g is the parameter kernel.
For the affine transformation a solution is found relatively easy because of the
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few number of parameters. But when making the cubic b-spline transformation
a regularizer is needed. The used diffusive regularizer was defined as

Sdif (φ) = tr(∇uT∇uT ), (5.4)

where ∇u is the relative displacement gradient.
Once the problem has been defined and discretized it is then possible to opti-
mize the transformation parameters using a limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm[105].

5.4.2 Level Set Method

We are interested in surfaces when using the level set methods for segmentation.
A matrix of the same size as our image is defined and the surface voxels are
represented with 0 and every other voxel represented as the distance to the
closest point of the surface, negative inside and positive on the outside of the
surface. These are the level set values. The result of the registration was
employed as the initial surface. The surface evolves iteratively by using the
following equation

ηn+1,x = ηn,x −∆t (V(x) · ∇ηn(x) + a(x)− b(x)) , (5.5)

where η is the level set value, n is the current evolution, ∆t is the time step for
each iteration, and the three force fields: V is the velocity field, a is the speed
field, and b is the curvature field.
V is the force, that pulls the surface towards the edges by influencing the level
set value. It is derived by taking the gradient, G(x), of the CT image. The
velocity field is then defined as ∇|G(x)|. a is the force that pulls the surface in
the direction normal to the surface. It is defined to be high when the value of
the HU is close to the mean of the parotid gland and negative, when away. a was
computed as the value of a gaussian distribution with the mean and standard
deviation of the segmented parotid glands of the training set. b was calculated
from the underlying level set values computing the curvature from the gradients.
For a more detailed description of the method and its capabilities the reader is
referred to [109].

5.4.3 Optimization of parameters

Parameters for the registration and level set segmentation were found by the
leave-one-out strategy on the training set. The objective function was the com-
bined Dice coefficient (DSC) of all slices between the new segmentation and
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the manual segmentation. The transformed segmentation templates were com-
bined by addition, and then a final registration segmentation was found, using
a threshold value.
The parameters were found making consecutive grid searches over the parameter
and threshold values in the following order: Registration parameters, threshold
of registration combination and level set parameters. Afterwards the test set was
segmented using the parameters and thresholds attained from the grid searches.
The attained threshold parameter was corrected for the total number of tem-
plates (multiplying with 10

9 ), when segmenting on the test set.

5.5 Results

The parameters for the registration were found and the individual transformed
segmentations were combined as described in section 5.4.1. Figure 5.1 shows
examples of the individual registration along with their combination. Table 5.1
shows the DSC results which confirms, that the individual registration results
vary and that the resulting combination is a reasonable compromise. In figure

Figure 5.1: Example of the registration result. Manual segmentation in green,
individual registration in magenta and combined registration in blue. To the
left data set 1, to the right data set 3

5.2 the results of the level set segmentation is seen along with the initial segmen-
tations. It can be seen that the level set segmentation is less smooth than the
initial segmentation. The changes are minor, which is also confirmed in table
5.1. It is seen that the level set segmentation increases the DSC slightly, but not
significantly, p = 0.3, on a pooled t-test. Examples of the test set segmentations
is shown in figure 5.3. The contour is coarse and generally includes the dermis
and subcutaneous tissue, which are not part of the manual segmentation. The
resulting statistics for Hausdorff distance (HD) and DSC can be seen in table
5.2 and 5.3 respectively. In table 5.2 it is seen, that HD is larger than the
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Left parotid Right parotid Combined
Set Ind. Com. L.S. Ind. Com. L.S. Ind. Com. L.S.

1 0.5± 0.2 0.53 0.54 0.54± 0.2 0.65 0.63 0.52± 0.2 0.59 0.58
2 0.53± 0.1 0.76 0.78 0.59± 0.2 0.77 0.78 0.56± 0.1 0.77 0.78
3 0.62± 0.1 0.79 0.8 0.66± 0.1 0.82 0.84 0.64± 0.1 0.8 0.82
4 0.52± 0.1 0.55 0.69 0.53± 0.1 0.46 0.6 0.52± 0.1 0.51 0.64
5 0.59± 0.1 0.64 0.69 0.62± 0.1 0.6 0.71 0.61± 0.1 0.62 0.7
6 0.46± 0.1 0.6 0.66 0.54± 0.2 0.7 0.75 0.5± 0.1 0.65 0.7
7 0.51± 0.2 0.76 0.77 0.51± 0.1 0.73 0.77 0.51± 0.2 0.75 0.77
8 0.57± 0.1 0.58 0.68 0.48± 0.1 0.52 0.64 0.53± 0.1 0.55 0.66
9 0.62± 0.1 0.82 0.84 0.63± 0.1 0.84 0.83 0.63± 0.1 0.83 0.84
10 0.58± 0.1 0.81 0.83 0.5± 0.2 0.65 0.7 0.54± 0.2 0.73 0.77

Table 5.1: DSC scores of the registration. Ind. is the individual transformed
segmentations from the registration scheme, Com. is the combination of the
individual segmentation and L.S. is the level set result. The result of the indi-
vidual segmentations is given as the mean DSC ± one standard deviation.

Figure 5.2: Example of the level set results along with the initial segmentation
from the registration. Manual segmentation in green, combined registration in
blue and level set segmentation in red. To the left data set 1, to the right data
set 3
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Figure 5.3: Example of the registration result from different slices of data set
16 of the test set. Manual segmentation in green and the final segmentation in
red.

