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Abstract 
 

 

 

Significantly affecting patients’ clinical course and quality of life, a growing number of cancer 

cases are diagnosed with brain metastasis annually. Although a considerable percentage of cancer 

patients survive for several years if the disease is discovered at an early stage while it is still 

localized, when the tumour is metastasized to the brain, the median survival decreases 

considerably. Early detection followed by precise and effective treatment of brain metastasis may 

lead to improved patient survival and quality of life. A main challenge to prescribe an effective 

treatment regimen is the variability of tumour response to treatments, e.g., radiotherapy as a main 

treatment option for brain metastasis, despite similar cancer therapy, due to many patient-related 

factors. Stratifying patients based on their predicted response and consequently assessing their 

response to therapy are challenging yet crucial tasks. While risk assessment models with standard 

clinical attributes have been proposed for patient stratification, the imaging data acquired for 

these patients as a part of the standard-of-care are not computationally analyzed or directly 

incorporated in these models. Further, therapy response monitoring and assessment is a 

cumbersome task for patients with brain metastasis that requires longitudinal tumour delineation 

on MRI volumes before and at multiple follow-up sessions after treatment. This is aggravated by 

the time-sensitive nature of the disease. In an effort to address these challenges, a number of 

machine learning frameworks and computational techniques in areas of automatic tumour 

segmentation, radiotherapy outcome assessment, and therapy outcome prediction have been 

introduced and investigated in this dissertation. Powered by advanced machine learning 

algorithms, a complex attention-guided segmentation framework is introduced and investigated 

for segmenting brain tumours on serial MRI. The experimental results demonstrate that the 

proposed framework can achieve a dice score of 91.5% and 84.1% to 87.4% on the baseline and 

follow-up scans, respectively. This framework is then applied in a proposed system that follows 
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standard clinical criteria based on changes in tumour size at post-treatment to assess tumour 

response to radiotherapy automatically. The system demonstrates a very good agreement with 

expert clinicians in detecting local response, with an accuracy of over 90%. Next, innovative 

machine-learning-based solutions are proposed and investigated for radiotherapy outcome 

prediction before or early after therapy, using MRI radiomic models and novel deep learning 

architectures that analyze treatment-planning MRI with and without standard clinical attributes. 

The developed models demonstrate an accuracy of up to 82.5% in predicting radiotherapy 

outcome before the treatment initiation. The ground-breaking machine learning platforms 

presented in this dissertation along with the promising results obtained in the conducted 

experiments are steps forward towards realizing important decision support tools for oncologists 

and radiologists and, can eventually, pave the way towards the personalized therapeutics 

paradigm for cancer patients.  
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1. Chapter 1 

Introduction 

 

 
 

1.1. Brain Metastasis: Background 

Occurring in up to 30% of all cancer patients, brain metastases are the most common malignancy 

of the central nervous system (CNS) [1], with an increase in the number of incidents due to 

improvements in controlling systemic disease, enhanced diagnostic tools, and prolonged survival 

of cancer patients [2]. The estimated incidence of new brain metastases in the United States is 

between 7–14 per 100,000 persons based on population studies [3]. The prevalence of metastases 

to the brain is expected to continue to increase in the future [2].  

Metastatic brain tumours represent an important cause of morbidity and mortality in cancer 

patients. Whereas a significant proportion of cancer patients survive for many years if the cancer 

is identified at an early stage while it is still localized [4]–[7], when the tumour is metastasized to 

the brain, the median survival ranges from as short as 5 months to up to 4 years, based on the 

subgroup and origin of cancer [8]. Early diagnosis and precise treatment of brain metastasis may 

lead to the reduction of brain symptoms and enhance the quality of life and survival of the patients 

[8]–[10]. 
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Figure 1.1- An illustration of the process of metastasis [11]. Red lymph nodes represent the formation of metastatic tumour cell 

lines at primary locations such as the breast, lung, and skin (melanoma). Metastasis from these initial locations spreads to the brain 

via the vascular system (red arrows), as well as to nearby sites such as the liver, bone, lungs, and lymph nodes (black arrows). 

As discussed above, while in primary brain cancer the tumours cells start to grow inside 

the brain, in brain metastasis, cancer cells initiate in another part of the body, e.g., lung, breast, 

and melanoma, and then migrate to the brain (Figure 1.1). Brain metastasis may present as single 

or multiple tumours. Clinical records indicate that approximately 29% of brain metastases arise as 

single tumours, 35% as 2-3 tumours, and 36% as more than three tumours [12]. 

A population-based study by Cagney et al. has provided generalizable estimates of the 

incidence and prognosis for patients with brain metastases in the United States [6]. Out of 

1,302,166 patients diagnosed with nonhematologic malignancies originating outside of the CNS 

between 2010 and 2013, 26,430 patients were identified with brain metastasis. Patients diagnosed 
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with small cell lung cancer (SCLC) (16%) and lung adenocarcinoma (14%) had an incidence 

proportion of more than 10%. Patients with prostate cancer, bronchioloalveolar carcinoma, and 

breast cancer as the primary cancer had the longest median survivals (12, 10, and 10 months, 

respectively). Several studies by Sperduto et al. on patients with brain metastasis have also 

reported overall median survival times for non-small cell lung cancer (NSCLC), SCLC, melanoma, 

and breast cancer as 12, 5, 10, and 16 months respectively, where higher clinical prognostic scores 

were associated with longer survival time, e.g., as long as 4 years for NSCLC [7], [13], [14]. 

1.2. Treatment Options 

Reduced brain symptoms, improved quality of life, and increased survival rates may be achieved 

for cancer patients through early detection and precise treatment of brain metastasis [2]. Many 

factors including the origin of cancer, associated symptoms, and size/number of metastases are 

considered in planning a treatment strategy for the patient. Radiation therapy, chemotherapy, 

immunotherapy, and surgery are the main treatment options for the management of metastatic 

brain tumours. Available options for radiotherapy include whole-brain radiation therapy (WBRT), 

hypo-fractionated stereotactic radiotherapy (SRT), and single-fraction stereotactic radiosurgery 

(SRS). 

Important factors in deciding whether a patient should proceed with surgical resection of 

brain metastasis include the accessibility and size of the tumour, its relative proximity to eloquent 

brain areas, the degree of mass effect, the patient’s age, and presence of other extracranial diseases 

[15]. Surgical resection is mainly recommended for patients with single brain metastasis in an 

accessible location when the tumour is large (> 3-4 cm) and/or causing a considerable mass effect 



4 

 

 

[16]. Neurosurgical intervention is also used in case a pathological diagnosis is required [17]. In 

addition, surgery is preferred in the presence of significant peri-tumoural edema to relieve and 

potentially reverse the associated neurological complications [18]. In most cases, surgical resection 

of the tumour is combined with postoperative (adjuvant) radiation therapy. For the treatment of a 

single metastatic tumour, a combination of surgical resection and adjuvant radiotherapy has been 

shown to outperform radiotherapy alone [19]. In a randomized trial, Patchell et al. investigated 

whether postoperative radiotherapy can increase survival and improve the neurological control of 

the disease [19]. Ninety-five patients participated in this study and the outcome demonstrated that 

the recurrence of metastasis anywhere in the brain was less frequent in the radiotherapy group 

compared to the observation group (18% in radiotherapy group compared to 70% in the 

observation group). In a more recent randomized trial, Mahajan et al. investigated whether SRS 

after the surgical resection of brain metastasis improves the time to local recurrence [20]. 132 

patients were randomly assigned after surgery to the observation (n=68) or cavity SRS (n = 64). 

The findings of the study indicate that in patients who had complete resection of one, two, or three 

brain metastases (the majority of the study population had one metastasis), adjuvant SRS 

significantly decreased local recurrence compared to the observation cohort. A multicenter 

randomized controlled phase 3 trial by Brown et al. studied the efficacy of postoperative SRS 

compared to WBRT for resected brain metastasis [21]. 194 adult patients from 48 institutions with 

at least one resected brain metastasis of less than 5 cm in maximum diameter were randomly 

assigned to either postoperative SRS (n=98) or WBRT (n=96). Cognitive-deterioration-free 

survival was longer in patients assigned to SRS (median = 3.7) compared to WBRT (median= 3). 
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The median survival rate was 12.2 months for the SRS and 11.6 months for WBRT cohorts, 

respectively. 

For WBRT, the radiation dose is delivered to the whole brain in 5-20 fractions over a period 

of 1-4 weeks. Common fractionation schedules (total radiation dose in Gy / number of fractions) 

include 20/5, 30/10, 37.5/15, 40/20. Conventionally, WBRT has been the treatment of choice for 

patients with multiple brain metastases [22]. WBRT, however, is associated with adverse side 

effects which typically include mild fatigue, mild dermatitis, temporary alopecia, and otitis media 

or externa [22]. Multiple clinical trials have shown cognitive deterioration after WBRT [21], [23], 

[24]. Apart from the detrimental effects of WBRT, some studies have also shown no benefit with 

respect to survival [25]. Most recently, the QUARTZ trial in patients with non-small-cell lung 

cancer, brain metastasis, and poor performance status observed no survival advantage following 

WBRT versus best supportive care (median survival of 9.2 weeks for patients who receive optimal 

supportive care plus WBRT and 8.5 weeks for patients who only receive optimal supportive care) 

[25]. It should be noted that despite the evidence against WBRT, this treatment is still 

recommended in certain situations such as when patients present with innumerable metastases 

and/or diffuse leptomeningeal or pachymeningeal disease. 

There has been a gradual shift in the past 2 decades away from WBRT to stereotactic 

radiosurgery (SRS), particularly in patients with limited brain metastases. SRS delivers a focused 

ablative (intense-dose) radiation treatment with sub-millimeter precision to the tumour localized 

in three-dimensions in a single fraction.  This treatment modality is usually used as the sole 

treatment for patients who have less than four metastatic brain tumours [26]. SRS demonstrated to 

have lower toxic effects over the non-tumour areas within the brain compared to WBRT [27]. 
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However, several studies have shown that using WBRT reduces the risk of development of new 

brain metastasis compared to SRS [27].  

In some cases, due to the large size or location of the tumour applying the prescribed radiation 

dose in a single fraction is not recommended. In such cases, high-dose radiation is frequently 

delivered in very few fractions using the same precisely targeted method. This approach is known 

as hypo-fractioned stereotactic radiation therapy (SRT). Because of the number of SRT fractions 

that typically range from 3 to 5, a thermoplastic mask, or a more sophisticated non-invasive mask 

system, is used as the immobilization device and the precision of therapy is coupled to image-

guidance when using such systems as compared to an invasive frame. 

1.3. Imaging in Brain Metastasis Management 

Brain malignancies are often detected with the help of imaging. As a part of the standard of care, 

imaging is used to detect metastases in patients with known primary malignancies, neurological 

symptoms, or even for asymptomatic patients when there is a strong clinical suspicion of metastatic 

presence. It is also used for screening CNS involvement in patients diagnosed with cancer. 

Computed tomography (CT) and magnetic resonance imaging (MRI), mainly (contrast-enhanced) 

T1-weighted, T2-weighted, and T2-weighted-fluid-attenuation-inversion-recovery (T2-FLAIR) 

imaging (Figure 1.2), are two main imaging modalities applied in the diagnosis and management 

of brain metastasis.  
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Figure 1.2- MRI scans are usually acquired at multiple sessions before and after the treatment for patients diagnosed with brain 

metastasis, Tumours are better visible on T1-weighted MRI (left), while edema is better seen on T2-FLAIR imaging. 

The images acquired before, and after the treatment of brain metastasis are used clinically 

for treatment planning and evaluating the treatment outcome through post-treatment follow-ups. 

There are specific regions within and around the tumour on imaging that are of particular interest 

for treatment planning and outcome assessment. Contouring those regions of interest (ROIs) within 

images is an initial step in these procedures (Figure 1.3). To avoid the laborious task of manually 

contouring lesions on several 2D planes of 3D MRI acquired for each patient at multiple scan 

sessions, an automatic yet accurate ROI segmentation framework is highly desirable in these 

applications. 
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Figure 1.3- Gross tumour volume (GTV, red contour) and planning tumour volume (PTV, green contour) on, left to right, contrast-

enhanced T1-weighted, T2-FALIR, and CT images. GTV is the extent of the tumour visible on imaging and PTV allows for 

uncertainties in planning for treatment delivery. The CT image is used for radiation simulation and dose delivery planning as it 

provides patient- and tissue-specific attenuation and electron density information. 

1.4. Therapy Response Evaluation 

As mentioned above, assessing tumour response to radiotherapy is performed using serial imaging 

acquired before (baseline) and at multiple follow-up sessions after the treatment. Evaluation of 

radiotherapy outcome in brain metastasis on serial MRI is mainly performed based on the standard 

criteria presented by the response assessment in neuro-oncology‒brain metastases (RANO-BM) 

group [28]. The RANO-BM criteria are principally based on changes in the longest diameter of 

the target tumour in the axial, coronal, and sagittal planes compared to baseline or nadir (smallest 

tumour size on the previous scans) to specify its response to therapy. The four categories of therapy 

response based on the RANO-BM criteria include complete response (CR; no target tumour 

remaining), partial response (PR; more than 30% reduction in the longest diameter compared to 

baseline), stable disease (SD; less than 30% decrease compared to baseline but also less than 20% 

increase in the longest diameter compared to nadir), or progressive disease (PD; more than 20% 

increase in the longest diameter compared to nadir). Tumour enlargement on MRI after 

radiotherapy may also become apparent due to adverse radiation effect (ARE), also referred to as 
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pseudo-progression, that should be differentiated from progressive disease (local progression), as 

quite different therapies should be administrated for them. Evident tumour enlargements on MRI 

due to ARE often become stable or followed by a decrease in tumour size on subsequent imaging 

follow-ups. The local response to radiation therapy is often classified as either local control (LC; 

stable or shrinking tumour that is indicative of a stable disease, partial response or complete 

response,) or local failure (LF; enlarging tumour associated with a progressive disease) based on 

tumour size changes on follow-up structural serial imaging [28]. Figure 1.4 demonstrates the serial 

MRI acquired from a patient diagnosed with brain metastasis, showing different patterns of change 

in tumour size on follow-up images. 

 

Figure 1.4- A series of contrast-enhance T1-weighted images acquired at the baseline (pre-treatment) and five follow-up sessions 

after radiotherapy from a patient diagnosed with brain metastasis. The tumour shows an initial increase in size on the first follow-

up image (F1) but diminishes in size on the second follow-up image (F2), which is a sign of adverse radiation effect. While on the 

third follow-up image (F3) the tumour size remains stable, it increases on the fourth (F4), and again, on the fifth follow-up image 

(F5), indicting a local failure outcome in the last patient follow-up. 
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1.5. Prognostic Factors and Biomarkers for Risk Assessment  

Tumour response to treatment is variable in patients with brain metastasis despite similar cancer 

therapy. There are many patient-related factors contributing to therapy response including 

genetics, age, nutrition, health status, environmental exposure, and epigenetic factors [29]. 

Predicting the efficacy of a treatment for individual patients before, or early after, therapy initiation 

could lead to improvements in prognosis and clinical outcome. 

While response to radiation treatment in brain metastasis is evaluated based on changes in 

tumour size using serial imaging, it could take months for a local response to be visible on follow-

up scans. Given that the median survival of these patients following radiotherapy can be between 

5 months and 4 years [14], a priori risk assessment in terms of LF for tumours receiving radiation 

therapy potentially permits effective adjustments in treatment that result in enhanced therapy 

outcomes, patients’ survival and their quality of life [2]. 

As the treatment outcomes are vastly different, an essential step in clinical trials is to 

classify patients based on measurable prognostic scores. Recursive partitioning analysis (RPA), a 

statistical method for multivariant analysis, was one of the first methods used to prognosticate 

patients into separate classes based on age, performance status, control of primary and extent of 

extracranial disease [30]. It was a major development at the time but overly simplistic, RPA is now 

replaced by more sophisticated classification methods such as diagnosis-specific graded 

prognostic assessment (DS-GPA) [31]. Proposed by Sperduto et al. [32], significant prognostic 

factors were used to define the DS-GPA with a GPA of 4.00 and 0.0 for the best and worst 

prognosis, respectively. The prognosis factors vary based on the diagnostic information regarding 
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the primary cancer. For example, lung cancer prognostic factors included the Karnofsky 

performance score (an index which classifies patients based on their functional impairment [33]), 

age, presence of extracranial metastases, and the number of brain metastases, in addition to the 

presence of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) 

mutations in patients with adenocarcinoma [34]. Similarly, for Gastrointestinal cancers, prognostic 

factors included the Karnofsky performance score, age, extracranial metastases, and the number 

of brain metastases [5]. 

1.5.1. Biomarkers of Cancer Therapy Response 

Biological markers are any measurable indicators of the severity or presence of a disease. 

Biomarkers are formally defined as “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or biological responses to a 

therapeutic intervention. [35].” Different types of biomarkers can potentially provide beneficial 

diagnostic and prognostic information for therapy response prediction and, in combination with 

available therapeutic options, can pave the way for the paradigm of personalized medicine. 

The methodologies for cancer therapy response prediction could be either invasive or non-

invasive depending on the type of applied biomarkers. Important invasive biomarkers of cancer 

therapy response include those obtained via biopsy or blood samples, including the 

histopathologic, molecular, genomic, and proteomic data, or circulating tumour DNA (ctDNA) 

[36]–[38]. One limitation associated with these biomarkers is that they are acquired through, more 

or less, invasive approaches that in some cases are challenging or even technically not feasible. 

Further, processing technologies required for the genomic and proteomic biomarkers are not 

always accessible. Another limitation is that these biomarkers may not be robust as they may not 
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represent the entirety of the tumour due to the heterogeneity and high degree of genomic diversity 

within the tumour [39].  

Non-invasive biomarkers are often derived from images or raw data acquired using 

different imaging modalities [40]. With the advancements in imaging technologies and 

improvements in standard equipment and protocols, the development of methodologies to extract, 

standardize, and mine non-invasive biomarkers for cancer characterization and therapy response 

prediction have become the focus of many works in the literature [41]–[44]. Some of these works 

are reviewed in Section 1.6.3. 

1.6. Literature Review 

Advancements in machine learning have motivated many studies to investigate its application for 

solving various problems in different areas from engineering to medical sciences. Recent studies 

show the potential of machine learning algorithms in medical image segmentation [45]–[48], 

therapy outcome assessment [49], [50], and treatment outcome prediction [51]–[55] for different 

cancer sites. In this section, recent studies on brain image segmentation, automated radiotherapy 

outcome assessment, and imaging-based cancer therapy outcome prediction are presented. 

1.6.1. Brain Image Segmentation 

Brain lesion segmentation aims to separate regions of different abnormalities such as tumour, and 

edema from normal brain tissues, i.e., White matter (WM), Gray matter (GM), and Cerebrospinal 

Fluid (CSF). Due to its clinical utility as part of the standard of care, and the good contrast provided 

by MRI for such abnormalities, brain lesion segmentation on MRI images has gained popularity 

in the literature in recent years.  
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Conventional segmentation algorithms for this task include simple threshold-based 

techniques, e.g., skull stripping by thresholding [56], region-based techniques such as region 

growing [57] and watershed [58], model-based techniques such as level sets [59], and pixel 

classification techniques such as clustering [60]. Jalalifar et al. have developed an outlier-

detection-based segmentation framework to delineate brain tumours in magnetic resonance (MR) 

images automatically [61]. The proposed method considers the tumour and edema pixels in MR 

images as outliers compared to the pixels associated with the healthy tissue. The texture 

characteristics of tumour and edema regions are often different from healthy tissues in contrast-

enhanced T1-weighted and T2-FLAIR images. The framework applies such dissimilarity to detect 

the tumour and lesion regions automatically and utilizes morphological and logical operators to 

generate a fused tumour mask. More specifically, the framework generates two outlier masks using 

independent one-class support vector machines (OC-SVMs) that operate on contrast-enhanced T1-

weighted and T2-FLAIR images. The outlier masks are subsequently refined and fused using 

morphological and logical operators to generate a tumour mask for each image slice. 

Representative results for five patients are shown in Figure 1.5. 
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Figure 1.5- Segmentation results using OC-SVM for five patients (rows 1-5): (a) the contrast-enhanced T1-w image, (b) T2-FLAIR 

image, (c) predicted tumour mask from the OC-SVM model trained on the T1w image, (d) predicted lesion mask from the model 

trained on T2-FLAIR image, (e) the ground-truth mask (blue), final segmentation mask (red) and the overlap region of the two 

masks (purple) [61]. 

In recent years, with the advancement of deep learning, many convolutional neural network 

architectures have been introduced for the task of medical image segmentation. Among these 

architectures, 2D and 3D UNet [62], [63] gained widespread popularity because of their robustness 

on different modalities. 2D UNet has an encoder-decoder network structure for medical image 

segmentation consisting of 19 fully-convolutional layers, deconvolution layers [64], and skip 

connections to overcome the trade-off between localization and context. 3D UNet borrows the 

same idea from 2D UNet but unlike 2D UNet, it applies 3D operations and performs dense 3D 

segmentation on adjacent 2D slices. Other variants of UNet have also been introduced such as 

Attention UNet [65], a 2D UNet with attention gates to trim irrelevant features, Inception UNet 
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[66], in which inception layer are connected in the UNet fashion, and UNet++  [67], a 2D UNet 

with dense network of skip connections. 

Encoder-decoder architectures such as UNet have the drawback of using a multi-scale 

approach which leads to redundancy since similar low-level features are extracted multiple times 

at multiple scales and also long-range feature dependencies are not efficiently modeled [43]. To 

mitigate this problem, Sinha et al. have proposed a multi-scale guided self-attention approach to 

integrate local features with their corresponding global dependencies, as well as adaptively 

highlight interdependent channel maps [43]. 

1.6.2. Automated Radiotherapy Outcome Assessment 

Objective assessment of tumour response to therapy has been the basis for many investigations in 

cancer therapeutics during recent years [68]. The RANO-BM [28] criteria and recommendations 

were proposed to establish a basis for standard response assessment in clinical trials for brain 

metastasis. Few studies have recently investigated the potential of deep-learning-based methods 

in automatic brain tumour delineation followed by assessment of tumour size changes in response 

to treatment. Xue et al. [49] proposed a cascade of modified 3D UNet architecture for the detection 

and segmentation of brain metastases on 3D T1 MPRAGE images. They proposed the utility of 

automatically generated segmentation masks for facilitating radiotherapy treatment planning and 

post-treatment monitoring of tumour size, where they demonstrated example results for one case. 

Cho et al. [50] developed a CAD system for automated detection of brain metastasis on MRI using 

a UNet based cascaded model and applied it for categorizing tumour size changes at two follow-

up sessions separately, where they achieved a moderate agreement with RANO-BM criteria. To 

our knowledge, no previous study has been performed to investigate the efficacy of deep-learning-
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based segmentation frameworks for automatic radiotherapy outcome assessment 

comprehensively. 

1.6.3. Quantitative Imaging for Therapy Outcome Prediction 

A quantitative imaging biomarker can be defined as “an objective characteristic derived from an 

in vivo image measured on a ratio or interval scale as indicators of normal biological processes, 

pathogenic processes, or a response to a therapeutic intervention [69].” The tumour volume 

measured based on volumetric CT or MRI could be considered as an imaging biomarker for 

response monitoring, for example, to describe a patient response to therapy. Tissue radioactivity 

concentration in positron emission tomography (PET) scans is another example of imaging 

biomarkers [69]. Different quantitative imaging biomarkers have been utilized for diagnosis of 

abnormalities and tissue characterization, such as differentiation of benign versus malignant 

lesions in breast [70] or low- and high-grade malignancies in brain using various textural 

biomarkers derived from MRI [71]. In a study by Tran et al., histopathological findings were 

predicted based on the characteristic proton spectra for 5 common adult supratentorial brain 

tumours: low-grade and anaplastic astrocytomas, glioblastoma multiforme (GBM), meningioma 

and metastasis [72].  

Radiomic features are a prominent example of non-invasive imaging biomarkers, being 

explored to discover quantitative diagnostic and prognostic biomarkers through the high-

throughput mining of high-dimensional medical imaging data [73]. In radiomic analysis, hundreds 

of quantitative features are extracted from an image and its transformed versions within different 

regions of interest including the intra- and peri-tumoural regions. Data mining is performed in 

conjunction with advanced statistical analyses on these high-dimensional data under the hypothesis 



17 

 

 

that an appropriate low-dimensional combination of these features, possibly along with clinical 

data, can represent crucial tissue properties, useful for diagnosis, prognosis, or treatment planning 

of individual patients [74]. A general schematic of the radiomic framework is shown in Figure 1.6.  

  

Figure 1.6- Schematic of a radiomic framework. Image segmentation (either manual or automatic) is required to delineate regions 

of interest on the acquired images. The radiomic features are extracted from the images within the segmented regions of interest. 

Finally, analysis is done on radiomic features based on the target of the study. 

Recent studies demonstrate correlations between the radiomic signature of tumours and 

their phenotypes and genomic and proteomic profiles. Aerts et al. have presented a radiomic 

analysis of 440 features quantifying the intensity, shape and texture of tumours in CT imaging data 

of 1,019 patients with lung or head-and-neck cancer [75]. The results of that study suggest that 

radiomics are capable of identify a general prognostic phenotype existing in both lung and head-

and-neck cancer, and that these features have prognostic power in independent datasets of lung 

and head-and-neck cancer patients. Extracted radiomic features from CT images of the lung and 

head and neck tumours also show correlations between radiomic features and underlying gene-

expression patterns [75].  

Considering the potential association of the radiomic features with tissue/tumour 

phenotypes and its genomic and proteomic profiles, several studies have explored the potential of 

radiomic features in conjunction with machine learning methods for risk stratification in cancer 
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patients and therapy response prediction. Bae et al. [76] investigated the effectiveness of MRI 

radiomic features for improving survival prediction in patients with GBM and achieved an AUC 

of 0.65. Karami et al. [77] have demonstrated that radiomic MRI biomarkers can be adapted to 

predict stereotactic radiotherapy outcome in brain metastasis using support vector machines. 

Mouraviev et al. [78] exploited the power of random forest classifier with radiomic features to 

predict the local control of brain metastasis after stereotactic radiosurgery and achieved an AUC 

of 0.79. 

While radiomic methods applies handcrafted features usually with conventional machine 

learning techniques for prediction modeling, deep learning algorithms could be used to extract 

relevant distinguishing imaging features automatically. Deep learning models have proven to be 

quite effective at identifying important and distinct characteristics, particularly in image data [79], 

[80]. Deep models have the capability to identify regions of interest automatically, capture textural 

variations within a lesion, discriminate between cancerous and non-cancerous cells, and potentially 

extract distinctive information from lesions to be applied for the task of therapy outcome prediction 

[54], [55], [81]–[88]. Diamant et al. [53] hypothesized that convolutional neural networks could 

enhance the performance of traditional radiomics, by detecting image patterns that may not be 

covered by a traditional radiomic framework. They tested their hypothesis for the task of head & 

neck cancer therapy outcome prediction, where their results show that deep models can explicitly 

recognize traditional radiomic features and perform accurate outcome prediction. A recent study 

by Cho et al. [89] suggests that using deep learning methods instead of classic machine learning 

results in brain metastasis detection with a lower false-positive rate. Figure 1.7 shows the general 

scheme of deep learning-based framework for medical imaging classification. 
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Figure 1.7- Schematic of a general deep learning architecture for medical imaging analysis (classification).  Usually, the feature 

extraction and processing, as well as the classification are done in a single network. 

1.7. Objectives 

The overarching goal of this dissertation project is to develop, optimize and investigate novel 

machine learning and quantitative imaging methodologies that can eventually improve the clinical 

management of brain metastasis. This goal is perused through four objectives. 

As the first objective, a novel deep-learning-based framework is proposed and investigated 

for automatic brain tumour segmentation on standard MRI. With a robust segmentation framework 

in hand, as the second objective, we introduce and comprehensively investigate an automatic 

system for assessing radiotherapy outcome in brain metastasis based on standardized criteria of 

changes in tumour size on serial MRI, e.g., RANO-BM criteria. An automatic outcome assessment 

system, if approved after rigorous evaluations by regulatory bodies, can streamline the radiation 

therapy workflow in cancer centres considerably. 

