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Abstract
Computer vision in the area of medical imaging has rapidly improved during
recent years as a consequence of developments in deep learning and explain-
ability algorithms. In addition, imaging in nuclear medicine is becoming in-
creasingly sophisticated, with the emergence of targeted radiotherapies that
enable treatment and imaging on a molecular level (“theranostics”) where
radiolabeled targeted molecules are directly injected into the bloodstream.
Based on our recent work, we present two use-cases in nuclear medicine as fol-
lows: first, the impact of automated organ segmentation required for person-
alized dosimetry in patients with neuroendocrine tumors and second, purely
data-driven identification and verification of brain regions for diagnosis of
Parkinson’s disease. Convolutional neural network was used for automated
organ segmentation on computed tomography images. The segmented organs
were used for calculation of the energy deposited into the organ-at-risk for
patients treated with a radiopharmaceutical. Our method resulted in faster
and cheaper dosimetry and only differed by 7% from dosimetry performed
by two medical physicists. The identification of brain regions, however was
analyzed on dopamine-transporter single positron emission tomography im-
ages using convolutional neural network and explainability, i.e., layer-wise
relevance propagation algorithm. Our findings confirm that the extra-striatal
brain regions, i.e., insula, amygdala, ventromedial prefrontal cortex, thala-
mus, anterior temporal cortex, superior frontal lobe, and pons contribute to
the interpretation of images beyond the striatal regions. In current com-
mon diagnostic practice, however, only the striatum is the reference region,
while extra-striatal regions are neglected. We further demonstrate that deep
learning-based diagnosis combined with explainability algorithm can be rec-
ommended to support interpretation of this image modality in clinical routine
for parkinsonian syndromes, with a total computation time of three seconds
which is compatible with busy clinical workflow.
Overall, this thesis shows for the first time that deep learning with explain-



ability can achieve results competitive with human performance and generate
novel hypotheses, thus paving the way towards improved diagnosis and treat-
ment in nuclear medicine.

Keywords: deep learning, explainable artificial intelligence, CT, SPECT,
parkinson, dosimetry, nuclear medicine, DAT, NET.

ii



iii



List of Publications
This thesis is based on the following publications:

[A] Mahmood Nazari, Luis David Jiménez-Franco, Michael Schroeder, An-
dreas Kluge, Marcus Bronzel & Sharok Kimiaei, “Automated and Robust
Organ Segmentation for 3D-based Internal Dose Calculation”. Pub-
lished in EJNMMI Research volume 11, Article number: 53 (2021).

Contribution: MN contributed to the manuscript and development of the idea,
implemented the work and analysed the results. LJ analysed and interpreted
the patient’s data as expert and contributed to the manuscript. MS contributed
with scientific expertise, to the manuscript and the analysis of the data. AK
provided the data and their analysis and contributed to the manuscript. MB
contributed to the manuscript. SK contributed to implementation, develop-
ment of the idea, analysis of the data and to the manuscript. All authors read
and approved the final manuscript.

[B] Mahmood Nazari, Andreas Kluge, Ivayla Apostolova, Susanne Klut-
mann, Sharok Kimiaei, Michael Schroeder, Ralph Buchert, “Explainable
AI to Improve Acceptance of Convolutional Neural Networks for
Automatic Classification of Dopamine Transporter SPECT in the
Diagnosis of Clinically Uncertain Parkinsonian Syndromes ”. Pub-
lished in EJNMMI, (2021).

Contribution: MN: study concept and design, data analysis, interpretation
of study results, and manuscript drafting. AK: study concept and design,
interpretation of study results, and substantial revision of manuscript. IA:
data acquisition, interpretation of study results, and substantial revision of
manuscript. SuK: data acquisition, interpretation of study results, and sub-
stantial revision of manuscript. ShK: study concept and design, interpretation
of study results, and substantial revision of manuscript. MS: study concept and
design and substantial revision of manuscript. RB: study concept and design,
data acquisition, data analysis, interpretation of study results, and manuscript
drafting.

[C] Mahmood Nazari, Andreas Kluge, Ivayla Apostolova, Susanne Klut-
mann, Sharok Kimiaei, Michael Schroeder, Ralph Buchert, “Data-driven

iv



Identification of Diagnostically Useful Extrastriatal Signal in Dopamine
Transporter SPECT Using Explainable AI”. Accepted in Nature, Sci-
entific Reports.

Contribution: MN: substantial contributions to the conception and design of
the work, analysis and interpretation of the data, and drafting of the manuscript.
AK: substantial contributions to the conception and design of the work, inter-
pretation of the data, and substantial revision of the manuscript. IA: acquisi-
tion and interpretation of the data, and substantial revision of the manuscript.
SuK: acquisition and interpretation of the data, and substantial revision of
the manuscript. ShK, MS: substantial contributions to the conception and de-
sign of the work, interpretation of the data, and substantial revision of the
manuscript. RB: substantial contributions to the conception and design of the
work, acquisition, analysis and interpretation of the data, and drafting of the
manuscript.

v



vi



Acknowledgments
The journey toward my Ph.D. would be barely feasible without the support
and guidance that I received from many people for which I am very thankful.

I would like to thank my main supervisor, Prof. Michael Schroeder, whose
expertise and his support was invaluable. Your insightful feedbacks sharpened
my thoughts and brought them to a much higher philosophical level. I would
like to express my gratitude to my supervisor, Dr. Florian Jug, who provided
me with in-depth expertise in computer vision.

I acknowledge and thank my colleagues at company, ABX-CRO and at the
university, Bio-Tech. I would particularly like to single out Dr. Kluge, Dr.
Buchert and Dr. Kimiaei for their assistance, guidance and support at every
stage of my research project.

I would like to thank my family and my parents. You were always there for
me. I love you.

I gratefully acknowledge the funding received towards my PhD from Euro-
pean Union’s Horizon 2020 research and innovation programme.

Finally, I could not have completed my work without the support of my
friends especially Dr. Ekholm.

Acronyms

AI: : artificial intelligence

CNN: : convolutional neural network

CT: : computed tomography

DSC: : dice score coefficient

DVH: : dose volume histogram

vii



FPN: : feature proposal network

HU: : hounsfield unit

IoU: : intersection-over-union
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CHAPTER 1

Deep Learning Segmentation and Dosimetry, Paper A.

1.1 Introduction

Molecular radiotherapy (MRT) using tumor targeting peptide pharmacophores,
labelled with radioisotopes such as Lu-177 or Y-90 is increasingly used for
treatment of cancer, e.g., neuroendocrine tumors (NETs) [1], [2], [3] or prostate
cancer [4]. MRT has the advantage of offering a more personalized cancer
treatment as radiopeptides can be taylored to the molecular characteristics
of a tumor and deliver a radiation dose to a designated target. To optimize
the dose treatment scheme, i.e., in order to safely administer MRT agents,
various dosimetry methodologies (e.g. 3d) have been developed to estimate
and calculate the delivered radiation dose to various organs.

In 3d dosimetry, the organ time-activity curve (TAC) is determined based
on quantitatively reconstructed SPECT/CT series [5]. 3d dosimetry uses data
from delineated organs obtained from multiple quantitative SPECT/CT time
points for calculation of organ TACs. Eventually, the delivered dose is calcu-
lated by convolution of voxel-per-voxel cumulative activity of each organ with
an energy deposition kernel (voxel S)[6]. 3d dosimetry is based on delineated
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Chapter 1 Deep Learning Segmentation and Dosimetry, Paper A.

organs of interest. Therefore, the final estimated radiation dose deposited
depends on the accuracy of the 3d organ delineation. Developing methods for
segmenting organs from CT images remains a significant challenge [7]. To-
day, segmentation of anatomical images is still either done manually or in a
semi-automated [8] manner which is time-consuming, error-prone, operator-
dependent and requires significant human expertise.

Kidneys that are usually one of the organs of interest in MRT are relatively
easy to visually identify on CT scans, even without intravenous contrast [9].
Despite their visibility, kidney segmentation still remains a tedious process.
[10], with an estimated duration of 30 minutes for an expert to segment one
kidney. Liver segmentation is a more challenging task. Livers are large, inho-
mogeneous and vary considerably from one patient to another [11]. Standard
CT-scans of livers suffer from blurry edges, due to partial volume effects and
motion artifacts induced by respiratory and cardiac motion, increasing the
level of complexity during the delineation. Manual or semi-automated seg-
mentation of the liver require on average 60 to 120 minutes from a clinical CT
scan with slice thicknesses from 2 mm to 5 mm [12].

We introduce a light-weight, yet robust and automated liver and kidney
segmentation methodology based on the Mask-rcnn algorithm [13] that can
be adapted to clinical routine practice, and does not require any dedicated
hardware. We further analyze and discuss the impact of method-related er-
ror on final absorbed dose estimates to the kidneys, using Lu-177 DOTATOC
treatment as an example.

1.2 Related Papers
During recent years, since the development of artificial intelligence (AI), var-
ious deep learning algorithms have been introduced that can fully- or semi-
automatically segment livers and kidneys with sufficiently high and adequate
accuracy [14] and with considerably less human interaction and effort. The
most potent and accurate of these algorithms operate in 3d, making them
computationally expensive and therefore unsuitable for daily routine practice.
Furthermore, it is still unclear to what extent delineation errors and discrep-

4



1.3 Results

Table 1.1: Liver segmentation accuracy for top preforming methods found in liter-
ature. DL = deep learning algorithm, non-DL = other methods.

literature dice-coe% method

[15] 96 DL
[16] 96 DL
[17] 95 DL
[18] 94 DL
[19] 86 non-DL

Table 1.2: Kidney segmentation accuracy for top preforming methods found in
literature DL = deep learning algorithm, non-DL = other methods.

literature dice-coe% method

[20] 98 DL
[21] 88 non-DL

ancies from manual segmentation propagate through to dose calculation and
consequently impact the calculated absorbed radiation dose to organs.

In this paper, we introduced a novel approach to calculate the dose from
nuclear medicine images e.g. SPECT and investigate its impact. However,
similar methods for organ segmentation have been reported in the literature,
e.g., for liver and kidneys. The top-performing accuracy results from the
literature are expressed as Dice score coefficients for segmented livers and
kidneys as shown in tables 1.1 and 1.2, respectively.

1.3 Results
The computational expense of the algorithm was sufficient for clinical daily
routine, required minimum pre-processing and performed with acceptable ac-
curacy a Dice coefficient of 93% for liver segmentation and of 94% for kidney
segmentation, respectively. In addition, kidney self-absorbed doses calculated
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Chapter 1 Deep Learning Segmentation and Dosimetry, Paper A.

using automated segmentation differed by 7% from dosimetry performed by
two medical physicists in 8 patients.
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CHAPTER 2

Deep Learning and Explainability, General, Paper B & C.

2.1 Introduction

Convolutional neural networks (CNN) [22] are often used for sentence clas-
sification [23], human action recognition [24], environmental collections [25],
time series [26] and medical imaging diagnosis [27] mostly due to their state-
of- the-art accuracy, efficient processing, i.e., neural network weight sharing
and their unique properties e.g. operating with multi-dimensional data en-
compassed with spatial information. A convolutional layer is designed to
extract different features independently of their position in the input data,
i.e., translation-invariant feature.

CNNs are however often referred as “black- box” [28] due to the multilayer
non-linear structure and their complexity. Thus, to provide explainability,
several methods have been developed. [29] that try to solve the problem
of building high-level, class specific feature detectors from unlabeled data.
Sensitivity analysis is based on partial derivatives at the prediction point
[30], extraction of neural activation during convolution or the visualization of
weights [31]. The deconvolution and occlusion methods [32] mainly diverge
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Chapter 2 Deep Learning and Explainability, General, Paper B & C.

in the way they handle back-propagation through the non-linearity function.
Guided back-propagation [33] and the deep visualization toolbox are based on
regularized optimization [34]. These methods however are not image-specific
and tend to generalize what the algorithm has learned, and hence do not pro-
vide clear explanations for individual datasets.

A different type of analysis explores the counter-intuitive properties, e.g.,
space provides the semantic information in the high layers of neural networks
and input-output mappings which are fairly discontinuous [35]. Explanation
of neural network (NN) behavior on the level of single neurons is done in
[36] where activation maximization, sampling from a neuron and linear com-
bination techniques are exploited. Both of these works relie on maximizing
the activation function with respect to the inputs by means of optimization
problems using gradient ascent. A separate path [37] for understanding the
decisions making by NN is to train a more interpretable model such as de-
cision tree by extraction of the rules. That is done by discretization of the
continues activation functions.