Mean HD Median HD No. of slices ( HD > 3 mm )
Set No. Left Right Left Right Left Right

11 12.97 8.36 12.69 8.05 34 (34) 32 (32)
12 18.56 17.71 18.57 16.00 28 (28) 30 (30)
13 8.73 10.59 8.79 10.74 26 (26) 26 (26)
14 15.49 14.87 13.21 12.70 24 (24) 24 (24)
15 11.09 10.61 10.55 9.67 23 (23) 26 (26)
16 10.80 8.60 9.81 8.37 29 (29) 31 (31)
17 18.46 19.66 18.20 19.53 33 (33) 27 (27)
18 34.07 29.62 32.21 28.44 24 (24) 25 (25)

Table 5.2: Hausdorff distances (HD) statistics for left and right parotid segmen-
tation in the testing datasets.
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clinically acceptable 3 mm deviation on all slices for all data sets. In table 5.3
it is seen that the DSC lie in the same range as the training set, except for data
set 18. The initial segmentation (not shown) from the registration is located
over the temporal parts of the skull.

Average slice Median slice Total volume
Dataset No. Left Right Left Right Left Right

11 0.62 0.77 0.66 0.81 0.68 0.81
12 0.53 0.56 0.57 0.59 0.56 0.59
13 0.78 0.70 0.80 0.74 0.78 0.72
14 0.62 0.55 0.71 0.60 0.67 0.60
15 0.77 0.78 0.82 0.82 0.81 0.82
16 0.55 0.61 0.63 0.63 0.61 0.67
17 0.46 0.47 0.53 0.54 0.52 0.57
18 0.11 0.15 0.11 0.14 0.14 0.20

Table 5.3: Dice coefficient statistics for left and right parotid segmentation in
the testing datasets.

5.6 Discussion

The results in table 5.2 show that the proposed method underperformed in
relation to the clinically acceptable HD. This is mainly due to the fact, that
the parameters have been optimized to increase the DSC as much as possible.
Instead of optimizing the method based on the DSC, one could make an opti-
mization based on an intermix of HD and DSC.
Furthermore it did not achieve an DSC above 0.5 for data set 18. This did
not happen in the training set. This could be caused by dissimilarity between
the patient of data set 18 and the patients of the training set. As commented
earlier the segmentation from the initial registration is dislocated, which could
be corrected by adjusting registration parameters.
The method was constructed to be a fast segmentation method. At the current
time it can segment a new patient on an average of 60 seconds. A number of
parameters could be changed to increase the performance of the method but
also increase the computation time. The number of cubic b-spline registrations
could be increased to increase the DSC of the initial registration. This could
be achieved by increasing the number of cubic b-spline registrations with initial
high downsampling and high scale space to align the overall structures followed
by registrations of lower or none downsampling and lower scale space to align
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tissue, bones and surfaces. The number of iterations for both transformations
was set low to ensure fast segmentation. By increasing the number of iterations
the performance could have been increased but at the expense of computational
time of the segmentation. A tolerance limit for the registration algorithm could
also solve the problem without setting the number of iterations.
The level set method did improve the initial segmentation, but it was devised as
a final refinement of the results, and hence it did not change the segmentation
significantly. Moreover the curvature parameter was decreased so much, that it
produced a coarse surface. Future studies could inspect an optimization scheme
based on an intermix of HD and DSC, which could have improved the results
of the level set segmentation.

5.7 Conclusions

We have shown that it is possible to segment the bilateral glands automati-
cally using registration and level set methods. The method has development
possibilities which could be harnessed to enable clinical introduction.
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Chapter 6

Segmentation Using
Symmetry

6.1 Abstract

The manual delineation of gross tumour volume(GTV) for radiation therapy for
head and neck cancer patients relies in some degree on pathological deviation
from normal anatomical symmetry. This study introduces a novel 3-dimensional
symmetry quantification method and evaluates it for the segmentation of GTV.
The method uses deformable registration on computed tomography (CT) to find
anatomical symmetry deviations of head-and-neck squamous cell carcinoma.
The information is combined with the signal from positron emission tomogra-
phy (PET) images. The method allows the use of anatomical and symmetrical
information from CT and PET scans to improve automatic delineations. 30
head-and-neck patients with PET/CT scans were automatically segmented in
this study. The proposed method delivers a mean area under the curve of 0.87 for
receiver operating characteristics and delivers a higher true positive rate than
comparable PET thresholding methods for PET images at low false positive
rate.
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6.2 Introduction

Symmetry is an obvious quality of many biological systems. This may stem from
the biological fact that the basis of life is performed by mitosis, cell division.
Symmetry in the human body has a lot of benefits, e.g. an additional backup
in case of the breakdown of one organ.
In previous studies symmetry shape distortion due to pathology has been quan-
tified using registration [106] [37] [41]. Tumor development is exactly a distur-
bance to the anatomical as well as physiological symmetry in the body. It is
used to some degree in manual localization and contouring the gross tumor vol-
ume (GTV). But it is hard to quantify and therefore hard to use for automatic
segmentation.
The development of anatomical atlases for segmentation of different organs [134]
[28] makes it possible to locate the same volumes across patients. Hereby it is
possible to refer every point inside a single patient to a common atlas. This
enables one to make an atlas of the variation of physiological functions such as
brain activity[25].
In this study we develop a general framework for segmentation using symmetry
properties. The applicability of symmetry for GTV segmentation is inspected.
Non-rigid registration is used to quantify symmetry in the head-and-neck (HN)
volume for patients without known pathologies. These symmetries are then
transferred to a common atlas accounting for the normal variation in this vol-
ume. Segmentation of GTV on HN patients is then acquired by comparing
their symmetries with the variation in the symmetry atlas. At the same time
the symmetry information is used to compare the positron emission tomography
(PET) signal across the plane of symmetry for segmentation.