ROI segmentation is the heart of any automated system aiming on mining information form 

a lesion and its surrounding regions on imaging. With a variety of automatic segmentation models 

in hand, as the third objective in this dissertation, we investigate the impact of tumour segmentation 
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accuracy on the performance and robustness of hand-crafted radiomic biomarkers and associated 

models for radiotherapy outcome prediction in brain metastasis. 

Predicting the outcome of prescribed anti-cancer therapies before or early after the 

treatment is highly desirable in the clinic and can pave the way for personalized medicine paradigm 

in cancer therapeutics. As the fourth objective of this dissertation project, we propose and 

investigate novel convolutional deep neural network architectures for predicting radiotherapy 

outcome in brain metastasis a priori (at baseline) using treatment-planning images, with and 

without standard clinical attributes available at pre-treatment. We incorporate novel attention 

mechanisms in these architectures to investigate their potential for improving the model 

performance in identifying important regions on MRI for therapy outcome prediction. 

1.8. Dissertation Outline 

The objectives described above are expanded and presented in four chapters in this dissertation, 

followed by a concluding chapter. The main subject of each chapter is summarized below. 

1.8.1. Chapter 2 

In chapter 2, we introduce a novel system for automatic assessment of radiation therapy outcome 

in brain metastasis using standard serial MRI. A new multi-step framework is proposed and 

investigated for automatic brain tumour segmentation. This framework is applied for delineation 

of tumours before and at multiple imaging follow-ups after the radiotherapy to assess the therapy 

outcome automatically based on the RANO-BM criteria. We discuss the methods for therapy 

response assessment thoroughly and evaluate the performance of the system comprehensively 

using several relevant clinical metrics. 
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1.8.2. Chapter 3 

In chapter 3, we explore the impact of using less-accurate automatically generated segmentation 

masks on the efficacy of radiomic features for radiotherapy outcome prediction in brain metastasis. 

Specifically, we investigate if automatic segmentation masks with different levels of accuracy 

compared to ground-truth tumour contours delineated manually by clinicians would result in 

similar radiomic signatures with comparable prediction models of radiotherapy outcome in terms 

of performance and risk assessment.  

1.8.3. Chapter 4 

In chapter 4, a novel multi-modal deep learning architecture is introduced to predict the outcome 

of LC/LF in brain metastasis treated with stereotactic radiation therapy using treatment-planning 

MRI and standard clinical attributes. At the core of the proposed architecture is an 

InceptionResentV2 network to extract distinct features from each MRI slice for local outcome 

prediction. A recurrent or transformer network is integrated into the architecture to incorporate 

spatial dependencies between MRI slices, as well as standard clinical attributes, into the predictive 

modeling. We investigate whether the deep-learning-based MRI features can complement standard 

clinical attributes for patient prognostication and risk assessment in terms of progression-free 

survival. 

1.8.4. Chapter 5 

In chapter 5, we propose and investigate a new explainable attention-guided deep-learning 

architecture to predict the radiotherapy outcome in brain metastasis a priori. Specifically, a novel 

self-attention-guided 3D residual network is introduced for predicting the outcome of LC/LF after 
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radiotherapy using the baseline treatment-planning MRI. The proposed model will be compared 

to a vanilla 3D residual network and 3D residual network with convolutional block attention 

module (CBAM) attention in terms of performance in outcome prediction. A new 3D visualization 

algorithm is developed to accompany the outcome prediction framework and illustrate how 

different areas within the volumetric ROI on the input images contribute to the prediction of the 

network for each lesion. The 3D heatmaps of importance generated by this module potentially aid 

clinicians to examine the lesion volume thoroughly and inspect impactful regions for a predicted 

outcome which can eventually support their decision in assessment, and treatment planning 

decisions. 

1.8.5. Chapter 6 

Chapter 6, summarizes and concludes the findings in chapters 2 through 5. Future directions and 

study limitations are also discussed in chapter 6. 
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2. Chapter 2 

Automatic Assessment of Stereotactic Radiation Therapy 

Outcome in Brain Metastasis using Longitudinal 

Segmentation on Serial MRI*1 

 

 
 

2.1. Introduction 

About 10% to 30% of all cancer patients develop brain metastasis [3], with a higher risk for 

melanoma, lung, and breast cancer patients [90]. Metastatic brain tumours represent an important 

cause of morbidity and mortality in cancer patients. Whereas a significant proportion of cancer 

patients survive for many years if the cancer is identified at an early stage while it is still localized 

[4], when the tumour is metastasized to the brain, the median survival ranges from as short as 5 

months to up to 4 years, based on the subgroup and origin of cancer [5]–[7], [34]. Early diagnosis 

and precise treatment of brain metastasis may lead to the reduction of brain symptoms and may 

enhance the quality of life and survival of the patients [8]–[10].  

Brain metastasis may occur as a single tumour (approximately 29% of cases), two-three 

tumours (35% of cases), and more than three tumours (36% of cases) [12]. Treatment planning for 

                                                 

*A version of the material presented in this chapter has been published in IEEE Journal of Biomedical and Health 

Informatics, 2023. DOI: 10.1109/JBHI.2023.3235304. 
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patients diagnosed with metastatic brain tumours depends on many factors including the origin of 

cancer, symptoms, number of metastases, and location of the tumour.  

Magnetic resonance imaging (MRI) is the main imaging modality for diagnosis, treatment 

planning, and therapy outcome evaluation in brain metastasis. MRI scans are acquired before 

(baseline) and at multiple follow-up sessions after the radiation therapy as part of the standard 

treatment planning and outcome assessment procedure. The procedure requires accurate 

delineation of the tumour that is often performed by expert radiation oncologists and neuro-

radiologists.  Evaluation of radiotherapy outcome in brain metastasis on serial MRI is mainly 

performed based on the standard criteria presented by the response assessment in neuro-oncology‒

brain metastases (RANO-BM) group [28]. The RANO-BM criteria are principally based on 

changes in the longest diameter of the target tumour in the axial, coronal, and sagittal planes 

compared to baseline or nadir (smallest tumour size on the previous scans) to specify its response 

to therapy. The four categories of therapy response based on the RANO-BM criteria include 

complete response (CR; no target tumour remaining), partial response (PR; more than 30% 

reduction in the longest diameter compared to baseline), stable disease (SD; less than 30% decrease 

compared to baseline but also less than 20% increase in the longest diameter compared to nadir), 

or progressive disease (PD; also referred to as local failure; more than 20% increase in the longest 

diameter compared to nadir). Tumour enlargement on MRI after radiotherapy may also become 

apparent due to adverse radiation effect (ARE). Such evident tumour enlargements on MRI often 

become stable or followed by a decrease in tumour size on subsequent imaging follow-ups. 

Differentiating between tumour progression and ARE is crucial for radiotherapy response 

evaluation. The standard approaches to diagnose ARE include serial MRI (including the use of 
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T1-weighted, T2-weighted, and perfusion imaging), and where applicable, histology on resected 

specimens [91]–[93].  

In order to calculate the tumour size changes on serial imaging, precise delineation of 

tumour is required for each imaging session. Manual segmentation of tumour on volumetric 

images acquired at several follow-up sessions for each patient is a tedious and time-consuming 

job. An automatic and robust tumour segmentation framework is highly desirable in the clinic and 

could streamline radiation therapy outcome evaluation workflow considerably. Because of many 

applications of automatic tumour segmentation, intense research has been carried out on this topic 

[94]–[96]. The existing segmentation algorithms include those that apply traditional methods such 

as region-based [61], [97] and model-based techniques [57], with more recent methodologies 

based on deep neural networks [47], [98], [99]. Deep learning-based image segmentation is now 

very popular in the literature and has demonstrated to outperform the traditional methods [63], 

[67], [100]. The deep networks for image segmentation generally consist of stacked convolutional 

layers and occasionally fully connected layers. Among many networks introduced for the task of 

segmentation, 2D and 3D UNet gained widespread popularity because of their robustness in 

different modalities [63], [101]. However, 2D UNet has the drawback of extracting similar features 

multiple times throughout the network in addition to inefficient modeling of long-range spatial 

dependencies. The main limitation associated with 3D UNet is that it often cannot handle large 

input sizes due to memory limitations with the complex architecture of the network.  

Deep learning-based techniques have demonstrated promising performance in brain 

tumour segmentation [102]–[104]. Despite previous research on the application of these 

techniques in feature extraction frameworks for classifying brain tumour subtypes and predicting 



26 

 

 

clinical outcomes such as survival, their clinical efficacy in longitudinal monitoring of changes in 

tumour physical dimensions has not been investigated thoroughly. Cabezas et al. proposed an 

ensemble of 3D UNets to segment different sub-regions of gliomas on the BraTS dataset [48] to 

extract quantitative features for predicting the overall survival of patients. Gates et al. [105] 

proposed a multi-scale convolutional neural network based on the DeepMedic to segment glioma 

sub-volumes on MRI, and applied the features extracted from the segmented images and clinical 

data for predicting the overall survival. Pei et al. [106] proposed a context-aware deep learning 

model for brain tumour segmentation on MRI, followed by deep learning models for subtype 

classification and survival prediction using the tumour segments. Zhu et al. [107] developed a 

semi-automatic segmentation software for quantitative clinical evaluation of glioblastoma 

multiforme on MRI. While their results demonstrate a good correlation between the manual and 

semi-automatic segmentation, the developed method was not evaluated on serial MRI to quantify 

changes in tumour size.  

In this chapter, a novel deep-learning-based system is introduced for automatic 

radiotherapy outcome assessment in brain metastases. A multi-step framework is proposed for 

automatic brain tumour segmentation that is applied for delineation of tumours before and at 

multiple imaging follow-ups after the radiotherapy to assess the therapy outcome automatically 

based on the RANO-BM criteria. To the best of our knowledge, this is the first time that a deep-

learning-based segmentation framework is adapted and investigated comprehensively for 

automatic radiotherapy outcome assessment in brain malignancies.  
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2.2. Methods 

2.2.1. Data Acquisition and pre-processing 

This study was conducted in accordance with institutional research ethics approval from 

Sunnybrook Health Sciences Centre (SHSC), Toronto, Canada. The imaging and clinical data were 

collected from 116 patients (152 tumours; average size at baseline: 2.4 ± 1.0 cm, range: 0.5-7 cm) 

diagnosed with brain metastasis and treated with hypo-fractionated SRT. The patients (40.2% 

male, 59.8% female) were aged between 29 and 91 years (average age: 62 ± 15 years).  

Among the 116 patients, 86 patients had one, 24 patients had two, and 6 patients had three 

or more brain metastasis tumours. The primary tumour histology included lung cancer (76 

tumours, 50%), breast cancer (36 tumours, 23.7%), melanoma (15 tumours, 9.9%), colorectal 

cancer (7 tumours, 4.6%), renal cell carcinoma (6 tumours, 3.9%), and other cancers (12 tumours, 

7.9%). Lesions with prior resection were excluded. Any salvage therapy was administrated after 

identifying tumour progression clinically that was the endpoint of this study. The imaging data 

included gadolinium-contrast-enhanced T1-weighted and T2-weighted-fluid-attenuation-

inversion-recovery (T2-FLAIR) images acquired, as part of standard of care, before (baseline) and 

at up to 9 follow-ups after the treatment (average number of imaging follow-ups: 4). All available 

follow-up imaging data were used for post-treatment monitoring in this study. The dataset also 

included treatment-planning gross tumour volume (GTV) contours for each patient. All GTVs 

were contoured by an expert CNS radiation oncologist and reviewed by at least one other CNS 

radiation oncologist and a neuroradiologist. The GTVs were used to generate ground-truth tumour 

masks for the baseline and follow-up scans under the supervision of expert oncologists. the MRI 

scans were acquired using a 1.5 T Ingenia system (Philips Healthcare, Best, Netherlands) and a 



28 

 

 

1.5 T Signa HDxt system (GE Healthcare, Milwaukee, WI, USA). The scan sequences were 3D 

T1w TFE (repetition time: 9.4 ms, echo time: 2.3 ms, imaging frequency: 127.77 MHz) and 3D 

T1w FSPGR (repetition time: 8.548 ms, echo time: 4.2 ms, imaging frequency: 63.86 MHz) for 

the T1-weighted images and T2 FLAIR CLEAR (repetition time: 9000 ms, echo time: 125 ms, 

imaging frequency: 127.77 MHz) and T2 FLAIR PROPELLER (repetition time: 8600 ms, echo 

time: 117 ms, imaging frequency: 63.86 MHz) for the T2-FLAIR images. The in-plane image 

resolution and the slice thickness were 0.5 and 1.5 mm for T1-weighted and 0.5 and 5 mm for T2-

FLAIR images, respectively. All images were resampled with a voxel size of 0.5 × 0.5 × 1 mm3. 

The voxel intensities in each image were normalized to be between 0 and 1. The normalization 

was done on voxel level (vox_intst) using Equation (2.1).  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑜𝑥𝑒𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
(𝑣𝑜𝑥𝑒𝑙𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 –  𝑚𝑖𝑛𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 )

𝑚𝑎𝑥𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 –  𝑚𝑖𝑛𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
 (2.1) 

In this equation, the minintensity and maxintensity are the minimum and maximum intensity values in 

the corresponding 3D image. The T2-FLAIR images were co-registered on their corresponding 

T1-weighted images using an affine registration. Among the 116 patients, 96 patients (130 

tumours) were randomly selected for training the models, and the remaining 20 patients (22 

tumours) were kept as an unseen test set for independent evaluation.    

The tumours were monitored longitudinally on MRI after SRT and the pattern of changes 

in tumour size as well as the ground-truth local control/failure (LC/LF) outcome for each tumour 

was determined by a radiation oncologist using the follow-up imaging data. The follow-up scans 

were performed every 2-3 months for all patients until they transitioned to palliative care or passed 
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away. The ground-truth tumour size status (decrease/stable/increase) was determined for each 

follow-up scan. Specifically, the tumour size status was determined as decrease/increase if a 

measurable (≥2 mm) decrease/increase was evident in the longest diameter of the tumour in the 

axial plane compared to the previous scan, otherwise, it was determined as stable. The RANO-BM 

criteria were used to determine an outcome of LC (complete response, partial response, or stable 

disease) or LF (progressive disease) for each tumour separately [28]. Adverse radiation effect 

(ARE) was diagnosed and differentiated from local progression based on the report by Sneed et 

al. [91]. The ARE cases were diagnosed clinicoradiologically based on serial imaging, including 

the use of perfusion MRI (rCBV cut-off = 2) and chemical exchange saturation transfer (CEST) 

imaging, and/or through histological confirmation (available for 50% of tumours diagnosed with 

ARE) [92], [108]. 

2.2.2. Tumour Segmentation Framework 

Figure 2.1 presents a scheme of the proposed framework for automatic segmentation of brain 

tumours on MRI. The framework consists of two cascaded 2D UNets to find the approximate 

position of the tumour.  Once the approximate tumour position is found, the image is cropped 

around the tumour to make the size of input image smaller for the next network. Specifically, the 

size of input T1-weighted images for the first and second 2D UNets is 512 × 512 and 256 × 256 

pixels, respectively. The need for cropping images stems from the fact that both the 3D UNet and 

multi-scale self-guided attention (MSGA) network [109] adapted in the framework have memory 

limitation which makes their training process challenging. If the input size for the 3D UNet is the 

original image size (512 × 512 × 128  voxels) without cropping, one needs to patch or resize the 

input volume to meet the memory limitations of the network. Patching the volume leads to losing 
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contextual information (e.g., tumour tears apart in different patches) while resizing it results in 

losing detailed local information. Similarly, and due to its complex architecture, training the 

MSGA network on the original 2D images (512 × 512 pixels) with two channels of T1-weighted 

and T2-FLAIR requires limiting the batch size. With cropping, it would be possible to preserve 

both local and contextual information using the approximate position of the tumour estimated with 

the cascaded 2D UNets. The output of each 2D UNet for a patient is a set of 128 2D masks with 

size of 512 × 512 pixels for the first and 256 × 256 pixels for the second 2D UNet. To find the 

approximate position of the tumour from these masks, a logical OR operation is applied on all the 

2D masks to create a single mask presenting an upper-bound of the tumour areas in different slices. 

Subsequently, the connected components are identified in the single mask and the center of each 

connected component is regarded as the approximate center of the corresponding tumour. The 

approximated centers are used to crop the image around the tumour region. In cases where there 

is more than one tumour in an MRI volume, the tumours are treated separately, and the final masks 

are fused at the end. At the core of the framework there are two segmentation networks including 

a 3D UNet and a MSGA network. The 3D UNet is fed with the cropped T1-weighted volumetric 

images (128 × 128 × 128 voxels). The MSGA network is fed with cropped two-channel T1-

weighted and T2-FLAIR co-registered image slices (128 × 128 pixels each). The output of these 

two networks is fused at the end using slice-wise averaging over their output probability maps. 

The final output masks are generated by thresholding the averaged probability maps with a 

threshold level of 0.5.  
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Figure 2.1- (a) Overview of the proposed segmentation framework. For a volumetric input image (contrast-enhanced T1-weighted, 

512×512×128 voxels), first all slices are fed to a 2D UNet one by one. The generated masks from the 2D UNet are used to finds 

an approximate tumour position (x, y). The volumetric input image is then cropped around (x, y) into a 256×256×128 voxel volume. 

A similar procedure is performed to reduce the size of volumetric image containing the tumour to 128×128×128 voxels. This 

volume is then fed into a 3D UNet for segmentation with no patching. The slices of this volume are also fed to MSGA, after 

concatenation with the co-registered T2-FLAIR image, and the segmentation masks of MSGA are then fused with those of 3D 

UNet. (b) The MSGA network structure. Features extracted at different scales from Resnet-101 are concatenated and convolved 

and then self-concatenated and fed into guided attention module. The resulting self-guided features are fed into the guided loss. 

The choice of a combination of 2D UNet, 3D UNet, and MSGA network is to take 

advantage of their features, while simultaneously mitigating their limitations. More specifically, 

whereas the 2D UNets can effectively localize the region of interest even for smaller tumours to 

crop the large input image, it can not generate precise segmentation masks for all tumours. On the 

other hand, a localized input for the 3D UNet and MSGA network reduces irrelevant information 

and enhances the model focus on the region of interest, leading to considerable improvements in 

their performance in generating precise segmentation masks. The good performance of the 2D 

UNet architecture in various segmentation tasks is due to its capability to capture context and 

enable localization, using a contracting path and a symmetric expanding path, with skip 

connections in-between the two paths [101]. Such architecture enables the network to share 

features from multiple layers and overcome the trade-off between localization accuracy and 
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context utilization. The drawback of 2D UNet, however, is that it does not consider the 3D spatial 

dependencies between the voxels, and consequently, loses a considerable amount of useful 

information for segmentation. To overcome this, Çiçek et al. proposed the 3D UNet as a volumetric 

image segmentation network [63], which maintains the benefits of the 2D UNet architecture but 

also considers the voxel dependencies. Considering 3D spatial dependencies comes at the cost of 

high memory consumption because of the huge input size. A cascaded network of 2D UNet and 

3D UNet could benefit from the advantages of 3D UNet while the redundant information could be 

filtered out using 2D UNet to meet the memory limitations of the 3D UNet. The two main 

drawbacks of the encoder-decoder architectures such as 2D and 3D UNet include deriving 

redundant information, and more importantly, inefficient modeling of long-range feature 

dependencies in these networks. Sinha et al. [109] proposed a multi-scale self-guided attention 

network to overcome these limitations. The MSGA network enables capturing richer contextual 

dependencies and neglecting irrelevant information by using an attention mechanism. Also, the 

utilization of interdependent channel maps which enable the network to integrate local features 

with their corresponding global dependencies makes it efficient in our application, where the 

network is fed with two channels of T1-weighted and T2-FLAIR images. Further details on the 

MSGA architecture have been provided in Appendix A. 

2.2.3. Training and Evaluation of the System 

In order to train and evaluate the tumour segmentation framework, the data associated with 

samples of the training and test sets were completely separated at patient level. The networks in 

the framework were trained independently using the data acquired from the training samples. The 

second 2D UNet, the 3D UNet, and the MSGA network were trained using the manually cropped 
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data from the training set. The networks were only trained on the images acquired at the baseline. 

This was done to permit evaluating the framework’s performance on the training set at the first 

follow-up and compare it with the performance on the independent test set. The framework was 

initially evaluated in terms of segmentation accuracy, using the images of the independent test set 

acquired at the baseline and follow-up scans. The Dice similarity coefficient, Hausdorff distance, 

and the tumour volume estimation error were used for this evaluation. The performance of the 

system was subsequently evaluated in monitoring the tumour size status after SRT and automatic 

assessment of therapy outcome using the imaging data of the independent test set acquired at the 

baseline and all follow-ups available for each patient. For comparison, experiments were 

conducted using seven different models following a similar training and evaluation procedure. The 

first model included two cascaded 2D UNets, the second model consisted of a 3D UNet, and the 

third model included a 3D UNet along with an MSGA network. For training and testing the 

standalone 3D UNet and 3D UNet + MSGA in the second and third models, each 512 × 512 × 128 

voxel volume was patched into 16 input patches of 128 × 128 × 128  voxels and the associated 

masks were concatenated together at the end. The fourth model included two cascaded 2D UNets 

followed by a 3D UNet, the fifth model utilized the framework proposed in this study inputting 

the T1-weighted image only, and the sixth model incorporated the complete framework proposed 

(Figure 2.1). The seventh model utilized the well-recognized nnUNet framework [110] for further 

comparison (details on the nnUNet framework have been provided in Appendix A). The nnUNet 

framework input the co-registered T1-weighted and T2-Flair images (512 × 512 × 128 voxels) as 

two channels, where each image was down-sampled to 128 × 128 × 128 voxels for the first 3D 

UNet in the framework. Pre-training of the networks for weight initialization was performed using 
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the data from the brain tumour segmentation (BraTS) dataset [48]. A set of 9 tumours from the 

training samples was used as the validation set for tuning the network hyperparameters in the 

training phase. A batch size of 4 and 2 was used for training the 2D UNets and nnUNet, 

respectively. The batch size for the 3D UNet and MSGA network was tuned to one based on the 

experimental results on the validation set. The training was performed with a learning rate of 

0.0001 for all networks. A dice and a cross-entropy based loss function was used for the 2D and 

3D UNets, respectively. The loss function for the nnUNet was defined as the sum of the dice and 

cross-entropy losses. The dice loss function was defined as (1 –  𝑑𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡), with the 

𝑑𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 obtained using Equation (2.2). 

𝑑𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 × 𝑇𝑃

2𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 +  𝑠𝑚𝑜𝑜𝑡ℎ
 (2.2) 

In this equation, TP, FP, and FN refer to true positive, false positive, and false negative in 

segmentation on pixel/voxel level, respectively. A smoothing term was added in the equation to 

prevent division by zero. Instead of setting Boolean intensity values for the ground-truth and the 

automatically generated masks and performing Boolean operations, the mask intensities were 

defined as continuous values to make the dice loss differentiable. The cross-entropy loss was 

defined using Equation (2.3). 

𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 =  −
1

𝑁
 ∑ ∑(𝑦𝑖𝑗 . 𝑙𝑜𝑔(𝑝𝑖𝑗))

𝑀

𝐽=1

𝑁

𝑖=1

 (2.3) 

In this equation, N and M are the number of pixels and classes (in our case two, tumour vs. normal 

tissue), respectively. The loss function for the MSGA network was defined using Equation (2.4). 
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𝑀𝑆𝐺𝐴 𝑙𝑜𝑠𝑠 =  𝐿𝑠𝑒𝑔𝑡𝑜𝑡𝑎𝑙 +  𝐿𝐺𝑡𝑜𝑡𝑎𝑙 + 𝐿𝑟𝑒𝑐𝑡𝑜𝑡𝑎𝑙 (2.4) 

In this equation,  𝐿𝑟𝑒𝑐𝑡𝑜𝑡𝑎𝑙  is the mean squared error between the original input and output features 

of the encoder-decoder network in the attention module. 𝐿𝐺𝑡𝑜𝑡𝑎𝑙 is the mean squared error between 

the encoded representation of features in the encoder-decoder network inside the attention module. 

Finally, 𝐿𝑠𝑒𝑔𝑡𝑜𝑡𝑎𝑙 is the cross-entropy between the ground-truth and network output masks.  The 

training and validation loss for the 3D UNet and MSGA networks over the training epochs are 

presented in Figure 2.2. The framework was developed on an Nvidia GeForce RTX 2080 Ti with 

12 GB of Memory. All models were developed in Python and trained and tested using Keras with 

TensorFlow backend. 

 

Figure 2.2- Training and validation loss of the 3D UNet and MSGA network in the proposed segmentation framework. 

2.2.4. Procedure and Criteria for Automatic Assessment of Tumour Size 

Status, Local Response, and ARE Outcome 

The segmentation masks generated by the deep learning models were used to estimate the size of 

tumour in each scan and, subsequently, the tumour size changes after SRT. The tumour size status, 
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local response, and the ARE outcome were then assessed automatically based on the estimated 

changes in tumour size using the procedure and criteria described below. 

A typical SRT outcome evaluation workflow in the clinic consists of determining the 

tumour size status at each follow-up scan compared to the previous scan. For automatic assessment 

of tumour size status, following the protocol applied in the clinic, the longest diameter of tumour 

in the axial plane was calculated for all scans using the automatic segmentation masks.  

Tumour size status at each follow-up scan was labeled as increase or decrease if a measurable 

increase or decrease (≥ 2 mm) was estimated, respectively, in the tumour’s longest diameter 

compared to the previous scan. Otherwise, it was labeled as stable. The tumour size status labels 

identified automatically were compared with the ground-truth labels to evaluate the performance 

of automatic labeling in terms of accuracy, precision, and recall. It should be noted that this step 

was only to evaluate the performance of the network in automatic labeling of tumour size status 

and not the local response (discussed below). 

The SRT outcome in terms of LC/LF and ARE was evaluated for each tumour 

automatically based on the RANO-BM criteria. Using the automatic segmentation masks, the 

longest diameter of tumour in the axial, coronal, and sagittal planes was estimated for the baseline 

and all follow-ups. The relative change in the longest diameter of tumour was calculated at each 

follow-up compared to the baseline and nadir. The change in the tumour diameter at each follow-

up was categorized into three categories of shrinkage, steady, and enlargement when more than 

30% decrease compared to baseline, less than 30% decrease compared to baseline but also less 

than 20% increase compared to nadir, and more than 20% increase compared to nadir was detected 
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in the tumour longest diameter, respectively [28]. Further, the relative change in tumour volume 

was calculated at each follow-up compared to the baseline and nadir. The change in the tumour 

volume at each follow-up scan was categorized into three categories of shrinkage, steady, and 

enlargement based on the volumetric response assessment criteria proposed by Oft et al. [111] 

which is an extension of RANO-BM guideline recommendations for volumetric response 

assessment. Specifically, shrinkage at a follow-up scan was defined as more than 65% reduction 

in tumour volume compared to baseline, steady as less than 65% reduction compared to baseline 

but also less than 72.8% increase compared to nadir, and enlargement as more than 72.8% increase 

in tumour volume compared to nadir. The categories detected at each follow-up scan using the 

automatic segmentation models were compared to those identified from the ground-truth 

segmentation masks to evaluate the performance of automatic response categorization at individual 

follow-ups in terms of accuracy, precision, and recall. 

The shrinkage/steady/enlargement patterns determined based on the longest diameter for 

each tumour at the follow-up scans were used for automatic detection of LC/LF and ARE outcome. 