A Taylor decomposition [38] is a simple technique, produces explanations by
performing a Taylor expansion of the prediction f(x), at some nearby reference
point x0, eq.(2.1) where l is the number of inputs (features). This method is a
quantification of relevance for each input feature to the prediction. However,
it is generalizing the model and is unreliable due to two known limitations
of deep learning algorithms, i.e. adversarial examples [35] and shattered gra-
dients (the model is generally accurate but the gradient is noisy) [39]. The
deficiency of the Taylor expansion is the selection of the root point x0 to cal-
culate the relevant ∇f(x0) [40].

f(x) = f(x0) +
l∑

i=1
(x − x0) · [∇f(x0)]i + ... (2.1)

In contrast with the mentioned methods, in this work we have chosen a su-
perior method, layer-wise relevance propagation (LRP)[41], a technique that
takes advantage of the graph structure of the CNN to provide explainability
also referred to as attribution maps or heatmap. LRP identifies patterns in
input space with respect to the analyzed network output [42]. LRP has the
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2.1 Introduction

advantage of explicitly generating per pixel (voxel) heatmaps. LRP relies on
the trained model parameters i.e., weights and neuron activation functions
[43] and follows Kirchhoff’s conservation laws of electrical circuits which is
also shared by models described in other papers such as [44] and [45].

The general concept of LRP is to build a local redistribution rule for each
neuron applying them in backward pass manner to construct a pixel-wise
decomposition; in this thesis refereed as heatmap. LRP functions by back-
projecting relevance, the local propagation rule in the graph structure of the
network considering the conservation property staring from the output neuron
f(x). Conservation implies that the amount of flow received by a layer shall
be redistributed to the lower connected layer with equal quantity.

Starting from the naive rule of LRP, i and j are neurons at two consecutive
layers of the neural network. The amount of propagating relevance scores
contributed into a lower layer neuron Ri in layer [k-1] from the higher level
neuron Rj in layer [k] is achieved by applying the rule shown in eq.(2.2). The
denominator zj enforces the conservation property.

R
[k−1]
i =

∑
j

zij∑
i zij

R
[k]
j =

∑
j

zij

zj
R

[k]
j (2.2)

The zij in the eq.(2.2) is the relevance contribution portion of the neu-
ron j into the neuron i, i.e. the quantification of relevance propagation.
By running iteratively the rule eq.(2.2) for all neurons in each layer, thus∑

i R
[k−1]
i =

∑
j R

[k]
j , the total amount of relevance flow from the higher layer

is contributed into the lower layer; and by extension for all the layer the global
conservation property f(x) =

∑
j R

[k]
j is hold where k is number of layer.

LRP rules rely on Taylor series for mathematical foundation around a root
close to the prediction point at each neuron thus approximating the ReLU
nonlinearity activation function. LRP does that by decomposing the structure
of the network for the individual neurons and hence the name Deep Taylor
Decomposition (DTD) [46] with the choice of the root point x0 where f(x0) =
0 as the challenging part, starting from eq.(2.1) and written as eq.(2.3) and
thus eq.(2.4) for the first order and by the selection of root point x0 = 0:
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Chapter 2 Deep Learning and Explainability, General, Paper B & C.

f(x) = f(x0) +
(

∂f

∂x
|x=x0

)T

· (x − x0) + ϵ (2.3)

f(x) = 0 +
∑

j

∂f

∂xj
|x=x0 · (xj − x0) + ϵ (2.4)

where ∂f
∂xj

|x=x0 · (xj − x0) is Rj(x). Similarly, relevance for neuron j is
calculated as following in the eq.(2.5)

Rj =
∑

i

∂Rj

∂xi
|x0 · (xi − x0) + ϵj, where ϵj = 0 (2.5)

where due to linearity of the rectified linear units (ReLU) function for sec-
ond and higher-order derivative terms are: ϵj = 0. ReLU activation function
as a nonlinear function arguably is one the most used activation functions
in CNN layers. ReLU, aj = max(

∑
0,i xiwij + bi, 0) where wij is the weight

between neuron i and j, bj is the bias and xi is the input to the neuron j is
also used in most of deep learning models such as reinforcement learning and
image analysis [47]. ReLU is computationally efficient i.e. zero activation for
negative value. In ReLU the likelihood of vanishing gradient is reducing i.e.
gradient for positive value is less likely to vanish when close to 0 hence, better
convergence [48] properties.

LRP has many propagation rules [49] [46], namely LRP 2
w, LRPϵ, LRPγ ,

LRP0, LRPαβ and LRP β
z based on stabilizing methods and choice of root

selection for the Taylor expansion. LRP 2
w rule, eq.(2.6), leads to an individual

explanation for each data point [46] where the selection of root point is not
bounded and the input to the network is considered to be any real-value. The
root point is chosen to be the nearest in the Euclidean sense to the actual
data point found in the intersection of these two sub-spaces.

10



2.1 Introduction

Ri =
∑

j

w2
ij∑

0,i w2
ij

Rj (2.6)

LRPϵ, eq.(2.7), defined by adding ϵ, a small positive term in denominator
to absorb the weak or opposite contributions (noise) into the neuron hence re-
ducing the fluctuation and resulting in dominant explanation as an stabilizing
method and to obtain better numerical property.

Ri =
∑

j

aiwij∑
0,i aiwij + ϵ.sign(aiwij)Rj (2.7)

Where ai = max(0,
∑

0,l alwli) and l is number of neurons in lower layer
connected to i. LRPϵ is derived from LRP0, eq.(2.8), which is equivalent
to the Input × Gradient [45] and holds the property of 0 relevance if the
activation or the weigh of the neuron is 0 which is equivalent to eq.(2.2).

Ri =
∑

j

aiwij∑
0,i aiwij

Rj (2.8)

Coefficient γ in LRPγ , eq.(2.9), controls the positive contributions over
negative ones used in [50] and [41] for the separate treatment of positive and
negative contributions.

Ri =
∑

j

(γw+
ij + wij) · ai∑

0,i(γw+
ij + wij) · ai

Rj (2.9)

Thus by increasing the γ the negative contribution is cancelled out. LRP β
z ,

eq.(2.10), where z+
ij = xiw

+
ij and w+

ij is the positive part of wij . LRP β
z searches

for the root point similarly to the LRP 2
w but with the constrains that the root

has to be bounded by the maximum and minimum value of the input to the
network e.g. maximum and minimum pixel value of the input image. LRP β

z

is equivalent to LRPαβ when α = 1 and β = 0.
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Chapter 2 Deep Learning and Explainability, General, Paper B & C.

Ri =
∑

j

z+
ij∑

0,i z+
ij

Rj (2.10)

A rule that it needs to be discussed here is LRPαβ as defined in eq.(2.11),
an extension of LRPγ where γ → ∞ with the conservation constrain that
α − β = 1. LRPαβ treats negative and positive pre-activations separately as
a stabilizing method by not leaking the relevance.

Ri =
∑

j

(α (aiwij)+∑
0,i(aiwij)+ + β

(aiwij)−∑
0,i(aiwij)− )Rj (2.11)

Please note that (aiwij)+ = z+
ij , (aiwij)− = z−

ij and zij = z+
ij + z−

ij . The
fraction of negative weighted activations distributed into lower layer from
higher layer is defined by coefficient β. Thus β controls the negative fraction
contributed to the input that can be translated as inhibitors. Higher β and
consequently higher inhibitors contribution results in the reduction of posi-
tive evidence into the input and therefore keeping the stronger contributed
features. The value choice of β varies and relays on the structure of the net-
work [51].

Ri =
∑

j

(α (zij)+

(zj)+ + β
(zij)−

(zj)− )Rj (2.12)

The LRP rules mentioned can be approximated by DTD. DTD for LRPαβ

only hold where β = 0, i.e. only positive contributions is considered. Further-
more, LRPα1β0 full-fill 4 axioms, attributing the prediction of a deep network
to its input features as desirable properties namely, selectivity [52], continuity
[40], positivity [46] and conservation [41]. Selectivity is quantified by the mea-
surement of the speed of f(x) declination when features with highest relevance
score are removed [53]. LRP is continues if it produces a continuous explana-
tion function (heatmap) and is positive if all values forming the heatmap are
zero or positive.
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2.2 Related Papers

2.2 Related Papers

In cognitive neuroscience, LRP has been applied to single-trial EEG and func-
tional MRI classification [54]; in whole-brain neuroimaging analyses [55]. LRP
has been utilized for Alzheimer diagnosis [56] and [57], and for diagnosing mul-
tiple sclerosis [58], using MRI, for delineating protein–ligand interactions at
the atom level [59] in chemical and pharmaceutical assessments and for se-
mantic categorization in language processing [60].

In the past [41], [56], [61], LRP was used with a single rule, e.g., for the
entire structure, regardless of the type of the neural network, which resulted
in highly similar outcomes to earlier explainable methods such as gradient-
based methods namely, input x gradient, or guided back-propagation [62],
[40], [63], [33]. The input x gradient approach is computed by partial deriva-
tives of the output with respect to the input and then multiplication with
the input and hence, estimating the whole network by a derivative. Guided
back-propagation first decomposes a function and then performs an iterative
backward mapping. These methods were not robust mainly due to gradient-
shattering [39] effect which often resulted in inferior heat-maps/ attribute
maps [49]. In contrast, when using LRPαβ . LRPαβ , meaningful heatmaps
were generated when applying a single rule to a whole network. LRPαβ pro-
vides satisfactory attribution maps, however it is incapable of providing dis-
criminate evidence (attributes) between different objects in the input as Gu
et al. [64] attempted to address. In addition, the LRPαβ rule requires the
logit output (before softmax) to be always positive to be conservative [46].
Our evaluation also showed that our trained network results in some negative
values at logit (output) for some patients. Thus to overcome these issues, we
use Lrpcmp (composition) composed from 3 different rules [65]. In our imple-
mentation, the LRP♭ was used for the first two layers in the input for better
control of the resolution and semantics in the heatmap [66], LRPαβ , eq.(2.11)
for the CNN layers with α = 2 and β = 1 and LRPϵ, eq.(2.7) with ϵ = 1−4 for
the fully connected layers near the output. α = 2 and β = 1 were chosen to
allow the positive and negative relevance prorogation (higher inhibitors con-
tribution) in the CNN layers of the network. The rule LRP♭ distributes the
relevance of a neuron uniformly across all of its input, i.e. zij = 1 in eq.(2.2)
and Ri =

∑
j 1 thus directly propagating relevance of higher layer neurons

resulting a more abstract notion.
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Chapter 2 Deep Learning and Explainability, General, Paper B & C.

Lrp cmp used for paper B and C generates meaningful attribute maps
(heatmaps) for object discrimination by providing positive evidence (posi-
tive values, ≤ 1) supporting the decision taken by the network and negative
evidence (negative values, ≥ −1) undermining the decision. In addition, it
provides robustness against gradient shattering and better object localization
in the heatmaps.
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CHAPTER 3

Explainable AI to Improve Acceptance of Convolutional
Neural Networks, paper B

3.1 Introduction

There is growing interest in the use of machine learning techniques for auto-
matic classification of medical brain images to support the diagnosis of psy-
chiatric and neurological diseases [67], [68]. Fully data-driven approaches
based on deep convolutional neural networks are particularly promising for
this task [69]. CNN usually work end-to-end with no human knowledge built
in, that is, without prior feature extraction (“image in, classification out”).
The CNN itself learns the relevant features from a sufficiently large number of
training cases with given standard-of-truth label (the clinical diagnosis after
sufficiently long follow-up, for example). Deep CNN outperform conventional
machine learning methods in many medical image classification tasks [70].

However, deep CNN are inherently black-box in nature so that improve-
ment of classification accuracy by deep CNN comes at the price of reduced
transparency. The lack of transparency is a major limitation of deep CNN,
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particularly in medical applications which require a human readable explana-
tion of the automatic classification decision in each individual patient. This
allows the physician to verify that the classification decision made by the al-
gorithm is plausible and coherent. The lack of transparency of deep CNN
therefore limits their acceptance for widespread clinical use. Layer-wise rel-
evance propagation is an explainable AI technique that allows generation of
an individual relevance map for each individual patient [41]. The individual
relevance map generated by LRP is in the same space (with the same matrix)
as the patent’s image used as input for the CNN. The voxel intensities in the
relevance map indicate the relevance of the voxels for the CNN-based classi-
fication of this image [56]. In particular, the voxels in the input image that
were most relevant for the CNN’s classification decision are identified by the
highest intensity in the relevance map.