6.3 Theory

In this section the theory behind the new symmetry features is explained. In the
first subsection the method to find matching points across a plane of symmetry
is outlined. It is described how it is possible to use the non-rigid registration
to extract a feature that represents the difference in shrinkage and expansion
across the plane of symmetry. The second subsection explains how the sym-
metry matching can be used with objects with functional properties to extract
differences in functional symmetry.
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6.3.1 Symmetry

To quantify symmetry for an object we perform the following registration opti-
mization

min
T

(∫
x

D (I (x) , I (T (x) + x̃)) +R (T (x)) dx

)
(6.1)

where D is a given dissimilarity measure function between two images, I is
the image, x is the original location in the image, x̃ is the coordinate mirrored
through a plane, R is the regularizer. The mirror plane is defined as the set all
vectors

X =


x1
x2
...
xn

 (6.2)

where A·XT = p, A is the unit normal vector of the plane and d is the directional
distance from origo to the plane which gives x̃ = x − 2A(AxT − p) . R is the
regularizer keeping the deformation field from invalid expansion/shrinkage and
T is the transformed location defined as

T (x) = TR(x) +NR(x) (6.3)

where TR is the rigid transformation to bring the mirrored onto each other
and NR is the non-rigid deformation. This deformation actually maps each
point on one side of the object to its symmetric point on the other side. The
transformation concept is depicted in figure 6.3.1. Achieving the symmetry

Figure 6.1: Depiction of the symmetry registration principle. A random mirror
line is set to illustrate that the method is not dependent on the location and
direction of the mirror line.

registration allow one to compute the differences in expansion and shrinkage due
to the nonrigid transformation across the symmetric plane. These symmetric
volume differences are calculated by

∆V ol(x) = J(NR(x))− J(NR(Tx+ x̃)) (6.4)
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where J is the Jacobian, a number below and above 1 signifies respectively a
shrinkage or expansion of the region.∆V ol is the symmetric across volume since

∆V ol(x) = ∆V ol(Tx+ x̃)) (6.5)

This does not mean that the integral of ∆V ol(x) is 0, because of the shrinkage
and expansion correspondingly does not have the same volume in an asymmet-
rical object but

∫
x

∆V ol(x) · J(NR(x))dx = 0. Since the method is highly
dependent on the initial registration which has local minima it is recommended
to place the symmetrical plane in the centroid of the object.
To use ∆V ol(x) to segment abnormal asymmetric structures it is necessary to
find a certain threshold for the segmentation. It is possible to determine normal
levels of ∆V ol(x) if a data set representing the normal variation in the object
population is available. Using subjects without the pathology of interest, an at-
las containing the symmetry information of the subjects is computed and used
as an indicator of normal symmetry.

6.3.2 Functional symmetry

If functional information is available on the object it is also possible to find
functional differences across the plane of symmetry. If the object has a functional
value, F(x), it is possible to get the symmetrical difference by

∆F (x) = F (x)− F (Tx+ x̃) (6.6)

where ∆F has the same properties as ∆V ol(x) and
∫
x

∆F (x)·J(NR(x))dx = 0.

6.4 Experiments

In this section the experiments performed in this study is explained. The first
subsection describes the initial experiments with a simulated object. In the
following subsection the patient material is defined. In the third subsection the
procedure to build the symmetry atlas is elucidated and in the last subsection
the method to use symmetry for tumour segmentation is described.

6.4.1 Simulation

The method was initially tested in a simple way using rigid and non-rigid reg-
istration [153]. For the non-rigid registration 3-dimensional b-splines were used
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for the deformation field, a sum-of-squares dissimilarity measure was used and
an elastic regularizer. The factor of regularization was set as low as possible
while still giving positive Jacobians for all deformation fields, i.e. no transfor-
mation discrepancies. Non-rigid registration henceforth refers to this approach.
A 3-dimensional trigonal trapezohedron was used as object for the symmetric
registration. F(x) inside the object was set as two different situations

1. Uniform: Set as the level set value, i.e. the shortest distance to the margin
of the object.

2. Asymmetrical: A point source placed in one side of the treapezohedron
with decreasing value towards the edge.

The object and its potential can be seen in figure figure 6.2. The mirroring was
applied by flipping the image along the axis of asymmetry. Parameters as length
of the trapezohedron, signal-to-noise (SNR) level, rotation and regularization
was evaluated on a grid of set values to survey the stability of the method.

6.4.2 Patient material

The data set consisted of 55 patients. 30 of those patients had head-and-neck
cancer (HNC) located in the hypopharynx treated with radiotherapy at De-
partment of Radiation Oncology, Rigshospitalet, Denmark, these are hence-
forth denominated segmentation patients. All the segmentation patients had a
delineation of the GTV produced by an experienced radiologist and radiation
oncologist which was used as a reference for the tumor volume. The remaining
25 patients were cancer patients without involvement in the hypopharynx vol-
ume, these patients are henceforth denominated atlas patients. All patients had
a x-ray computed tomography (CT) and FDG positron emission tomography
scan in head-supine position.