Any tumour demonstrating a sequence of steady or shrinkage patterns at follow-ups with no 

enlargement was classified with an LC outcome. When an enlargement was detected in the pattern 

of size changes, the change in the tumour longest diameter at the next follow-up was calculated 

compared to the scan in which the enlargement was detected. The tumour was classified with an 

LF outcome if its size increased again (more than 2 mm to account for measurement errors) 

compared to the previous scan. If the tumour size decreased or remained stable after the initial 

enlargement, the tumour was classified as LC but with ARE. As a tumour with ARE could possibly 

progress later and be classified as LF, detection of LC/LF and ARE outcome was performed and 
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evaluated independently for each tumour. The outcomes identified automatically were compared 

with the ground-truth outcome for each tumour to evaluate the performance of the automatic 

outcome assessment in terms of accuracy, sensitivity, and specificity. 

2.3. Results 

Figure 2.3 demonstrates contrast-enhanced T1-weighted images acquired from three 

representative brain metastasis patients with an outcome of LC, LF, and ARE after SRT, 

respectively. In Figure 2.3(a), the tumour has consistently shrunk after SRT (follow-ups 1-3), 

demonstrating an LC outcome. In Figure 2.3(b) the tumour has continued to grow after the first 

follow-up, showing an LF outcome. In Figure 2.3(c), initial growth in the first follow-up stopped 

immediately in the second follow-up, followed by further shrinkage in the third follow-up, which 

is evidence for ARE. 

Figure 2.4 shows the ground-truth and automatic tumour segmentation masks generated by 

different deep learning models for five representative patients of the test set. The images show a 

step-by-step improvement in the automatic segmentation masks generated by the cascaded 2D 

UNets, 3D UNet, cascaded 2D & 3D UNets, and the complete segmentation framework proposed 

in this paper (cascaded 2D & 3D UNets + MSGA). Specifically, the proposed frameworks could 

achieve a close to perfect segmentation for cases (a) and (c), while for cases (b) and (d) it slightly 

under-segmented the tumour, and for case (e) the results indicate over-segmentation. In general, 

the results demonstrate that the model is not biased towards under- or over-segmentation. 
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Figure 2.3- Contrast-enhanced T1-weighted images acquired at the baseline (1), and the first (2), second (3), and third (4) follow-

ups after SRT from three representative patients with brain metastasis demonstrating local control (a), local failure (b), and ARE 

(c) after treatment. The arrow in the baseline image shows the location of brain metastasis. LC/LF/ARE is evaluated based on the 

changes in longest diameter. In (c) an initial growth in first follow-up is followed by a decrease in the second, and then third follow-

ups.  

A detailed comparison between the segmentation results of different networks at the 

baseline and follow-up sessions is given in Table 2.1 in terms of dice similarity coefficient, 

Hausdorff distance, and tumour volume estimation error. A consistent step-by-step improvement 

is observed in different criteria of segmentation accuracy, with the best results associated with the 

cascaded 2D & 3D UNets + MSGA architecture inputting both the T1-weighted and T2-FLAIR 

images. The networks demonstrate a similar performance of the training and test sets, implying 

very good generalizability for tumour segmentation of new unseen cases. 
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Figure 2.4- Tumour segmentation masks generated by the cascaded 2D UNets (1), 3D UNet (2), cascaded 2D & 3D UNets (3), and 

Cascaded 2D & 3D UNets + MSGA (4) for five representative patients (a-e) in the test set. The images are acquired at the baseline. 

The arrow in the first image of each row shows the location of brain metastasis. The ground-truth and automatic segmentation 

masks (middle slide) are shown in blue and red, respectively, with the purple area showing the overlap region in each case. 

Further, the segmentation results of the proposed framework are comparable between the baseline 

and follow-up scans. The relative deterioration in the segmentation performance metrics at the 

follow-up scans can be attributed to the gradual tumour shrinkage observed in many cases after 

the radiotherapy. It should be noted that in the experiments conducted in this study, no data from 
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the follow-ups were used for training the networks. Specifically, the networks were solely trained 

using the data of the training set patients acquired at the baseline, but subsequently evaluated using 

the follow-up data from the patients of the training and test sets, separately. Table 2.2 reports the 

95% confidence intervals associated with the results reported in Table 2.1. The confidence 

intervals were estimated based on the sample mean and standard error of the mean in each 

experiment using the t distribution. Experimental results with different hyperparameters have been 

presented in Table 2.3. 

Table 2.1- Dice similarity coefficient (DSC), Hausdorff distance (HD), and volume estimation error (VEE) for segmentation of 

brain metastasis at the baseline and follow-up scans using different network architectures. 

Segmentation Model Metric 

Baseline 1st Follow-up 2nd Follow-up 3rd Follow-up 4th Follow-up 5th Follow-up 

Training 

Set 
Test Set 

Training 

Set 
Test Set Test Set Test Set Test Set Test Set 

Cascaded 2D UNets 

DSC 86.5 ± 5.8 85.4 ± 7 82.8 ± 6 81.3 ± 5.9 79.7  ± 11 77.2± 9.7 76.1  ± 10.6 74.3 ± 11.2 

HD (mm) 2.8 ± 0.4 3 ± 0.6 3.2 ± 0.6 3.7 ± 0.5 4.6 ± 0.7 4.4 ± 0.6 4.3 ± 0.7 4.5 ± 0.9 

VEE (cc) 0.55 ± 0.5 0.58 ± 0.5 0.64 ± 0.5 0.67 ± 0.5 0.82 ± 0.7 0.78 ± 0.7 0.75 ± 0.6 0.75 ± 0.7 

VEE (%) 15.8 + 7 16.4 ± 9 18.3 ± 8.4 19.2 ± 8.3 23.7 ± 11 24.5 ± 12.5 26.1 ± 11.9 30.2 ± 14 

3D UNet 

DSC 88.8 ± 4.5 87.2 ± 5.4 84.8 ± 5.5 83.7 ± 6.4 83 ± 8 81.6 ± 7.7 80 ± 8 79.8 ± 8 

HD (mm) 2.4 ± 0.7 2.6 ± 0.7 2.6 ± 0.6 3.3 ± 0.6 4.2 ± 0.7 4.3 ± 0.7 4.5 ± 0.6 4.2 ± 0.6 

VEE (cc) 0.50 ± 0.4 0.52 ± 0.5 0.56 ± 0.5 0.60 ± 0.5 0.79 ± 0.7 0.74 ± 0.6 0.73 ± 0.7 0.73 ± 0.6 

VEE (%) 14.9 ± 5.2 15.3 ± 6.8 17.5 ± 6.3 17.8 ± 9.1 21.3 ± 9.4 23.3 ± 12 24.1 ± 9.4 24.7 ± 9.4 

 
3D UNet + MSGA 

DSC 89.7 ± 5 88.9 ± 5.3 85.6 ± 5.1 84.8 ± 6.2 84.1 ± 7.7 83.5 ± 8.3 82.4 ± 8.8 82.1 ± 9.6 

HD (mm) 2.3 ± 0.5 2.5 ± 0.7 2.6 ± 0.5 3.2 ± 0.8 4 ± 0.7 3.5 ± 0.7 3.6 ± 0.7 3.6 ± 0.7 

VEE (cc) 0.51 ± 0.4 0.52 ± 0.4 0.55 ± 0.4 0.59 ± 0.5 0.74 ± 0.7 0.74 ± 0.7 0.72 ± 0.7 0.71 ± 0.7 

VEE (%) 12.3 ± 4.3 13.6 ± 6 16.9 ± 8.5 18 + 8.8 19.3 ± 7.8 21.5 ± 6.8 22.5 ± 9 23.3 ± 12 

Cascaded 2D & 3D UNets 

DSC 90.1 ± 4.4 89.6 ± 4.6 86.2 ± 4.6 85.1 ± 5 84.3 ± 7.2 83.4 ± 7 82.9 ± 7 82.8 ± 7 

HD (mm) 2.3 ± 0.2 2.4 ± 0.4 2.6 ± 0.5 3.1 ± 0.8 3.8 ± 0.7 3.2 ± 0.6 3.5 ± 0.6 3.4 ± 0.6 

VEE (cc) 0.5 ± 0.3 0.51 ± 0.4 0.55 ± 0.4 0.57 ± 0.5 0.73 ± 0.6 0.71 ± 0.6 0.72 ± 0.6 0.71 ± 0.7 

VEE (%) 11.1 ± 4.2 12.5 ± 5.3 16.7 ± 8.3 18.2 ± 8 18.7 ± 7.5 20 ± 7.5 21.7 ± 9 22.6 ± 10 

Cascaded 2D & 3D UNets + 

MSGA (with T1-weighted 

only) 

DSC 91.1 ± 3.8 90.3 ± 4.1 87.1 ± 3.9 86.4 ± 4.9 85.3 ± 7.2 83.7 ± 8.4 83.2 ± 8.5 82.8 ± 9.2 

HD (mm) 2 ± 0.4 2.3 ± 0.5 2.43 ± 0.5 2.95 ± 0.7 3.7 ± 0.7 3.4 ± 0.7 3.5 ± 0.7 3.4 ± 0.6 

VEE (cc) 0.42 ± 0.3 0.49 ± 0.4 0.55 ± 0.4 0.58 ± 0.5 0.72 ± 0.6 0.68 ± 0.6 0.68 ± 0.6 0.69 ± 0.6 

VEE (%) 10.5 ± 4.8 11 ± 5 14.6 ± 5.4 16.4 ± 5.4 17.9 ± 6.8 18.7 ± 7 19.3 ± 8.2 23.8 ± 10.1 

Cascaded 2D & 3D UNets + 

MSGA 

DSC 92.3 ± 3.1 91.5 ± 3.7 88.7 ± 3.7 87.4 ± 5.2 86.7 ± 5.5 85.1 ± 6.1 84.1 ± 6.8 84.5 ± 7 

HD (mm) 1.84 ± 0.4 2.1 ± 0.6 2.21 ± 0.5 2.84 ± 0.7 2.98 ± 0.7 3 ± 0.6 2.89 ± 0.6 2.9 ± 0.58 

VEE (cc) 0.39 ± 0.3 0.44 ± 0.4 0.52 ± 0.4 0.57 ± 0.5 0.59 ± 0.5 0.61 ± 0.5 0.62 ± 0.6 0.6 ± 0.56 

VEE (%) 9.2 ± 4.6 10.2 ± 5.3 12.5 ± 4 13.4 ± 5.1 15.7 ± 6.3 16.5% ± 7 17.3 ± 8.3 19.7 ± 8.5 

nnUNet 

DSC 91.7 ± 3.3 90.9 ± 3.1 88.5 ± 3.2 87.1 ± 5.9 86.6 ± 6 85.3 ± 6.5 84 ± 7 84.2 ± 8.1 

HD (mm) 1.88 ± 0.4 2.3 ± 0.57 2.18 ± 0.5 2.95 ± 0.8 3 ± 0.8 2.9 ± 0.7 2.93 ± 0.61 2.9 ± 0.66 

VEE (cc) 0.43 ± 0.4 0.5 ± 0.3 0.52 ± 0.4 0.63 ± 0.5 0.67 ± 0.5 0.61 ± 0.6 0.63 ± 0.5 0.61 ± 0.6 

VEE (%) 9.8 ± 4.2 11 ± 5.5 12.5 ± 4.1 15.1 ± 5.7 16.3% ± 6.8 16.4 ± 7 17.5% ± 8.2 20.2 ± 8.8 
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Table 2.2- The 95% confidence intervals associated with the results in Table 2.1 The confidence intervals were estimated for the 

dice similarity coefficient (DSC), Hausdorff distance (HD), and the volume estimation error (VEE) based on the sample mean and 

standard error of the mean in each experiment using the t test.  

Segmentation Model Metric 

Baseline 1st Follow-up 
2nd Follow-

up 
3rd Follow-up 4th Follow-up 5th Follow-up 

Training Set Test Set 
Training 

Set 
Test Set Test Set Test Set Test Set Test Set 

Cascaded 2D UNets 

DSC 85.5 - 87.5 82.3 - 88.5 81.8 - 83.8 78.7 - 83.9 73.8 - 85.6 70.7 - 83.7 68.5 - 83.7 60.4 - 88.2 

HD (mm) 2.7 - 2.9 2.7 - 3.3 3.1 - 3.3 3.5 - 3.9 4.2 - 5.0 4.0 - 4.8 3.8 - 4.8 3.4 - 5.6 

VEE (cc) 0.6 - 0.6 0.4 - 0.8 0.5 - 0.7 0.4 - 0.8 0.4 - 1.2 0.3 - 1.3 0.4 - 1.2 0.0 - 1.6 

VEE (%) 14.6 - 17.0 12.4 - 20.4 16.8 - 19.8 15.5 - 22.9 17.8 - 29.6 16.1 - 32.9 17.6 - 34.6 12.8 - 47.6 

3D UNet 

DSC 88.0 - 89.6 84.8 - 89.6 83.8 - 85.8 80.9 - 86.5 78.7 - 87.3 76.4 - 86.8 74.3 - 85.7 69.9 - 89.7 

HD (mm) 2.3 - 2.5 2.3 - 2.9 2.5 - 2.7 3.0 - 3.6 3.8 - 4.6 3.8 - 4.8 4.1 - 4.9 3.5 - 4.9 

VEE (cc) 0.4 - 0.6 0.3 - 0.7 0.6 - 0.6 0.4 - 0.8 0.4 - 1.2 0.3 - 1.1 0.2 - 1.2 0.0 - 1.6 

VEE (%) 14.0 - 15.8 12.3 - 18.3 16.4 - 18.6 13.8 - 21.8 16.3 - 26.3 15.2 - 31.4 17.4 - 30.8 13.0 - 36.4 

 
3D UNet + MSGA 

DSC 88.8 - 90.6 86.6 - 91.2 84.7 - 86.5 82.1 - 87.5 80.0 - 88.2 77.9 - 89.1 76.1 - 88.7 70.2 - 94.0 

HD (mm) 2.2 - 2.4 2.2 - 2.8 2.5 - 2.7 2.8 - 3.6 3.6 - 4.4 3.0 - 4.0 3.1 - 4.1 2.7 - 4.5 

VEE (cc) 0.4 - 0.6 0.3 - 0.7 0.6 - 0.6 0.4 - 0.8 0.4 - 1.2 0.4 - 1.2 0.2 - 1.2 0.2 - 1.6 

VEE (%) 11.6 - 13.0 10.9 - 16.3 15.4 - 18.4 14.1 - 21.9 15.1 - 23.5 16.9 - 26.1 16.1 - 28.9 8.4 - 38.2 

Cascaded 2D & 3D 

UNets 

DSC 89.3 - 90.9 87.6 - 91.6 85.4 - 87.0 82.9 - 87.3 80.5 - 88.1 78.7 - 88.1 77.9 - 87.9 74.1 - 91.5 

HD (mm) 2.3 - 2.3 2.2 - 2.6 2.5 - 2.7 2.7 - 3.5 3.4 - 4.2 2.8 - 3.6 3.1 - 3.9 2.7 - 4.1 

VEE (cc) 0.4 - 0.6 0.3 - 0.7 0.6 - 0.6 0.4 - 0.8 0.4 - 1.0 0.3 - 1.1 0.3 - 1.1 0.2 - 1.6 

VEE (%) 10.4 - 11.8 10.2 - 14.8 15.3 - 18.1 14.7 - 21.7 14.7 - 22.7 15.0 - 25.0 15.3 - 28.1 10.2 - 35.0 

Cascaded 2D & 3D 

UNets + MSGA (with 

T1-weighted only) 

DSC 90.4 - 91.8 88.5 - 92.1 86.4 - 87.8 84.2 - 88.6 81.5 - 89.1 78.1 - 89.3 77.1 - 89.3 71.4 - 94.2 

HD (mm) 1.9 - 2.1 2.1 - 2.5 2.3 - 2.5 2.7 - 3.3 3.3 - 4.1 2.9 - 3.9 3.0 - 4.0 2.7 - 4.1 

VEE (cc) 0.4 - 0.4 0.3 - 0.7 0.6 - 0.6 0.4 - 0.8 0.4 - 1.0 0.3 - 1.1 0.3 - 1.1 0.2 - 1.4 

VEE (%) 9.7 - 11.3 8.8 - 13.2 13.7 - 15.5 14.0 - 18.8 14.3 - 21.5 14.0 - 23.4 13.4 - 25.2 11.3 - 36.3 

Cascaded 2D & 3D 

UNets + MSGA 

DSC 91.8 - 92.8 89.9 - 93.1 88.1 - 89.3 85.1 - 89.7 83.8 - 89.6 81.0 - 89.2 79.2 - 89.0 75.8 - 93.2 

HD (mm) 1.7 - 1.9 1.8 - 2.4 2.1 - 2.3 2.4 - 3.2 2.6 - 3.4 2.6 - 3.4 2.5 - 3.3 2.2 - 3.6 

VEE (cc) 0.3 - 0.5 0.2 - 0.6 0.6 - 0.6 0.4 - 0.8 0.3 - 0.9 0.3 - 0.9 0.2 - 1.0 0.1 - 1.3 

VEE (%) 8.4 - 10.0 7.9 - 12.5 11.8 - 13.2 11.1 - 15.7 12.3 - 19.1 11.8 - 21.2 11.4 - 23.2 9.1 - 30.3 

nnUNet 

DSC 91.1 - 92.3 89.5 - 92.3 87.9 - 89.1 84.5 - 89.7 83.4 - 89.8 80.9 - 89.7 79.0 - 89.0 74.1 - 94.3 

HD (mm) 1.7 - 1.9 2.0 - 2.6 2.1 - 2.3 2.7 - 3.3 2.6 - 3.4 2.4 - 3.4 2.6 - 3.4 2.1 - 3.7 

VEE (cc) 85.5 - 87.5 82.3 - 88.5 81.8 - 83.8 78.7 - 83.9 73.8 - 85.6 70.7 - 83.7 68.5 - 83.7 60.4 - 88.2 

VEE (%) 2.7 - 2.9 2.7 - 3.3 3.1 - 3.3 3.5 - 3.9 4.2 - 5.0 4.0 - 4.8 3.8 - 4.8 3.4 - 5.6 

 

Table 2.3- Experimental results of the proposed segmentation framework with different hyperparameters. DSC: dice similarity 

coefficient; CI: 95% confidence interval 

Network 
Learning 

Rate 

Batch 

Size 

Baseline Validation 

Set (DSC) 

Baseline Test Set 

(DSC) 

Baseline Test Set 

(DSC CI) 

2D UNets, 3D UNet and MSGA 1e-4 4, 1, 1 91 ± 3.8 91.5 ± 3.7 89.9 – 93.1 

3D UNet (2D UNets and MSGA fixed) 5e-5 2 90.2 ± 5.2 90.8 ± 4.2 88.9 – 92.7 

MSGA (2D UNets and 3D UNet fixed) 5e-5 2 90.5 ± 4.4 91.4 ± 3.6 89.8 – 93 

3D UNet (2D UNets and MSGA fixed) 5e-3 2 90 ± 5.5 89.7 ± 3.5 88.1 – 91.3 

MSGA (2D UNets and 3D UNet fixed) 5e-3 2 90.1 ± 5.7 89.5 ± 4 87.7 – 91.3 

3DUNet (2D UNets and MSGA fixed) 5e-5 4 89.9 ± 4.9 90.8 ± 4.1 89 – 92.6 

MSGA (2D UNets and 3D UNet fixed) 5e-5 4 90.3 ± 4.1 91.3 ± 3.4 89.8 – 92.8 
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The segmentation results for separate categories of baseline tumour size are presented in 

Table 2.4. The results demonstrate that the proposed framework outperformed the other 

segmentation models in most cases, with few cases of performance in par with the nnUNet model. 

Table 2.5 reports the 95% confidence intervals associated with the results reported in Table 2.4. 

The confidence intervals were estimated based on the sample mean and standard error of the mean 

in each experiment using the t distribution. 

Table 2.4- Dice similarity coefficient (DSC), Hausdorff Distance (HD), and Volume Estimation Error (VEE) for segmentation of 

brain metastasis various sizes (measured at baseline) using different network architectures. the results are associated with the 

patients of test set. 

Segmentation 

Model 
Metric 

Baseline 1st Follow-up 2nd Follow-up 3rd Follow-up 4th and 5th Follow-ups 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Cascaded 2D 

UNets 

DSC 82 ± 11 85 ± 7 89 ± 3 79 ± 9 81 ± 6 84 ± 3 65 ± 6 80 ± 11 86 ± 4 59 ± 4 77 ± 9 80 ± 8 62 ± 5 79 ± 9 73 ± 8 

HD (mm) 3.1 ± 0.6 3.0 ± 0.6 2.9 ± 0.3 3.8 ± 0.5 3.7 ± 0.5 3.6 ± 0.3 5.4 ± 0.1 4.5 ± 0.7 4.4 ± 0.6 3.6 ± 0.1 4.6 ± 0.4 3.7 ± 0.2 5.1 ± 0.1 4.0 ± 0.7 4.7 ± 0.3 

VEE (cc) 0.06 ± 0.0 0.3 ± 0.1 1.3 ± 0.2 0.1 ± 0.0 0.4 ± 0.1 1.4 ± 0.2 0.1 ± 0.0 1.1 ± 0.7 0.5 ± 0.3 0.1 ± 0.0 0.7 ± 0.4 1.6 ± 0.6 0.1 ± 0.0 0.8 ± 0.6 1.0 ± 0.5 

VEE (%) 21 ± 10 20 ± 8 18 ± 7 20 ± 9 19 ± 9 18 ± 4 36 ± 1 22 ± 11 21 ± 10 39 ± 4 28 ± 8 14 ± 3 42 ± 1 24 ± 12 35 ± 6 

3D UNet 

DSC 85 ± 8 87 ± 5 89 ± 2 81 ± 10 83 ± 6 87 ± 3 72 ± 4 83 ± 8 88 ± 3 67 ± 2 82 ± 7 84 ± 6 70 ± 4 83 ± 7 78 ± 6 

HD (mm) 2.7 ± 0.7 2.6 ± 0.8 2.5 ± 0.4 3.4 ± 0.6 3.3 ± 0.6 3.2 ± 0.3 5.0 ± 0.1 4.1 ± 0.7 4.0 ± 0.6 5.2 ± 0.2 4.5 ± 0.4 3.2 ± 0.2 5.1 ± 0.1 4.2 ± 0.6 4.7 ± 0.3 

VEE (cc) 0.05 ± 0.0 0.3 ± 0.2 1.1 ± 0.4 0.08 ± 0.0 0.3 ± 0.1 1.3 ± 0.2 0.08 ± 0.0 1.1 ± 0.7 0.5 ± 0.3 1.0 ± 0.05 0.8 ± 0.5 1.0 ± 0.7 0.1 ± 0.0 0.8 ± 0.7 0.9 ± 0.5 

VEE (%) 16 ± 7 17 ± 7 14 ± 6 20 ± 11 16 ± 8 22 ± 7 32 ± 1 20 ± 10 19 ± 8 33 ± 2 26 ± 8 10 ± 3 35 ± 1 21 ± 9 29 ± 4 

Cascaded 2D 

& 3D UNets 

DSC 88 ± 7 89 ± 4 92 ± 2 83 ± 8 85 ± 5 87 ± 2 75 ± 4 85 ± 7 88 ± 3 70 ± 3 83 ± 7 85 ± 6 74 ± 4 85 ± 6 81 ± 6 

HD (mm) 2.5 ± 0.4 2.4 ± 0.4 2.3 ± 0.2 3.2 ± 0.8 3.1 ± 0.9 3.0 ± 0.4 4.6 ± 0.1 3.7 ± 0.7 3.6 ± 0.6 4.0 ± 0.3 3.3 ± 0.4 2.2 ± 0.2 4.2 ± 0.1 3.3 ± 0.6 3.8 ± 0.3 

VEE (cc) 0.04 ± 0.0 0.3 ± 0.1 1.1 ± 0.2 0.05 ± 0.0 0.3 ± 0.2 1.3 ± 0.2 0.1 ± 0.0 0.1 ± 0.6 0.4 ± 0.3 0.1 ± 0.0 0.8 ± 0.5 1.0 ± 0.7 0.08 ± 0.0 0.8 ± 0.6 1.0 ± 0.5 

VEE (%) 13 ± 6 13 ± 6 12 ± 3 19 ± 8 18 ± 9 17 ± 4 27 ± 1 18 ± 8 17 ± 7 30 ± 3 22 ± 5 8 ± 2 32 ± 1 18 ± 9 27 ± 4 

Cascaded 2D 

& 3D UNets + 

MSGA 

DSC 90 ± 6 91 ± 4 93 ± 2 85 ± 8 87 ± 5 89 ± 2 79 ± 3 87 ± 5 90 ± 2 74 ± 2 85 ± 6 87 ± 5 75 ± 4 86 ± 6 83 ± 6 

HD (mm) 2.2 ± 0.6 2.1 ± 0.6 2.0 ± 0.3 2.9 ± 0.7 2.9 ± 0.8 2.7 ± 0.4 3.8 ± 0.1 2.9 ± 0.7 2.8 ± 0.6 3.9 ± 0.1 3.2 ± 0.4 1.9 ± 0.2 3.6 ± 0.1 2.7 ± 0.6 3.2 ± 0.3 

VEE (cc) 0.03 ± 0.0 0.2 ± 0.1 1.0 ± 0.2 0.05 ± 0.0 0.3 ± 0.1 1.3 ± 0.2 0.05 ± 0.0 0.8 ± 0.5 0.3 ± 0.2 0.06±0.05 0.7 ± 0.5 0.8 ± 0.6 0.05 ± 0.0 0.7 ± 0.6 0.7 ± 0.5 

VEE (%) 12 ± 8 9 ± 5 13 ± 4 14 ± 5 14 ± 5 12 ± 3 23 ± 1 15 ± 6 14 ± 5 26 ± 2 18 ± 4 5 ± 1 28 ± 1 15 ± 8 23 ± 4 

nnUNet 

DSC 90 ± 5 91 ± 3 92 ± 1 85 ± 8 87 ± 6 89 ± 3 79 ± 3 87 ± 6 90 ± 2 73 ± 3 85 ± 6 87 ± 5 75 ± 4 86 ± 6 83 ± 6 

HD (mm) 2.4 ± 0.6 2.3 ± 0.6 2.2 ± 0.3 3.1 ± 0.8 3.0 ± 0.9 2.8 ± 0.4 3.9 ± 0.1 2.9 ± 0.8 2.8 ± 0.7 3.9 ± 0.1 3.1 ± 0.4 1.7 ± 0.2 3.6 ± 0.1 2.7 ± 0.6 3.3 ± 0.3 

VEE (cc) 0.04 ± 0.0 0.3 ± 0.2 0.9 ± 0.1 0.05 ± 0.0 0.3 ± 0.1 1.3 ± 0.2 0.06 ± 0.0 0.9 ± 0.6 0.4 ± 0.2 0.07±0.05 0.6 ± 0.5 1.0 ± 0.8 0.05 ± 0.0 0.7 ± 0.6 0.9 ± 0.4 

VEE (%) 13 ± 7 11 ± 6 10 ± 3 16 ± 6 15 ± 6 14 ± 3 24 ± 1 16 ± 7 15 ± 6 26 ± 3 18 ± 4 5 ± 2 28 ± 1 16 ± 8 24 ± 4 

 

Results of statistical comparisons on percental tumour size changes at each follow-up 

session relative to the baseline are presented in Table 2.6. The table includes the results of Pearson 

correlation analyses and paired t-tests (two-sided, α = 0.05) performed on the tumour size changes 

obtained using the automatically generated segmentation masks compared to those based on the 
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ground-truth masks. The results in this table demonstrate good correlations between the percentual 

tumour size changes estimated automatically compared to the ground-truth at different follow-ups, 

with no statistically significant difference between them, where the proposed segmentation 

framework and the nnUNet model demonstrate better results compared to the other models. 

Table 2.5- The 95% confidence intervals associated with the results reported in Table 2.4. The confidence intervals were estimated 

for the dice similarity coefficient (DSC), Hausdorff distance (HD), and the volume estimation error (VEE) based on the sample 

mean and standard error of the mean in each experiment using the t distribution. 