Here we propose LRPcmp with a specific combination of different redistri-
bution rules in different parts of the CNN to explain CNN-based classifica-
tion of single-photon emission computed tomography (SPECT) images of the
dopamine transporter (DAT) availability in the brain of patients with a clin-
ically uncertain parkinsonian syndrome.

This study tested layer-wise relevance propagation to explain CNN-based
classification of DAT-SPECT in patients with clinically uncertain parkinso-
nian syndromes.

3.2 Related Papers
In DAT-SPECT, visual interpretation of the images by a trained physician is
sufficient for clinical reporting in the majority of cases [71]. However, quanti-
tative analysis and/or automatic classification is a useful adjunct when used
as an objective second reader, particularly in borderline cases and for less
experienced readers [72]. Conventional machine learning methods using sup-
port vector machines [73]–[75], decision trees [76], [77], or cluster analyses
[78] based on a (small) set of pre-defined image-derived features have been
proposed for this purpose. However, recent work suggests that artificial neu-
ral networks, particularly deep CNN, outperform conventional approaches for
the automatic classification of DAT-SPECT [79]–[81], partly because artificial
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neural networks can be less sensitive to camera- and site-specific variability
of image quality (e.g., with respect to spatial resolution) [79]. Thus, deep
CNN are very promising to support interpretation of DAT-SPECT in clinical
routine so that there is a high clinical need for methods to explain CNN-based
classification in individual patients. Against this background, we for the first
time in paper B used LRP and CNN to provide explainability for the readers
to verify the decision made by the CNN.

3.3 Results
Overall accuracy, sensitivity, and specificity of the CNN in paper B were
95.8%, 92.8%, and 98.7%, respectively. LRP provided relevance maps that
were easy to interpret in each individual DAT-SPECT. In particular, the puta-
men in the hemisphere most affected by nigrostriatal degeneration was the
most relevant brain region for CNN-based classification in all reduced DAT-
SPECT. Some misclassified DAT-SPECT showed an ‘inconsistent’ relevance
map more typical for the true class label.
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CHAPTER 4

Explainable AI for Identification of Diagnostically Useful
Signals in Medical Brain Images, Paper C.

4.1 Introduction

Neurodegenerative parkinsonian syndromes including Parkinson’s disease (PD)
are associated with nigrostriatal degeneration resulting in the loss of dopamine
transporters in the caudate and putamen nuclei of the (dorsal) striatum sec-
ondary to the degeneration of pigmented cells in the substantia nigra pars
compacta [82], [83]. The nigrostriatal degeneration is the major pathophysio-
logical correlate of the motor symptoms in PD. Clinical guidelines recommend
single photon emission computed tomography with the DAT ligand nortropane
for the detection (or exclusion) of relevant DAT loss in the striatum to sup-
port the diagnostic workup in patients with clinically uncertain parkinsonian
syndrome (CUPS) [84], [72]. In clinical routine, both visual interpretation
and semi-quantitative analysis of SPECT are focused on the striatum and
its subregions [71], [85], [86]. Furthermore, this approach is voxel-based and,
therefore, is expected to provide high sensitivity for the identification of small
and/or lateralized clusters of extra-striatal signal for this task. Paper C is
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a study that retrospectively included a large sample of images from clinical
routine (n = 1306). These samples were used in three different settings: “full
image”, “striatum only” (3-dimensional region covering the striata cropped
from the full image), “without striatum” (full image with striatal region re-
moved).

4.2 Related Papers
The loss of dopaminergic neurons in PD is not restricted to the nigrostriatal
pathway. There is also PD-related loss of dopaminergic neurons in the ventral
tegmental area that directly project to extrastriatal brain regions including nu-
cleus accumbens, medial prefrontal cortex, hippocampus and amygdala [87]–
[90]. Degeneration of these dopaminergic pathways most likely contributes
to cognitive and behavioral symptoms in PD. As a consequence, the diag-
nostic accuracy of DAT SPECT might be improved by taking into account
extrastriatal signals in addition to the striatal signal. In fact, a previous study
provided evidence that taking into account the DAT uptake in the insular cor-
tex might increase the accuracy of DAT SPECT for the detection of PD [91].
The study did not find PD-related differences in DAT uptake in the frontal,
parietal, and temporal lobes. To some extent this might be explained by
limited sensitivity of the a priori-defined bilateral regions-of-interest covering
the entire brain lobes used in this study. PD-related alterations of extras-
triatal DAT uptake may not be uniform throughout entire brain lobes, but
they might be restricted to rather small parts within a lobe, for example the
orbitofrontal part of the frontal lobe or the amygdala in the temporal lobe
[92]. Furthermore, PD-related alterations of extrastriatal DAT uptake might
be left-right asymmetric, that is, more pronounced in one hemisphere.This
is similar to PD-related reduction of striatal DAT uptake, which generally is
more pronounced in the brain hemisphere contralateral to the side of the body
more strongly affected by the motor symptoms [93]. Thus, the use of a priori-
defined ROIs covering the whole bilateral frontal or parietal or temporal lobe
might have resulted in considerable ‘dilution’ of more localized and lateralized
effects, which in turn reduced the sensitivity to detect them.

Against this background, the aim of the present study in paper C was to
identify extrastriatal brain regions that might contribute to the differentia-
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tion between neurodegenerative and non-neurodegenerative CUPS by DAT
SPECT using a deep learning approach based on a custom-made convolu-
tional neural network [69], [70] and layer-wise relevance propagation.

This fully data-driven novel approach does not require any a priori hy-
potheses on which extrastriatal brain regions might provide most information
for the differentiation between neurodegenerative and non-neurodegenerative
CUPS.

4.3 Results
Overall accuracy of CNN-based classification was 97.0%, 95.7%, and 69.3%
in the “full image”, “striatum only”, and “without striatum” settings, respec-
tively. Prominent contributions in the LRP-based relevance maps beyond the
striatal signal were detected in the insula, amygdala, ventromedial prefrontal
cortex and the anterior temporal cortex, suggesting that DAT uptake in these
brain regions provides clinically useful information for the differentiation of
neurodegenerative and non-neurodegenerative parkinsonian syndromes. The
findings of the present study in paper C are in good agreement with previous
studies and verify them independently.
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CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A
Mahmood Nazari, Luis David Jiménez-Franco, Michael Schroeder,
Andreas Kluge, Marcus Bronzel & Sharok Kimiaei
Automated and Robust Organ Segmentation for 3D-based In-
ternal Dose Calculation
Published in EJNMMI Research volume 11, Article number: 53 (2021)
07 June 2021, gold open access,
DOI: https://doi.org/10.1186/s13550-021-00796-5

We address image segmentation in the scope of dosimetry using deep learn-
ing and make three main contributions: (a) to extend and optimize the archi-
tecture of an existing convolutional neural network in order to obtain a fast,
robust and accurate computed tomography (CT)-based organ segmentation
method for kidneys and livers; (b) to train the CNN with an inhomogeneous

23



Chapter 5 Summary of included papers

set of CT scans and validate the CNN for daily dosimetry; and (c) to evaluate
dosimetry results obtained using automated organ segmentation in compari-
son with manual segmentation done by two independent experts. The result-
ing computational expense of the algorithm was sufficient for clinical daily
routine, required minimum pre-processing and performed Dice coefficients of
93% for liver segmentation and of 94% for kidney segmentation, respectively,
with acceptable accuracy. In addition, kidney self-absorbed doses calculated
using automated segmentation differed by 7% from dosimetry performed by
two medical physicists in 8 patients. Hence, the proposed approach may
accelerate volumetric dosimetry of kidneys in molecular radiotherapy with
177Lu-labelled radiopharmaceuticals such as 177Lu-DOTATOC.

5.2 Paper B
Mahmood Nazari, Andreas Kluge, Ivayla Apostolova, Susanne Klut-
mann, Sharok Kimiaei, Michael Schroeder, Ralph Buchert
Explainable AI to Improve Acceptance of Convolutional Neu-
ral Networks for Automatic Classification of Dopamine Trans-
porter SPECT in the Diagnosis of Clinically Uncertain Parkin-
sonian Syndromes
Published in EJNMMI, (2021)
15 October 2021, gold open access,
DOI: https://doi.org/10.1007/s00259-021-05569-9

Deep convolutional neural networks provide high accuracy for automatic
classification of dopamine transporter SPECT images. However, CNN are
inherently black-box in nature lacking any kind of explanation for their deci-
sions. This limits their acceptance for clinical use. To address this limitation,
we tested layer-wise relevance propagation to explain CNN-based classifica-
tion of DAT-SPECT in patients with clinically uncertain parkinsonian syn-
dromes. The resulting overall accuracy, sensitivity, and specificity of the CNN
were 95.8%, 92.8%, and 98.7%, respectively. LRP provided relevance maps
that were easy to interpret in each individual DAT-SPECT. In particular,
the putamen in the hemisphere most affected by nigrostriatal degeneration
was the most relevant brain region for CNN-based classification in all reduced
DAT-SPECT. Some misclassified DAT-SPECT showed an “inconsistent” rel-
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evance map more typical for the true class label. LRP is useful to provide
explanation of CNN-based decisions in individual DAT-SPECT and, therefore,
can be recommended to support CNN-based classification of DAT-SPECT in
clinical routine. Total computation time of 3s is compatible with busy clinical
workflow.

5.3 Paper C
Mahmood Nazari, Andreas Kluge, Ivayla Apostolova, Susanne Klut-
mann, Sharok Kimiaei, Michael Schroeder, Ralph Buchert
Data-driven Identification of Diagnostically Useful Extrastri-
atal Signal in Dopamine Transporter SPECT Using Explain-
able AI
Accepted in Nature, Scientific Reports
20 Oct 2021 , gold open access,
DOI:

This study used explainable artificial intelligence for data-driven identifica-
tion of extrastriatal brain regions that can contribute to the interpretation of
dopamine transporter SPECT with 123I-FP-CIT in parkinsonian syndromes.
A total of 1306 123I-FP-CIT-SPECT were included retrospectively. Binary
classification as ‘reduced’ or ‘normal’ striatal 123I-FP-CIT uptake by an ex-
perienced reader served as standard-of-truth. A custom-made 3-dimensional
convolutional neural network was trained for classification of the SPECT im-
ages with 1006 randomly selected images in three different settings: “full im-
age”, “striatum only” (3-dimensional region covering the striata cropped from
the full image), “without striatum” (full image with striatal region removed).
Layer-wise relevance propagation was used for voxel-wise quantification of the
relevance for the CNN-based classification in this test set. Overall accuracy
of CNN-based classification was 97.0%, 95.7%, and 69.3% in the “full image”,
“striatum only”, and “without striatum” setting. Prominent contributions in
the LRP-based relevance maps beyond the striatal signal were detected in in-
sula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal
cortex, superior frontal lobe, and pons, suggesting that 123I-FP-CIT uptake in
these brain regions provides clinically useful information for the differentiation
of neurodegenerative and non-neurodegenerative parkinsonian syndromes.
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CHAPTER 6

Concluding Remarks and Future Work

We introduced novel methods using deep learning and explainablity for iden-
tification, diagnosis and treatment in nuclear medicine. These methods result
in accelerated and cheaper personalized dosimetry and in addition introduce
a unique way of verification for diagnosis to the medical readers. Our research
also independently confirms the previously conventional findings in the brain
regions. However, these methods need further evaluation before they can be
used in the clinical routine overflow. In addition, the evaluation of deep learn-
ing certainties for diagnosis using explainablity which could result in confident
score for individual patients can be investigated.
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Abstract 

Purpose: In this work, we address image segmentation in the scope of dosimetry using deep learning and make 
three main contributions: (a) to extend and optimize the architecture of an existing convolutional neural network 
(CNN) in order to obtain a fast, robust and accurate computed tomography (CT)‑based organ segmentation method 
for kidneys and livers; (b) to train the CNN with an inhomogeneous set of CT scans and validate the CNN for daily 
dosimetry; and (c) to evaluate dosimetry results obtained using automated organ segmentation in comparison with 
manual segmentation done by two independent experts.

Methods: We adapted a performant deep learning approach using CT‑images to delineate organ boundaries with 
sufficiently high accuracy and adequate processing time. The segmented organs were consequently used as binary 
masks for further convolution with a point spread function to retrieve the activity values from quantitatively recon‑
structed SPECT images for “volumetric”/3D dosimetry. The resulting activities were used to perform dosimetry calcula‑
tions with the kidneys as source organs.