6.4.3 Atlas Construction

Atlas construction is in itself a topic of research [4]. In this study we primarily
used the survey results of atlas-based constructions methods [28] and the results
from a segmentation challenge for a head-and-neck organ [114] as basis for our
framework. The atlas is necessary as a reference for location in a new patient.
It is used as a reference of normal symmetry deviations to determine whether
the symmetrical expansion is pathologic. The atlas was constructed by picking
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(a) (b)

(c) (d)

Figure 6.2: Illustration of the simulated trapezohedron. (a) illustrates the trape-
zohedron in red and the mirror plane in blue. (b) illustrates central slice of
the object. (c) illustrates the center slice in the first functional setting with a
”uniform” value. (d) illustrates the center slice in the asymmetrical functional
setting. In (b-c) the value ranges from 0 to 1.

a random patient as a reference from the atlas patients without tumour in the
hypopharynx. The other 24 atlas patients were then registered to the reference
using affine and non-rigid registration. After registration an average intensity
volume (AIV) was calculated by calculating the average of all the transformed
volumes and the initial reference. Afterwards the correlation coefficient between
the atlas and the 24 transformed atlas patients was calculated [28]

CC =

∑
x(AIV (x)−AIV )(I ′(x)− I ′)√∑

x(AIV (x)−AIV )2
∑
x(I ′(x)− I ′)2

(6.7)
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where CC is the correlation coefficient, AIV (x) is the intensity of the AIV at
coordinate x, AIV is the mean intensity value in the AIV , I ′(x) is the intensity
value of the transformed patient volume and I ′ is the mean intensity value of
the transformed patient volume.
The patient with the lowest correlation coefficient is then chosen as a reference
and registration of the other 24 atlas patients to the reference is performed where
after a new AIV is created. This process is repeated including all former AIVs
until 5 different AIVs are constructed. In this way the AIVs should represent
the whole set of patients and not just a randomly chosen subset.

6.4.4 Symmetry registration

Symmetry registration was performed for all patient volume. The procedure
consisted of the following steps.

1. Get scan values for mirrored coordinates by flipping the images horizon-
tally.

2. Make a rigid registration between original and mirrored volume achieving
the transformation R(x).

3. Make a non-rigid registration between the original and the rigidly trans-
formed mirror volume achieving the transformation NR(x).

4. Compute ∆V ol using the symmetric point correspondencies and theNR(x).

5. Find point correspondences between patient volume and the AIV s using
affine and non-rigid registration.

All non-rigid registrations were performed using a elastic regularizer at a level
found in the similar way as with the atlas construction. The point correspon-
dences between the atlas patients and the AIVs were used to construct 5 symme-
try atlases which contained the mean and variance of ∆V ol of the atlas patients,
denominated respectively ∆ ¯V oland ∆σV ol.

6.4.5 Tumour segmentation

Using symmetric point correspondences it was possible to calculate ∆F from the
PET-scans for all the segmentation patients. Receiver operating characteristic
(ROC) for tumour segmentation was computed for ∆V ol and ∆F using the
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manual GTV delineation as a ground truth. Using the point correspondences
between the segmentation patients and the AIV s it was possible to compute a
probability of normal symmetry

Psym(m,x) =
1

5

5∑
i=1

wi

(
1− Φ

(
∆ ¯V ol(AIVi, x̃)−∆V ol(m,x)

∆σV ol(AIVi, x̃)

))
(6.8)

where Psym is the probability that the symmetry difference is normal, x is the
position, m is the patient, wi is the a weighting relating to AIV number i,
Φ(y) is twice the cumulative probability distribution from 0 to y of a normal
distribution with a mean value of 0 and a standard deviation of 1. The value
of the probability is signed so that volumes with an increased volume are neg-
ative and the opposite are positive. ∆ ¯V ol(AIVi, x̃) is the mean symmetrical
expansion/shrinkage at x̃ ,the coordinate corresponding to x in the AIV and
∆σV ol(AIVi, x̃) is the variance of symmetrical expansion/shrinkage at x̃ . wi is
calculated as the correlation between the AIV and patient as

wi =
CCi∑5
i=1 CCi

(6.9)

where CCi is defined as noted in equation 6.7. In this way the probability of the
AIV s with the most resemblance to the patient is weighted more. ROC for is
computed for Psym and for a combination of Psym and ∆F . For comparison the
tumour volumes of the patients were segmented using simple PET-thresholding
and The ROC was computed for all patients and then a mean ROC was found
along with a mean AUC.

6.5 Results

The symmetry registrations on the simulated of the trapezehedron with varying
parameters were successful. An example of the results can be seen in figure 6.5.
The method does not accept any non-positive jacobians and therefore some of
the transformed trapezohedron is located outside the mirrored periphery in fig-
ure 6.5 (a). In figure 6.5 (b) it is seen that the trapezohedron is condensed in the
broad edge while it expands halfway between the mirror plane and the narrow
edge towards the sides. Figure 6.5 (c) depicts the symmetrical comparison of
∆V ol It is seen that the shrinkage and expansion volumes is emphasized.
The results of the experiments showed that the symmetry is susceptible to trans-
lation if the mirror plane is placed more than the half the width of the object
from the centroid, placing the initial mirrored circumference outside the trape-
zohedron itself. Rotation of the mirror plane had severe impact if it was more
than 40 degrees resulting in a rotation that turned the trapezohedron all the
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way around, i.e. a vertical registration. Repeated experiments with varying
SNR levels showed that the variation between registration results increased as
the SNR ratio decreased. Length of the trapezohedron had impact on the reg-
istration results as it either reduced or increased the workload of the method.
At http://www2.imm.dtu.dk/~chrho/symmetryvids it is possible to see some
videos illustrating our results.
The functional symmetry comparison for the uniform case seems to emphasize
the regions, with the highest degree of transformation.

(a) (b) (c)

Figure 6.3: The deformation results of the registration. (a) depicts a slice of the
transformed object with the periphery of the trapezohedron depicted in red. (b)
illustrates the jacobian of the deformation field, i.e. below 1 shrinkage, above 1
increase in volume. (c) shows the result of the symmetrical difference in volume
change. For (b-c) the periphery of the trapezohedron marked in black. The
volume lying outside the reference volume is marked with blue circles.