Segmentation 

Model 
Metric 

Baseline 1st Follow-up 2nd Follow-up 3rd Follow-up 4th and 5th Follow-ups 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Size ≤ 

1 cm 

1 cm     

< Size 

≤ 2.5 

cm 

Size > 

2.5 cm 

Cascaded 2D 

UNets 

DSC 65.0-99.0 80.0-90.0 87.0-91.0 68.0-90.0 76.0-86.0 82.0-86.0 56.0-74.0 70.0-90.0 81.0-91.0 49.0-69.0 66.0-88.0 61.0-99.0 56.0-68.0 70.0-88.0 61.0-85.0 

HD (mm) 2.1 - 4.1 2.5 - 3.5 2.7 - 3.1 3.2 - 4.4 3.3 - 4.1 3.4 - 3.8 5.2 - 5.6 3.9 - 5.1 3.7 - 5.1 3.4 - 3.8 4.1 - 5.1 3.2 - 4.2 5.0 - 5.2 3.3 - 4.7 4.2 - 5.2 

VEE (cc) 0.06-0.06 0.2 - 0.4 1.1 - 1.5 0.1 - 0.1 0.3 - 0.5 1.2 - 1.6 0.1 - 0.1 0.5 - 1.7 0.1 - 0.9 0.1 - 0.1 0.2 - 1.2 0.1 - 3.1 0.1 - 0.1 0.2 - 1.4 0.2 - 1.8 

VEE (%) 6.0 - 36.0 14.0-26.0 13.0-23.0 9.0-31.0 12.0-26.0 15.0-21.0 35.0-37.0 12.0-32.0 9.0-33.0 30.0-48.0 19.0-37.0 7.0-21.0 40.8-43.2 11.4-36.6 25.5-44.5 

3D UNet 

DSC 73.0-97.0 84.0-90.0 88.0-90.0 69.0-93.0 78.0-88.0 85.0-89.0 66.0-78.0 76.0-90.0 85.0-91.0 62.0-72.0 74.0-90.0 70.0-98.0 65.0-75.0 76.0-90.0 69.0-87.0 

HD (mm) 1.6 - 3.8 2.0 - 3.2 2.2 - 2.8 2.7 - 4.1 2.8 - 3.8 3.0 - 3.4 4.8 - 5.2 3.5 - 4.7 3.3 - 4.7 4.7 - 5.7 4.0 - 5.0 2.7 - 3.7 5.0 - 5.2 3.6 - 4.8 4.2 - 5.2 

VEE (cc) 0.05-0.05 0.1-0.5 0.8-1.4 0.08-0.08 0.2-0.4 1.1-1.5 0.1-0.1 0.5-1.7 0.1-0.9 0.9-1.1 0.2-1.4 0.7-2.7 0.1-0.1 0.1-1.5 0.1-1.7 

VEE (%) 5.0-27.0 11.6-22.4 9.4-18.6 6.3-33.7 9.3-22.7 16.6-27.4 30.4-33.6 10.8-29.2 9.1-28.9 28.0-38.0 16.1-35.9 2.5-17.5 33.8-36.2 11.6-30.4 22.6-35.4 

Cascaded 2D 

& 3D UNets 

DSC 76.9-99.1 85.9-92.1 90.5-93.5 73.1-92.9 80.8-89.2 85.5-88.5 68.6-81.4 78.5-91.5 84.3-91.7 62.5-77.5 74.3-91.7 70.1-99.9 69.0-79.0 78.7-91.3 71.5-90.5 

HD (mm) 1.9 - 3.1 2.1 - 2.7 2.1 - 2.5 2.2 - 4.2 2.3 - 3.9 2.7 - 3.3 4.4 - 4.8 3.1 - 4.3 2.9 - 4.3 3.3 - 4.7 2.8 - 3.8 1.7 - 2.7 4.1 - 4.3 2.7 - 3.9 3.3 - 4.3 

VEE (cc) 0.0 - 0.0 0.2 - 0.4 0.9 - 1.3 0.0 - 0.0 0.1 - 0.5 1.1 - 1.5 0.1 - 0.1 0.5 - 0.7 0.0 - 0.8 0.1 - 0.1 0.2 - 1.4 0.7 - 2.7 0.1 - 0.1 0.2 - 1.4 0.2 - 1.8 

VEE (%) 3.5-22.5 8.4-17.6 9.7-14.3 9.1-28.9 10.5-25.5 13.9-20.1 25.4-28.6 10.6-25.4 8.3-25.7 22.5-37.5 15.8-28.2 3.0-13.0 30.8-33.2 8.6-27.4 20.6-33.4 

Cascaded 2D 

& 3D UNets + 

MSGA 

DSC 80.5-99.5 87.9-94.1 91.5-94.5 75.1-94.9 82.8-91.2 87.5-90.5 74.2-83.8 82.4-91.6 87.5-92.5 69.0-79.0 77.6-92.4 74.6-99.4 70.0-80.0 79.7-92.3 73.5-92.5 

HD (mm) 1.2 - 3.2 1.6 - 2.6 1.8 - 2.2 2.0 - 3.8 2.2 - 3.6 2.4 - 3.0 3.6 - 4.0 2.3 - 3.5 2.1 - 3.5 3.7 - 4.1 2.7 - 3.7 1.4 - 2.4 3.5 - 3.7 2.1 - 3.3 2.7 - 3.7 

VEE (cc) 0.03-0.03 0.1-0.3 0.8-1.2 0.05-0.05 0.2-0.4 1.1-1.5 0.05-0.05 0.3-1.3 0.1-0.5 0.14-0.2 0.1-1.3 0.7-2.3 0.05-0.05 0.1-1.3 0.1-1.5 

VEE (%) 0.7-24.7 5.2-12.8 9.9-16.1 7.8-20.2 9.8-18.2 9.7-14.3 21.4-24.6 9.5-20.5 7.8-20.2 21.0-31.0 13.0-23.0 2.5-7.5 26.8-29.2 6.6-23.4 16.6-29.4 

nnUNet 

DSC 82.0-98.0 88.7-93.3 91.2-92.8 75.1-94.9 82.0-92.0 86.7-91.3 74.2-83.8 81.5-92.5 87.5-92.5 65.5-80.5 77.6-92.4 74.6-99.4 70.0-80.0 79.7-92.3 73.5-92.5 

HD (mm) 1.4 - 3.4 1.8 - 2.8 2.0 - 2.4 2.1 - 4.1 2.2 - 3.8 2.5 - 3.1 3.7 - 4.1 2.2 - 3.6 1.9 - 3.7 3.7 - 4.1 2.6 - 3.6 1.2 - 2.2 3.5 - 3.7 2.1 - 3.3 2.8 - 3.8 

VEE (cc) 0.05-0.05 0.1-0.5 1.0-1.2 0.08-0.08 0.2-0.4 1.1-1.5 0.1-0.1 0.5-1.7 0.3-0.7 0.8-1.2 0.2-1.4 1-3 0.1-0.1 0.2-1.4 0.3-1.5 

VEE (%) 1.9-24.1 6.4-15.6 7.7-12.3 8.6-23.4 10.0-20.0 11.7-16.3 22.4-25.6 9.5-22.5 7.6-22.4 18.5-33.5 13.0-23.0 0.0-10.0 26.8-29.2 7.6-24.4 17.6-30.4 

 

Table 2.7 presents the results of detecting tumour size status at the imaging follow-ups 

after SRT for patients of the test set using the five different segmentation models. The cascaded 

2D & 3D UNets + MSGA architecture demonstrated the best performance with an accuracy of 

85.9%, while the nnUNet model resulted in an accuracy of 84.4%.  
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Table 2.6- Results of statistical comparison on the percental tumour size changes at each follow-up session relative to the baseline 

obtained from the automatically generated segmentation masks compared to those from the ground-truth masks. 

Segmentation 

Model 
Statistical Test 1st Follow-up 2nd Follow-up 3rd Follow-up 4th Follow-up 5th Follow-up 

Cascaded 2D 

UNets 

Pearson Correlation (r) 0.82 0.83 0.81 0.79 0.77 

Pearson Correlation (p-value) 3e-6 7e-5 2e-3 6e-3 0.12 

Paired T-Test (p-value) 0.05 0.13 0.08 0.1 0.09 

3D UNet 

Pearson Correlation (r) 0.83 0.82 0.82 0.79 0.78 

Pearson Correlation (p-value) 2e-6 1e-4 2e-3 6e-3 0.12 

Paired T-Test (p-value) 0.08 0.12 0.15 0.12 0.09 

Cascaded 2D & 3D 

UNets 

Pearson Correlation (r) 0.86 0.83 0.83 0.81 0.8 

Pearson Correlation (p-value) 3e-7 7e-5 1e-3 4e-3 0.1 

Paired T-Test (p-value) 0.15 0.24 0.08 0.11 0.09 

Cascaded 2D & 3D 

UNets + MSGA 

Pearson Correlation (r) 0.9 0.88 0.85 0.84 0.84 

Pearson Correlation (p-value) 1e-8 7e-6 9e-4 6e-7 0.07 

Paired T-Test (p-value) 0.22 0.2 0.35 0.16 0.11 

nnUNet 

Pearson Correlation (r) 0.89 0.88 0.86 0.85 0.84 

Pearson Correlation (p-value) 3e-8 7e-6 7e-4 e-6 0.07 

Paired T-Test (p-value) 0.2 0.17 0.1 0.08 0.05 

 

Table 2.7- Results of detecting tumour size status at follow-up sessions after SRT for the patients of test set using different 

segmentation models. 

Segmentation 

Model 
Tumour Size Status Accuracy Precision Recall 

Cascaded 2D UNets 

Increase 

71.8% 

82.3% 70% 

Stable 57.6% 82.6% 

Decrease 92.8% 62.9% 

3D UNet 

Increase 

79.6% 

84% 80% 

Stable 67.8% 82.6% 

Decrease 94% 76.4% 

Cascaded 2D & 3D 

UNets 

Increase 

82.8% 

90% 90% 

Stable 70% 91.3% 

Decrease 100% 66.7% 

Cascaded 2D & 3D 

UNets + MSGA 

Increase 

85.9% 

90% 90% 

Stable 75% 91.3% 

Decrease 100% 76.2% 

nnUNet 

Increase 

84.4% 

81.8% 90% 

Stable 76% 82.6% 

Decrease 100% 81% 

 

The results of detecting the shrinkage/steady/enlargement categories at individual follow-

up scans are presented in Table 2.8. Here, the proposed framework demonstrated a similar 

performance to that of nnUNet in terms of accuracy when the tumour size changes were 



46 

 

 

categorized based on the longest diameter of tumour, but it outperformed the nnUNet model when 

changes in tumour volume were used as the measurement method. 

Table 2.8- Results of detecting RANO-BM response categories at individual follow-up scans for the patients of test set using 

different segmentation models, validated based on the response categories identified from the ground-truth segmentation masks. 

Segmentation 

Model 

Tumour Size 

Status (Response 

Category) 

Measurement Method 

Longest Diameter of Tumour Tumour Volume 

Accuracy Precision Recall Accuracy Precision Recall 

Cascaded 2D UNets 

Enlargement (PD) 

72% 

70% 70% 

68.8% 

68.4% 65% 

Steady (SD) 71.4% 74.1% 70.4% 70.4% 

Shrinkage (PR) 75% 70.6% 66.7% 70.6% 

3D UNet 

Enlargement (PD) 

78.1% 

77.8% 70% 

71.9% 

75% 75% 

Steady (SD) 81.5% 81.5% 79.2% 70.4% 

Shrinkage (PR) 73.7% 82.4% 60% 70.6% 

Cascaded 2D & 3D 

UNets 

Enlargement (PD) 

81.3% 

83.4% 75% 

75.4% 

75% 75% 

Steady (SD) 82.1% 85.1% 78.6% 78.6% 

Shrinkage (PR) 77.8% 82.4% 70.6% 70.6% 

Cascaded 2D & 3D 

UNets + MSGA 

Enlargement (PD) 

84.4% 

78.3% 90% 

81.3% 

76.2% 80% 

Steady (SD) 91.7% 81.5% 85.7% 88.9% 

Shrinkage (PR) 82.4% 82.4% 80% 70.6% 

nnUNet 

Enlargement (PD) 

84.4% 

78.3% 90% 

79.7% 

76.2% 80% 

Steady (SD) 88% 81.5% 85.2% 85.2% 

Shrinkage (PR) 87.5% 82.4% 75% 70.6% 

 

Table 2.9 reports the results of automatic outcome assessment for the test set patients using 

five segmentation models.  The results demonstrate that the proposed framework and the nnUNet 

model resulted in the best performance with a sensitivity and specificity of 88.9% and 92.3%, 

respectively, for detecting the LC/LF, and 100% and 89.2% for detecting the ARE outcome. 

Table 2.9- Results of detecting the LC/LF and are outcomes for the patients of test set based on the RANO-BM criteria using 

different segmentation models. Sens: sensitivity; Spec: specificity; Acc: accuracy. 

Segmentation 

Model 

LC/LF Detection ARE Detection 

Acc. Sens. Spec. Acc. Sens. Spec. 

Cascaded 2D UNets 72.7% 66.7% 76.9% 77.2% 66.7% 79% 

3D UNet 81.9% 77.8% 84.6% 81.9% 66.7% 84.2% 

Cascaded 2D &    

3D UNets 
86.3% 77.8% 92.3% 86.4% 100% 84.2% 

Cascaded 2D &    

3D UNets + MSGA 
90.9% 88.9% 92.3% 90.9% 100% 89.2% 

nnUNet 90.9% 88.9% 92.3% 90.9% 100% 89.2% 

 

Kaplan-Meier analyses were conducted to compare the time to detected event for LF and 

ARE based on the clinical radiotherapy outcome assessment and the assessment performed by the 
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proposed automatic system. A log-rank test was applied to evaluate for any statistically significant 

difference between the curves for each event. Figure 2.5 demonstrates the Kaplan-Meier curves 

for the LF and ARE events. The curves obtained for the automatic system are similar to their 

clinically assessed counterparts. No significant difference was observed between the curves for the 

LF (p-value = 0.95) or ARE (p-value = 0.49) event.  

 

Figure 2.5- Kaplan-Meier curves for comparative time to event analysis between the clinical radiotherapy outcome assessment and 

the assessment performed by the proposed automatic system on the test set. The plots have been shown for the LF (left) and ARE 

(right) events. The time to event for each tumour was calculated from the date of radiotherapy to the date an LF/ARE was detected 

clinically or by the automatic system using the proposed segmentation framework. 

2.4. Discussion and Conclusion 

In this chapter, a novel system was proposed for automatic assessment of therapy outcome in brain 

metastasis patients treated with SRT. At the heart of the proposed system is a deep learning-based 

segmentation framework to delineate tumours longitudinally in serial MRI with high precision. 

Longitudinal segmentations of tumour before and at multiple follow-up sessions after the SRT 

permit monitoring changes in tumour size for automatic assessment of therapy outcome based on 

standard clinical criteria.  
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The segmentation framework was designed such that it can tackle the memory limitations 

associated with effective training of complex deep networks by cropping the volumetric images 

around the tumour. Two cascaded 2D UNets were trained to find the approximate position of the 

tumour. This position is later used to crop the MRI volume around the tumour. Experimental 

results show that the cascaded 2D & 3D UNet model could considerably improve the segmentation 

accuracy compared to the cascaded UNets and the 3D UNet alone. Further, the segmentation 

framework proposed in this study outperformed the cascaded 2D UNets, the 3D UNet, the 

cascaded 2D & 3D UNet, and the nnUNet models. By incorporating the MSGA network into the 

framework, the model benefits from both the cascading and ensembling mechanisms to improve 

the segmentation accuracy [112]. The MSGA network applies a multi-scale attention mechanism 

to focus on crucial regions of the images and discard redundancies in the extracted features while 

learning tumour segmentation. Also, complementary information is provided to the framework 

through MSGA by feeding T2-FLAIR images as an additional input channel to the MSGA 

network. As such, fusing the outcome of this network with 3D UNet potentially improves the 

overall performance of the segmentation framework, as observed in this study. In terms of 

segmentation time, the framework takes about 5 seconds to find the approximate position of 

tumour in an input MRI volume and 5 seconds to perform tumour segmentation with the 3D UNet 

and MSGA networks and generate the final mask, using an Nvidia GeForce RTX 2080 Ti (~10 

seconds in total in comparison to ~8 seconds associated with the nnUNet model.) 

The performance of the proposed system was subsequently evaluated in monitoring the 

tumour size status at several imaging follow-ups after SRT. Experimental results demonstrated an 

accuracy of 86% in detecting tumour size status (increase/stable/decrease), on the independent test. 
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It should be noted though, that these labels were manually determined at each follow-up by only 

one observer, and therefore labeling error is expectable due to measurement errors, especially for 

smaller tumours and those lying closer to the class boundaries. Such errors may affect the reported 

accuracies in automatic labeling of the tumour size status. Future studies may mitigate possible 

errors in ground-truth labeling of tumour size status using a multiple observer strategy.  

The proposed system also demonstrated a promising performance in detecting tumour size 

status in terms of response categories at individual follow-up scans, and subsequently automatic 

assessment of SRT outcome (LC/LF and ARE) on the independent test set. The automatic outcome 

assessment system in this study evaluates the presence of ARE after radiotherapy based on the 

pattern of changes in tumour size on serial MRI, with acceptable accuracy. However, it should be 

noted that monitoring tumour size changes on serial imaging is not always enough to draw an 

accurate conclusion on whether an observed tumour size increase on imaging is associated with 

progressive disease or ARE. Along with other radiological insights such as those based on T1/T2 

matching or use of perfusion MRI [93], [113], additional clinical evidence including histological 

confirmation is sometimes required to diagnose ARE. As such, standard serial MRI is usually used 

by oncologists in conjunction with other clinical criteria to detect pseudo-progression or radiation 

necrosis after radiotherapy. Considering the performance of the proposed system in accurate 

tumour segmentation, monitoring tumour size changes longitudinally, and detecting LC/LF and 

ARE outcomes, it can be applied as an effective decision support system for radiotherapy outcome 

assessment to triage complicated boundary cases that required further assessment by clinicians. 

Previous studies have shown the potential of deep-learning-based methods in automatic 

brain tumour segmentation and assessment of tumour size changes in response to treatment. Xue 
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et al. [49] proposed a cascade of modified 3D UNet architecture for the detection and segmentation 

of brain metastases on 3D T1 MPRAGE images. They proposed the utility of automatically 

generated segmentation masks for facilitating radiotherapy treatment planning and post-treatment 

monitoring of tumour size, where they demonstrated example results for one case. Cho et al. [50] 

developed a CAD system for automated detection of brain metastasis on MRI using a UNet based 

cascaded model and applied it for categorizing tumour size changes at two follow-up sessions 

separately, where they achieved a moderate agreement with RANO-BM criteria. The study here 

features a novel deep-learning-based system for automatic assessment of radiotherapy outcome in 

brain metastasis using an attention-guided architecture for accurate tumour segmentation. The 

system was evaluated on multiple MRI scans for each patient to demonstrate its performance in 

precise tumour segmentation and monitoring tumour size status at individual follow-up sessions, 

and in detecting LC/LF and ARE outcomes after SRT using the pattern of tumour size changes on 

serial MRI. The system was also evaluated in terms of similarity of time to detected LF and ARE 

events compared to those identified clinically. To our knowledge, this is the first time a 

comprehensive study is performed to investigate the efficacy of deep-learning-based segmentation 

frameworks for automatic radiotherapy outcome assessment. The findings of this study are in 

agreement with observations of the previous papers where the potential of data-driven 

segmentation models was shown in monitoring tumour size changes after treatment, while it 

extends the preliminary investigations by developing a novel segmentation framework and 

demonstrating its promising performance for various tasks within a radiotherapy outcome 

assessment workflow. 
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Objective assessment of tumour response to therapy has been the basis for many 

investigations in cancer therapeutics during recent years [68]. The RANO-BM criteria and 

recommendations were proposed to establish a basis for standard response assessment in clinical 

trials for brain metastasis. The improved uniformity in response assessment following the RANO-

BM criteria facilitates the interpretation of studies involving patients with brain metastasis. This 

is especially important as the new trend is away from automatically excluding patients with active 

brain metastasis from the clinical trials of novel therapies [114]. A number of previous studies 

have explored the RANO-BM criteria as a tool for objective response assessment. Douri et al. 

[115] evaluated RANO-BM criteria’s current threshold in a cohort of 50 patients with brain 

metastasis treated by SRS. Their findings show that current RANO-BM thresholds are useful in 

assessing diameter increases caused by tumour progression and pseudo progression but may need 

adjustments to identify clinically relevant tumour progression reliably. Fischedick et al. [116] 

compared the 2D linear and 3D volumetric measurement methods for post-SRT monitoring of 

brain metastasis. The 2D and 3D measurements were categorized according to the RANO-BM 

criteria and Matthew J. et al. [117], respectively. They concluded that results obtained from the 

2D and 3D measurements are highly comparable. While the criteria proposed for volumetric 

analysis in RANO-BM guideline are incomplete due to lack of research to support specific 

recommendations, Oft et al. [111] adopted the basic concept from the RANO-BM guideline to 

derive volumetric criteria and investigated the predictors for volumetric regression after SRT. 

Their result show that volumetric regression post-SRT does not occur at a constant rate, and a cut-

off of ≥20% regression for the volumetric definition of response at 3 months post-SRT was 

predictive for subsequent control. Further research is required to validate specific threshold 
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recommendations for volumetric monitoring of brain metastasis after radiotherapy. The automatic 

system proposed in this paper can facilitate such investigations in the future and is a step forward 

toward a volumetric radiotherapy response assessment paradigm. 

There is a huge interest in finding reliable clinical and/or imaging features that would assist 

in distinguishing ARE from tumour progression to limit the number of cases triaged for diagnostic 

biopsy or surgical resection [118]. Various methods such as those based on the qualitative [93] 

and quantitative [119] assessment of T1/T2 matching, and perfusion [120], [121], and CEST [108] 

MRI have shown relatively effective with different degrees of accuracy to differentiate ARE from 

tumour progression. Accurate segmentation of tumour on MRI is a prerequisite for all these 

methods. Wiggenraad et al. have investigated the use of cine-loops for monitoring tumour size 

changes in brain metastasis after SRT to identify pseudo-progression (ARE) [122]. They created 

the cine-loops for ten patients using the axial slice with the largest tumour diameter on pre-

treatment contrast-enhanced T1-weighted MRI and the corresponding slices in the co-registered 

follow-up images. The cine-loops were evaluated by a group of radiation oncologists and 

neuroradiologists for interpretation of events after SRT, where it was concluded that the use of 

cine-loops was superior to the assessment of separate MRI scans. To our knowledge, no previous 

study has investigated the application of automatic brain tumour segmentation on serial MRI for 

monitoring the pattern of tumour size changes to detect ARE. 

One potential limitation associated with this study is its relatively small cohort size. Here, 

several MRI datasets acquired at different imaging sessions for each patient were applied to 

evaluate the proposed framework. While the results presented are encouraging and pave the way 

for future studies, more investigations are required for further evaluation of the proposed 
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methodologies on larger patient populations and possibly multi-centre imaging data. The patients 

in this study had relatively large brain metastases treated with hypo-fractionated SRT. Although 

tumours with a size of 5 mm and above were included in this study, future studies focusing on 

tumours with size of less than 1 cm are required for further assessment of the performance of the 

framework on smaller brain metastases typically treated with SRS. ARE in this study was 

diagnosed clinicoradiologically based on serial imaging, and/or histological confirmation. 

Diagnosing ARE clinicoradiologically without histological confirmation, however, may be prone 

to errors due to misinterpretation of images in complicated cases. As such, future studies on 

imaging datasets with ground-truth histology for all ARE cases are necessary for further validation 

of the results of this study. 

The proposed segmentation framework demonstrated good generalizability in longitudinal 

segmentation of brain tumours on serial MRI, while it was only trained on the baseline images of 

the training set. The generalizability of the proposed framework makes it an appropriate fit for the 

task of automatic therapy outcome assessment. Implementation of the proposed system in clinical 

settings can potentially accelerate longitudinal tumour size analyses, streamlines image-guided 

therapy outcome evaluation workflows, e.g., for local response assessment and ARE detection, 

and facilitates precision oncology through regular and high-throughput response assessment. This 

is particularly important in the case of patients with multiple brain metastases where manually 

segmenting tumours on several follow-up scans put a substantial burden on clinical workflow. The 

system can possibly be coupled with PACS-based databases to perform online and/or offline 

tumour size analyses on serial imaging and act as an invaluable decision support tool in the clinic. 

Although a more comprehensive study (along with repeating the experiments through cross-
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validation, given the availability of ground-truth masks for all patient follow-ups) is a prerequisite 

to further validate the results of this study and the clinical utility of the proposed system, the 

promising results obtained here, and the prospect of its real-world applications highlight the 

importance of the findings in this study. 
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3. Chapter 3 

Impact of Tumour Segmentation Accuracy on Efficacy of 

Quantitative MRI Biomarkers of Radiotherapy Outcome in 

Brain Metastasis*2 

 

 
 

3.1. Introduction 

While the exact incidence of brain metastasis is difficult to determine, about 70,000 to 400,000 

new cases are annually diagnosed in the United States alone [123]. The incidence of brain 

metastasis appears to be ten times higher than the incidence of primary malignant brain tumours 

[124]. Because of the accompanying neurologic symptoms, psychological effects, and changes in 

oncologic treatment plans, the development of brain metastasis may significantly affect a patient's 

clinical course [125]. 

Radiation therapy, chemotherapy, immunotherapy, and surgery are the main treatment 

options for the management of metastatic brain tumours. Because systemic therapy often fails to 

penetrate the blood-brain barrier, local brain-directed therapies such as radiation or neurosurgical 

resection are commonly used [126], although there has been some progress in the use of systemic 

targeted therapy for the management of patients with brain metastasis [127]. Whole-brain radiation 

                                                 

 *A version of the material presented in this chapter has been published in Cancers, 14(20): 5133, 2022. DOI: 

10.3390/cancers14205133. 
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therapy (WBRT), hypo-fractionated stereotactic radiotherapy (SRT), and single-fraction 

stereotactic radiosurgery (SRS) are available options for radiotherapy. Apart from these options, 

recent studies have shown that a combination of immunotherapy with radiotherapy is associated 

with improved overall survival compared to radiotherapy alone in patients with brain metastasis 

who received surgery for their primary cancer [128]. Specially, immunotherapy has shown 

significant control of intracranial metastasis in patients with melanoma [128]. Moreover, a 

combination of immunotherapy, e.g., immune checkpoint inhibitors, with radiation therapy has 

shown promise for the treatment of brain metastasis in non-small-cell lung cancer [129], [130]. 

Magnetic resonance imaging (MRI) is the primary imaging modality used for diagnosis, treatment 

planning, and treatment outcome assessment in brain metastasis. The conventional treatment 

planning and outcome evaluation process includes obtaining MRI scans before (baseline) and after 

radiation therapy, during several follow-up sessions. This procedure involves precise delineation 

of the tumour, which is often carried out by experienced radiation oncologists and 

neuroradiologists. The response assessment in neuro-oncology-brain metastasis (RANO-BM) 

group [28] has developed standard criteria for evaluating radiotherapy outcome in brain metastasis 

using serial MRI. The local response of brain metastasis to stereotactic radiation therapy is 

determined by changes in tumour size on follow-up serial imaging [28] and may be classified into 

two categories: local control (LC; shrinking or stable tumour) and local failure (LF; enlarging 

tumour excluding adverse radiation effect). In case of immunotherapy, the immunotherapy 

response assessment in neuro-oncology (iRANO), a modification of RANO criteria, is used for 

response assessment [131].   
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Since the conventional response assessment is based on the changes in tumour size 

following treatment, it may take months before a local response is apparent on standard follow-up 

images. This is not desirable, especially given the fact that patients diagnosed with brain metastasis 

suffer from a short median survival. To make things more complicated, lesion enlargement after 

treatment on MRI is not necessarily a sign of tumour progression, but also of a condition known 

as pseudo-progression due to adverse radiation effect [91].  