Results: The computational expense of the algorithm was sufficient for clinical daily routine, required minimum pre‑
processing and performed with acceptable accuracy a Dice coefficient of 93% for liver segmentation and of 94% for 
kidney segmentation, respectively. In addition, kidney self‑absorbed doses calculated using automated segmentation 
differed by 7% from dosimetry performed by two medical physicists in 8 patients.

Conclusion: The proposed approach may accelerate volumetric dosimetry of kidneys in molecular radiotherapy with 
177Lu‑labelled radiopharmaceuticals such as 177Lu‑DOTATOC. However, even though a fully automated segmenta‑
tion methodology based on CT images accelerates organ segmentation and performs with high accuracy, it does 
not remove the need for supervision and corrections by experts, mostly due to misalignments in the co‑registration 
between SPECT and CT images.

Trial registration EudraCT, 2016‑001897‑13. Registered 26.04.2016, www. clini caltr ialsr egist er. eu/ ctr‑ search/ search? 
query= 2016‑ 001897‑ 13.

Keywords: CT segmentation, Internal dosimetry, Automation, SPECT, 177Lu, Deep learning, Molecular radiotherapy 
(MRT)
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
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Introduction
The molecular radiotherapy (MRT) using tumour-target-
ing peptide pharmacophores, labelled with radioisotopes 
such as Lu-177 or Y-90, is increasingly used for treatment 
of targetable cancers such as neuroendocrine tumours 
(NETs) [1–3], or prostate cancer [4]. MRT has the advan-
tage of offering more personalized cancer treatment as 
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radiopeptides can be designed to the molecular charac-
teristics of a tumour and deliver defined radiation doses 
to a specific targets. To optimize treatment, i.e. in order 
to safely administer MRT agents, various dosimetry 
methodologies have been developed to estimate and cal-
culate the radiation doses delivered to various organs.

Medical Internal Radiation Dose (MIRD) is a com-
monly used method which determines the cumulative 
activity of organs of interest through various compart-
ment models and the absorbed dose, estimated the s-val-
ues of phantom-based models [5]. The phantom-based 
dose estimators, however, lack [6] the specific patient 
and uptake geometry as the organs are standardized and 
a homogeneous activity distribution within each organ 
is assumed. To overcome these limitations, different 
patient-specific dosimetry methods have been adapted 
where the radiation dose is calculated on a voxel-by-voxel 
basis taking into consideration the individual organ shape 
and activity uptake.

Hybrid, also referred to as 2.5-dimensional (2.5D) 
dosimetry [7, 8], uses a series of planar (2D) images to 
generate time activity curves (TACs) for each organ of 
interest, which are subsequently calibrated by organ 
using the 3D effect factor from a single quantitative 
SPECT/CT scan. In 3D dosimetry, organ TAC is deter-
mined based on quantitatively reconstructed SPECT/
CT series [9] using data from delineated organs obtained 
from multiple quantitative SPECT/CT time points. In a 
final step, the delivered dose is calculated by convolution 
of voxel-per-voxel cumulative activity of each organ with 
an energy deposition kernel (Voxel S) [10].

As described above, both 2.5D and 3D methodologies 
rely on delineated organs of interest. Therefore, the final 
estimated radiation dose deposited depends on the accu-
racy of the 3D organ delineation. One proposed way to 
obtain accurate organ boundaries is to perform segmen-
tation on CT images. The resulting mask can further be 
applied to the corresponding SPECT data for activity 
extraction. Furthermore, to compensate the SPECT mask 
for the lower spatial resolution and partial volume effect, 
one adapted method has been to convolve the CT mask 
with a point spread function, prior to its application to 
the SPECT data.

Developing methods to segment organs from CT 
images remains a significant challenge [11]. Today, seg-
mentation of anatomical images is still either done manu-
ally or or semi-automated [12] which is time-consuming, 
error-prone, operator-dependent and requires significant 
human expertise. The manual segmentation of a single 
organ is typically performed slice-by-slice using either an 
available free-hand contouring tool or an interactive seg-
mentation method guiding the operator during the pro-
cess [13].

Kidneys are typical organs of interest in MRT, and rela-
tively easy to visually identify on CT scans, even without 
intravenous contrast [14]. Despite their visibility, kidney 
segmentation still remains a tedious procedure. Sharma 
et al. [15] estimated a duration of 30 min for an expert to 
segment one kidney.

Liver segmentation is an even more challenging task. 
Livers are large, inhomogeneous and vary considerably 
from one patient to another [16]. Standard CT-scans 
of livers suffer from blurry edges, due to partial volume 
effects and motion artifacts induced by breathing and 
heart beats, increasing the level of complexity during 
delineation. Manual or semi-automated segmentation of 
the liver require on average 60 to 120 min from a clinical 
CT scan with a slice thicknesses of 2 to 5 mm [17].

With the development of artificial intelligence (AI), var-
ious deep learning algorithms have been introduced that 
can fully or semi-automatically segment livers and kid-
neys with sufficiently high accuracy [18] but with consid-
erably less human interaction and effort. The most potent 
and accurate of these algorithms operate in 3D, making 
them computationally expensive and therefore unsuitable 
for daily routine practice. Furthermore, it is still unclear 
to what extent delineation errors and discrepancies from 
manual segmentation are transferred to dose calculation 
and consequently impact the calculated absorbed radia-
tion dose to organs.

In this paper we introduce a light-weight, yet robust 
and automated liver and kidney segmentation methodol-
ogy based on the Mask-rcnn algorithm [19] that can be 
adapted to clinical routine practice, and does not require 
any dedicated hardware. We further analyse and discuss 
the impact of method-related error on final absorbed 
dose estimates to the kidneys, using Lu-177 DOTATOC 
treatment as an example.

Materials and methods
In this section, we address datasets, the algorithm, data 
processing and training of the algorithm in details.

Datasets
The CNN used in this work was trained and evaluated 
using databases as per the following: dataset 1, 2 and 3 
were consisting of CT data obtained from various sources 
used individuality to train, evaluate and test the network. 
Dataset 4 consisted of SPECT/CT images intended for 
dosimetry evaluation.

Liver: dataset 1
Dataset 1 consisted of 170 abdominal CT scans from 
a liver CT-image repository, the LiTS dataset (Liver 
Tumour Segmentation Challenge) [20]. The image data 
was acquired with different acquisition protocols, CT 
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scanners and highly variable resolution and image qual-
ity. The dataset was originally acquired by seven hospitals 
and research institutions and manually reviewed by three 
independent radiologists. The CT images had large vari-
ations in the in-plane resolution (0.55–1.0 mm) and slice 
spacing (0.45–6.0  mm). CT scans included a variety of 
pre- and post-therapy images [21].

Kidney: dataset 2
Dataset 2 consisted of multi-phase CT scans with in-
plane resolution and slice thickness ranging from 0.437 
to 1.04 mm and from 0.5 to 5.0 mm, respectively (KiTS19 
Challenge database [22]). This dataset included 200 CT 
scans of patients with kidney tumours (87 female, 123 
male). The dataset provided ground truth with different 
masks for tumour and healthy kidney tissue. During the 
training, we considered the tumour mask as part of the 
kidney. A detailed description of the ground truth seg-
mentation strategy is described by Santini et. al. [23].

Kidney: dataset 3
Dataset 3 consisted of 12 patients with 12 contrast-
enhanced CT scans and 48 low-dose abdominal CT 
scans. The image data was acquired with different acqui-
sition protocols, CT scanners and highly variable reso-
lution and image quality. The dataset was originally 
acquired by six hospitals in 5 different countries under-
going organ dosimetry in the context of a clinical trial 
(internal). The CT scans varied in in-plane resolution 
from 0.45 to 0.9 mm and slice spacing from 0.8 to 4.0 
mm, respectively. The organ segmentation was done by a 
single medical physicist and confirmed by a certified radi-
ologist. One major difference in comparison with dataset 
2 was that dataset 3 did not include the renal pelvis, renal 
artery and renal vein as part of the kidney segmentation 
in contrast-enhanced CT and low-dose CT images.

SPECT/CT: dataset 4
Dataset 4 was used to evaluate the impact of automated 
segmentation on dosimetry outcome. The dataset con-
sisted of images from 8 patients with neuroendocrine 
tumours treated with 1 cycle of 177Lu-DOTATOC 
(7.5 GBq/cycle) undergoing kidney dosimetry in the 
context of a clinical study (internal). Abdominal con-
trast-enhanced CT scans were used to determine the 
volume of both kidneys. Four (4) abdominal SPECT/
CT scans with in-plane SPECT image size of 256× 256 
and Low-Dose CT (LDCT) scans with an in-plane size 
of 512× 512 were acquired at 0.5 h, 6 h, 24 h, 72 h post 
injection (p.i.). Co-registration between the LDCT scans 
and the SPECT scans was verified by two separate medi-
cal imaging experts, and the images were further coregis-
tered manually when needed.

Segmentation
The CNN used in paper was a modified deep learn-
ing model inspired by Mask-rcnn [19] and operated in 
2.5-dimensional (2.5D) mode. In 2.5D mode, a number 
of adjacent 2D axial slices, where the main slice is in the 
middle channel, are used as one input. The modified net-
work algorithm operates in two steps. In the first step, the 
network proposes multiple Regions of Interests (RoIs) 
where the RoIs are given a score and are classified in a 
binary manner. In the second step, the positively classi-
fied RoIs, i.e. the RoIs that contain objects of interest are 
fine-tuned to better include the area where the object of 
interest is located. The objects of interest within the RoIs 
are multi-classified and binary-masked. The algorithm is 
further explained in the following section.

Algorithm design
The Mask-rcnn structure is illustrated in Fig.  1 derived 
from Faster r-cnn [24]. The structure of Mask-rcnn con-
sists of two stages: in the first stage, proposed regions 
where an object of interest might be located are boxed 
and binary-classified (i.e. if a box contains an object or 
not). In this stage, a process called non-maximal suppres-
sion binary-labels the boxes with the highest Intersec-
tion-over-Union (IoU) overlap with a ground-truth for 
further preparation of the training dataset. The training 
dataset, i.e. labelled boxes are then fed into a Regional 
Proposal Network (RPN) for training. The RPN is a 
method using CNN that scans features detected by back-
bone (the main structure of the network) referred to as 
FPN (Feature Proposal Network, the CNN layers where 
features are extracted). Thus, the RPN learns how to iden-
tify and box interesting objects, RoIs, in the input image. 
In the second step, localization of the RoIs is achieved by 
a mechanism called RoI-Align [19], aligning the extracted 
features with the input after the RoIPool [25]. RoIPool 
spatially normalizes the RoI features regardless of their 
size into a pre-defined space, e.g. 7× 7.

In the inference mode, an algorithm trained through 
these steps can predict the bounding boxes, the seg-
mented object as binary mask, the regression score as 
confidentiality score, and the classification. Further 
details of the algorithm are explained in “Appendix A.1”.

Quantitative evaluation of the segmentation process 
described was assessed by the Dice Score Coefficient 
(DSC). The proposed network was evaluated in two dif-
ferent modes. In the first mode, the images in the axial 
plane were fed as input to the algorithm and the accu-
racy was calculated as the global mean DSC for all cor-
responding slices. In the second mode, images in axial, 
sagittal and coronal planes were fed separately to perform 
segmentation prediction individually prior to a pixel-wise 
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consensus procedure. Further details of the method are 
explained in “Appendix A.2”.

The major modifications in the Mask-rcnn struc-
ture were as follows: (I). we changed the input from 2D 
to 2.5D; (II); we increased the size of RoI-pooling from 
7× 7 [27, 24] to 28× 28 ; (III); we decreased the binary 
mask size to 256× 256 from original ground truth size 
512× 512 . (II) was done to increase the precision of the 
error calculation in the first step of the network training 
at the expense of the memory consumption, and (III) was 
done to decrease memory consumption at the expense 
of lower precision for the error calculation in the sec-
ond step of the network training. (IV) we did not use P1 
and C1 for RPN, as we were aware that a kidney or a liver 
would not cover the whole field of view of a CT slice. All 

the modifications empirically showed 20% decrease in 
memory consumption but 4 times reduction in speed for 
the specifications required in this task. The evaluation of 
the network without the modifications for liver segmen-
tation resulted in an average 15% lower test accuracy.

Pre and post processing
Despite the fact that different Hounsfield Unit (HU) val-
ues characterize different organs [28], these values often 
overlap for soft tissues, making the threshold-based dis-
crimination of tissues or organs difficult [29]. To avoid 
the thresholding problem, the CT images were windowed 
by applying a threshold between [−100, 200] HU. This 
thresholding was the only pre-processing performed on 
the datasets.