The image, symmetry and deformation atlas was built from the patient without
any tumour involvement. An example can be seen in figure 6.5. In (a) it can
be seen that the tissue contours are marked less than normal patient images.
(b) shows a volume general difference close to the larynx. The difference ap-
peared on all atlases with different magnitude. The image of in (c) shows that
the predominant symmetry volume variation appears close to the larynx, to
the vertebrae bone and at rear position of the circumference, which arise from
differences in shoulder levels on the CT-image slices. The original CT- and
PET-image can be seen in respectively (a) and (d) of figure 6.5. The jacobian
determinant of the symmetry can be seen in (c). The effect of the shoulder
position has the most significant effect. These effects are to a certain degree de-
creased in Psym due to the comparison with the five atlases. The symmetrical
PET function difference,∆F (x) , is seen in (e). The high function value of the
GTV is emphasized while the symmetric spot is marked by a negative signal.
The symmetric signal around the larynx is decreased to some degree. In (f) it is
possible to see the combination of the Psym and ∆F (x) used for segmentation.

In figure 6.5 the ROC for the simple PET-thresholding, symmetrical PET, sym-

http://www2.imm.dtu.dk/~chrho/symmetryvids
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(a) (b)

(c) (d)

Figure 6.4: Symmetrical comparison of functional value. Top row is results
from the symmetrical simulations depicted originally in figure 1 (b) and bottom
row is from the asymmetrical simulations. Left column is the functional dif-
ference results and right column is the ratio results. The circumference of the
trapezohedron is represented in black.

metry probability and symmetry combination are seen. It is seen that the
symmetrical measures are inferior to the original PET-signal as a classifier. The
combination of the two symmetry measures shows an increased sensitivity with a
decreased false positive rate. The AUC was 0.89, 0.78, 0.66 and 0.87 for respec-
tively PET-threshold, symmetry probability, PET-symmetry and combination
of symmetry measures.

6.6 Discussion

The present study demonstrates that symmetry can be used to segment GTV.
To the best of the authors’ knowledge it is the first time that it is used for
segmentation. The approach is essentially a high dimensional feature extrac-
tion using the image in conjuction with prior knowledge from a symmetry atlas.
Prior studies have used comparable approaches to quantify asymmetry in sub-
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(a) (b) (c)

Figure 6.5: The deformation results of the registration. (a) depicts a slice of the
transformed object with the periphery of the trapezohedron depicted in red. (b)
illustrates the jacobian of the deformation field, i.e. below 1 shrinkage, above 1
increase in volume. (c) shows the result of the symmetrical difference in volume
change. For (b-c) the periphery of the trapezohedron marked in black. The
volume lying outside the reference volume is marked with blue circles.

jects with growth changes [106], [41] [37]. But the proposed method differs
itself on several levels. First of all, the prior methods focus on surfaces whereas
the present method extracts and uses volumetric information. Secondly, prior
methods define an axis of symmetry from manually defined points. The present
method makes a symmetric transformation but makes no assumption about
the actual plane of symmetry. Estimation of the plane of symmetry from the
achieved transformation field is possible. But the plane of symmetry arises as
a product of a data driven registration and not from manual points. In Figure
4 (c) the plane of symmetry for the atlas can be perceived. This quality makes
the present method superior in comparison with automated image segmentation
because it does not require any user interaction.
The proposed method delivers results comparable to state-of-the-art automatic
methods[130] and manual methods. The earliest developed methods in for head-
and-cancer consisted of simple thresholding[145], on PET-images as the one ap-
plied as comparison in this study. A further refinement were methods which used
an source-to-background assumption derived from phantom measurements[36]
[128]. Others use more complex methods as deformable models[102], machine
learning[163], Markov random field [63] and fuzzy logic[14] [72] [71]. These
methods all use the original CT- or PET-image or they derive features from
the image and use these for segmentation. The proposed framework can be
combined with any of these methods. It can deliver symmetry features which
can be used for segmentation. The approach will have problems with tumours
which are symmetric across the plane of symmetry.
The proposed approach takes 2 minutes to derive symmetry information from a
CT image of a patient in matrix sizes 512x512x50-100 on a 2.53GHz processor
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Image results from a patient. (a) the original CT-image. (b) Visual-
ization of the symmetry volume difference, . The image intensities has been log2
transformed and the background has been set to 0 to emphasize the result inside
the patient. (c) A visualization of the normal symmetry probability, Psym. (d)
The original PET-image. (e) The symmetry difference of the PET-image, . (f)
the signal of the combination of and used for segmentation. The background
has been set to a fixed level in (b-c) and (e-f) to emphasize the signal inside the
patient. The red contour is the manual segmentation by the doctors.

with 4 GB of memory. The atlas construction is the most time consuming part
of the approach. But once it has been constructed it is possible to derive the
symmetry probability within 10 minutes. The registration of the atlas could
potentially provide the contours of organs of risk which are also important for
radiotherapy planning. The method can also be used for organ function as-
sessment of kidneys, brain and other organs with symmetric distribution in the
body. Normal image features from PET images suffer from variability due to
scanner, recording and reconstruction methods[51]. An advantage of the sym-
metry features is that it does not make any assumption about the scanning
method and is also compatible with other image modalities. The high sensitiv-
ity with low false positive rate is a great advantage of the combined symmetry
segmentation compared to thresholding. Since the GTV only occupies a small
volume of the head-and-neck volume a false positive rate of 10 % can deliver a
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Figure 6.7: The ROC for the four segmentation methods for the 30 patients.
The solid line defines the mean ROC for all the patients. The dash-dotted line
depicts the minimum sensitivity for all the patiens. The dotted line depicts the
maximum sensitivity for all the patients. The horizontal axis represents the rate
of false positive or 1-specificity.