To mitigate these complications and since the local response is highly varied even among 

the patients going through the same treatment regimen (because of the patient and/or tumour-

related factors) there have been efforts to develop a tailored treatment strategy based on the 

patient’s subgroup and predicted survival [32]. Early efforts involved stratifying patients based on 

factors such as age, performance status, control of primary tumour, and extent of extracranial 

disease using recursive partitioning analysis (RPA) [12], [30], [132], followed by more 

complicated stratification methods such as diagnosis-specific graded prognostic assessment (DS-

GPA) [31], [32]. Significant prognostic factors such as the primary site of cancer, age, and 

Karnofsky performance status are used to define the DS-GPA prognostic index. A GPA of 4.0 

correlates with the best prognosis, whereas a GPA of 0.0 corresponds to the worst prognosis.  

The successful application of artificial intelligence (AI) for diagnostic purposes has led to 

the development of AI-based cancer imaging analysis, which is now being employed to meet more 

sophisticated therapeutic requirements, such as patient stratification and therapy outcome 

prediction. Neuroimaging data can be used to extract quantitative and semi-quantitative image 

features that are often beyond human vision. Given the abundance of MRI and CT data acquired 

as part of the standard of care for patients with brain metastasis, there is a huge amount of data 



58 

 

 

available for mining useful prognostic features to help with response prediction before or early 

after therapy. Radiomics has been introduced as a formal approach for extracting and discovering 

quantitative diagnostic and prognostic features from medical images [133]. The quantitative 

features extracted from the medical imaging data for biomarker discovery in radiomic analysis are 

usually categorized as [134] morphological features that quantify the geometry and shape of the 

region of interest such as sphericity, first-order statistical features that describe the voxel intensities 

without considering the spatial relationship between them such as intensity mean or standard 

deviation, second-order texture features that are obtained by calculating the statistical 

interrelationships between the intensity of neighboring voxels, such as those based on grey-level 

co-occurrence matrix (GLCM), and higher-order statistical features that are obtained after 

applying a transformation on the image, e.g., features extracted from textural parametric images. 

New studies have shown connections between tumour radiomic signatures and their 

phenotypes, genomic, and proteomic profiles [75], [135]–[137]. Inspired by such connections, 

several studies have explored the potential of radiomic features in conjunction with machine 

learning (ML) to develop an efficient and non-invasive method of characterizing metastatic brain 

tumours and predicting their treatment outcome. Karami et al. [77] have proposed an MRI-based 

radiomic framework for early prediction of treatment outcome in patients with brain metastasis 

treated with hypo-fractionated stereotactic radiation therapy (SRT). The proposed quantitative 

MRI (qMRI) biomarkers were developed through a multistep feature 

extraction/reduction/selection framework and fed to a support vector machine (SVM) classifier to 

predict the radiotherapy outcome in terms of LC/LF. A recent study by Mouraviev et al. has 

investigated whether MRI radiomic features provide any additional value to clinical variables for 



59 

 

 

predicting local control in brain metastasis following SRS [138]. The results show that the addition 

of radiomic features to the clinical variables increases the area under the ROC curve considerably.  

In quantitative cancer imaging and radiomics, the entire tumour volume should be 

segmented to determine the region of interest (ROI) for analysis. The segmented tumour 

boundaries also determine other relevant regions such as the peri-tumoural areas for further 

analysis. Therefore, accurate tumour delineation is a fundamental step in oncologic radiomics. 

Manual segmentation of tumour on volumetric images acquired at several imaging sessions for 

each patient is a tedious and time-consuming job. Automatic segmentation of tumours facilitates 

radiomic analyses and streamlines the standard process of therapy outcome evaluation in the clinic 

considerably, possibly at the cost of less accuracy.  

In this chapter, we evaluate the impact of tumour segmentation accuracy on efficacy of the 

quantitative MRI biomarkers for radiotherapy outcome prediction in brain metastasis. A cascaded 

attention-guided framework is proposed to accurately segment the tumour on the baseline and first 

follow-up automatically. Using the segmentation masks generated with this framework, we 

extracted radiomic biomarkers associated with the tumour and peri-tumoural areas from T1-

weighted (T1w) and T2-weighted-fluid-attenuation-inversion-recovery (T2-FLAIR) MR images 

to develop predictive models of radiotherapy outcome. The study results show that to extract 

meaningful and distinguishing biomarkers, tumour masks should be reasonably accurate but not 

necessarily matching completely the ground-truth identified manually by expert clinicians. In 

particular, the results of outcome prediction using the ground-truth and the automatically generated 

masks are comparable with the top selected biomarkers shared between the two approaches.  
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3.2. Materials and Methods 

3.2.1. Data Acquisition  

This research was carried out in compliance with the institutional research ethics board approval 

from Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. The imaging data were 

obtained from 124 patients who had been diagnosed with brain metastasis and were treated with 

hypo-fractionated SRT over five fractions. Gadolinium contrast-enhanced T1w and T2-FLAIR 

images were acquired before the treatment (baseline) and at the first follow-up after SRT. Both the 

T1w and the T2-FLAIR had an in-plane resolution of 0.5 mm. The slice thickness for the T1w and 

T2-FLAIR images was 1.5 mm, and 5 mm, respectively. T2-FLAIR images were co-registered on 

the T1w images, and both images were resampled to make the voxel size isotropic 

(0.5 × 0.5 × 0.5 𝑚𝑚3), rendering the size of both MRI volumes at 512 × 512 × 348 voxels. The 

voxel intensities in each image were normalized between 0 and 1. The treatment-planning tumour 

outlines delineated by expert oncologists and neuroradiologists for each patient were included in 

the dataset. Among 124 patients (156 lesions), 99 patients (116 lesions) were randomly assigned 

for training and optimization of the predictive models (10 patients with 15 lesions as the validation 

set for optimizing the model hyperparameters) and 25 patients (40 lesions) were kept unseen as an 

independent test set. 

After SRT, the patients underwent follow-up MRI scans every two to three months. The 

lesions were monitored using serial MRI, and a radiation oncologist and a neuroradiologist 

determined the local response for each lesion using the RANO-BM [28] criteria. The local outcome 

was categorized as either LC (complete response, partial response, or stable disease) or LF 

(progressive disease) based on the response determined in the last follow-up session. Using serial 
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imaging (including perfusion MRI) and/or histological confirmation, the adverse radiation effect 

(ARE) was diagnosed and distinguished from local progression [92], based on the report by Sneed 

et al. [91]. Following these criteria, a total of 93 and 63 lesions were classified as LC and LF, 

respectively. 

 

Figure 3.1- The overall system for SRT outcome prediction. The segmentation module segments tumours on the baseline (BL) and 

the first follow-up (FU1) MR images. Using the MR images and segmentation masks, different radiomic features are extracted. 

The features are then sorted based on their relevance/redundancy and a subset of them identified through feature selection are used 

to train a classifier for predicting the local outcome. 

3.2.2. System Overview 

Figure 3.1 shows the overall framework adapted for predicting the local outcome in patients 

diagnosed with brain metastasis. Since a tumour segmentation mask is necessary for extracting 

radiomic features, in this study we replaced the manual tumour masks with the ones generated 

automatically by our proposed segmentation framework. Using the MR images of both modalities 

(T1w and T2-FLAIR) and the automatically generated segmentation masks, the radiomic features 

are extracted from the tumour and peri-tumoural regions for both the baseline and first follow-up 

sessions. The change in each feature is then calculated at the first follow-up relative to the baseline. 

The number of features is reduced using feature selection techniques. The selected features are 
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then fed to train a classifier to predict the therapy outcome. More details on different components 

of the framework are provided in the following subsections.  

3.2.3. Segmentation Module 

The segmentation module applied in this chapter and its components have been described in detail 

in Section 2.2.2. 

3.2.4. Radiomic Feature Extraction 

Using the radiomic features, a quantitative description of each tumour can be derived from imaging 

data. A total of 3,436 radiomic features were extracted from the tumour region and its 5 mm margin 

[77] on T1w and T2-FLAIR MR volumes acquired at baseline and the first follow-up using the 

automatically generated masks. The extracted radiomic features included the first-order statistics 

(including energy, entropy, etc., a total of 19 features), 2D and 3D morphological features 

(including maximum 2D diameter, flatness,  sphericity, a total of 26 features), and texture features 

derived based on the gray level co-occurrence matrix (GLCM) (total of 24 features), gray level run 

length matrix (GLRLM) (total of 16 features), gray level size zone matrix (GLSZM) (total of 16 

features), neighbouring gray tone difference matrix (NGTDM) (total of 5 features), and gray level 

dependence matrix (GLDM) (total of 14 features). All features were extracted using the 

Pyradiomics package in Python [139]. The morphological features were derived from the 

generated binary masks.  Other features were extracted from both the original MR images and the 

associated wavelet-filtered images. For the latter, low- and high-pass wavelet filters were applied 

in the x, y, and z directions of the 3D images resulting in eight filtered images of IHHH, IHHL, …, 

ILLL for each original image. The delta radiomic features were calculated using the relative 

difference between the value of each feature at baseline and the first follow-up. 
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3.2.5. Feature Extraction 

In machine learning, feature selection approaches allow to save computation time, improve 

prediction performance, and gain a deeper knowledge of the data [140]. The delta radiomic features 

were processed through a feature selection procedure using the minimum redundancy maximum 

relevance (mRMR) method [141] with a mutual information quotient (MIQ) criterion. The mRMR 

method tends to select a feature subset with high correlation to the target class (output) and low 

inter-feature correlations. The F-statistics were used to calculate the correlation with the target 

class (relevance), while the Pearson correlation coefficient was applied to calculate the inter-

feature correlations (redundancy). The MIQ score represents the quotient of relevance and 

redundancy. Ultimately, among the 3,436 features, seven features were selected using the mRMR 

technique. For the feature selection process, only the training data was applied to prevent data 

leakage from the training set to the test sets.  

3.2.6. Classifier 

A support vector machine (SVM) with a Gaussian kernel was adapted as the classifier for outcome 

prediction because of its demonstrated performance, versatility coming from different kernels, and 

effectiveness in high dimensional space [142]. The selected delta radiomic features in the training 

set were normalized between 0 and 1 and used to train the SVM classifier with various 

hyperparameters. The best SVM model was selected based on the performance of the model on 

the validation set using the area under the receiver operating characteristics (ROC) curve (AUC) 

criterion. In this model, the penalty (C), gamma, and the tolerance parameters were set to 1,  

1

𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  , and 1𝑒 − 3, respectively. A class weight inversely proportional to the class 

frequencies was also assigned to each class. Finally, the model was tested on the independent test 
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set, where the corresponding features were normalized using the normalization coefficients 

obtained for the training set.  

3.3. Results 

Table 3.1 demonstrates the results obtained with the proposed framework on the training and test 

sets for tumour segmentation at the baseline and first follow-up in terms of dice similarity 

coefficient (DSC), Hausdorff distance (HD), and volume estimation error (VEE). For comparison, 

the segmentation results are also reported for the cascaded 2D UNets, 3D UNet, and the cascaded 

2D and 3D UNets. The results of Table 3.1 demonstrate the superiority of the proposed framework 

compared to the other models in accurately segmenting tumours on the baseline and first follow-

up which later demonstrates its importance in predicting the local response to radiotherapy.  

Table 3.2 shows the most important features selected using the mRMR feature selection 

method for different segmentation models. A comparison between the selected features extracted 

using the ground-truth masks and the cascaded 2D & 3D UNets + MSGA model shows that six 

out of seven features are shared between the two models. This indicates that the tumour masks 

generated using the proposed segmentation framework may be sufficiently accurate for MRI 

radiomic analysis in this application. The number of shared features with the ground-truth 

gradually reduces when the accuracy of segmentation models decreases, with no shared feature for 

the cascaded 2D UNets. 

Figure 3.2 demonstrates the parametric maps of the top four selected features based on the 

ground-truth (Table 3.2) overlayed on the baseline and follow-up images of a representative 

tumour with an LF outcome. The parametric maps are shown for the ground-truth mask and the 
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automatically generated segmentation masks obtained from different models. The figure 

demonstrates that the parametric maps and the relative changes of features from the baseline are 

in good agreement with the ground-truth for the models with acceptable segmentation accuracy. 

Table 3.1- Dice similarity coefficient (DSC), the 95% confidence interval (CI) of DSC, Hausdorff distance (HD), and volume 

estimation error (VEE) for segmentation of brain metastasis using different network architectures. 

Segmentation Model 

Baseline First Follow-up 

Training Set Test Set 
Training Set 

Patients 

Test Set 

Patients 

Cascaded 2D UNets 

DSC 0.85 ± 0.05 0.85 ± 0.06 0.82 ± 0.05 0.81 ± 0.07 

DSC CI 0.84 – 0.86 0.83 – 0.87 0.81 – 0.83 0.79 – 0.81 

HD 3 ± 0.6 mm 3.4 ± 0.7 mm 3.46 ± 0.6 mm 3.7 ± 0.5 mm 

VEE 
0.63 ± 0.44 cc 

17.2%± 6.1% 

0.71 ± 0.47 cc 

19.4% ± 8.3% 

0.75 ± 0.5 cc 

20.6% ± 8.5% 

0.77 ± 0.51 cc 

21.5% ± 9% 

3D UNet 

DSC 0.87 ± 0.06 0.85 ± 0.06 0.85 ± 0.05 0.82 ± 0.06 

DSC CI 0.86 – 0.88 0.83 – 0.87 0.84 – 0.86 0.80 – 0.84 

HD 2.9 ± 0.8 mm 3.1 ± 0.82 mm 3.2 ± 0.85 mm 3.5 ± 0.6 mm 

VEE 
0.6 ± 0.42 cc 

15.8% ± 5.4% 

0.7 ± 0.45 cc 

17% ± 7% 

0.72 ± 0.47 cc 

18% ± 7.3% 

0.75 ± 0.53 cc 

18.9% ± 9.5% 

Cascaded 2D & 3D 

UNets 

DSC 0.89 ± 0.05 0.88 ± 0.05 0.86 ± 0.05 0.83 ± 0.05 

DSC CI 0.88 – 0.90 0.86 – 0.90 0.85 – 0.87 0.81 – 0.85 

HD 2.45 ± 0.6 mm 2.65 ± 0.63 mm 2.8 ± 0.6 mm 3.1 ± 0.5 mm 

VEE 
0.55 ± 0.35 cc 

13.1%± 4.2% 

0.61 ± 0.4 cc 

15.8% ± 6.5% 

0.64 ± 0.43 cc 

16.6% ± 6.8% 

0.68 ± 0.5 cc 

17.9% ± 7.7% 

Cascaded 2D & 3D 

UNets + MSGA 

DSC 0.91 ± 0.03 0.90 ± 0.04 0.89 ± 0.04 0.87 ± 0.05 

DSC CI 0.90 – 0.92 0.89 – 0.91 0.88 – 0.90 0.85 – 0.89 

HD 2.1 ± 0.45 mm 2.3 ± 0.55 mm 2.21 ± 0.5 mm 2.74 ± 0.49 mm 

VEE 
0.42 ± 0.3 cc 

11.2% ± 3.9% 
0.53 ± 0.36 cc 

12.8 % ± 5.1% 

0.57 ± 0.38 cc 

14.7% ± 4.7% 

0.61 ± 0.48 cc 

15.9% ± 5.1% 

 

Table 3.3 shows the results of outcome prediction on the independent test set in terms of 

accuracy, sensitivity, specificity, AUC, and F1-score, using the selected radiomic features 

associated with different tumour segmentation models. 
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Table 3.2- List of the top seven selected features using the mRMR feature selection method for different segmentation models. 

Bold features are the shared ones with those obtained using the ground-truth segmentation masks. 

Segmentation Model Selected Features 

Cascaded 2D UNets 

wavelet-LLH_glcm_Correlation_T2_Margin 

wavelet-LHH_glrlm_RunVariance_T2 

original_gldm_DependenceVariance_T2_Margin 

wavelet-HLH_glcm_Imc2_T2_Margin 

wavelet-LHH_glcm_Idm_T2_Margin 

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1 

wavelet-HHH_glszm_ZonePercentage_T1_Margin 

3D UNet 

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2 

original_gldm_DependenceEntropy_T2_Margin 

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1 

wavelet-HLH_gldm_SmallDependenceLowGrayLevelEmphasis_T2 

wavelet-HHL_ngtdm_Contrast_T2 

wavelet-HLH_glcm_Imc2_T2_Margin 

original_gldm_DependenceVariance_T2_Margin 

Cascaded 2D & 3D 

UNets 

wavelet-HHL_firstorder_Minimum_T1_Margin 

original_gldm_DependenceEntropy_T2_Margin 

original_glcm_Idn_T2_Margin 

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2 

wavelet-LHL_glcm_Contrast_T1 

wavelet-HHH_gldm_DependenceVariance_T1_Margin 

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1 

Cascaded 2D & 3D 

UNets + MSGA 

wavelet-HHL_firstorder_Minimum_T1_Margin 

original_gldm_DependenceEntropy_T2_Margin 

original_glcm_Idn_T2_Margin 

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2 

wavelet-LLL_ngtdm_Strength_T1_Margin 

wavelet-HLL_glcm_Idn_T1_Margin 

wavelet-HHL_firstorder_Skewness_T1 

Ground-Truth 

wavelet-HHL_firstorder_Minimum_T1_Margin 

original_gldm_DependenceEntropy_T2_Margin 

original_glcm_Idn_T2_Margin 

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2 

wavelet-LLL_ngtdm_Strength_T1_Margin 

wavelet-HLL_glcm_Idn_T1_Margin 

wavelet-LHH_glszm_SizeZoneNonUniformityNormalized_T1_Margin 
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Figure 3.2- Representative parametric maps of the top four selected features based on the ground-truth (Table XVI) overlayed on 

the associated MR images acquired at the baseline and the first follow-up from a representative tumour with an LF outcome. The 

parametric maps are shown for the ground-truth mask and the segmentation masks generated automatically using different models. 

Δmean for each feature is the mean relative change from the baseline at the first follow-up that is calculated for different masks. 
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The results in Table 3.3 show that the prediction performance of the radiomic model 

associated with the tumour masks generated automatically using the cascaded 2D & 3D UNets + 

MSGA network is reasonably close to the ground-truth model (AUC of 0.78 versus 0.81). On the 

other hand, the tumour masks generated using the cascaded 2D UNets or 3D UNet have resulted 

in considerably lower performances of the corresponding radiomic models (AUC of 0.62 and 0.67, 

respectively) compared to the ground-truth. The sensitivity and specificity of the ground-truth 

model versus the model developed with the cascaded 2D & 3D UNets + MSGA network are 83% 

and 78% versus 77% and 83%. This also indicates reasonably close performance of the ground-

truth masks and those generated automatically by the proposed segmentation framework in 

radiomic modeling for treatment outcome prediction. The sensitivity of the ground-truth model is 

slightly better which shows it can detect local failure cases more accurately. On the other hand, 

the model developed with the cascaded 2D & 3D UNets + MSGA network performs better in 

detecting the local control cases. These observations imply that although accurate segmentation of 

tumour region is important in developing radiomic-based predictive models of therapy response, 

such models can be reasonably robust to imperfections in their input tumour masks. 

Table 3.3- Results of therapy outcome prediction using the radiomic models developed with different segmentation modules. 

Segmentation Model 

Independent Test Set 

Accuracy Sensitivity Specificity AUC F1-Score 

Cascaded 2D UNets 72.5% 70.6% 74% 0.62 68.5% 

3D UNet 72.5% 70.6% 74.% 0.67 68.5% 

Cascaded 2D & 3D UNets 77.5% 76.5% 78.2% 0.72 74.3% 

Cascaded 2D & 3D UNets + MSGA 80% 76.5% 82.6% 0.78 76.5% 

Ground-Truth 80% 82.5% 78.2% 0.81 77.8% 
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Figure 3.3 demonstrates the results of survival analysis on the test set. The Kaplan–Meier 

progression-free survival curves are presented for two patient cohorts classified based on their 

predicted outcome by the radiomic models developed with different segmentation modules. A log-

rank test applied on the survival curves of the two cohorts demonstrates no statistically significant 

difference for the models developed with cascaded 2D UNets or 3D UNet. However, a significant 

difference is observed between the survival curves of the cohorts stratified by the models 

developed with cascaded 2D & 3D UNets, cascaded 2D & 3D UNets + MSGA, and the ground-

truth masks. 

 

Figure 3.3- Kaplan-Meier progression-free survival curves for two cohorts of patients stratified based on the outcome prediction 

by the radiomic models developed with different segmentation modules: (a) Cascaded 2D UNets, (b) 3D UNets, (c) Cascaded 2D 

& 3D UNets, (d) Cascaded 2D & 3D UNets + MSGA, and (e) Ground-truth masks. Cohort 2 includes the patients in the independent 

test set who had at least one lesion with a predicted outcome of local failure, and cohort 1 includes all other patients in the 

independent test set. 
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3.4. Discussion and Conclusion 

Accurate segmentation of brain tumours on the baseline and follow-up images is an essential yet 

laborious task. It is required for therapy response assessment as well as for extracting imaging 

biomarkers in various diagnostic and prognostic applications. An automatic segmentation method 

streamlines the therapy outcome prediction and evaluation workflow (which requires ROI masks 

for analysis), potentially at the cost of less accuracy. In this study, we investigated the effect of 

tumour segmentation accuracy on efficacy of the MRI radiomic biomarkers extracted from the 

tumour and tumour margin for radiotherapy outcome prediction in brain metastasis. The results of 

our study show that while the impact of tumour delineation accuracy is considerable for less 

accurate segmentation models (dice score ≤ 0.85), the radiomic features and prediction models are 

relatively robust to imperfections in the generated tumour masks. In particular, the list of selected 

features associated with the ground-truth tumour masks and those generated using the cascaded 

2D & 3D UNets + MSGA model (with an average dice score of about 0.90) shared six out of the 

seven features selected based on the mRMR method. Furthermore, the features extracted using the 

tumour masks generated by this segmentation model resulted in an outcome prediction model with 

fairly close performance metrics to those obtained by the ground-truth model, including the 

accuracy, sensitivity, specificity, AUC, and F1-score of %80 versus 80%, 77% versus 83%, 83% 

versus 78%, 0.78 versus 0.81, and 77% versus 78%, respectively. Progression-free survival 

analyses demonstrated that both the outcome prediction models could stratify the patients into two 

cohorts (low-risk versus high-risk) with statistically significantly different survival curves. 

The effect of segmentation accuracy on the performance of radiomic features for different 

cancer sites and imaging modalities is a subject yet to be explored in the literature. Among research 
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done so far, Jin et al. studied the effect of automatic segmentation using multiple UNet-based 

architectures on the accuracy of radiomic features for transvaginal ultrasound images of cervical 

cancer [143]. The results of that study show the feasibility and reliability of automatic 

segmentation, especially with UNet-based models, for relevant radiomic studies. This is in 

agreement with the observation of this study where fairly accurate tumour segmentation was found 

to be sufficient for radiomic models of cancer therapy response. Teng et al. studied the effect of 

automatic segmentation on preoperative lymph node status prediction models with radiomic 

features extracted from ultrasound for patients with early-stage cervical cancer. Their study shows 

that in some cases, automatic segmentation improves the prediction accuracy as human-derived 

segmentation methods introduce human bias into the radiomic process [144]. This is an interesting 

observation that may be valid only for smaller ROIs such as lymph nodes and/or low-SNR imaging 

modalities such as ultrasound but should be rigorously investigated in future works on large sample 

sizes for different cancer sites and imaging modalities. 

The findings of this study show that radiomics in conjunction with machine learning can 

be used to predict radiotherapy outcome in brain metastasis early after treatment, where automatic 

tumour segmentation could potentially be utilized instead of manual segmentation to facilitate 

prediction model development and investigation. In the clinic, these implications could be 

significant as an early prediction of treatment response may lead to therapy adjustments which in 

turn, enhance patients’ survival and quality of life [8]. The observation of this study that 

radiotherapy outcome prediction in brain metastasis is not very sensitive to small inaccuracies in 

tumour segmentation permits high-throughput implementation and exploration of new 

computational prediction models to develop robust systems for clinical decision support.  
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The promising result of this study opens the avenue to applying automatically generated 

segmentation masks for discovering diagnostic and prognostic biomarkers in brain metastasis 

without sacrificing their accuracy. This is a significant contribution considering the heavy burden 

that manual segmentation imposes on image-guided therapeutic systems in neuro-oncology, 

including the models for therapy outcome prediction and the platforms for therapy outcome 

evaluation. One potential future direction for this work is to report the performance of the radiomic 

models with respect to the variabilities in the tumour size, tumour origin, age, sex, etc., given the 

availability of a larger dataset. Also, an ablation study on the selected radiomic features can explore 

the contribution of individual features to the model. Investigating the effects of 

controlled/consistent over- and under-segmentation of tumours on the prediction performance of 

the radiomic models can also be the subject of future studies. Finally, while the findings of this 

paper are promising and pave the way for future research, future investigations are required to 

further assess the conclusions of this study on a larger scale when imaging data are available from 

larger patient cohorts and possibly multi-center studies. 
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4. Chapter 4 

Predicting the Outcome of Radiotherapy in Brain Metastasis 

by Integrating the Clinical and MRI-Based Deep Learning 

Features*3 

 

 
 

4.1. Introduction 

Brain metastases are the most prevalent malignancy of the central nervous system, with an 

incidence rate of 10% to 30% among cancer patients [3]. Because of the overall improvement in 

healthcare and the longer survival of cancer patients, the incidence of brain metastasis is projected 

to rise [2]. 

Timely diagnosis and precise treatment are critical in the survival of patients suffering from 

brain metastasis. The origin of cancer, size/number of metastases, and associated symptoms are 

important factors in planning a treatment strategy for brain metastasis. Surgery, radiation therapy, 

and chemotherapy are the main treatment options for the management of metastatic brain tumours.  

Local response to radiotherapy is highly varied among patients despite administrating 

standardized dose/fraction regimens due to many tumour-related factors such as histology, tumour 

                                                 

*A version of the material presented in this chapter has been published in Medical Physics, 49(11): 7167-7178, 2022. 

DOI: 10.1002/mp.15814. 
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size, and location. Additionally, patient-related factors such as genetics, age, and performance 

status are also predictors of tumour response [29]. Local response of brain metastasis to stereotactic 

radiation therapy is assessed based on the changes in the tumour size on follow-up serial images 

[28],  and can be categorized into local control (LC; shrinking or stable tumour) versus local failure 

(LF; enlarging tumour). It may take months, however, before a local response is evident on follow-

up images, let alone the fact that early changes in tumour size are not always correlated with long-

term local response. In particular, post-treatment lesion enlargement on imaging may not always 

be a sign of tumour progression, but rather of a condition known as pseudo-progression due to 

adverse radiation effect [122]. Given the median survival of as short as 5 months and up to 4 years 

[7], [34], early prediction of LF after radiotherapy can facilitate effective treatment adjustments, 

potentially resulting in improved treatment outcomes, survival, and quality of life.  

The therapeutic paradigm for brain metastasis has steadily shifted to focus more on tailored 

treatments based on the subgroups and predicted survival [32]. Recursive partitioning analysis 

(RPA) was one of the first methods to classify patient prognosis based on age, performance status, 

control of primary tumour, and extent of extracranial disease [12], [30], [132]. A success at the 

time but overly simplistic, RPA is now replaced by more sophisticated stratification methods such 

as diagnosis-specific graded prognostic assessment (DS-GPA) [31], [32]. In this method, a GPA 

of 4.00 and 0.00 is associated with the best and the worst prognosis, respectively. The DS-GPA is 

calculated using prognosis factors based on the primary site of cancer, age, and Karnofsky 

performance status (KPS) [145]. The KPS is a clinical metric to quantify the ability of cancer 

patients to perform everyday activities, with a score in the range of 0-100. 
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Prognostic features could also be mined from textural information on medical images. A 

large body of research shows that imaging modalities, such as magnetic resonance imaging (MRI), 

potentially provide relevant prognostic information that, if appropriately retrieved, can be utilized 

to predict therapy outcome [134], [146], [147]. Radiomics is an emerging translational field of 

research concerned with the high-throughput mining of high-dimensional medical imaging data to 

discover quantitative diagnostic and prognostic features [44]. Studies show the effectiveness of 

radiomic features as prognostic factors. Karami et al. have proposed an MRI-based radiomic 

framework for early prediction of treatment outcome in brain metastasis patients treated with SRT 

[148]. Liao et al. [142] explored the use of radiomics and clinical features in conjunction with 

support vector machines to predict survival and local response of the tumour for patients diagnosed 

with brain metastasis and treated with Gamma Knife radiosurgery. Their study shows that 

combining clinical and radiomic features improve the capability of the model to predict both 

tumour’s local response and overall survival. Mouraviev et al. [138] proposed extracting radiomic 

features from the tumour core and the peritumoural regions and trained a random forest classifier 

on these features to predict local control in brain metastasis treated with stereotactic radiosurgery. 