Fig. 1 Mask‑rcnn structure consists of two stages. The object of interest in the input image is artificially wrapped into boxes, binary‑classified 
and fine‑tuned. These boxes are then fed into the second stage of the network to be further fine‑tuned to better fit the area where the object 
is located and multi‑classified. Pixels inside the best box are then binary‑classified to generate the mask. In this image, RPN stands for regional 
proposal network, FPN stands for feature pyramid network, RoI for region of interest and ALIGN is the RoI‑Align mechanism. The head section is 
where 3 separate networks (two FCs, i.e. fully connected neural network and one CNN) generate the output. The rectangular boxes connected to 
the RPN box and Heads box indicate the type of loss functions. C and P represent the CNN layers used to construct the bottom‑up and top‑down 
architecture of the FPN respectively [26]
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In the mode where no consensus process is applied 
(refer to “Appendix A.2”) the algorithm failed to generate 
masks on LDCTs in an average of 2% of the total num-
ber of single slices for each patient in validation and test 
datasets. By visual inspection of such slices, we observed 
that for liver, the delineation failed with higher probabil-
ity where liver and heart were in the same plane. In kid-
ney segmentation, the failure was not generalizable. In 
those cases, the missing masks were approximated by lin-
ear interpolation of the masks of the adjacent 2D-slices. 
Finally, in the inference mode where the test accuracy 
was calculated, the binary masks were resized using lin-
ear interpolation to the original size of the ground truth, 
i.e. from 256× 256 to 512× 512.

Algorithm training
The network was initially trained on a subset of images 
obtained from imageNet dataset (approx. 1 million non-
medical images gathered for computer vision research 
and 1000 classes) [30] for 100 epochs (i.e. when the 
algorithm has trained on all the images/samples in the 
dataset) in order to train the backbone with the aim of 
learning the low semantic features. The trained algorithm 
(transfer learning [31, 32]) was further trained, evalu-
ated and tested on each of the datasets 1–3 as described 
below. Dataset 4 was reserved for dose calculations and 
was not used during any training or testing. Furthermore, 
to enable the network for consensus mode, after the 
transfer learning process, the network was trained in all 
the 3 orthogonal planes simultaneously after the transfer 
learning process.

Training for the liver segmentation with dataset 1 was 
initially performed for 50 epochs by freezing (no train-
ing) the backbone and training the heads only with a 
learning rate ( α ) of 0.001. This was done because we 
had only two classes in our task instead of 1000 used 
for imageNet training. It was followed by training the 
full network (backbone and heads) for 150 epochs with 
α = 0.0001 . Dataset 1 was used for the training, evalu-
ation and test datasets with the ratio of 70/10/20 % for 
liver segmentation.

Training for kidneys was done in two stages. In the 
first stage, the network was trained for 50 epochs using 
dataset 2 by training the heads (freezing the backbone) 
with a learning rate α = 0.001 . The training was then 
continued with 100 epochs using the full network with 
α = 0.0001 . Up to this stage, 60% of the dataset 2 was 
used for training, 20% for validation and 20% for test. In 
the second stage, using dataset 3, to fine-tune the net-
work, i.e. with the purpose of teaching the network to 
exclude renal pelvis, renal artery and renal vein from 
segmentation, the heads were trained for 50 epochs on 
10 CTs and evaluated on another 10 CTs each including 

2 contrast-enhanced and 8 low-dose CTs belonging to 
2 patients. After the full training, 40 CTs (8 patients) 
in dataset 3 were used for the calculation of the test 
accuracy.

Training time per epoch with a batch size of 2 was 
approximately 20 min using two Nvidia Titan XP GPUs. 
Furthermore, the network was trained, evaluated and 
tested 5 times (K-fold) [33], with random selection of 
the patients for training, validation and test subsets.

Dosimetry
Dosimetric evaluations were performed using QDOSE 

software suite (ABX-CRO advanced pharmaceutical 
services, Germany). During the evaluations, Dose Vol-
ume Histograms (DVHs) of each kidney [34] were used 
as main measure to summarize the 3D absorbed dose 
distributions and to compare dose calculations between 
the algorithm and the calculations performed by the 
human experts.

The medical physicists, using dataset 4, applied the 
following procedure for safety dosimetry of the kid-
neys: the organ volumes were first determined by seg-
menting left and right kidneys, supervised using one of 
the manually or semi-automatic methods available in 
the software from the diagnostic CT scans. The delin-
eated organs were then further used to calculate the 
masses of the kidneys assuming a density of 1.06 g/
cc. The diagnostic CT scans were taken prior to the 
intravenous injection of 177Lu-DOTATOC. The activ-
ity concentrations in the kidneys at each time point 
post injection were then determined from the quanti-
tative coregistered SPECT/CT images, where the kid-
neys were first delineated on the low-dose CT and then 
convolved with a point-spread function (Gaussian with 
sigma of 3mm ) for border extension. The same proce-
dure was used for the evaluation of the automated seg-
mentation with the network.

During volume determination of kidneys, the medical 
physicists segmented the renal parenchyma, representing 
the kidneys’ functional tissue, excluding the renal artery, 
renal vein and renal pelvis from the contrast-enhanced 
CT scans. For organ activity determination, the high 
activity concentration (renal) filtrate (i.e. urine containing 
the radiopharmaceutical/radioactive metabolites filtrated 
by the kidneys) was excluded when clearly discernible. 
The experts usually excluded the pelvis only at the first 
time point (0.5 h p.i.) when there was a high activity con-
centration in the filtrate.

Two independent experts performed the dosimetry 
calculations. Calculations for 5 patients were performed 
by expert 1 while the dose calculations for the other 3 
patients (patient 5, 6 and 8) were performed by expert 2.
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Dosimetry by expert 1
Expert 1 used the segmentation on the LDCT includ-
ing border extension to obtain activity values from the 
corresponding SPECT images. The segmentation in the 
SPECT images was manually adapted (when needed) to 
avoid the inclusion of activity from other organs with 
high uptake (such as the spleen for some patients) or 
from tumour lesions (mostly hepatic lesions). This meth-
odology was used on 5 patients as shown in the Tables 3 
and 4. To be able to use this methodology, each SPECT 
and CT couple had to be coregistered to avoid mismatch 
between the images due to motion and breathing. The 
activity values obtained from the SPECT scans, 4 sets per 
patient, were fitted to a bi-exponential curve and inte-
grated to calculate the time activity curve and the cumu-
lated activity.

Dosimetry by expert 2
Expert 1 and expert 2 calculated the mass on the diag-
nostic CT images in the same manner. However, for the 
activity retrieval, expert 2 segmented the kidney VoIs 
directly on the SPECT by applying a threshold-based seg-
mentation followed by manual correction when needed. 
Hence, expert 2 removed the necessity of co-registration 
between SPECT and CT for the 4 time points and pro-
vided a better consideration of the spill-out effect. The 
LDCTs were only used for verification purposes.

Dose estimation using AI segmentation
Kidneys were segmented by the network in the diagnostic 
CT to determine the masses for all 4 low-dose CT scans 
on dataset 4 using the network. The masks obtained from 
LDCTs were expanded by 3mm as explained previously 
and imported to QDOSE for dose calculations.

Dosimetric procedures to determine the cumula-
tive activity values were identical as the methods used 
by expert 1 in “Dosimetry by expert 1” section, with the 
exception that the SPECT images were not adopted in 
order to avoid the inclusion of activity from other organs 
with high uptake.

Results
Segmentation accuracy expressed as Dice score coeffi-
cient for segmented livers (using dataset 1) and kidneys 
(using dataset 2) is shown in Tables 1 and 2 in compari-
son with other top performing methods reported in the 
literature. An example of a segmented left kidney, using 
dataset 4, for both contrast-enhanced and low-dose CT 
images is shown in Fig.  2. The global Dice-coefficient 
accuracy obtained for the segmented livers was 93.40. 
The kidney accuracies for the first stage (dataset 2) were 
94.10 and 94.60 for the second stage (dataset 3). The 

values reported are for the average of fivefold cross vali-
dations of the datasets. The accuracy achieved in the 
consensus mode shows an increase of up to 1.5% in Dice 
score at the expense of independently running the net-
work 3 times, thus triplication of the computational cost. 
In addition, the training without the transfer learning on 
ImageNet dataset provided on average 8% and 6% drops 
in accuracy on the test data for the liver and kidney, 
respectively, due to early over-fitting [35].

The average CPU time required to segment each of 
the 2.5D slices with the proposed algorithm on a 1.7 
GHz Intel Core i7 was 2.5  s. The average time required 
to segment an entire liver as well as both kidneys using a 
standard gaming GPU (Nvidia GTx 1070) was less than 3 
seconds.

A comparison of kidney masses using automated seg-
mentation, as determined versus those reported by 
experts (as ground truth) based on contrast-enhanced 
CT images from 8 patients (dataset 4), is shown in 
Table 3. The mean absorbed doses in the kidneys (mean 
dose to all voxels in the SPECT kidney masks) are shown 
in Table 4 for the same dataset and patients.

The differences in the mass calculations between AI 
and the experts for both kidneys in the patients 1 and 4 

Table 1 Liver segmentation accuracy

The accuracy reported is an average of 5 runs. The LiTS dataset, used for the 
calculations using the reported method, provides independent masks for the 
hepatic tumours. In our implementation, we combined the tumour masks and 
the liver masks to determine the total liver masks

DL, deep learning algorithm; non-DL, other methods

Method Dice 
coefficient%

Tumour% Method Dataset

[36] 96.30 65.70 DL 1

[37] 95.90 50.01 DL 1

[38] 95.57 59.36 DL 1

[39] 94.30 72.00 DL 1

[40] 86.00 – Non‑DL Internal

Our 93.40 – DL 1

Table 2 Kidney segmentation accuracy comparison on KiTS19 
dataset

The reported accuracy is an average of 5 independent runs. The KiTS19 dataset 
provides independent masks for the kidney tumours. In our implementation, 
we combined the tumour masks and the kidney masks to determine the total 
kidney masks

DL, deep learning algorithm; non-DL, other methods

Method Dice 
coefficient%

Tumour % Method Dataset

[23] 98.00 73.00 DL 2

[41] 88.00 – Non‑DL Internal

Our 94.10 – DL 2
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Table 3 Calculated left and right kidney masses (g) based on AI (labelled with “AI”) and experts (labelled with “Ex”) segmentation on 
dataset 4

The relative differences (labelled with “Di”), for left, right and average are shown in the last 3 rows. The segmentation is done on the contrast-enhanced CT taken prior 
to the radiopharmaceutical administration

(-) and * represent mass underestimation by the AI and lack of organ in the patient, respectively

Mass/Patient 1 2 3 4 5 6 7 8 Avg.

L Kid Ex(g) 148 102 254 147 99 142 107 184

R Kid Ex(g) 148 166 * 160 122 127 90 178

L Kid AI(g) 169 93 243 125 95 138 102 188

R Kid AI(g) 166 184 * 137 124 104 90 170

L Kid Di(%) 14 (‑) 9 (‑) 4 (‑)15 (‑) 4 (‑) 3 (‑) 5 2

R Kid Di(%) 12 11 * (‑)14 2 (‑)18 0 (‑) 4

Mean Di(%) 13 10 4 14.5 3 10.5 2.5 3 7.5

Table 4 The calculated mean absorbed dose (Gy) deposited to the left and right kidneys resulted from application of the AI 
segmentation (labelled with “AI”) and the dose calculations performed by the experts (labelled with “Ex”)

The relative differences (labelled with “Di”), for left, right and average are shown in the last 3 rows. (-) and * represent mass underestimation by the AI and lack of organ 
in the patient, respectively

Dose/Patient 1 2 3 4 5 6 7 8 Avg.