false positive volume larger than the actual true positive volume.
The greatest problem with regard to the application of the method is the un-
derlying registration. In this study we kept a conservative procedure to assure
the applicability of the method. Settings like transformation, regularizer and
masking, can be optimized to deliver better results. But this requires ground
truth with some degree of certainty which is better than a manual delineation. If
this is not available one risks to develop an approach which could target normal
tissue regions.
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6.7 Conclusion

A new method for automatic segmentation of GTV using image derived sym-
metry was developed and tested on 30 patients. The method shows the first
uses of symmetry derived features for image segmentation. It provides results
which are comparable to the methods applied in current delineation practice.
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Lung Tumor Segmentation Using Electric
Flow Lines for Graph Cuts
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Chapter 7

Lung Tumor Segmentation
Using Electric Flow Lines for

Graph Cuts

7.1 Abstract

Lung cancer is the most common cause of cancer-related death. A common
treatment is radiotherapy where the lung tumors are irradiated with ionizing
radiation. The treatment is typically fractionated, i.e. spread out over time,
allowing healthy tissue to recover between treatments and allowing tumor cells
to be hit in their most sensitive phase. Changes in tumors over the course of
treatment allows for an adaptation of the radiotherapy plan based on 3D com-
puter tomography imaging. This paper introduces a method for segmentation
of lung tumors on consecutive computed tomography images. These images
are normally only used for correction of movements. The method uses graphs
based on electric flow lines. The method offers several advantages when trying
to replicate manual segmentations. The method gave a dice coefficient of 0.85
and performed better than level set methods and deformable registration.
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7.2 Introduction

Treatment response is important in lung cancer treatment. Without treatment
response it is impossible to assess the progress or lack of progress of a treatment.
With the continued increase of treatment strategies that is available today the
possibility of earlier treatment response becomes more and more pertinent. If
the patient does not respond adequately to a certain treatment early prediction
can spare the patient unnecessary toxic treatment and be used to change treat-
ment strategy. During the last 4 decades 3-dimensional imaging modalities has
become one of the most important tools in the clinical assessment of cancer.
Positron emission tomography (PET) has shown to be correlated with treatment
outcome [158]. But it is not a conventional tool for early treatment response.
Helical Tomotherapy is an external beam radiation therapy system, which has
a megavoltage x-ray source making it capable of making megavoltage comput-
erized tomography (MVCT) images. These images are used to provide image
guided radiotherapy (IGRT) imaging the target volume to allow adjustment of
the patient to optimize treatment. These images potentially includes informa-
tion about treatment response[132], [20]. But the quantity (up to 30 fractions
per patient) of these images makes manual contouring of Gross tumour volume
(GTV) unfeasible for clinics.
Several approaches has been developed to segment tumors throughout treat-
ment. Kuhnigk et al [90] developed a method for segmentation of lung lesions
and estimation of partial volume effect, Fetita et al.[47] developed a method
for lung nodule segmentation and Faggiano et al. [45] developed a registration
method to estimate anatomical modification during radiation treatment. Some
of these methods are only applicable for kilovoltage computerized tomography
(KVCT) images, which are only available for the initial planning scan of these
patients. Furthermore, these methods require human interaction for each image
sequence.
In this paper we propose a graph based method[160], which uses the principle of
electric flow lines (EFL) theory [162], [117] to segment lung tumors on (MVCT)
images. The method is novel in regard to utilizing available temporal images
of the tumor and makes graphs with unique paths, which are transferable from
one fraction to another. Overlap and distance to manual contours are calculated
and compared to other automatic methods for segmentation of 3-dimensional
images.
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7.3 Methodology

We assume an initial pre-treatment scan annotated by manually contouring each
slice of the GTV. This will typically be a KVCT scan. At the following treatment
sessions a series of scans are then acquired. These will typically be MVCT scans.
For each scan in this sequence we want to transfer the GTV outline from the
previous scan rigidly to the current scan and to non-rigidly deform this outline
to fit to the intensity patterns in the current image. In order to avoid self-
intersections we will make this deformation along a graph following EFL derived
from simulating an artificial charge at the outline [162], [117] and using a graph
cut method to find an optimal tumor outline with respect to smoothness of the
outline and correspondence to the underlying image patterns.

7.3.1 Rigid Registration

The rigid registration between scans is performed using correlation as a simi-
larity measure for the volume within 2 cm of the GTV [153]. In the practical
application of this method a manual contour was transferred from the KVCT
scan to the first MVCT scan. On all following MVCT scans the automatic
segmentation was transferred from one scan to the following using the same
procedure.

7.3.2 Electric Flow Lines

The initial segmentation from the previous scan is used to generate the EFLs.
The electric flow should stem from an electric potential on the surface of the
segmentation. The potential, E, is defined as:

E(x) =

∫
Q(x̃)R(x̃− x)dx̃, (7.1)

where x is the position at which the flow is evaluated and Q is a function which
is 1 on the surface and 0 at all other positions. R is the potential at the position
x coming from the potential at x̃ defined by Coulombs law as:

R(r) =
r

4πε · ||r||3
, (7.2)

where r is the direction vector from one potential to the point evaluated, ε is
the electric constant which along with the 4πε constant is ignored in practical
computations. The surface potential was discretized by performing a Delauney
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triangulation of the segmentation points and placing a charge in the barycenter
of each triangle. The potential of each triangle was set to its part of the total
surface area.
Hereafter an electric line was initiated at each triangle barycenter and iteratively
computed in an inwards and outwards direction using the above equations. For
the first iteration the potential at the position was neglected because of infinite
influence on the potential at the position. Instead an initial step in the direction
of the triangle plane normal was used. The image values were extracted along
each of the electric flow lines on both the former tumor scan and the current
scan on which a segmentation is sought. The correlation between the flow lines
from the former and current scan is calculated as a measure of accordance for
each position along the EFLs.