Their result shows that an optimized combination of radiomic and clinical features resulted in a 

19% increase in the AUC compared to the clinical features alone. Some studies also demonstrate 

correlations between the radiomic signature of tumours and their phenotypes and genomic and 

proteomic profiles [75]. 

While radiomic features are handcrafted, deep learning algorithms could be used to extract 

distinguishing relevant imaging features automatically. Deep learning models have proven to be 

quite effective at identifying important and distinct characteristics, particularly in image data [79], 
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[80]. Deep models have the capability to outline regions of interest automatically, capture textural 

changes within a lesion, discriminate between cancerous and non-cancerous cells, and potentially 

extract distinctive information from lesions to be later used for the task of outcome prediction [54], 

[55], [81]–[88]. Diamant et al. [53] hypothesized that convolutional neural networks could enhance 

the performance of traditional radiomics, by detecting image patterns that may not be covered by 

a traditional radiomic framework. They tested their hypothesis for the task of head & neck cancer 

therapy outcome prediction and their results show that deep models can explicitly recognize 

traditional radiomic features and perform accurate outcome prediction. A recent study by Cho et 

al. [89] suggests that using deep learning methods instead of classic machine learning results in 

brain metastasis detection with a lower false-positive rate.  

Many scenarios in medical imaging analysis require dealing with a sequence of spatially 

connected pictures, i.e., 3D volumes, such as MRI volumes. Recurrent neural networks (RNN) are 

a suitable fit for dealing with spatial dependency. Recurrent neural networks allow quantifying the 

information persisting between image slices, whereas typical 2D convolutional neural networks 

(CNN) alone do not [149]. Long short-term memory (LSTM) networks are a special kind of RNNs 

capable of learning long-term dependencies [150].  

In this chapter, a novel deep learning framework is proposed and investigated, for the first 

time, to predict local failure in brain metastasis treated with SRT using the treatment planning MRI 

and clinical information available at pre-treatment. The framework consists of a CNN 

(InceptionResNetV2) to extract textural features from single 2D slices in an MRI volume, followed 

by an LSTM network to account for the spatial dependency between the 2D slices. The framework 

is capable of integrating the conventional clinical factors such as histology, tumour location, size, 



77 

 

 

and the number of brain metastases, with the deep learning features of MRI in a comprehensive 

data-driven model for therapy outcome prediction. The results of the study show that coupling the 

clinical factors and deep-learning-based MRI features associated with the entire tumour volume 

improves the performance of therapy outcome prediction model considerably. For further 

comparison, two other models with state-of-the-art architectures, namely, sequence to sequence 

(Seq2Seq) and transformer networks, were investigated to incorporate inter-slice dependencies. 

The results demonstrate that the proposed model with the LSTM network could outperform the 

other two models in therapy outcome prediction. The results obtained with advanced methods of 

visualizing the network’s decision basis highlight the importance of tumour/lesion margin 

characteristics on MRI in therapy response prediction.  

4.2. Materials and Methods 

4.2.1. Study Protocol and Data Acquisition 

This study was conducted in accordance with intuitional research ethics approval from 

Sunnybrook Health Sciences Centre (SHSC), Toronto, Canada. The imaging and clinical data were 

collected from 124 patients diagnosed with brain metastasis and treated with SRT over five 

fractions. The imaging data applied in this study for therapy outcome prediction included 

gadolinium contrast-enhanced T1-weighted (T1w), and T2-weighted-fluid-attenuation-inversion-

recovery (T2-FLAIR) images acquired before the treatment (baseline). The in-plane image 

resolution and the slice thickness were 0.5 and 1.5 mm for the T1w and 0.5 and 5 mm for T2-

FLAIR images, respectively. The dataset also included the treatment-planning tumour contours 

for each patient delineated by expert oncologists and the edema contours outlined under their 

supervision. Among the 124 patients (156 lesions), 99 patients (116 lesions) were randomly 
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selected for training and optimization of the predictive models (10 patients with 15 lesions as the 

validation set for optimizing the model hyperparameters) and 25 patients (40 lesions) were kept 

unseen as an independent test set. The distribution of samples in terms of clinical attributes 

including age, gender, tumour size, histology, and outcome were inspected in the training and test 

sets to ensure statistical similarity.  

The patients were followed up with MRI after radiotherapy on a 2 to 3-month schedule. 

The median imaging follow-up for all patients was 8 months. The lesions were monitored on serial 

MRI and the local response was determined for each lesion by a radiation oncologist and 

neuroradiologist based on the RANO-BM criteria [28]. The local outcome was defined as LC 

(complete response, partial response, or stable disease) or LF (progressive disease) identified in 

the last patient follow-up. Adverse radiation effect (ARE) was diagnosed and differentiated from 

local progression using serial imaging (including perfusion MRI) and/or histological confirmation 

[92] based on the report by Sneed et al. [91]. In keeping with these, 93 and 63 lesions were 

categorized as an LC and LF outcome, respectively. 

4.2.2. Preprocessing 

The baseline T1w and T2-FLAIR images were resampled with a voxel size of 0.5 × 0.5 × 1 mm3. 

The resampled MRI volumes had a size of 512 × 512 × 174 voxel. The T2-FLAIR images were 

co-registered on T1w images using an affine registration. To ensure a local outcome prediction on 

separated lesions, the size of the smallest sub-volume that encompasses the entire region of interest 

(ROI), including the tumour and edema (lesion) and their 5-mm outer margin [51], was determined 

for the individual lesions. Observations of the study presented in [51] demonstrate that MRI 
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radiomic features derived from the lesion margin (3-5 mm) can contribute to radiotherapy outcome 

prediction models in brain metastasis. A sub-volume of 128 × 128 × 45 voxels was determined 

as a fit standard for all lesions. Subsequently, the sub-volumes associated with individual lesions 

were cropped from the T1w and T2-FLAIR images. The tumour and edema contours were used to 

generate ROI masks (tumour + 5-mm margin for T1w; tumour + edema + 5-mm margin for T2-

FLAIR) for each lesion that were used to mask out the areas outside the ROI within the cropped 

sub-volumes. The voxel intensities in each image were normalized to the range of 0 and 1. 

4.2.3. Clinical Features 

Standard clinical features at the baseline including the histology (primary cancer), tumour location 

(infratentorial/ supratentorial), tumour size (longest diameter in mm), number of brain metastases, 

total dose (Gy), previous WBRT (yes/no), prior SRT/SRS (yes/no), GPA (from 0 to 4) along with 

age (year) and gender (male/female) were collected for each patient and their performance was 

investigated in therapy outcome prediction with and without the deep learning features of MRI. 

The categorical features were converted to vectors using one-hot encoding, while the continuous 

features (e.g., tumour size) were first discretized to categories and then converted to one-hot 

encoding format. A 3-layer fully-connected multi-layer perceptron (MLP) was trained and 

optimized using the training and validation data to predict LC/LF for each lesion solely with the 

clinical features. The MLP model included an input layer with 2 to 48 neurons (depending on the 

input features), one hidden layer with 10 neurons, and an output layer with two neurons (LC/LF). 

Feature selection was performed through an exhaustive search among all possible combinations of 

the features to obtain the best feature set based on the accuracy of the model on the validation set. 
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The selected features were also coupled with the deep learning features in the comprehensive 

model developed for therapy outcome prediction (described further below).  

4.2.4. Deep Learning and Visualization Framework 

 System Overview 

Figure 4.1 demonstrates an overview of the deep learning framework developed and investigated 

for LC/LF outcome prediction using the baseline MRI data and clinical features. At the heart of 

the proposed system, an InceptionResNetV2 is trained to classify the local response of lesions 

using associated single slices of the T1w and T2-FLAIR images as two parallel input channels of 

the network. Using the trained network, for each MRI slice of the lesion, 256 features are extracted 

from the last fully-connected layer of the network (Figure 4.1(a)). The clinical features are then 

fused with the extracted features from the 2D MRI slices through concatenation and fed to either 

an LSTM (Figure 4.1(b)), Seq2Seq (Figure 4.1(c)), or transformer network (Figure 4.1(d)) to 

incorporate 3D spatial dependencies exist within volumetric MRI in predicting the therapy 

outcome of each lesion. The clinical features are fused with the deep-learning features of each 

MRI slice before feeding them to the LSTM, Seq2Seq, or transformer network to let this 

information propagate through the network during the training phase. The LSTM network consists 

of two layers with N = 45 LSTM cells in each layer. Each cell is connected to its adjacent cell in 

the same layer, propagating the current cell state to the next one. The first layer of LSTM provides 

the input to the second layer and is connected to it in the same fashion that the original input is fed 

to the LSTM network. At the last cell of the second layer of the network, a dense layer with two 

output units and a softmax activation classifies the outcome of each lesion into either LC or LF. 
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Figure 4.1- System overview. (a) Slice by slice feature extraction from MRI volumes using the InceptionResnetV2, (b) a two-layer 

LSTM, (c) a Seq2Seq network, and (d) a transformer network. The input feature vectors for all three networks are a concatenation 

of the features coming from the InceptionResNet and the clinical features. 

The Seq2Seq network has an encoder-decoder style LSTM architecture. Each of the encoder and 

decoder components consists of three LSTM layers (each layer with N = 45 cells). Each LSTM 

encoder/decoder outputs a cell state and a hidden state based on the previous cell state, previous 

hidden state, and the current input. A weighted sum of the hidden states in the encoder generates 

the context vector that is fed to the decoder to set the initial cell state and hidden state of the 
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decoders. Each LSTM decoder produces a prediction, and the prediction of the last LSTM layer is 

applied as the overall outcome prediction of the Seq2Seq network for each lesion. The transformer 

input consists of 45 fixed-length vectors along with a trainable class (cls) token with the number 

of transformer blocks being 1, the number of attention heads being 2, and the hidden layer size of 

feed-forward network for input classification being 32. Through matrix multiplication, the 

transformer architecture allows the information to propagate from one slice to another in a way 

that all slices are considered when making a classification, with emphasis on more important slices. 

Further details on different components in the proposed framework, and the InceptionResNetV2, 

LSTM, Seq2Seq, and transformer architectures have been provided in Appendix A. 

 Model Training 

The IncpetionResNetV2 network was trained for the task of therapy outcome prediction using all 

single two-channel images of T1w and T2-FLAIR (128 × 128 pixel × 2 channels of T1w and T2-

FLAIR) associated with each lesion in the training set. The two-channel images included a 

standardized ROI encompassing the entire lesion (tumour + edema) and its 5 mm margin on the 

2D imaging plane. As mentioned before, this network was developed to be used solely as a feature 

extractor in the framework. To serve this purpose, the prediction accuracy of the network on the 

validation set must improve as the ability of the network to predict therapy outcome is closely 

related to how distinctive the derived features in the last layer of the network are. In order to 

optimize the prediction accuracy of the IncpetionResNet, the network weights were initialized 

through pretraining, and the training was performed using a decreased batch size and learning rate 

through a curriculum learning strategy as described below. The network pretraining was performed 

using ImageNet, and then the BraTS dataset [48] on the task of brain tumour type classification. 
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Small batches can offer a regularization effect [151]. To obtain maximum generalization 

and prevent overfitting, a batch size of one was used during the network training, while to maintain 

stability due to the high variance of the gradient, the learning rate was set to a very small value of 

10−6. While this strategy was successful in improving the network performance on the validation 

set, it resulted in a longer training process because of the small learning rate and also very small 

batch size [152]. The idea of curriculum learning is to start the network training on easier subtasks 

and gradually increase the task difficulty [153]. Since outcome prediction using single 2D images 

can be extremely difficult in some cases, for a smoother network training, the network was initially 

trained only on the MRI slices of each lesion with a larger tumour cross-section. This is usually 

the middle slices of a lesion in the axial plane of an MRI volume. Gradually, more challenging 

images were added to the training set. Practically, this method of feeding data to the network 

resulted in smoother training and better validation accuracy and loss. 

The LSTM and Seq2Seq networks were trained with a learning rate of 0.0001 and batch 

size of 2. An RMSprop optimizer was used for optimizing the categorical cross-entropy loss 

function in both networks. A tanh was used as the activation function in all layers of the LSTM 

and Seq2Seq networks. Both networks were trained for a total of 500 epochs. The transformer was 

trained for 200 epochs with a batch size of 8 and a learning rate of 0.0001. An Adam optimizer 

was used for optimizing the sparse categorical cross-entropy function. The RELU activation 

function was utilized for hidden layers of the transformer while the activation function for the last 

feed-forward layer (classifier) was softmax. 

All the experiments were run in Python and models were trained and tested using Keras 

[154] with TensorFlow [155] backend. Additionally, we used the scikit-learn package [156] to 
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calculate performance metrics and the matplotlib package [157] for visualization. All model 

trainings were performed on a single GeForce RTX TI 2080 graphic card. The training process 

took about 18 hours (~54m parameters), 2 hours (60k parameters), 3 hours (6m parameters), and 

5 hours (7m parameters), for the InceptionResNet, LSTM, Seq2Seq, and the transformer networks 

respectively. The total inference time for a single input was 27ms, 29ms, and 31ms for the LSTM, 

Seq2Seq, and transformer networks. 

4.2.5. Visualization of Network Decision Basis 

The outcome prediction framework was supplemented by a visualization algorithm to illustrate the 

contribution of different areas of ROI on MRI to the network’s prediction for each lesion. 

Specifically, the visualization algorithm generates a heatmap that color-codes the importance of 

different regions on the input images for the network’s conclusion and can be used to interpret the 

rationale behind its decision for each case. A modified version of the prediction difference analysis 

(PDA) technique was adopted in the applied visualization method in conjunction with a sliding 

window analysis [64]. A 2×2 pixel sliding black square was used to occlude a small region of the 

input image iteratively before feeding it to the trained network for outcome prediction. The 

absolute difference in the output probability of the network (i.e., |𝑝𝑖𝑛𝑝𝑢𝑡 − 𝑝𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑_𝑖𝑛𝑝𝑢𝑡|) was 

recorded in each iteration as a metric to measure the contribution of the occluded region and 

applied to generate the heatmap. A higher difference between the obtained probabilities typically 

demonstrates more important regions of the image with more-telling information for and a higher 

impact on the network’s prediction.   
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4.3. Results 

The clinical characteristics of the patients in this study have been summarized in Table 4.1. Among 

the 124 patients, 40% were male and 60% were female. The patients had an average age of 62 ± 

15 years and an average tumour size of 2 ± 1.03 cm. The average GPA for the patients was 2.2. 

The exhaustive search process to select the best clinical features for outcome prediction 

resulted in a set of four features including the histology, tumour location, tumour size, and number 

of brain metastases. Using these features, the optimized MLP network could predict the therapy 

outcome with an accuracy of 68%, a sensitivity of 65%, and a specificity of 70% on the 

independent test set. These results set the ground to investigate in the next step whether integrating 

clinical variables with the deep learning features extracted from MRI can improve the accuracy of 

radiotherapy outcome prediction. Table 4.2 summarizes the performance of the deep learning 

networks on the validation and test set before and after integrating the clinical features. The table 

presents the results in terms of accuracy, sensitivity, specificity, and area under the receiver 

operating characteristic (ROC) curve (AUC). Since the InceptionResNet processes MRI slices 

individually, the output probability of the network was averaged over all slices associated with the 

entire lesion volume before thresholding to obtain the overall prediction.  

The results presented in Table 4.2 suggest that using the LSTM, Seq2Seq, or transformer 

network with the InceptionResNet to incorporate inter-slice dependencies outperformed a simple 

averaging over slices. Specifically, coupling the Seq2Seq, transformer, and LSTM with the 

InceptionResNet improved the sensitivity of the predictive model from 65% to 77% and its 

specificity from 74% to 78%, 78%, and 83%, respectively, on the independent test set. Further, 
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integrating the clinical variables and deep learning features of MRI in the framework improved 

the performance of the predictive model. 

Table 4.1- Patient Characteristics 

Clinical Features / Outcome 
Training Set 

(99 Patients and 116 lesions) 

Test Set 

(25 patients and 40 lesions) 

Tumour Size (Longest Diameter) 
Range: 0.4 – 7 cm 

Mean: 1.99 cm 

Range: 0.6 – 6.6 cm 

Mean: 2.06 cm 

Age 62 ± 15 years 63 ± 17 years 

Gender 

Male 39 patients (39%) 11 patients (44%) 

Female 60 patients (61%) 14 patients (56%) 

Tumour Location 

Supratentorium 87 lesions (75%) 29 lesions (72.5%) 

Infratentorium 29 lesions (25%) 11 lesions (27.5%) 

Histology 

Lung cancer 58 lesions (50%) 23 lesions (57.5%) 

Breast cancer 26 lesions (22%) 9 lesions (22.5%) 

Melanoma cancer 9 lesions (8%) 3 lesions (7.5%) 

Colorectal cancer 7 lesions (6%) 0 lesions (0%) 

RCC cancer 8 lesions (7%) 1 lesion (2.5%) 

Other 8 lesions (7%) 4 lesions (10%) 

Total Dose (Over 5 Fractions) 

22.5 Gy 1 lesion (1%) 0 lesions (0%) 

25 Gy 20 lesions (17%) 8 lesions (20%) 

27.5 Gy 6 lesions (5%) 2 lesions (5%) 

30 Gy 73 lesions (63%) 20 lesions (50%) 

32.5 Gy 7 lesions (6%) 6 lesions (15%) 

35 Gy 9 lesions (8%) 4 lesions (10%) 

Previous WBRT 

Yes 45 lesions (39%) 9 lesions (22.5%) 

No 71 lesions (61%) 31 lesions (77.5%) 

Prior SRT/SRS 

Yes 1 lesion (1%) 0 lesions (0%) 

No 115 lesions (99%) 40 lesions (100%) 

Number of Brain Metastases 

One lesion 34 patients (34%) 9 patients (36%) 

Two lesions 35 patients (35%) 7 patients (28%) 

Three lesions 11 patients (11%) 4 patients (16%) 

More than three lesions 19 patients (19%) 5 patients (20%) 

Graded Prognostic Assessment (GPA) 

0.00 –1.00 15 patients (15%) 3 patients (12%) 

1.01–2.00 39 patients (39%) 14 patients (56%) 

2.01–3.00 36 patients (36%) 3 patients (12%) 

3.01– 4.00 9 patients (9%) 5 patients (20%) 

SRT Outcome 

LC 70 lesions (60%) 23 lesions (57.5%) 

LF 46 lesions (40%) 17 lesions (42.5%) 
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Table 4.2- Results of therapy outcome prediction in terms of accuracy, sensitivity, specificity, and AUC for different models 

Network 

Validation Set Independent Test Set 

Acc. Sens. Spec. AUC Acc. Sens. Spec. AUC 

MLP / Clinical Features 60% 50% 66.7% 0.65 67.5% 65% 70% 0.68 

InceptionResNet 66.7% 66.7% 66.7% 0.69 70% 65% 74% 0.72 

InceptionResNet + Seq2Seq 73.3% 66.7% 77.8% 0.76 77.5% 76.5% 78.2% 0.81 

InceptionResNet + Transformer 73.3% 66.7% 77.8% 0.75 77.5% 76.5% 78.2% 0.81 

InceptionResNet + LSTM 80% 83.3% 77.8% 0.83 80% 76.5% 82.6% 0.83 

InceptionResNet + Seq2Seq with 

Clinical Feature Fusion 
80% 83.3% 77.8% 0.81 77.5% 70.6% 82.6% 0.8 

InceptionResNet + Transformer 

with Clinical Feature Fusion 
80% 83.3% 77.8% 0.82 77.5% 70.6% 82.6% 0.82 

InceptionResNet + LSTM with 

Clinical Feature Fusion 
86.7% 83.3% 88.9% 0.88 82.5% 76.5% 87% 0.86 

 

Whereas the predictive models with only the clinical variables and with the MRI deep learning 

features solely demonstrated an outcome prediction accuracy of 68% and 78-80%, respectively, 

the models with the combined deep learning and clinical features demonstrated an accuracy of 78-

83% on the test set. The Seq2Seq and transformer networks could not benefit from incorporating 

the clinical features that can be due to their overcomplex architecture for this application. The 

results of the ROC analysis (Figure 4.2) also support these observations and demonstrate the 

benefits of incorporating the 3D spatial dependencies in MRI deep learning features and fusing the 

clinical information to improve the performance of the outcome prediction system. The best results 

were obtained by the InceptionResNet + LSTM model with clinical feature fusion where the 

predictive model demonstrated an AUC of 0.86 on the independent test set, compared to an AUC 

of 0.72 and 0.8 for the InceptionResNet, and InceptionResNet + LSTM without the clinical 
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features, respectively. Table 4.3 summarizes experimental results of the proposed framework with 

different hyperparameters on validation set. 

 

Figure 4.2- The ROC curves on the independent test set for different predictive models. 

 

Table 4.3- Experimental results of the proposed framework on Validation Set. For the input of LSTM, Seq2Seq, and Transformer 

networks, the extracted features from the best InceptionResNet were concatenated with clinical features and then fed to these 

networks. 

Model 
Pre-train 

(ImageNet) 

Pretrain 

 (ImageNet + BraTS) 

Learning 

Rate 

Batch 

Size 
Epochs 

Validation 

Accuracy 

Validation 

Sensitivity 

Validation 

Specificity 

InceptionResNet ✓ ✓ 1e-6 1 500 66.7% 66.7% 66.7% 

InceptionResNet ✓  1e-6 1 500 60% 66.7% 56% 

InceptionResNet   1e-6 1 500 53.4% 50% 56% 

InceptionResNet ✓ ✓ 1e-3 1 500 46.7% 50% 44.4% 

InceptionResNet ✓ ✓ 1e-3 32 500 53.4% 50% 56% 

InceptionResNet ✓ ✓ 1e-3 64 500 53.4% 50% 56% 

InceptionResNet ✓ ✓ 1e-6 32 500 60% 66.7% 56% 

InceptionResNet ✓ ✓ 1e-6 1 200 53.4% 50% 56% 

LSTM   1e-4 2 500 86.7% 83.3% 88.9% 

LSTM   1e-4 16 500 73.3% 66.7% 77.8% 

LSTM   1e-2 2 500 73.3% 83.3% 66.7% 

LSTM   1e-4 2 100 80% 66.7% 88.9% 

Seq2Seq   1e-4 2 500 80% 83.3% 77.8% 

Seq2Seq   1e-4 16 500 73.3% 83.3% 66.7% 

Seq2Seq   1e-2 2 500 73.3% 66.7% 77.8% 

Seq2Seq   1e-4 2 100 53.3% 33.3% 66.7% 

Transformer   1e-4 8 200 80% 83.3% 77.8% 

Transformer   1e-4 16 200 80% 66.67% 88.9% 

Transformer   1e-2 8 200 73.3% 83.3% 66.7% 

Transformer   1e-4 8 100 80% 66.67% 88.9% 

 

Figure 4.3 demonstrates the results of survival analysis on the two cohorts of patients in 

the test set stratified based on the outcome prediction at the baseline using different models. The 

Kaplan-Meier progression-free survival curves are presented for the patients in cohort 1 (with their 

all lesions having a predicted outcome of LC) and cohort 2 (with at least one lesion with a predicted 
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outcome of LF). A log-rank test applied on the survival curves of the two cohorts for each model 

demonstrated no statistically significant difference for the InceptionResNet or the clinical model, 

an approaching significance (p = 0.05) for the InceptionResNet + LSTM model, and a significant 

difference for the InceptionResNet + LSTM model with clinical feature fusion.  

 

Figure 4.3- Kaplan-Meier progression-free survival curves for two cohorts of patients stratified at the baseline based on the outcome 

prediction by different models: (a) MLP with clinical features only, (b) InceptionResNet, (c) InceptionResNet + LSTM, and (d) 

InceptionResNet + LSTM with clinical feature fusion. Cohort 2 includes the patients in the independent test set who had at least 

one lesion with a predicted outcome of local failure, and cohort 1 includes all other patients in the independent test set. 

Figure 4.4 depicts the visualization heatmaps associated with the T1w and T2-FLAIR 

images of four representative lesions obtained through the prediction difference analysis.  The 

heatmaps demonstrate the impact level of different regions on MRI on the decision of the 

InceptionResNet in predicting the LC/LF outcome for each lesion. The visualization results imply 
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that the tumour/lesion margin areas are particularly among the high-impact regions on both T1w 

and T2-FLAIR images with higher attention gained from the network for outcome prediction.  

 

Figure 4.4- Treatment-Planning MRI and deep learning visualization heatmaps acquired for four representative patients with 

metastatic lesions treated with SRT, two with an LC and the other two with an LF outcome. The heatmaps are overlaid on the ROIs 

input to the InceptionResNet and demonstrate the impact level of different areas on each image for the network’s prediction, as 

calculated through a modified PDA. The network predicted the outcome of all four lesions correctly. 
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4.4. Discussion and Conclusion 

In this chapter, the possibility of early prediction of local outcome for brain metastasis patients 

treated with SRT was investigated using deep learning of the treatment-planning MRI and clinical 

variables. A comprehensive outcome prediction framework was developed to derive optimal deep 

learning-based MRI features, integrate them with standard clinical variables, and incorporate 3D 

spatial dependencies within volumetric MRI of each lesion to predict the therapy outcome. To 

extract features from MRI, an InceptionResNet architecture was adapted, mainly because this 

architecture proved to excel at learning distinctive features from images in many tasks by applying 

residual connections and Inception blocks. To incorporate spatial dependency between slices in 

each MRI volume, three different neural network architectures, namely, LSTM, Seq2Seq, and 

transformer networks were utilized and investigated. The results demonstrated a notable 

improvement in prediction performance of the model after integrating the recurrent or attention-

based neural networks and clinical features. While using only the clinical variables or MRI features 

from single slices resulted in an AUC of 0.68 and 0.72, respectively, coupling the LSTM, Seq2Seq, 

and transformer network with the InceptionResNet improved the AUC to 0.83, 0.81, and 0.81, 

respectively. The clinical feature fusion with the MRI deep learning features improved the results 

further, with the best result of 83%, 77%, 87%, and 0.86 for the accuracy, sensitivity, specificity, 

and AUC obtained for the InceptionResNet + LSTM model with clinical feature fusion.  

Results of risk stratification through survival analysis further highlighted the benefits of 

incorporating the 3D spatial dependencies of MRI features as well as the clinical feature fusion. 

Among different models explored, only the InceptionResNet + LSTM model with clinical feature 

fusion could stratify the patients into two cohorts with a statistically significant difference in 
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progression-free survival, with the cohorts identified by the InceptionResNet + LSTM model 

without any clinical features approached significance. 

A visualization module was integrated with the outcome prediction framework to provide 

insights on the contribution level of different areas of lesion on MRI to the network’s decisions. 

The results highlighted the importance of the tumour/lesion margin areas in radiotherapy outcome 

prediction. This observation is in agreement with the findings of previous studies on MRI 

radiomics for treatment outcome prediction in brain metastasis [51], [138]. Nests of tumour cells 

may exist for several millimeters outside the confines of the distinct metastatic brain lesion [158]. 

The information provided through the visualization modules, such as the one presented in this 

work, regarding the contribution of margin areas of a lesion to its predicted outcome can potentially 

be beneficial during radiation treatment planning to reduce the chance of local failure in brain 

metastasis [158]. 