L Kid Ex(Gy) 1.79 1.72 1.89 1.77 2.83 3.49 2.19 2.00

R Kid Ex(Gy) 1.61 1.50 * 1.57 2.52 3.39 2.66 2.01

L Kid AI(Gy) 1.77 1.56 1.85 1.82 2.82 3.34 1.74 2.16

R Kid AI(Gy) 1.55 1.42 * 1.73 2.54 3.56 1.87 2.08

L Kid Di(%) (‑) 1 (‑) 9 (‑) 2 3 0 (‑) 4 (‑)20 8

R Kid Di(%) (‑) 4 (‑) 5 * 10 1 5 (‑)30 3

Mean. Di(%) 2.5 7 2 6.5 0.5 4.5 25 5.5 6.7

Fig. 2 Segmented left kidney along axial, sagittal and coronal axis using the AI . The segmentation boundaries are highlighted with red contour on 
a contrast‑enhanced CT on the left‑hand side and on a low‑dose CT on the right‑hand side. The red rectangle corresponds to the bounding box 
used in kidney detection by the algorithm and the yellow contour is the 3 mm expanded region for activity retrieval from the SPECT images based 
on the CT‑segmentation
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were higher than 12% . Thus, it was important to observe 
how these differences would impact the final calculation 
of the kidney doses.

The kidney doses are shown in Table 4. It can be seen 
that the AI method in patient 1 differed from the ground 
truth by underestimating the dose calculation by 2.5% . 
Similarly, there was an overestimation of 6.5% for patient 
4. In contrast, for patient 7, there was a mass underesti-
mation of 2.5% while the kidney dose was underestimated 
by 25% , which triggered additional analysis (“Discussion” 
section).

The SPECT/CT fused images for the 4 time points for 
patient 7 comparing the AI-based segmentation with the 
segmentation performed by expert 2 is shown in Fig. 3. 
The red contour in the Figure corresponds to the VoI 
segmentation using the CT image and the yellow corre-
sponds to SPECT being used for segmentation.

Discussion
Using AI-based segmentation for organ delineation in 
volumetric dosimetry can be a cost-effective and pow-
erful tool for personalized dosimetry, accelerating the 
dosimetry process from hours to minutes. The accuracy 
of the two-stage AI algorithm used in this paper is com-
parable with state-of-the-art algorithms as it was origi-
nally designed to perform instance segmentation in real 
time. Additionally, it can be run on a single-CPU laptop, 
with reasonable performance, as it is computationally 
cheaper. Another benefit of the two-stage structure pre-
sented here is the elimination of the spatial normalization 
of CT data, which is the normal practice for training deep 
learning algorithms, making the presented method more 
robust and scanner-independent. Training using 5 loss 
functions (“Appendix A.3”) makes the network slower 
during the training but faster during the inference mode 
which is beneficial during for daily practice. By simulta-
neously training the algorithm in the 3 orthogonal planes, 
the run time is threefold, but it allows the network to run 
in consensus mode which increases the robustness of 
the algorithm. In comparison, fully 3D structured CNNs 
such as [42, 43] can better leverage the spatial informa-
tion along the third dimension and result in higher accu-
racy, but they introduce higher computational expense. 
The computational expenses however might not be an 
issue in the near future.

The kidney doses when using DL-organ segmentation 
AI differ from the dose calculations performed by the 
expert by < 3% for ≈ 40% of the patients, and by ≤ 7% 
for ≈ 90% of the patients. However, a deviation of 25% 
for patient 7 was observed between two methods that 
required further analysis.

Further investigation of the deviating case (patient 
7) revealed that the retrieved activities at time point 2 
(Fig. 3d) time point 3 (Fig. 3f ) and time point 4 (Fig. 3g) 
were considerably different. The discrepancy was due to 
the differences in the segmentation procedure between 
expert 2 and the AI-based method for that specific 
patient; while expert 2 considered a larger spill out effect 
than the estimated 3mm, the AI-based method strictly 
used 3mm as spill-out boundary on all CT-derived 
contours.

Furthermore, by investigating the Dose Volume Histo-
grams (DVH) shown in Fig. 4, DVH, it can be seen that 
the DVH-70 and DVH-30, for the right kidney, were 1.6 
and 2.1Gy, respectively, when using AI while the corre-
sponding values when experts performed the segmen-
tation were 2.2 and 3.1Gy. In addition, the decent of 
the slope for the AI method is steeper. For the left kid-
ney, the decent of the slope is more similar between the 
two methods (Fig.  4a). The corresponding DVH-70 and 
DVH-30 for the left kidney were 1.4 and 2.0 Gy for the 
AI method while for the expert, these values were 1.8 
and 2.5 Gy. The differences between the expert and the 
AI could be explained by inter-variability between the 
experts and misalignment between SPECT and LDCT 
due to motion.

To further investigate the misalignment, a spill out 
margin of 6mm was applied when using the AI-based 
segmentation method. The results obtained were a mean 
dose of 2.13 Gy for the left kidney and 2.37 Gy for the 
right kidney, respectively, i.e. 2.73% and 10.90% (average 
6.8% ) underestimation for the left- and right kidneys, 
respectively, which is more consistent with the remaining 
of results reported in table 4.

Although the main limitation of this study is the small 
number of patients in dataset 4, the obtained results are 
promising and indicate that automated segmentation may 
be successfully used for kidney delineation in daily dosim-
etry practice for patients undergoing MRT procedures with 
potentially nephrotox 177Lu-labelled radio-peptide thera-
peutic. Precise co-registration of SPECT images with their 

(See figure on next page.)
Fig. 3 Comparison of the VoI segmentation of the right kidney of patient 7 based on the two different methodologies. Left: segmentation 
performed by expert 2. Right: segmentation when using the AI. The red contours illustrate segmentation on CT while the yellow contours show 
activity segmentation. Underestimated activity areas by the AI algorithm are pointed by a yellow arrow and overestimated activity areas by a white 
arrow
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corresponding LDCT images is required for accurate activ-
ity extraction to minimize the impact of motion artifacts.

Conclusion
We adapted a performant deep learning approach, ini-
tially designed for natural image segmentation, to be 
used on contrast-enhanced and low-dose CT images to 
calculate organ boundaries with acceptable accuracy 
and processing time. The collaboration of 5 loss func-
tions executed in a two-stage network accelerated the 
processing time required and eliminated the need of pre-
processing CT scans. The 2.5D algorithm implemented 
provides a fast and memory-efficient segmentation 
method and the additional voxel-based consensus algo-
rithm presented made the model more robust and less 
error prone providing comparable results to more com-
putationally expensive state-of-the-art 3D DL algorithms.

Our evaluation shows that the proposed approach is a 
promising method that may accelerate volumetric dosim-
etry of kidneys in patients undergoing MRT with renally 
excreted radio-peptides labelled with 177Lutetium. 
However, even though a fully automated segmentation 
methodology based on the CT-images only accelerates 
the organ segmentation burden, it does not fully remove 
the need for the supervised corrections as explained. A 
suggestion to overcome this limitation is to use the func-
tional information (i.e. corresponding SPECT data) as 
complementary information during the training of the 
algorithm. This additional input could be incorporated to 
the AI algorithm as an extra channel of our 2.5D input 
image.

Appendix

A Algorithm
In the following sections, the algorithm is described in 
more details.

A.1 Algorithm design
The Mask-rcnn derives from Faster r-cnn [24] and 
detects different objects in an image or a video, and 
also discriminates different instances of the same object 
(instant segmentation). The main differences between 
Faster-rccn and Mask-rcnn are that the latter generates 
a segmentation mask and localizes the mask more pre-
cisely on the input image. The generation of the mask is 
done by an extra branch, i.e. a connected convolutional 
neural network (CNN) which predicts the mask. Better 
localization than Faster r-cnn is achieved by a mecha-
nism called RoI-Align [19] which properly aligns the 
extracted features with the input after the RoIPool [25]. 
Thus, using the image as an input, the algorithm delivers 
the segmentation, bounding boxes (the coordination of 
the RoI in the input image), regression score as confiden-
tiality score, type of prediction (classes) and masks.

The structure of Mask-rcnn consists of two stages, 
shown in the Fig.  1. In the first stage, proposed regions 
where an object of interest might be located are artifi-
cially boxed, binary classified (if a box contains an object 
of not) and fed into the second stage. In the first stage 
these boxes are generated by drawing random rectangular 

Fig. 4 Dose volume histograms of left and right kidneys for patient 7 with the highest error margin. Red lines represent the dose calculations based 
on expert segmentation and the green lines represent the corresponding dose based on the AI segmentation
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shapes referred to as bonding box in the input image. The 
boxes have different aspect ratios and sizes based on the 
concept of Anchor (predefined bounding boxes of a cer-
tain height and width) [24] and are referenced to a point 
in the image e.g. middle coordination. The boxes are then 
filtered through a mechanism called non-maximal sup-
pression. Non-maximal suppression binary-labels the 
boxes with the highest Intersection-over-Union (IoU) 
overlap with a ground-truth, i.e. boxes with IoU overlap 
higher than 0.7 and lesser than 0.3 with any ground-truth 
are binary labelled as 1 and 0, respectively. The rest of 
the bounding boxes are discarded. Boxes are then deliv-
ered into a Regional Proposal Network (RPN) for train-
ing. The RPN is a mechanism implemented using CNNs 
that scans feature maps (CNN filters) in the backbone 
(the main structure of the network) referred to as Fea-
ture Pyramid Network (FPN) [44, 45]. RPN scans the fea-
ture maps based on the size of the boxes, i.e. for bigger 
size boxes representing the bigger objects in the image 
the RPN referees the higher level of the CNN structure 
with higher semantic features (i.e. meaningful, the higher 
CNN layers have higher abstract features) of the feature 
maps, e.g. P5, while for smaller size boxes, the RPN refer-
ees the lower semantic features in the lower layer e.g. P2. 
These two loss functions are labelled as bonding box and 
binary class in Fig. 1 for RPN.

Feature maps scanned by RPN are generated by FPN. 
FPN is the backbone of the Mask-rcnn structure design, 
in our model designed with the ResNet50 model [46]. 
FPN is a CNN structure generating semantic-rich fea-
ture maps with high resolution objects and spatial infor-
mation. C boxes in the Fig.  1 represent the bottom-up 
CNN layers for Resnet, i.e. down-sampling (max-pooling 
and stride of 2) the input while P boxes represent top-
down (up-sampling) CNN layers [26]. Outer layers in the 
FPN such as P2 structure detect low semantic features 
with high resolution such as edges of a kidney while the 
deeper layers, e.g. P5, detect higher semantic features 
with low resolution such as the whole kidney. The top-
down pathway, P2−P5 are enhanced with feature-lateral 
connections from bottom-up pathway, C2−C5 in Fig. 1. 
The lateral connections ( 1× 1 CNN layer) between top-
down and bottom-up are used for better location of the 
features. We did not use P1 and C1 for RPN in our imple-
mentation as with experimentation we found that it slows 
down the inference mode with no increases in the per-
formance. Since the boxes proposed by RPN have differ-
ent scales, they are then scaled equally by a mechanism 
called RoI pooling which uses max pooling. Max pooling 
converts the features inside any valid RoI box into a fixed 
and smaller feature map, a fixed spatial extent embedded 
with float values [24], in our model 28× 28 dimension, 
i.e. regardless of the RoI box size all RoIs are translated 

into the 28× 28 box size. For our implementation this is 
16 times larger than the value proposed in the original 
paper which resulted in better accuracy but highest com-
putational cost based on our evaluation. The fixed scaled 
feature maps generated by RoI pooling are then better 
aligned by an alignment mechanism (ALIGN in Fig.1) 
which is used to re-align the position of a pixel regarding 
the original image. This is done to overcome the problem 
of shifting pixel positions due to frequent down- and up-
scaling of the image executed in the backbone.

In the second stage, classified boxes acquired from 
the first stage are then refined, multi-classified (in our 
implementation binary-classified), binary-masked and 
are given a confidentiality score. That is, the shape of 
each proposed box from the first stage is fine-tuned (re-
shaped) in order to better cover the RoI, multi-classify 
by instance segmentation of different classes and pro-
vide with a value ∈ [0 100]% to represent how “confident” 
the network is about the classification. We set the confi-
dential score to 90% for the final object detection during 
training and testing i.e. any kidney or liver with a lower 
score is discarded. These 3 different tasks are done with 
3 separate Artificial Neural Networks (ANNs) known as 
heads; a CNN structure for mask classification and two 
different FCNN refereed as FC (Fully Connected) for 
regression and multi-classification, shown in Fig.  1 in 
the “Heads” section. Finally, the dimension of the binary 
mask generated by the heads was set to 256× 256 to 
decrease the computation expenses. These masks then 
were linearly interpolated to 512× 512 for the test data-
set in the inference mode.

A.2 Accuracy calculation
Quantitative evaluation of our segmentation algorithm 
was assessed by the Dice Score Coefficient (DSC) shown 
in Eq.  1. The segmentation predicted by the network 
( SPre ) was pixel-wise compared with the ground truth 
segmentation ( SGT ).