7.3.3 Graph Construction

A graph is constructed with vertices, Vi,j at each of the positions along the
EFL. j corresponds to the individual EFL or columns and i corresponds to each
of the positions along it. The graph consists of two types of edges, intra- and
inter-column edges. The intra-column edges account for the likelihood that the
surface is located at that location. It is formulated as

Figure 7.1: Illustration of the edges in the graph. The s and t node are respec-
tively the source and sink. In our implementation there are more layers in each
column and there are edges with more than two layer difference.
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Eintra(i→ i− 1, j) =
1

1 + ec(i)
(7.3)

Eintra(i→ i+ 1, j) = ∞ (7.4)

where c(i) is the correlation value of the ith position along the EFL. A graph
consisting only of the intra-column edges would have an optimal solution giv-
ing the positions with the highest correlation values. The intercolumn edges
are implemented to ensure a smooth segmentation where the segmentation of
one EFL is consistent with the surrounding EFLs. The inter-column edges are
formulated as

Einter(i, k, j, l) = gi,k(j, l), (7.5)

gi,k(j, l) =


0 if dist(i, k) > 1
0 if i = k
0 if j < l

w · e
−(j−l)

c else

(7.6)

where i and k are line indices referring to EFLs, j and l are position indices
on the the EFL and dist(i, k) is the triangulation length between two vertices,
which is equal to one when two triangles are interconnected. g is the weighting
parameter between EFL, w is the weight constant between EFL and c is a
normalization constant. The edges are illustrated in figure 7.1. The specific
segmentation solution was found by solving the minimum cut problem on the
graph [19].

7.3.4 Graph Parameters

All parameters of the graph were optimised on a spherical phantom with 2 hemi-
spheres and 2 pyramids located on the surface. The phantom had a contour at
0.1 mm from the surface in the image to account for a manual contour not lying
exact on the gradient border. The phantom was simulated with a radius variance
of 0.2, with different translations, rotations and signal-to-noise levels. A grid
search was performed for different parameter settings. The parameters giving
the highest dice coefficient were chosen for the actual tumor segmentations.

7.3.5 Evaluating Results

A segmentation for the MVCT scans was extracted using each of the two ini-
tial manual scans from the planning KVCT scan resulting in 6 new automatic
segmentations for each patient. To evaluate the segmentation results the new
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segmentations were compared with both of the manual segmentations on the
MVCT scans using dice coefficient, Hausdorff distance and mean distance. The
images were also segmented using a level set method [87] and deformable regis-
tration [153] for comparison. A paired t-test was performed to assess significant
difference from the novel method on a basis of 0.05.

7.4 Results

7.4.1 Experiment Data

The study included images from ten NSCLC patients, 3 female and 7 males,
chosen from a larger patient group from a dose escalation study [3]. The pa-
tients were treated between 2004 and 2009 at University of Wisconsin Hospital.
They were all treated with radiotherapy delivered via helical tomotherapy. All
patients were non-metastatic at stage IIIa, IIIb or recurrent histologically con-
firmed NSCLC with no prior thoracic radiation therapy. The patient selection
criteria were a cranio-caudal length of less than 5 cm for the primary tumor the
planning CT.

Primary planning KVCT scan images for all patients was exported along with
the images of three MVCT scans from the Tomotherapy system from first, mid
and last fraction (1, 13 and 25). The time span between planning KVCT and
last fraction was between 34 and 41 days. The images were imported into
Pinnacle c© treatment planning system. If the MVCT image did not include the
primary tumor, images from bordering fractions were chosen instead.

All MVCT images were manually registered to the KVCT image using Pin-
nacle c© to replicate the usual clinical procedure. Primary GTV was contoured
independently by two experienced radiation oncologists on all patient images,
10 patients times 4 images. Provided along with the images were contours of
normal tissue from the original treatment planning on the KVCT images. This
means that in all 40 images were provided with 2 contours on each image. The
contours and images are exported from Pinnacle c© as Dicoms and imported to
Matlab c© using CERR [40] where further processing was performed.

7.4.2 Experiment Results

It was possible to segment the tumor for all the patients on all of their images.
Result examples for the novel segmentation can be seen in Fig. 7.2. The results
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Figure 7.2: Examples of the segmentation on a MVCT image. Green and blue
points are the two different manual segmentations. The red point are the auto-
matic segmentation of the novel method.

Table 7.1: The results of the different methods of segmentation. Seg. type:
Segmentation type. Haus. Dis.: Hausdorff distance. Mean Dis.: Hausdorff
distance. EFL: Electric flow line segmentation. Deformable: Deformable reg-
istration. ? The manual segmentations are only compared pairwise to each
other, whereas the automatic segmentation are compared to both of the manual
segmentations.

Seg. Type Dice Haus. Dis. Mean Dis.
Manual ? 0.78± 0.13 0.8± 0.7 0.24 ± 0.10

EFL 0.85 ± 0.11 0.7± 0.5 0.15 ± 0.05
Level set 0.67± 0.22 0.9± 0.6 0.29 ± 0.09

Deformable 0.73± 0.20 0.8± 0.7 0.22 ± 0.08

are seen in Table 7.1. The novel method had significant better dice coefficient
and mean difference than the two other methods using a paired t-test of 0.05
but not for Hausdorff distance. Looking at the volume as a treatment outcome
the manual segmentations had a mean variation of 7.1 % on the KVCT images
and 8.5 % on the MVCT images. The novel method had a mean variation of
4.5 % for the volume on the MVCT images.