The findings of this study show the possibility of early prediction of therapy outcome using a 

combination of quantitative MRI features and clinical attributes. This is in agreement with 

observations of previous studies that suggest the diagnostic and prognostic power of hand-crafted 

textural features in various imaging modalities such as CT [159], MRI [160], and Ultrasound [161] 

in different cancer sites. The study here highlights the advantage of using deep learning 

architectures in combination with recurrent neural networks for automated extraction of optimal 

quantitative features from volumetric MRI that can be effectively coupled with standard clinical 

variables for accurate radiotherapy outcome prediction. In conclusion, the promising results 

obtained in this study encourage future investigations on larger cohorts of patients. The results 

reported in this study were obtained on an independent test set. However, to evaluate the efficacy 
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and robustness of the framework in the clinic more rigorously, further investigations are required 

preferably on multi-institutional data. 
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5. Chapter 5 

A Self-Attention-Guided 3D Deep Residual Network with Big 

Transfer to Predict Local Failure in Brain Metastasis after 

Radiotherapy using Multi-Channel MRI*4 

 

 
 

5.1. Introduction 

A considerable portion of patients with extracranial malignancies develop brain metastases [3]. 

Because of increasing access to neuroimaging and developments in systemic therapies for patients 

with metastatic disease, as well as increased physician and patient awareness of brain metastasis, 

its incidence is expected to increase among cancer patients [3]. The survival of patients with brain 

metastasis depends on timely diagnosis and effective therapy. The major therapeutic options for 

metastatic brain tumours include surgery, radiation therapy (RT), and/or chemotherapy.  

Because of various tumour and/or patient-related characteristics such as tumour size, 

location, and histology as well as the patient’s genetics, age and performance status, local response 

of brain metastasis tumours to radiation varies among patients. This is true even when standardized 

dose/fraction regimens are administrated [29]. The local response to RT is classified as either local 

control (LC; stable or shrinking tumour that is indicative of a stable disease, partial response, or 

                                                 

*A version of the material presented in this chapter has been published in IEEE Journal of Translational Engineering 

in Health and Medicine, 11: 13-22, 2023. DOI: 10.1109/JTEHM.2022.3219625 
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complete response,) or local failure (LF; enlarging tumour associated with a progressive disease) 

based on tumour size changes on follow-up structural serial imaging [28]. However, it could take 

months for a local response to be visible on follow-up scans. Given that the median survival of  

patients with brain metastasis following RT can be between 5 months and 4 years [7], [34], early 

detection of LF after RT potentially permit effective adjustments in treatment that lead to enhanced 

therapy outcomes, patients’ survival, and their quality of life. 

Following the successful application of artificial intelligence (AI) methods in diagnostic 

imaging [162], [163], AI-based cancer imaging analysis is now being used to meet other and more 

complex clinical challenges [95], [164]. These methodologies have the capacity to uncover 

previously unknown features from routinely acquired medical images. Quantitative and semi-

quantitative features, which are often beyond human perception, can be derived from obtained 

neuroimaging data. These features can potentially be applied to develop machine learning models 

to address crucial clinical challenges such as therapy outcome assessment or treatment response 

prediction. Radiomics is a relatively new transformational research domain that adapts high-

throughput approaches for mining of large-scale medical imaging datasets to identify quantitative 

features (biomarkers) for different diagnostic and prognostic applications [44]. Multiple studies 

have shown links between radiomic signatures of tumours and their phenotypic, genomic, and 

proteomic profiles [75]. Several studies have also demonstrated the efficacy of radiomic-based 

machine learning models in therapy outcome prediction [76], [134], including local response of 

brain metastasis to radiotherapy [142], [148], [165]. 

Compared to hand-crafted radiomic features, the application of deep learning in medical 

imaging could possibly address more complicated challenges, particularly when large relevant 
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datasets are available. Deep learning models have shown great promise in recognizing important 

and distinctive aspects of medical image data in various applications including cancer therapeutics 

[166]–[168]. Deep models, and especially convolutional neural networks (CNNs), can detect 

complex textural patterns in tissue, distinguish between malignant and benign cells, and possibly 

derive information from tumour images for therapy outcome prediction [55], [86], [87]. 

Accordingly, the CNNs can potentially outperform the traditional radiomic models in diagnostic 

and prognostic applications for precision oncology by detecting patterns in medical images that 

are not captured by closed-form mathematical definitions of hand-crafted radiomic features [53], 

[89], [169]. A recent publication from our group shows that the deep-learning features derived 

from 2D MRI slices outperform the standard clinical variables in predicting radiotherapy outcome 

in brain metastasis [170]. 

Attention mechanisms in deep learning were introduced in the field of computer vision 

with the goal of imitating the human visual system's ability to naturally and effectively discover 

prominent regions in complex scenes [171]. An attention mechanism in a vision system can be 

thought of as a dynamic selection process that is implemented by adaptively weighing features 

based on the relevance of the input. Over the past few years, attention mechanism has played an 

increasingly important role in different computer tasks, including image classification [172], object 

detection [173], semantic segmentation [174], and 3D vision [175]. The attention mechanism has 

shown promise in medical imaging analysis, especially when the problem is not as straightforward 

as generic image classification, where the well-defined object of interest is usually in the image 

center [176]. A number of previous studies have applied attention mechanisms to provide more 

powerful architectures capable of catching subtle features covered in medical images. Guan et al. 
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[177] proposed a three-branch attention guided convolution neural network (AG-CNN) which 

learns from disease-specific regions through a local branch to reduce noise and improve alignment, 

with a global branch to compensate for the lost discriminative cues by the local branch. Using a 

fusion branch to combine the local and global cues, their model could achieve a new state-of-the-

art performance in classifying images of the ChestX-ray14 dataset [177]. Rao et al. [178] 

conducted an experimental research to investigate the contribution of various attention 

mechanisms including squeeze-and-excitation (SE) [172], global context (CG) [179], and 

convolutional block attention module (CBAM) [180] to the performance of deep classification 

models for different imaging modalities including x-ray, MRI, and CT. The experimental results 

show that the attention mechanisms enable standard CNN models to focus more on semantically 

important and relevant content within features, with improved area under the receiver operating 

characteristic (ROC) curve (AUC) for all classification models investigated [178]. Furthermore, 

the CBAM outperformed the other two attention mechanisms in several experiments on different 

imaging datasets. Shaik et al. [181] proposed a multi-level attention mechanism for the task of 

brain tumour classification. The proposed multi-level attention network (MANet) combines spatial 

and cross-channel attention, focusing on tumour region prioritization while also preserving cross-

channel temporal connections found in the Xception backbone's semantic feature sequence [181]. 

They benchmarked their framework on BraTS [182] and Figshare [183] datasets where their model 

outperformed several models proposed previously for the brain tumour classification task [181]. 

This chapter introduces an innovative transformer-convolutional deep learning model for 

predicting the LC/LF outcome in brain metastasis treated with SRT using two-channel MRI 

acquired at pre-treatment. A novel attention-guided 3D residual network architecture was 
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developed with embedded self-attention modules [184]–[186] and compared with another residual 

network with 3D CBAM as the attention mechanism. A training recipe was adapted for the therapy 

outcome prediction models during pretraining and training the down-stream task based on the 

recently-proposed big transfer (BiT) principles [187]. A new 3D visualization method has been 

introduced to illustrate the impact of different regions throughout the lesion volume upon the 

network’s prediction of the therapy outcome. The results demonstrate that incorporating the 

attention mechanisms into the vanilla 3D residual network improves its performance in outcome 

prediction considerably, with the self-attention mechanism outperforming the CBAM in terms of 

accuracy, AUC, and F1-score. Further, the adapted BiT-based recipe for pretraining and 

hyperparameter tuning improves the deep models’ performance in therapy outcome prediction. 

5.2. Methods and Procedures 

5.2.1. Data Acquisition 

This study was carried out in compliance with the institutional research ethics board approval from 

Sunnybrook Health Sciences Centre (SHSC), Toronto, Canada. Data were obtained from 124 

patients with brain metastasis treated with hypo-fractionated SRT (5 fractions). In this study, the 

baseline treatment-planning MRI including contrast-enhanced T1-weighted (T1w), and T2-

weighted-fluid-attenuation-inversion-recovery (T2-FLAIR) images were applied for therapy 

outcome prediction. The MRI scans were acquired using a 1.5 T Ingenia system (Philips 

Healthcare, Best, Netherlands) and a 1.5 T Signa HDxt system (GE Healthcare, Milwaukee, WI, 

USA). The T1w and T2-FLAIR images had an in-plane image resolution of 0.5 mm and a slice 

thickness of 1.5 mm and 5 mm, respectively. The treatment-planning tumour contours delineated 

by expert oncologists as well as the edema contours outlined under their supervision were also 
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included in the dataset. The dataset (124 patients with 156 lesions) was randomly partitioned at 

patient level into a training set (99 patients with 116 lesions) that was used for model development 

and optimization, and an unseen test set (25 patients with 40 lesions) that was applied for 

independent evaluation of the models. From the training set, 10 patients with 15 lesions were 

randomly selected as the validation set for optimizing the model hyperparameters. 

The patients were scanned with MRI after SRT on a two to three-month follow-up 

schedule. A radiation oncologist and a neuroradiologist determined the local response for each 

lesion separately after monitoring it on serial MRI using the RANO-BM [28] criteria. The outcome 

(LC or LF) was determined for each lesion in the last patient follow-up. Serial imaging (including 

perfusion MRI) and/or histological confirmation were used to diagnose adverse radiation effect 

(ARE) and distinguish it from progressive disease [92], in accordance with the report by Sneed et 

al. [91]. Following these criteria, a total of 93 lesions were categorized as LC while 63 lesions 

were labeled as LF. 

5.2.2. Preprocessing 

All MR images were resampled to a size of 512 × 512 × 174 voxels (voxel size: 0.5 × 0.5 × 1 

mm3). An affine registration method was used to co-register the T1w and T2-FLAIR images. Skull 

stripping was performed on all MR images. The voxel intensities in each skull-stripped MRI 

volume were normalized between 0 and 1. To ensure a lesion-level local outcome prediction the 

size of the smallest sub-volume enclosing the tumour and edema (lesion) and their 5-mm outer 

margin [94], was identified for all lesions. A sub-volume of 128 × 128 × 83 voxels was determined 

as a fit standard to encompass the entire region of interest (ROI) described above for all individual 

lesions. The standardized sub-volumes were then cropped from the T1w and T2-FLAIR images 
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and concatenated for each lesion as two channels of data, generating the input to the neural 

networks with a size of   128 × 128 × 83 × 2 voxels. The ROI masks (tumour + 5-mm margin for 

T1w; tumour + edema + 5-mm margin for T2-FLAIR) were generated using the tumour and edema 

contours and applied to mask out the areas outside the ROI for each lesion. 

5.2.3. Network Overview 

The backbone of the proposed network architecture is a vanilla 3D extension of deep residual 

networks (ResNets), first introduced by He et al. [188], [189].  Instead of learning unreferenced 

functions, ResNets learn residual functions with reference to the layer inputs. Also, rather than 

expecting each few stacked layers directly fit a desired underlying mapping, ResNets let these 

layers fit a residual mapping. Formally, instead of directly mapping the desired underlying function 

𝐻(𝑥), the stacked nonlinear layers fit another mapping of 𝐹(𝑥) ≔ 𝐻(𝑥) − 𝑥. This way, the 

original mapping recast into 𝐹(𝑥) + 𝑥. Residual connections allow for increased depth while 

addressing the vanishing gradient problem and are also easier to optimize [188].   

Our vanilla 3D residual network (Figure 5.1(a)) is inspired by the architecture of ResNet-

18, but instead of 2D convolution layers, our network employs 3D convolution with kernel size of 

7 × 7 × 7 and 3D pooling layers to handle the 3D nature of MRI volume. 

To improve the performance of our 3D residual network in processing multi-channel MRI 

volumes, we explored incorporating two different attention mechanisms into the architecture, 

CBAM, and self-attention [185]. CBAM is a simple yet effective attention module which infers 

attention maps along two separate dimensions (channel and spatial) sequentially [180]. The 

attention maps are then multiplied by the feature tensors to produce the refined feature tensors. 
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Figure 5.1- Architecture of (a) vanilla 3D residual network (baseline), (b) the 3D residual network with CBAM attention, (c) the 

proposed self-attention-guided 3D residual network, (d) the residual block in 3D residual network, consisting of residual 

connections, (e) the CBAM attention block consisting of the channel and spatial attention modules, and (f) the self-attention block 

consisting of the key, query, and value tensors that generates the final self-attention feature tensor. 
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Formally, CBAM has two sequential submodules and, given an input feature tensor 𝑥 ∈

 ℝ𝑋×𝑌×𝑍×𝐶, it sequentially infers 1D channel attention vector 𝑀𝑐  𝜖 ℝ𝐶  and a 3D spatial attention 

map 𝑀𝑠 𝜖ℝ𝑋×𝑌×𝑍. The developed 3D residual network with CBAM attention is depicted in Figure 

5.1(b). The CBAM attention module (Figure 5.1(e)) is embedded right before the average pooling 

and fully-connected layers to refine features before classification. The refined features are then 

flattened and fed to the fully-connected layer for classification. 

Additionally, we introduced a novel transformer-convolutional network architecture by 

incorporating self- attention modules into the 3D residual network (Figure 5.1(c)). The convolution 

operator in CNNs only conducts local operations and has a local receptive field, but the self-

attention mechanism can perform non-local operations and capture long-range dependencies and 

global information within the input images [190]. The self-attention method is based on the 

covariance between the elements of feature tensors [191]. Formally, a self-attention function can 

be described through mapping the input feature tensor to a query, a key, and a value tensor. The 

tensor mappings are performed using 3D 1 × 1 × 1 convolutions. Each element of the output self-

attention feature tensor is a linear weighted sum of the elements of the value tensor.  The query 

tensor defines which “values” to focus on for the learning process, while the key and value tensors 

carry the transformed features extracted from MRI volume. Given that key is 𝑘(𝑥) = 𝑊𝑘𝑥, query 

is 𝑞(𝑥) = 𝑊𝑞𝑥, and value is 𝑣(𝑥) = 𝑊𝑣𝑥 where 𝑊𝑘, 𝑊𝑞, 𝑊𝑣 are learnable weights of the 1 × 1 × 

1 convolution filters and 𝑥 is the feature tensor from the previous layer, the self-attention map 𝛼 

could be calculated using Equation (5.1). 
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𝛼𝑖,𝑗 =
exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)

𝑇
)

∑ exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)
𝑇

)𝑛
𝑖=1

 (5.1) 

Figure 5.1.f shows the architecture of the 3D self-attention block incorporated into the proposed 

3D residual network with self-attention. For performing the matrix multiplications in this block, 

the query, key, and value tensors (∈ ℝ𝑋×𝑌×𝑍×𝐶) are reshaped into matrices (∈ ℝ𝑋𝑌𝑍×𝐶) and, at the 

end, reshaped back into tensors of the initial size. The final 1 × 1 × 1 convolution block ensures 

that the number of channels of the input and output feature tensors stays the same. The 3D self-

attention module facilitates capturing long-range inter/intra slice dependencies, hence is added to 

the architecture after each residual block to ensure deriving such dependencies along with the 

convolution layers that mostly capture local features and dependencies. More details on the 

network architectures have been provided in the Appendix A.  

5.2.4. Big Transfer and Training Details 

Transfer of pretrained models on the target task improves sample efficiency and simplifies 

hyperparameter tuning when training deep neural networks [187]. Inspired by the work of 

Kolesnikov et al. [187], we followed the subsequent scheme for pretraining/training the outcome 

prediction models: 

1. The network was first pretrained on the UCF101 dataset [192] for the task of activity 

recognition and subsequently on the BraTS dataset [48], [182], [193] for the task of 

classifying brain tumour types using MRI. 

2. During pretraining, all batch normalization [194] layers were replaced with group 

normalization [195] and weight standardization [196] was used in all convolutional layers. 
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The combination of group normalization and weight standardization with large batches has 

a significant impact on transfer learning [197]. Also, due to the requirement to update 

running statistics, batch normalization is detrimental for the transfer [187]. 

3. During fine-tuning on the main dataset, we used BiT-HyperRule, a heuristic method for 

hyperparameter selection based on image resolution and number of datapoints as presented 

by [187]. The models were trained using the stochastic gradient descent (SGD) 

optimization algorithm with an initial learning rate of 0.003, momentum of 0.9, batch size 

of 4, and an early stopping based on the validation loss. Data augmentation was performed 

using horizontal flipping. During fine-tuning, the learning rate was decayed by a factor of 

10 at 40%, 60% and 80% of the training steps. 

All experiments were performed in Python. The models were developed and evaluated 

using Keras [154] with TensorFlow [155] backend. The performance metrices were calculated 

using scikit-learn package [156]. the matplotlib library was used  [157] for visualization. The 

models were trained using four GeForce RTX TI 2080 graphic cards. The training process took 5 

hours (~33M parameters), 6 hours (~33M parameters) and 10 hours (~42M parameters) for 3D 

residual network, 3D residual network + CBAM attention, and 3D residual network + self-

attention respectively.  The total inference time for a single input is 6ms, 7ms, and 12ms for 3D 

residual network, 3D residual network + CBAM attention, and 3D residual network + self-

attention respectively. 
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5.2.5. Visualization of Network Decision Basis 

A new 3D visualization algorithm was implemented to accompany the outcome prediction 

framework and show how different areas within the volumetric region of interest on the input 

images contribute to the prediction of network for each lesion. The visualization module provides 

a 3D heatmap color-coding the relevance of distinct peri-/intra-lesion areas on multi-channel 

volumetric MRI to the decision of network and may be applied to analyze the reasoning behind 

the predicted outcome for each case. The applied visualization method combined a modified 

version of the prediction difference analysis (PDA) with a sliding window analysis approach [198]. 

A 2 × 2 × 1 voxel sliding black cube (1 × 1 × 1 mm) was iteratively applied to block a tiny area of 

the input image. The occluded input was fed to the trained network to predict the associated therapy 

outcome. In each iteration, the absolute difference in the network’s output probability (i.e., 

|𝑝𝑖𝑛𝑝𝑢𝑡 − 𝑝𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑_𝑖𝑛𝑝𝑢𝑡|) was calculated and applied as a measure of contribution of the occluded 

cube to generate the volumetric heatmap. This method generates a point cloud where each point 

in the cloud maps to a region within the MRI volume. For 3D visualization of generated heatmap, 

the heatmap voxels were considered as a point cloud with each point maps to a region within the 

MRI volume. A surface reconstruction technique was adapted to create a 3D heatmap out of the 

point cloud on any desired surface within the volumetric ROI. Specifically, the cloud points 

located on the ROI surface were identified and the normal orientation of the point cloud was 

calculated at each surface point using a minimum spanning tree with the number of neighbours set 

to 3 for building the tree [199]. The estimated normal orientations were applied in conjunction 

with, the Poisson reconstruction technique [200] to build a smooth surface mesh from the point 

cloud. The Poisson surface reconstruction technique creates a 3D mesh from a dense point cloud 
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by reducing the difference between the surface normal directions of the reconstructed surface and 

the 3D points in the point cloud [201]. The following steps summarize the procedure to generate a 

3D heatmap of importance:  

1. For each point (voxel center) in the MRI volume a vector [𝑥, 𝑦, 𝑧, 𝑟, 𝑔, 𝑏] is assigned, where 

𝑥, 𝑦, 𝑧 refer to the position of the point and 𝑟, 𝑔, 𝑏 refer to the color of the point which 

shows its impact (or intensity) according to a pre-defined color-coding scheme (color map). 

2. The generated point cloud is then normalized (each 𝑥, 𝑦, 𝑧 are normalized between 0 and 

1) 

3. A desired surface within the MRI volume is specified. Since the impact of all voxels within 

the MRI volume is estimated and color-coded, it is possible to explore and visualize any 

desired areas throughout the MRI (or the volumetric ROI), for a comprehensive 

understanding of how different intra- and peri-lesional regions contribute to the network’s 

decisions in therapy outcome prediction. 

4. Since the number of points in the point cloud is limited, in order to improve the quality of 

the final 3D heatmap, interpolation is performed to generate new random points with the 

constraint of being on the specified surface. 

5. Using a k-nearest neighbor algorithm the 10 closest points to each newly generated point 

are identified and their average color code is assigned it. 

6. The interpolated point cloud is used to calculate and generate surface normal orientations 

at each point required for surface reconstruction. Calculating normal orientations was done 

using a minimum spanning tree. 
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7. Once the normal orientations are calculated, using the Poisson surface reconstruction 

techniques a smooth surface is generated showing important regions contributing to 

network decisions.   

Figure 5.2 shows the overall procedure for generating a desired 3D surface from the initial point 

cloud. The proposed 3D visualization framework can assist clinicians to get insight into how the 

network has reached its decision and help to validate the network’s decisions by generating 

meaningful heatmaps. 

 

Figure 5.2- The procedure for creating explorable 3D brain models and visualization heatmaps from a set of individual slices. (a) 

initially, the coordinates (𝑥, 𝑦, 𝑧 ) of each voxel center in the MRI volume is determined. Since the number of slices is often limited, 

the resulting point cloud consists of multiple clusters with the same 𝑧 and different 𝑥 and 𝑦 which is visually undesirable. To 

mitigate this issue, the points between slices are randomly interpolated, (b) the point cloud after the inter-slice interpolation, (c) the 

3D brain model after assigning an intensity to each point in the point cloud and surface reconstruction, (d) applying the same 

procedure to generate a color-coded 3D visualization heatmap of importance for a lesion within the brain.  

5.3. Results 

The patients (average age: 62 ± 15 years; 40% male and 60% female) had an average tumour size 

of 2 ± 1.03 cm and an average GPA of 2.2. The demographic and clinical attributes of the patients 

in this study are presented in Supplementary Table 4.1. 
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Figure 5.3 shows the training loss over 300 epochs for the models in this study before and 

after applying the BiT training scheme. The vanilla 3D residual network pretrained on the UFC101 

and BraTS datasets (without BiT scheme) is the baseline model of this study. In 

pretraining/training of the models without the BiT recipe, the batch normalization layers were not 

replaced with group normalization and the weight standardization and BiT-HyperRule were not 

applied. Table 5.1 presents the performance of different models investigated in this study for 

radiotherapy outcome prediction. A careful investigation of Figure 5.3 and Table 5.1 demonstrates 

that incorporating the BiT scheme in development of the deep models for outcome prediction 

generally improves their performance in terms of convergence, loss, F1-score, and AUC on the 

independent test set. The F1-score and AUC may be considered the most important metrics 

presented in Table 5.1 because of the imbalance exists in the dataset.  

 

Figure 5.3- Training loss of the three models investigated in this study before and after applying BiT training scheme. Following 

the BiT training recipe generally led to faster convergence, smaller loss, and better performance overall. 

Specifically, following the BiT training scheme, the models improved their AUC on the 

test set from 0.83 to 0.84, 0.87 to 0.88, and 0.88 to 0.91 for the 3D residual network, 3D residual 

network + CBAM attention, and 3D residual network + self-attention, respectively. From a 

different perspective, incorporating attention mechanisms also improved the model performances 

in terms of accuracy, AUC, and F1-score. While the vanilla 3D residual network could achieve an 
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F1-score of 75% on the test set, the 3D residual network + CBAM attention improved the F1-score 

by 2.8%. The F1-score was improved by 3.8% compared to the baseline model by including the 

self-attention mechanism in the 3D residual network. In particular, the proposed transformer-

convolutional network architecture with BiT training demonstrated the best performance in terms 

of accuracy, AUC, and F1-score, with 8% and 5% improvements in AUC and F1-score, 

respectively, compared to the baseline model, on the independent test set. This is a considerable 

improvement in model’s performance given the complicated task at hand. Further, the proposed 

model resulted in the most balanced sensitivity and specificity values compared to the other models 

despite the imbalanced dataset applied in the study. The effect of incorporating selected clinical 

features from Section 4.2.3 as extra channel inputs to the framework was also investigated. The 

results show little to no benefit from adding the clinical features to the models. This can be due to 

over complexing the input of 3D networks by adding the clinical features which lead to high input 

dimension, while the added features do not substantially complement those extracted by the 

network from MRI for therapy outcome prediction. It is noteworthy that the self-attention guided 

model with BiT training presented in this chapter has outperformed the best model presented in 

Chapter 4 (InceptionResNet + LSTM with clinical feature fusion) in terms of AUS (0.91 versus 

0.86) and resulted in a more balanced sensitivity and specificity (82.4%/82.6% versus 

76.5%/87%). Figure 5.4 shows the ROC curves for different models investigated in this study. 

Table 5.2 shows the experimental results of the networks with different pretraining settings and 

hyper-parameters. 
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Table 5.1- Results of radiotherapy outcome prediction for different models. Acc: Accuracy; Sens: sensitivity; Spec: specificity. 

Network 

Validation Set Independent Test Set 

Acc. Sens. Spec. AUC 
F1-

Score 
Acc. Sens. Spec. AUC 

F1-

Score 

3D Residual Network 80% 66.7% 88.9% 0.84 72.7% 80% 71% 87% 0.83 75% 

3D Residual Network + Clinical 

Features 
80% 83.3% 88.9% 0.84 76.9% 80% 71% 87% 0.82 75% 

3D Residual Network + BiT 80% 83.3% 77.8% 0.86 76.9% 80% 82.4% 78.% 0.84 77.8% 

3D Residual Network + CBAM 

Attention 
80% 83.3% 77.8% 0.88 76.9% 80% 82.4% 78.2% 0.87 77.8% 

3D Residual Network + CBAM 

Attention + Clinical Features 
80% 66.7% 88.9% 0.86 72.7% 80% 88.2% 73.9% 0.87 78.9% 

3D Residual Network + CBAM 

Attention + BiT 
80% 100% 66.7% 0.88 80% 80% 88.2% 73.9% 0.88 78.9% 

3D Residual Network + Self-

attention 
86.7% 83.3% 88.9% 0.89 83.3% 82.5% 76.5% 87% 0.88 78.8% 

3D Residual Network + Self-

attention + Clinical Features 
86.7% 66.7% 100% 0.88 80% 80% 88.2% 73.9% 0.87 78.9% 

3D Residual Network + Self-

attention + BiT 
86.7% 83.3% 88.9% 0.93 83.3% 82.5% 82.4% 82.6% 0.91 80% 

 

 

Figure 5.4- The ROC curves for (a) vanilla 3D residual network, 3D residual network + CBAM, and 3D residual network + self-

attention, and (b) the same models trained with the BiT scheme. 

An explanation of how an attention mechanism helps improving the performance of the 

deep models in therapy outcome prediction is as follows: characteristics of different regions within 

tumour and peritumoural areas on MRI contribute unequally to the likelihood of local response. 

Several studies demonstrate that tumour margin areas on MRI carry invaluable information 

regarding the responsiveness of brain metastasis to radiotherapy with possibly higher importance 
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for prediction modeling compared to the core areas [94], [158]. Attention mechanisms help the 

network to capture the subtle information latent within MRI by filtering out irrelevant data and 

focusing on regions which truly contribute to the network decisions. Moreover, self-attention 

facilitates capturing long-range dependencies inside the MRI volume, an important concept that 

simple 3D convolutional layers are not capable of because of their local nature and limited field of 

view. Comparing the performance of 3D residual network + CBAM attention and the vanilla 3D 

residual network, the former has outperformed the latter in terms of AUC and F1-Score, although 

the number of parameters is almost the same for these networks. This shows the benefit of 

incorporating attention mechanisms in this setting while it may not increase the network 

complexity considerably. Our further experiments with the 3D residual network with more 

parameters (~40M parameters) when extra layers were added to the network resulted in overfitting. 