Our network operates in two different modes. In the first 
mode, the images in the axial plane can be fed as input to 
the algorithm and the accuracy is calculated as the global 
mean DSC between all the slices. In the second mode, 
images in axial, sagittal and coronal planes are fed sepa-
rately to perform segmentation prediction individually 
and then a pixel-wise (voxel) consensus procedure Eq. 2 
takes place between all 3 predictions to make a 3D mask. 
Thus, if at least two of the predictions are positive for a 

(1)Dice(SPre, SGT) =
2 · (SPre

⋂
SGT)∣∣SPre + SGT

∣∣
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given voxel (1), then the voxel is set to be positive; other-
wise the voxel is set to be negative (0).

In Eq. 2, x, y, z represent a predicted voxel by feeding 
the network along the axial, sagittal and coronal planes, 
respectively. pxyz is the final result after the consensus 
procedure for that specific pixel.

A.3 Loss
The network includes 5 loss functions which are jointly 
trained. Two loss functions are used in the first stage. 
One of them is to be trained with for fitting the rectan-
gular object proposed boxes around the RoI Lbox1 as a 
regression loss function and the second one to binary-
classify Lcls1 the boxes (e.g. kidney or non-kidney as a 
binary classification loss).

In the second stage of the network, there are 3 loss 
functions. The first one is a categorical cross-entropy for 
multi-classification ( Lcls2 ), the second one is a regression 
loss ( Lbox2 ) and the third one is a binary cross-entropy 
loss ( Lmask ) to calculate the binary mask of the target 
organ. The network’s main loss is a multi-task loss calcu-
lated as L = Lcls + Lbox + Lmask.
Lmask is defined as the average Binary Cross-Entropy 

(BCE) loss and generates masks for every class without 
competition between classes on the boxes received from 
the first stage. The bounding loss is Lbox = Lbox1 + Lbox2 , 
and the classification loss is Lcls = Lcls1 + Lcls2.

The classifications loss values Lcls1 and Lcls2 are depend-
ent on the confidence score of the true class, hence the 
classification loss functions reflect how confident the 
model is when predicting the class labels. The bound-
ing box loss values Lbox1 and Lbox2 reflect the distance 
between the true box parameters (height and width) to 
the predicted ones as a regression loss function and the 
mask loss function Lmask , is similar to the classification 
loss function Lcls1 . It is the binary cross-entropy which 
performs the voxel-wise classification of those voxels 
inside the predicted (learned) box by Lbox2.
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Abstract
Purpose Deep convolutional neural networks (CNN) provide high accuracy for automatic classification of dopamine trans-
porter (DAT) SPECT images. However, CNN are inherently black-box in nature lacking any kind of explanation for their 
decisions. This limits their acceptance for clinical use. This study tested layer-wise relevance propagation (LRP) to explain 
CNN-based classification of DAT-SPECT in patients with clinically uncertain parkinsonian syndromes.
Methods The study retrospectively included 1296 clinical DAT-SPECT with visual binary interpretation as “normal” or 
“reduced” by two experienced readers as standard-of-truth. A custom-made CNN was trained with 1008 randomly selected 
DAT-SPECT. The remaining 288 DAT-SPECT were used to assess classification performance of the CNN and to test LRP 
for explanation of the CNN-based classification.
Results Overall accuracy, sensitivity, and specificity of the CNN were 95.8%, 92.8%, and 98.7%, respectively. LRP provided 
relevance maps that were easy to interpret in each individual DAT-SPECT. In particular, the putamen in the hemisphere 
most affected by nigrostriatal degeneration was the most relevant brain region for CNN-based classification in all reduced 
DAT-SPECT. Some misclassified DAT-SPECT showed an “inconsistent” relevance map more typical for the true class label.
Conclusion LRP is useful to provide explanation of CNN-based decisions in individual DAT-SPECT and, therefore, can 
be recommended to support CNN-based classification of DAT-SPECT in clinical routine. Total computation time of 3 s is 
compatible with busy clinical workflow. The utility of “inconsistent” relevance maps to identify misclassified cases requires 
further investigation.

Keywords Convolutional neural network · Explainable AI · Relevance propagation · Parkinson’s disease · Dopamine 
transporter · SPECT
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Introduction

There is growing interest in the use of machine learning 
techniques for automatic classification of medical brain 
images to support the diagnosis of psychiatric and neu-
rological diseases [1, 2]. Fully data-driven approaches 
based on deep convolutional neural networks (CNN) are 
particularly promising for this task [3]. CNN usually work 
end-to-end with no human knowledge built in, that is, 
without prior feature extraction (“image in, classifica-
tion out”). The CNN itself learns the relevant features 
from a sufficiently large number of training cases with 
given standard-of-truth label (the clinical diagnosis after 
sufficiently long follow-up, for example). Deep CNN out-
perform conventional machine learning methods in many 
medical image classification tasks [4].

However, deep CNN are inherently black-box in nature 
so that improvement of classification accuracy by deep 
CNN comes at the price of reduced transparency. The 
multilayer nonlinear structure of CNN makes it difficult 
to identify the features automatically learned by the CNN 
during the training phase [5]. Furthermore, it is difficult 
to comprehend the basis of the CNN’s classification deci-
sion in new individual cases [5]. The lack of transparency 
is a major limitation of deep CNN, particularly in medical 
applications which require a human readable explanation 
of the automatic classification decision in each individual 
patient that allows the physician to verify that the clas-
sification decision made by the algorithm is plausible and 
coherent. The lack of transparency of deep CNN therefore 
limits their acceptance for widespread clinical use.

Recently developed techniques, called “explainable 
artificial intelligence,” aim at making CNN-based clas-
sification comprehensible for the user. Layer-wise rel-
evance propagation (LRP) is an explainable AI technique 
that allows generation of an individual relevance map for 
each individual patient [6]. It relies on the application of 
deep Taylor decomposition and Kirchoff’s conservation 
law to the fully trained CNN for layer-wise backprojec-
tion of relevance starting from the most activated output 
neuron to the input layer [7]. The general concept of LRP 
is to build a local redistribution rule that is applied in a 
backward pass manner to each neuron. Different redis-
tribution rules have been described for LRP [7, 8]. The 
individual relevance map generated by LRP is in the same 
space (with the same matrix) as the patient’s image used 
as input for the CNN. The voxel intensities in the rel-
evance map indicate the relevance of the voxels for the 
CNN-based classification of this image [9]. In particular, 
the voxels in the input image that were most relevant for 
the CNN’s classification decision are identified by the 
highest intensity in the relevance map.

Here, we propose LRP with a specific combination 
of different redistribution rules in different parts of the 
CNN to explain CNN-based classification of single-
photon emission computed tomography (SPECT) images 
of the dopamine transporter (DAT) availability in the 
brain of patients with a clinically uncertain parkinsonian 
syndrome.

Materials and methods

DAT‑SPECT data

The PACS of the Department of Nuclear Medicine of 
the University Medical Center Hamburg Eppendorf was 
searched using the following inclusion criteria: (I1) DAT-
SPECT had been performed to support the diagnosis of 
a clinically uncertain parkinsonian syndrome, (I2) DAT-
SPECT had been performed with a double head SPECT 
system equipped with low-energy-high-resolution parallel-
hole collimators according to standard procedure guide-
lines [10], and (I3) raw projection data were digitally 
available for consistent retrospective image reconstruction. 
No exclusion criteria were applied. This resulted in the 
inclusion of 1306 DAT-SPECT.

The projection data were reconstructed to tomographic 
SPECT images using filtered backprojection and a Shepp-
Logan filter with cutoff 1.25 cycles/cm [11]. Neither atten-
uation correction nor scatter correction was applied [12]. 
Image reconstruction was performed using the “iradon” 
function of MATLAB (www. mathw orks. com). All 1306 
projection data were reconstructed fully automatically in 
a single batch using a custom MATLAB script in order to 
avoid errors by manual interaction.

Individual SPECT images were transformed (affine) 
into the anatomical space of the Montreal Neurological 
Institute (MNI) using the Statistical Parametric Mapping 
software package (version SPM12) [13] and a custom-
made FP-CIT template. Voxel intensities were scaled to 
the  75th percentile in a reference region comprising whole-
brain except striata, thalamus, brain stem, and ventricles 
[14, 15].

The DAT-SPECT images were classified as “negative” 
(normal DAT-SPECT) or “positive” (reduced striatal 
tracer uptake typical for nigrostriatal degeneration in neu-
rodegenerative parkinsonian syndromes) by two experi-
enced readers based on visual inspection of a standardized 
display of the stereotactically normalized SPECT images 
[16]. Both readers had more than 10 years of experience in 
clinical reading of DAT-SPECT (200–400 cases per year). 
Each reader classified all images twice, blinded for all 
clinical information. Images with intra-reader discrepancy 
between the two reading sessions were assessed a third 
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time by the same reader to obtain an intra-reader consen-
sus. The resulting intra-reader consensus was in agreement 
between the two independent readers in 1275 of the 1306 
cases (97.6%; Cohen’s kappa = 0.952 with standard error 
0.008, p < 0.0005). The remaining 31 DAT-SPECT (2.4%), 
in which the intra-reader consensus differed between the 
two readers, were assessed in a common reading session 
of the two readers to obtain an inter-reader consensus. The 
latter was used as standard-of-truth in the further analyses. 
Ten of the 31 DAT-SPECT with discrepant intra-reader 
consensus showed an atypical striatal reduction pattern 
most likely caused by vascular/structural pathology and 
therefore were excluded (e.g., defect of FP-CIT uptake in 
the caudate nucleus with normal putaminal FP-CIT uptake, 
or complete lack of FP-CIT uptake in the whole striatum 
in one hemisphere with normal striatal FP-CIT uptake in 
the other hemisphere). The remaining 1296 DAT-SPECT 
were included in the study.

Visual inter-reader consensus read was “negative” in 
676 (52.2%) of these DAT-SPECT; it was “positive” in the 
remaining 620 (47.8%) DAT-SPECT. This proportion of 
negative to positive cases (52.2 to 47.8%) is in line with 
the common recommendation to refer only patients with 
a clinically uncertain parkinsonian syndrome (CUPS) to 
DAT-SPECT [17], as “clinically uncertain” implies a pre-
test probability of nigrostriatal degeneration of about 50%. 
The patient sample included in this study therefore can be 
considered representative of clinical routine according to 
common guidelines.

Clinical follow-up was not available in the vast majority 
of the included patients. From the subsample of patients in 
whom clinical follow-up was available, it might be assumed 
that amongst the patients with positive DAT-SPECT, about 
90% had a disease from the spectrum of Lewy body diseases 
(Parkinson’s disease without and with cognitive impairment, 
dementia with Lewy bodies) whereas the remaining 10% 
suffered from an atypical neurodegenerative Parkinsonian 
syndrome including multiple system atrophy, progressive 
supranuclear palsy, and corticobasal degeneration [18]. The 
diagnoses of the patients with negative DAT-SPECT most 
likely included essential tremor, drug-induced parkinson-
ism, various types of dystonia, psychogenic parkinsonism, 
and various other diagnoses not associated with nigrostriatal 
degeneration [18].

Image preprocessing for automatic classification

Specific FP-CIT binding to the DAT in the unilateral puta-
men in both hemispheres was characterized by the specific 
FP-CIT binding ratio estimated by hottest voxels analysis 
as described in the Supplementary Information (section 
“Conventional semi-quantitative analysis”). Stereotactically 
normalized DAT-SPECT images in which the putaminal 

specific binding ratio was lower in the right hemisphere were 
left–right mirrored at the midsagittal plane such that the 
putaminal specific binding ratio was lower in the left hemi-
sphere in all cases. This was done in order to eliminate vari-
ability of no interest prior to automatic classification, since 
visual interpretation of the DAT-SPECT as standard-of-truth 
did not account for laterality (and was blinded for all clini-
cal information, including laterality of motor symptoms). 
In the following, “ipsilateral” and “contralateral” (to the 
hemisphere with lower specific FP-CIT binding ratio in the 
putamen) are used instead of “left” and “right” hemispheres.

Convolutional neural network

The custom CNN trained for automatic classification of 
DAT-SPECT is shown in Fig. 1. It comprised four 3-dimen-
sional convolutional layers with 16 filters, kernel size of 
3 × 3 × 3. Stride and dilation were set to 1. The convolutional 
layers were followed by two fully connected neuron layers 
of 32 and 16 neurons, respectively, followed by a 2-way 
softmax output layer for binary classification. The rectified 
linear unit was used as activation function at all hidden lay-
ers. No pooling layers were used, mainly because all input 
images were in MNI space so that translation invariance was 
not required, but also to achieve a simple form of routing 
which routes all the features in the lower layer to the higher 
layer [19]. Drop out (0.2) was implemented in the first fully 
connected layer only. The total number of trainable CNN 
parameters was 236 million.