7.5 Discussion

The method of parameter optimization should be mentioned as a first point
of scrutiny. It is solely performed on a simulated phantom. The phantom is
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constructed ideally with normally distributed noise, rotations and translation of
the whole phantom. The tumor image sequences have none of these characteris-
tics. But even so it represented an acceptable method for finding segmentation
parameters for the tumor segmentation. It would also be possible to find pa-
rameters by using manual segmentations on tumor images. But this would just
find parameters to replicate one manual contourer. In this approach we created
the phantom to have qualities which would suit a manual contourer generally.

It can be seen from table 7.1 that the novel method performs better compared to
the other automatic methods here. The novel method performs better than the
level set method and deformable registration. The level set method only includes
image values and their gradients in its cost function. This can be a problem when
attempting to repeat manual segmentations automatically, because the manual
segmentations do not necessarily follow image gradients. The same thing also
applies for deformable registration. Even though the cost function was based
on normalized correlation, it does still have larger problems with circumference
of its segmentation.

Segmentations of lung tumors have smaller variations than other tumor sites [137]
it is still a hard tumor site because of movement of lungs and heart. These prob-
lems have been reduced by 4D-visualization and breath hold techniques but it is
still a significant problem for automatic segmentation methods. The quality of
MVCT does also increase the variation for manual contours as it can be seen on
the difference in volume variation between KVCT and MVCT. One could apply
better imaging techniques for these interfractional images to acquire a better
outcome for the automatic segmentation methods. But this is not feasible in
the current clinical setup. These images are taken to adjust beam and patient
position but are not analyzed. This is both due to the amount of images and
the lack of resources in the clinic.

The automatic contours are compared to manual segmentations in lack of better
segmentations. An optimal comparison would be to the actual tumor volumes.
This is feasible in some tumor sites but it is not feasible in treatments with
several fraction.

The novel method does have some shortcomings. It does expect some continua-
tion of topology which for our images is optimal, because these tumors tend to
retain most of their topology throughout treatment. If the tumors were dividing
into several volume components it would pose as a suboptimal solution.
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7.6 Conclusion

A novel method for 3-dimensional segmentation of consecutive images have been
implemented and have been shown to perform better than level set methods and
deformable registration concerning overlap. The method is applicable on clinical
images without any modification of clinical practice.
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Further Contributions

A.1 Journal Articles

• Paulina E. Galavis, Christian Hollensen, Ngoneh Jallow, Bhudatt Pali-
wal, and Robert Jeraj. Variability of textural features in fdg pet images
due to different acquisition modes and reconstruction parameters. Acta
Oncologica, 49(7):1012-1016, 2010.

• Gitte Fredberg Persson, Ditte Eklund Nygaard, Anders Peter Roed, Chris-
tian Hollensen, Lene Sonne, Anne Kirkebjerg Due, Anne Kiil Berthelsen,
Jan Nyman, Elena Markova, Henrik Roed, Per Munck af Rosenschöld,
Stine Korreman, and Lena Specht. Inter-observer delineation uncertainty
in radiotherapy of peripheral lung tumours. British Journal of Radiology,
85(1017), 654-660.

• Eva Serup-Hansen, Helle Westergren Hendel, Helle Hjorth Johannesen,
Wiviann Ottosson, Brian Kristensen, Christian Hollensen, Gitte Fredberg
Persson, Poul Flemming Geertsen, and Hanne Havsteen. Volumetric and
spatial variations in target volume delineations using ct, mri and fdg-pet in
planning radiotherapy of anal cancer . International Journal of Radiation:
Oncology - Biology - Physics.(submitted)
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A.2 Conference Abstracts

• Christian Hollensen, George Cannon, Liselotte Højgaard, Lena Specht,
Rasmus Larsen, and Søren Bentzen. Temporal volume of lung tumor
during treatment with tomotherapy. International Journal of Radiation:
Oncology - Biology - Physics -ASTRO supplement, 81(2):S797-S798, 2011.

• Christian Hollensen, Peter Stanley Jørgensen, Liselotte Højgaard, Lena
Specht, and Rasmus Larsen. Auto-segmentation of head and neck cancer
using textural features. Radiotherapy & Oncology - ESTRO supplement,
2010.(Accepted for oral presentation)

• Christian Hollensen, Gitte Fredberg Persson, Liselotte Højgaard, and Lena
Specht. Does the progress in radiotherapy make higher demand to inter-
observer variability correction? a case study of imrt and volumetric arc
therapy.International Journal of Radiation: Oncology - Biology - Physics
-ASTRO supplement (Accepted for oral presentation)

• Christian Hollensen, Gitte Fredberg Persson, Liselotte Højgaard, and Lena
Specht. Geometrical comparison measures for tumor delineation, what do
they mean for the actual dosis plan? Radiotherapy & Oncology - ESTRO
supplement, 2012.

• Eva Serup-Hansen, Helle Westergren Hendel, Helle Hjorth Johannesen,
Wiviann Ottosson, Christian Hollensen, Gitte Fredberg Persson, Poul F.
Geertsen, and Hanne Havsteen. Variation in gross tumor volume delin-
eation using ct, mri, and fdg-pet in planning radiotherapy of anal cancer.
Journal Clinical Oncology, 30(S4):652, 2012.
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