This implies that the 3D Residual Network + Self-attention does not simply benefit from the 

increased number of network parameters but mainly from the structure of the attention layers 

incorporated. Figure 5.5 demonstrates the 3D visualization heatmaps for two representative lesions 

generated using the technique introduced in Section 5.2.5. The heatmaps show the contribution 

level of different regions within the volumetric ROI on the prediction of the proposed attention-

guided model for each lesion in terms of local outcome. The 3D heatmaps can aid clinicians to 

examine the lesion volume thoroughly and inspect impactful regions for a predicted outcome 

which can eventually support their decision making in assessment, diagnosis, and treatment 

planning.  
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Table 5.2- Experimental results of the proposed framework on the validation set for 3D residual network, 3D residual network + 

CBAM attention, and 3D residual network + self-attention with different hyperparameters and pretraining settings. 

Model 
Pre-train 

(UCF101) 

Pretrain 

(BraTS) 

Learning 

Rate 

Batch 

Size 
Epochs Accuracy Sensitivity Specificity 

3D Residual Network ✓ ✓ 0.003 4 300 80% 66.7% 88.9% 
3D Residual Network + BiT ✓ ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + CBAM Attention ✓ ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + CBAM Attention + BiT ✓ ✓ 0.003 4 300 80% 100% 66.7% 
3D Residual Network + Self-attention ✓ ✓ 0.003 4 300 86.7% 83.3% 88.9% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.003 4 300 86.7% 83.3% 88.9% 
3D Residual Network   0.003 4 300 60% 66.7% 55.6% 
3D Residual Network  ✓ 0.003 4 300 73.3% 66.7% 77.8% 
3D Residual Network + BiT  ✓ 0.003 4 300 73.3% 83.3% 66.7% 
3D Residual Network + Self-attention + BiT  ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.00001 4 300 73.3% 83.3% 66.7% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.01 4 300 80% 83.3% 77.8% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.003 8 300 86.7% 100% 0.78% 

 

 

Figure 5.5- 3D visualization heatmaps corresponding to the two input channels (T1w and T2-FLAIR) of the 3D residual network 

with self-attention and BiT training for two representative lesions, one with an LF (top) and the other one with an LC (bottom) 

outcome. The user can inspect any desired area on the lesion/margin surface or inside the volumetric ROI and their correspondence 

with the MRI channels. 
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5.4. Discussion and Conclusion 

An end-to-end 3D convolutional deep learning architecture with self-attention was introduced in 

this study to predict the local outcome in brain metastasis after radiotherapy. By employing 3D 

residual blocks in the proposed model, we investigated the possibility of early prediction of LF in 

brain metastasis treated with SRT using T1w and T2-FLAIR MRI volumes acquired at baseline. 

We further investigated the effect of incorporating attention mechanisms into the 3D residual 

network. The results show that the proposed model with self-attention mechanism outperforms the 

vanilla 3D residual network and the 3D residual network with CBAM attention in terms of 

accuracy, AUC, and F1-score. The proposed architecture combines residual learning with self-

attention mechanism, allowing for full utilization of both global and local information while 

avoiding information loss. Specifically, the self-attention mechanism in the model takes into 

account long-range dependencies in the input MRI volumes while the residual connections allow 

the extracted information to persist throughout the network. We further improved the model’s 

performance by following the BiT scheme for pretraining and hyperparameter tuning. A 3D 

visualization module was developed and coupled with the framework to show the important areas 

of lesion on MRI with higher impact on the model's decision. The visualization results confirm the 

findings of previous studies that the characteristics of tumour/lesion margin areas on T1w and T2-

FLAIR images are important for predicting local outcome in brain metastasis treated with radiation 

therapy. In particular, these regions are among the high-impact regions to the predictions made by 

the proposed deep learning model with more attention gained from the model for therapy outcome 

prediction. 
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The findings of this study demonstrate the feasibility of early prediction of radiotherapy 

outcome for brain metastasis using only the features extracted from multi-modal MRI volumes. 

This study highlights the effect of adding attention mechanism to deep networks and the 

importance of pretraining in transferring knowledge to the fine-tuning step. When dealing with 

large models and large datasets (which is usually the case during pretraining) adhering to the BiT 

recipe allows for optimized training during the up-stream task and a computationally inexpensive 

fine-tuning protocol during the down-stream task to avoid a complex and costly hyper-parameter 

search. The obtained results are promising and encourage future studies on larger patient 

populations. The results of this study were obtained using an independent test set that was kept 

unseen during the model training and optimization. However, for a more rigorous evaluation of 

the efficacy and robustness of the models in the clinic, further investigations should be performed 

on larger patient cohorts and preferably with multi-institutional data. 
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6. Chapter 6 

Conclusion and Future Work 
 

 

6.1. Conclusion 

Given the abundance of MRI and CT data acquired as part of standard of care for brain metastasis 

patients, machine learning in combination with medical imaging has a good potential to be adopted 

in the clinic to provide an efficient and non-invasive method of characterizing metastatic brain 

tumours, assessing tumour response and predicting the outcome of their treatment. Segmenting 

brain tumours automatically is a difficult challenge since tumours can arise in any location within 

the brain and can be of any size, number, shape, and contrast, but if managed accurately, could be 

a substantial aid to the clinicians who often have to go through the laborious task of manual 

segmentation. Especially in the case of radiotherapy outcome assessment, each patient goes 

through many follow-up scans and in order to assess the response, all baseline and follow-up scans 

had to be carefully segmented. As another challenge in the management of patients with brain 

metastasis, predicting the outcome of prescribed treatments before or early after the therapy is of 

extreme importance as a key to the personalized cancer therapeutics paradigm. The main 

contributions of this dissertation project to address the challenges described above are summarized 

below. 
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Chapter 2 Introduced an accurate and complex segmentation framework, capable of 

automatically segmenting brain tumours on the baseline and follow-up MRI with high accuracy. 

The promising results of the network show the possibility of accurate tumour segmentation on 

baseline and follow-up MRI. This is a significant contribution considering the huge burden that 

manual segmentation puts on radiotherapy clinical workflow.  

Chapter 2 also introduced an automated system for the assessment of radiotherapy outcome 

in brain metastasis (local control/local failure and adverse radiation effect) using standard serial 

MRI based on RANO-BM criteria. By using the complex segmentation framework introduced in 

the same chapter and through assessing changes in tumour size on serial MRI, the automated 

system can assess tumour response with an accuracy of 91% in comparison to the response 

assessment by expert clinicians. Automatic monitoring and evaluation of radiotherapy outcome 

can streamline the radio-oncology workflow and facilitates precision oncology through fast, 

regular, and high-throughput response assessment. 

Chapter 3 investigated the effect of tumour segmentation imperfections on the performance 

of MRI radiomic-based radiotherapy outcome prediction models. Despite many automatic 

segmentation networks introduced in the literature, their integration in quantitative imaging 

computational models has been hindered due to considerations regarding their imperfection. The 

results presented in Chapter 3 demonstrate that if the accuracy of a segmentation model is 

relatively high (a dice score of about 0.9 in our case) but not perfect, there would not be a 

significant performance difference between the ground-truth and automatic segmentation masks 

in radiomic modeling. Our results also confirmed that radiomic features are capable of providing 

important information for radiotherapy outcome predictions if they are used in conjunction with 
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machine learning. The findings of this chapter can facilitate the integration of automatic 

segmentation frameworks in high-throughput systems for imaging biomarker discovery.  

Chapter 4 introduced a multi-modal deep sequence architecture for radiotherapy outcome 

prediction in brain metastasis a priori using treatment-planning MRI and standard clinical 

attributes. By fusing clinical features and deep-learning-based features extracted from MRI, an 

outcome prediction framework with an AUC of 0.86 was developed. A 2D visualization 

framework was also proposed to explain the network’s decision. The encouraging findings of this 

study indicate the potential for early radiation therapy outcome prediction for brain metastases 

using deep learning of MRI and clinical features. 

Chapter 5 proposed a novel 3D deep-learning architecture with residual connections and 

self-attention to predict the outcome of stereotactic radiation therapy in brain metastasis using 

volumetric MRI inputs. The proposed architecture outperformed the vanilla residual network and 

the residual network with CBAM attention in terms of accuracy, F1-score, and AUC. A new 3D 

visualization framework was also introduced to highlight the regions within the lesion carrying the 

most impactful information for radiotherapy outcome prediction. The visualization results show 

the importance of peri-lesional characteristics on treatment-planning MRI in predicting local 

outcome after radiotherapy. The findings of this chapter demonstrate the capability of volumetric 

MRI-derived self-attention-guided deep learning features radiotherapy outcome prediction for 

brain metastasis. 

The results of the studies above indicate the significant potential of machine learning for 

the management of brain metastasis. Starting from the first step of MRI acquisition, machine 
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learning could be used as a supportive tool in the clinic to help clinicians with segmenting tumours, 

assessing therapy response, and predicting therapy outcome for possible early treatment 

adjustments. The contributions and findings of this dissertation are significant considering the 

heavy burden that manual tumour segmentation imposes on image-guided therapeutic systems in 

neuro-oncology, and the potential of the proposed methods for accelerating longitudinal tumour 

size analyses, streamlining image-guided therapy outcome evaluation workflows and optimizing 

treatments for individual patients to step forward towards a precision oncology paradigm. 

6.2. Limitations and Future Work 

The findings of this dissertation project, although significant, need to be further validated 

on larger patient cohorts with multi-center data. One potential future work is to implement the 

proposed automatic system for radiotherapy outcome assessment in a clinical setting to evaluate 

its performance while being fed prospective imaging data. This assessment would further 

investigate the efficacy of the framework in the clinic while exposing its potential limitations.  

Since the studies presented in this dissertation have been performed using data acquired 

from brain metastasis patients treated with hypo-fractionated stereotactic radiation therapy, while 

tumours with a size of 5 mm and above have been present, the average tumour size was large 

(around 2.5 cm). This could potentially pose a limitation, as smaller tumours are usually harder to 

detect and delineate. To mitigate this limitation, we did some experiments on the performance of 

our proposed segmentation and assessment framework on small tumour sizes (refer to Chapter 2). 

The performance of the frameworks is lower than its average performance but still acceptable on 

small tumours (<1cm). More studies need to be carried out to investigate the proposed 
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segmentation framework, and if required adapt/optimize the network architectures, to improve its 

performance on smaller tumour sizes. 

Transformer-based segmentation models are gaining popularity in literature [202]. It would 

be interesting to integrate these architectures into the longitudinal tumour segmentation 

frameworks to explore whether they can improve the performance of automatic therapy outcome 

assessment systems. We have already shown in Chapter 5 that incorporating self-attention is 

beneficial to convolutional deep network in medical image analysis for therapy response 

prediction. It would be interesting to see how pure transformers work in such applications. 

The 2D and 3D visualization heatmaps introduced in the dissertation for the radiotherapy 

outcome prediction models can be investigated in future studies to assess for any significant 

differences they may manifest between the local control and local failure outcomes. Moreover, as 

a future work and with close collaboration with clinicians, the reliability and accuracy of these 

heatmaps can be rigorously studied. 

There is a huge interest in differentiating between adverse radiation effect and true 

progression after SRT and SRS without diagnostic biopsy or surgical resection, yet with reliable 

sensitivity and specificity. One interesting line of research could be to investigate the possibility 

of predicting/detecting potential adverse radiation effect early after radiotherapy using image-

guided deep-learning models to aid clinicians in detecting ARE non-invasively.  

The methods, algorithms, and frameworks introduced in the dissertation are transferable to 

the studies of other malignancies of the central nervous system, including but not limited to glioma, 

GBM, and spinal tumours. For example, using the response assessment in neuro-oncology criteria 
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for gliomas [110]  and the proposed segmentation framework introduced in chapter 2, the work is 

expandable from brain metastasis to gliomas. Moreover, the segmentation, therapy response 

assessment, and outcome prediction techniques could be adapted for different cancer sites and 

imaging modalities such as breast, prostate, and liver scanned with CT and ultrasound. The 

promising results presented in this dissertation endorse future endeavors to apply the method and 

techniques to other malignancies and imaging modalities.   
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Appendices 
 

Appendix A: Details of Deep-Learning Modules and 

Architectures 

 
Multi-scale Self-guided Attention Network (MSGA):  In an effort to model long-range 

dependencies and overcome the redundancy of encoder-decoder networks, the multi-scale self-

guided attention network has been introduced [109]. Especially if images are processed in 2D, 

target structures on the medical images generally exhibit intra- and inter-class variability in size, 

shape, and texture. Traditional CNNs for segmentation provide local feature representations 

because of their local receptive fields. Local feature representations may result in possible 

discrepancies between features corresponding to the pixels with the same label since long-range 

contextual information is not effectively recorded. This could cause intra-class inconsistency, 

which might eventually affect how well the model performs the pixel classification. To address 

this issue, an attention mechanism has been incorporated into the MSGA network. First, a multi-

scale method is used to capture the global context. The directed attention modules, which are made 

up of a stack of position and channel self-attention modules, are then supplied with newly learnt 

characteristics at various scales. The stack of attention modules will assist in gradually filtering 

out noise and accentuating pertinent information, while the position and channel self-attention 

modules will aid to adaptively integrate local characteristics with their global dependencies. 

Features at multiple scales are extracted from a ResNet-101 network and go through a 

corresponding attention module with position and channel self-attention. Using an encoder-
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decoder architecture, the attention is guided to remove any redundant information while 

highlighting pertinent information. The network is finally trained using a combination of loss of 

reconstruction (𝐿𝑅𝑒𝑐𝑡𝑜𝑡𝑎𝑙
), loss of guided attention (𝐿𝐺𝑡𝑜𝑡𝑎𝑙

), and loss of segmentation results at 

different scales (𝐿𝑆𝑒𝑔𝑡𝑜𝑡𝑎𝑙
). Each of total losses are calculated using the sum of losses at each scale. 

The total loss is calculated as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑆𝑒𝑔𝑡𝑜𝑡𝑎𝑙
+ 𝛽𝐿𝐺𝑡𝑜𝑡𝑎𝑙

+ 𝛾𝐿𝑅𝑒𝑐𝑡𝑜𝑡𝑎𝑙
 (a.1) 

where 𝐿𝑆𝑒𝑔𝑡𝑜𝑡𝑎𝑙
= ∑ 𝐿𝑆𝑒𝑔

𝐹′
𝑠𝑆

𝑠=0 + 𝐿𝑆𝑒𝑔𝐴

𝑠 , 𝐿𝑅𝑒𝑐𝑡𝑜𝑡𝑎𝑙
= ∑ 𝐿𝑅𝑒𝑐

𝑠𝑆
𝑠=0 , and 𝐿𝐺𝑡𝑜𝑡𝑎𝑙

= ∑ 𝐿𝐺
𝑠𝑆

𝑠=0 . 

 

Figure a.1- (a) Overall architecture of the multi-scale self-guided attention network. (b) The schematic of the guided attention 

module consists of position attention module, channel attention module, and encoder-decoder structure.  

Figure a.1(a) shows the overall architecture of MSGA network. Features from different layers of 

ResNet-101 are extracted resulting in a multi-scale group of features. These features are then 

interpolated to the same size, concatenated and convolved. The results are then fed to guided 

attention modules depicted in Figure a.1(b). In this module, position and channel attention modules 
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with the guidance coming from the parallel encoder-decoder architecture model long range 

dependencies and discard redundant information.  

 nnUNet: nnUNet proposes a robust common configuration (fixed parameters) for training 

UNets for the task of segmentation. The self-adapting feature extraction process offered by the 

nnUNet adapts to the input data, increasing its robustness against the data's fluctuation and noise. 

It employs a nested UNet architecture, which is trained using a mix of 2D and 3D input data, to 

enhance the network's performance on 3D data. Additionally, by joining together many feature 

maps tailored to different modalities, it expands the UNet architecture to support various 

modalities. In some instances, it outperforms other state-of-the-art segmentation algorithms, while 

it has demonstrated a competitive performance on several imaging datasets. Instead of using a new 

network architecture, nnU-Net achieves its high performance by systematizing the difficult manual 

model configuration process, which was previously handled either by laborious manual tweaking 

or purely empirical approaches with practical constraints. 

InceptionResNetV2: Residual connections and inception blocks have been central in 

many advances in computer vision in recent years. The InceptionResNetV2 borrowed the idea 

from both and proposed combining inception architecture with residual connections. Residual 

connections were first introduced by He et. al. to ease the training of very deep networks [203]. A 

basic residual block is demonstrated in Figure a.2(a). In the deep residual learning regime, instead 

of stacking non-linear layers to find the desired underlaying mapping ℋ(𝑥), nonlinear layers are 

stacked to fit a residual mapping Ϝ(𝑥) ≔  ℋ(𝑥) − 𝑥. Theoretically, it is easier to optimize the 

residual mapping rather than original mapping. In the extreme case, if the optimal solution is 

identity mapping, it would be easier to push Ϝ(𝑥) to zero rather than learning identity mapping by 
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stacking nonlinear layers [203]. The idea of inception module is to make networks wider rather 

than deeper by having filters of multiple size operating on the same level instead of stacking them 

[204]. Extra 1 × 1 convolutions were added in the developed framework to limit the number of 

output channels by dimensionality reduction (Figure a.2(b)). In InceptionResNetV2, residual 

connections allow for the network to have more layers while inception blocks make the networks 

wider [205]. Figure a.3 depicts the compressed view of the InceptionResnetV2 network adapted 

in the developed framework. Notice the residual connection replaced concatenation filter in the 

last layer of inception blocks. 

 

Figure a.2- (a) A residual building block, and (b) Inception module with dimension reduction. 

Recurrent Networks: Recurrent neural networks allow information to persist over time 

through feedback connections [150]. LSTM is a special kind of recurrent neural network powerful 

at learning long-term dependencies. By having internal mechanism called gate, LSTM can regulate 

the flow of information. These gates can learn which data in a sequence is important to keep or 

discard. By doing that, it can pass relevant information down the long chain of sequences to make 

predictions [150]. Figure a.4(a) demonstrates inside of an LSTM cell. The forget gate decides 

whether the information should be kept, or it is redundant and should be discarded. In the input 

gate, the cell state is updated based on the multiplication of tanh output and sigmoid output. The 
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output gate decides what the next hidden state should be. These gates together control the flow of 

information from one cell state to the another and help with maintaining long-range dependencies. 

 

Figure a.3- A compressed view of InceptionResNetV2. X shows number of times an Inception block with residual connection is 

repeated. 

The sequence to sequence (Seq2Seq) models [206] are a special kind of recurrent neural 

networks and are usually utilized to solve natural language processing problems such as machine 

translation, image captioning, question answering, etc. Most common Seq2Seq architectures 

consist of an encoder and a decoder. Both the encoder and decoder are LSTM models. Encoder 

reads the input sequence and summarizes information into a context vector. The context vector is 

then fed to the decoder and the decoder tries to make accurate predictions based on the context 

vector. Figure a.4(b) depicts the system overview of a Seq2Seq model. Instead of relying solely 

on the hidden state of the last LSTM cell as the context vector, the linear sum of the hidden states 

from all LSTM cells in the encoder could be calculated as a context vector that brings about a 

seq2seq model with attention [207]. 
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Figure a.4- (a) Inside of an LSTM cell with input gate, output gate, forget gate, and cell state. ℎ𝑡−1, 𝑐𝑡−1, 𝑥𝑡 . ℎ𝑡, 𝑐𝑡 are hidden state 

of previous layer, cell state of previous layer, input, hidden state of current layer and cell state of current layer, respectively, and 

(b) System overview of a Seq2Seq model with encoder and decoder. 

Transformers: A Transformer, applied in Chapter 4, is a novel architecture which obviates 

the need for recurrence and relies entirely on an attention mechanism to find global dependencies 

between input and output. Initially introduced by Vaswani et al.  [185] in the paper “Attention is 

All You Need”, Transformer achieved state-of-the-art performance compared to recurrent 
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networks while being more parallelized and requiring significantly less time to train. Similar to 

Seq2Seq, the Transformer employs and encoder-decoder style, however, eliminating recurrence 

and replacing it with attention mechanisms allows for substantially greater parallelization than 

RNNs and CNNs. The Transformer was introduced as a network for sequence-to-sequence 

translation but since it’s proposal, a huge variety of networks has been introduced based solely on 

encoder or decoder part of Transformers. GPT-3 [208] is an example of a network which is built 

on the decoder part of the transformer that produces human-like text with very high quality. The 

encoder part of Transformer on the other hand has been utilized in architectures such as BERT 

[209] for question-answering and text classification tasks. 

As discussed earlier, Transformer has an encoder-decoder architecture and uses self-

attention mechanism to infer dependencies. Each encoder or decoder consists of modules that 

contain feed-forward and attention layers. Figure a.5(a) demonstrates an architecture of 

Transformers. With (key, value) vector pairings, the attention layer employs a trainable associative 

memory. From a series of N inputs, the query and key matrices are generated and packed into the 

following matrices: 

𝑋 ∈ ℝ𝑁×𝐷;  𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝐷;   𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝐷 (a.2) 

where 𝑋 is the sequence of N inputs with dimension D, Q and K are the query and key matrices, 

and 𝑊𝑄 and 𝑊𝐾 are linear transformations with trainable parameters. The output of the attention 

is a weighted sum of the 𝑁-value matrix 𝑉 ∈ ℝ𝑁×𝐷 and is calculated by the following formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝐷
) 𝑉 (a.3) 
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Instead of offering a single attention head, Vaswani et al. [185] offered multi-head 

attention, which entails applying ℎ self-attention functions to the input. 

 

Figure a.5- (a) The architecture of a Transformer for sequence-to-sequence tasks. In practice, a stack of multiple encoders and 

decoders are used. Each encoder consists of multi-head attention later, residual connections, and feed-forward layer to prepare the 

input of next encoder/decoder block. (b) Classification using Encoder architecture of Transformer. A [cls] token is added to the 

input series and in the output of encoder, only the [cls] part is used for classification. 

3D Residual Network: The 3D residual network applied in Chapter 5 is an extension of 

residual networks or ResNets with 3D components instead of 2D ones [49]. Historically, the trend 

of making networks deeper to increase their modeling capabilities was hindered by vanishing 

gradient. After numerous applications of the chain rule, the gradients from which the loss function 

is derived simply drop to zero when the network is too deep. As a consequence, the weights at 

higher layers never update their values, hence no learning takes place. By introducing skip 

connections, gradients can flow backward from deeper layers to initial filters directly via these 

connections. Skip connections enable the network to easily model the identity function, where the 

output of a function becomes its input. More specifically, instead of learning the output function 
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H(x) = f(x), the output is changed into H(x) = f(x) + x. Simply, by setting f(x)=0, H(x) becomes 

the identity function. The most important part of the architecture is the stack of residual blocks and 

skip connections to preserve the gradient. Further to preserving gradient, another reason that skip 

connections prove useful is the fact that the learned features correlate to lower semantic 

information retrieved from the input in prior levels. That information become too abstract if the 

skip connections are not utilized in this architecture. 

Convolutional Block Attention Module (CBAM): When it comes to feed-forward 

convolutional neural networks, CBAM is a simple yet effective attention module [180]. Given an 

intermediate feature map, the module progressively infers attention maps along two different 

dimensions, i.e., channel and spatial, and then multiplies the attention maps by the input feature 

tensors to perform adaptive feature refinement on the intermediate feature tensors. The fact that 

CBAM is a lightweight and universal module means that it can be smoothly integrated into any 

CNN architecture with minimal overhead and that it is trainable from start to finish alongside the 

base CNNs. 

As mentioned above, CBAM consists of two sequential separate attention mechanisms, 

channel attention, and spatial attention. Because each channel of a feature tensor may be 

considered as a feature detector, channel attention is focused on 'what' is significant in the context 

of an input image when using feature tensors. Channel attention begins by aggregating spatial 

information from the feature tensor using both average-pooling and max-pooling processes, 

resulting in the generation of two separate spatial context descriptors for each feature map: 𝐹𝑎𝑣𝑔
𝑐  

and 𝐹𝑚𝑎𝑥
𝑐 , which denote average-pooled features and max-pooled features, respectively. 

Afterwards, both descriptors are forwarded to a shared network, which generates the channel 
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attention map 𝑀𝑐 ∈ 𝑅1×1×1×𝐶, where C is the number of channels. The shared network is made up 

of a multi-layer perceptron (MLP) with one hidden layer. Following the application of the shared 

network to each descriptor, the resulting feature tensors are combined by applying element-wise 

summing to form a single feature tensor. To summarize, the channel attention map is computed 

using Equation (a.4), where 𝜎 denotes the sigmoid function.  

𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (a.4) 

The next step is to compute spatial attention. In order to build a spatial attention map, the 

spatial attention module uses the inter-spatial relationship between features. At the other end of 

the spectrum from channel attention, spatial attention focuses on 'where' informative features are 

located in the image, and it is considered a complement to the channel attention. Using average-

pooling and max-pooling operations along the channel axis, the spatial attention map can be 

calculated. A convolution layer is applied to the concatenated feature descriptor in order to 

construct a spatial attention map based on it, i.e., 𝑀𝑠(𝐹) ∈ 𝑅𝑋×𝑌×𝑍. The channel information in 

the feature tensor is aggregated via the use of two pooling processes, resulting in the generation of 

two 3D maps: 𝐹𝑎𝑣𝑔
𝑠 ∈ 𝑅𝑋×𝑌×𝑍×1 and 𝐹𝑚𝑎𝑥

𝑠 ∈ 𝑅𝑋×𝑌×𝑍×1, that denote the average-pooled features 

over the channel, and the max-pooled features, respectively. Formally, the spatial attention map is 

computed using Equation (a.5) 

𝑀𝑠(𝐹) = 𝜎(𝑓7×7×7([𝐹𝑎𝑣𝑔
𝑠 ; 𝐹𝑚𝑎𝑥

𝑠 ])) (a.5) 

The channel and spatial modules are applied to the intermediate feature maps sequentially and 

output the refined features. In our proposed architecture, the CBAM block was added right before 
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the 3D average pooling layer to filter out irrelevant information and focus on important details for 

classification.  

The Self-attention Module: The self-attention module applied in Chapter 5 and is defined 

as a tensor mapping that transforms the input tensor to a query, a key, and a value tensor. The key 

and value are learned features extracted by convolution blocks, and the query determines which 

values to focus on for the learning process. The role of 3D convolution blocks (1 × 1 × 1 

convolutions) before the key, query, and value is to perform linear transformations on the input 

feature tensors. The key, query, and value vectors are denoted by 𝑘(𝑥), 𝑞(𝑥), and 𝑣(𝑥) and are 

calculated as 𝑘(𝑥) = 𝑊𝑘𝑥, 𝑞(𝑥) = 𝑊𝑞𝑥, and 𝑣(𝑥) = 𝑊𝑣𝑥, where 𝑊𝑘, 𝑊𝑞, and 𝑊𝑣 are all 

1 × 1 × 1 convolution filters and x is the feature tensor coming from the previous layer. After 

reshaping to permit matrix multiplications, 𝑘(𝑥), 𝑞(𝑥) and  𝑣(𝑥) ∈ 𝑅𝑁×𝐶, where C is the number 

of channels and 𝑁 = 𝑋 × 𝑌 × 𝑍 is the number of elements in the input feature tensor. The self-

attention map 𝛼 can be calculated using Equation (a.6). 

𝛼𝑖,𝑗 =
exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)

𝑇
)

∑ exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)
𝑇

)𝑛
𝑖=1

.  (a.6) 

In this equation, 𝑎𝑖,𝑗 is the correlation between the feature element 𝑖 and other feature elements, 

and 𝑗 is the index of corresponding output position. The output of the attention branch is 𝑜 =

(𝑜1, 𝑜2, … , 𝑜𝑁)𝑇 ∈ 𝑅𝑁×𝐶, where 𝑜𝑗 is calculated using Equation (a.7). 

𝑜𝑗 = ∑ 𝑎𝑖,𝑗𝑣(𝑥𝑖)𝑁
𝑖=1 .  (a.7) 



148 

 

 

Finally, a 1 × 1 × 1 convolution (𝑊𝑜) is applied to the reshaped output (∈ ℝ𝑋×𝑌×𝑍×𝐶) to keep the 

number of channels consistent between the input and output feature tensors of the attention layer 

(𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑜𝑜). The 3D self-attention module is added to the architecture after each residual 

block to ensure deriving long-range dependencies along with the convolution layers that mostly 

capture local features and dependencies.  

 