From the whole set of 1296 DAT-SPECT, two-thirds 
(n = 864) were randomized into the training set for the CNN. 
Allocating two-thirds of cases for training is recommended 
if the size of the whole dataset is reasonable (n ≥ 100) and if 
the expected accuracy of the classifier is good (≥ 85%) [20]. 
From the remaining one-third of the DAT-SPECT (n = 432), 
one-third (n = 144) was randomized into the validation set, 
two-thirds (n = 288) into the test set. The rationale for choos-
ing the validation set smaller than the test set was that the 
validation set was only used to check for overfitting dur-
ing the CNN training. The validation set was not used to 
compare different CNN designs, since only a single prede-
fined CNN design was used in this study. A test set of size 
n allows estimation of the overall accuracy of the CNN for 
binary classification of DAT-SPECT with a maximum mar-
ginal error d at the 95% confidence level given by d = 1.96 * 
sqrt(acc*[1-acc])/sqrt(n), where acc is the expected accuracy 
[21]. Assuming acc = 0.9, the maximum marginal error of 
the overall accuracy of the CNN for binary classification 
of DAT-SPECT estimated from a test set of size n = 288 is 
0.03. This appeared adequate for this study, because the pri-
mary aim was not to evaluate a specific CNN for automatic 
classification of DAT-SPECT but rather to evaluate LRP for 
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the explanation of CNN-based classification of individual 
DAT-SPECT.

Randomization into training, validation, and test set was 
performed separately for females with negative DAT-SPECT 
(according to the inter-reader consensus), males with nega-
tive DAT-SPECT, females with positive DAT-SPECT, and 
males with positive DAT-SPECT, in order to achieve the 
same proportions of these four subgroups in training, valida-
tion, and test set. In order to achieve a similar age distribu-
tion in training, validation, and test set, separately for each 
of these four subgroups, a total of 100 random splits were 
generated, from which the random split with the minimum 
difference in mean age between training, validation, and test 

set over the four subgroups was selected for the analyses. 
Demographics in this random split are given in Table 1.

The CNN was trained with a batch size of 8 against the 
categorical cross-entropy loss using the Adam optimizer 
with  10−4 learning rate. Loss weighting for different classes 
was not used, because the data were balanced with respect 
to the class to good approximation.

Using an Nvidia Titan XP graphic card with 12 GB 
memory, the training of the CNN took approximately 64 s 
per epoch. The CNN could be trained without noticeable 
overfitting. The total training time until convergence was 
approximately 1.5 h.

Fig. 1  Structure of the custom 
CNN for binary classification of 
DAT-SPECT images. The LRP 
backprojection rule used at the 
different CNN layers to generate 
the relevance map (top right) 
corresponding to the CNN-
based classification (bottom) 
of the DAT-SPECT (top left) is 
given at the red arrows. (Conv, 
convolutional layer; FC, fully 
connected layer)

Table 1  Demographics in the 
whole sample of DAT-SPECT 
and in the random split for 
training, validation, and testing 
of the CNN. The age is given as 
mean value ± standard deviation 
in the subset

Negative DAT-SPECT Positive DAT-SPECT

Age Females Males Females Males

Whole sample (n = 1296) 67.7 ± 11.3
(n = 296)

68.7 ± 11.6
(n = 380)

66.7 ± 11.0
(n = 246)

66.6 ± 11.0
(n = 374)

Training set (n = 864) 67.6 ± 11.4
(n = 197)

68.7 ± 11.9
(n = 254)

66.7 ± 11.2
(n = 164)

66.4 ± 10.8
(n = 249)

Validation set (n = 144) 68.2 ± 12.2
(n = 33)

68.3 ± 9.8
(n = 42)

66.8 ± 10.1
(n = 27)

66.8 ± 11.9
(n = 42)

Test set
(n = 288)

67.6 ± 10.5
(n = 66)

68.8 ± 11.3
(n = 84)

66.7 ± 11.1
(n = 55)

66.9 ± 11.0
(n = 83)
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Layer‑wise relevance propagation

In order to estimate the relevance of each single voxel of 
the subject’s image for the classification of the whole 
image by the CNN, LRP takes advantage of the CNN 
graph structure for layer-wise backprojection of relevance 
from the most activated output neuron up to the input layer 
(Fig. 1) [6, 22]. More precisely, LRP is based on a local 
backprojection rule to redistribute relevance from neurons 
in a given layer to the neurons in the preceding layer as 
illustrated in Fig. 2. If zij denotes the fraction of the rele-
vance R[k]

j
 at neuron j in the CNN layer k that is backpro-

jected to neuron i in the preceding layer k − 1, then the 
total relevance R[k−1]

i
 at neuron i is given by

The scaling factors 
∑

i∈[k−1] zij in the denominator on the 
right-hand side guarantee that the relevance is preserved 
during backprojection at each neuron. When the rectified 
linear unit is used as activation function, first-order Taylor 
expansion at the prediction point suggests the following 
standard choice for the backprojection coefficients [7]

where ai is the activation of neuron i for the considered 
image in the prediction phase (forward pass) and wij is the 

(1)R
[k−1]

i
=

�
j∈[k]

zij∑
i∈[k−1]zij

R
[k]

j

(2)zij = aiwij

weight factor for the input to neuron j from neuron i fixed 
during the training phase (Fig. 2).

Several variations of the LRP rule according to Eqs. 1 
and 2 have been proposed [7, 8]. In the present study, three 
of these variations were combined for (i) improved robust-
ness of LRP by avoiding noise amplification due to the 
gradient shattering effect [23, 24], (ii) reduced spill-out 
of relevance, and (iii) discrimination between features that 
support the prediction and features that oppose it.

The propagation rule

with zij according to Eq. 2 was used for relevance back-
projection at the fully connected layers close to the output of 
the CNN (Fig. 1). Here, sign(x) denotes the sign of x, that is, 
sign(x) = 1 for x ≥ 0 and sign(x) =  − 1 for x < 0. The ε-term is 
introduced to limit noise amplification. ε = 0.0001 was used.

The propagation rule

with zij according to Eq. 2 was used for relevance back-
projection at the fourth and the third convolutional layers 
(Fig. 1). Here, “ + ” and “ − ” indicate the positive and the 
negative parts, respectively, that is

The parameter α was chosen as α = 2 in order to allow 
for both positive and negative relevance. Positive relevance 
indicates that the feature supports the classification deci-
sion whereas negative relevance indicates that the feature 
provides evidence against it.

Finally, uniform backprojection (LRP-c) defined by Eq. 1 
with zij = 1 was used at the first two layers close to the input 
of the CNN for improved control of resolution and semantics 
in the relevance maps [25] (Fig. 1).

Statistical analysis

The classification performance of the CNN was estimated 
in the test set (independent of the training set) in order to 
avoid overly optimistic performance estimates due to overfit-
ting. Overall accuracy, sensitivity specificity, and predictive 
values were used to characterize classification performance.

(3)LRP − ε ∶ R
[k−1]

i
=

�

j∈[k]

zij
∑

i∈[k−1]

�

zij + �sign
�

zij
��R

[k]

j

(4)

LRP − � ∶ R
[k−1]

i
=

�

j∈[k]

(�
z+
ij

∑

i∈[k−1]z
+

ij

+ (� − 1)
z−
ij

∑

i∈[k−1]z
−
ij

)

(5a)z+
ij
= max(0, zij)

(5b)z−
ij
= min(0, zij)

Fig. 2  LRP relevance backprojection. The neural network (top) with 
the trained weights wij is used in forward pass to calculate the output 
score f(x) for the given input x = (x0, x1). In LRP (bottom), the neu-
ron Ri receives the relevance zij from the higher-level layer neuron Rj 
(solid arrow). The dotted arrows indicate the relevance flow into the 
layer containing the neuron Rj calculated previously. The flow starts 
from the most activated output neuron
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The relevance maps generated by LRP were assessed vis-
ually for each DAT-SPECT in the test set in order to evaluate 
their interpretability.

Results

CNN-based classification in the test set resulted in 148 true 
negative cases, 128 true positive cases, ten false negative 
cases, and two false positive cases. Thus, overall accuracy, 
sensitivity, specificity, positive, and negative predictive 
values of the CNN for classification of the DAT-SPECT in 
the test set were 95.8%, 92.8%, 98.7%, 98.5%, and 93.7%, 
respectively. The CNN performance was similar to the per-
formance of conventional semi-quantitative analysis and of 
classification and regression tree analysis (Supplementary 
Information).

A representative transaxial slice of the mean relevance 
map is shown in Fig. 3, separately for the true negative and 
the true positive DAT-SPECT (all transaxial slices of the 
mean relevance maps are given in supplementary Fig. 1). 
The mean relevance map of the true negative cases was the 
inverse (sign flip) of the mean relevance map of the true 
positive cases to good approximation. This suggested the 
computation of a “heat map” by computation of the voxel-
based difference of the mean relevance map of the true nega-
tive cases minus the mean relevance map of true positive 
cases in order to simplify identification of the brain regions 

with the highest relevance for the CNN-based classifica-
tion (Fig. 3). The ipsilateral putamen (with the strongest 
reduction of FP-CIT uptake in the positive cases) showed 
the highest relevance (heat) followed by the contralateral 
putamen and the ipsilateral caudate nucleus (Fig. 3). The 
most relevant single voxel was located in the striatum (or 
very close) in all cases.

Figure 4 shows the individual relevance maps of the 
DAT-SPECT misclassified by the CNN. The two false posi-
tive DAT-SPECT showed borderline FP-CIT uptake in the 
striatum so that the standard-of-truth label might be ques-
tioned and the CNN-based classification might actually be 
correct in these cases. The ten false negative DAT-SPECT 
all presented clear reduction of the FP-CIT uptake in the 
ipsilateral putamen (in line with the standard-of-truth) indi-
cating that they were actually misclassified by the CNN. It 
is striking that seven of the ten false negative cases showed 
an “inconsistent” relevance map with positive relevance in 
the striatal region, most pronounced in the ipsilateral puta-
men, which is typical for true positive cases. This suggests 
that the striatal signal in the relevance maps might be imple-
mented to improve the classification accuracy. In order to 
test this, the mean relevance in the ipsilateral putamen was 
determined for all DAT-SPECT in the test set. The same 
hottest voxels analysis was used for this purpose as for the 
estimation of the putaminal specific FP-CIT binding ratio 
(Supplementary Information). The distribution of the mean 
relevance in the ipsilateral putamen in the test set is shown in 
Fig. 5. When the mean relevance in the ipsilateral putamen 

Fig. 3  Representative transaxial 
slice through the striatum of the 
mean DAT-SPECT image (top 
row) and of the mean relevance 
map (bottom row) in nega-
tive (left column) and positive 
(middle column) cases correctly 
classified by the CNN. All slices 
of the mean relevance maps 
are shown in supplementary 
Fig. 1. The right column shows 
the custom-made DAT-SPECT 
template used for stereotactical 
normalization (top) and the heat 
map defined as the difference 
of the mean relevance map in 
true positive cases minus the 
mean relevance map in true 
negative cases (bottom). (I / C, 
Ipsilateral / Contralateral to the 
hemisphere with lower specific 
FP-CIT binding ratio in the 
putamen)
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was dichotomized with cutoff zero and then used for clas-
sification of the DAT-SPECT (negative and positive mean 
relevance in the ipsilateral putamen indicating negative and 
positive DAT-SPECT, respectively), it provided very simi-
lar performance as the CNN-based classification (overall 
accuracy, sensitivity, specificity, positive, and negative pre-
dictive values of 96.9%, 97.8%, 96.0%, 95.7%, and 98.0%, 
respectively).

Discussion

Deep CNN are increasingly used for automated classification 
of medical images to assist the physician in their interpreta-
tion [4]. They are however black-box in nature, that is, they 
do not provide any kind of explanation for their decisions, in 
contrast to many conventional classification methods, e.g., 
decision trees. This makes it difficult to identify their mecha-
nism of making decisions and to comprehend their decision 
in individual cases. This limits the acceptance of deep CNN 
for widespread clinical use. Recent efforts to address this 

Fig. 4  Individual relevance 
maps of the 12 amongst the 288 
test cases that were misclas-
sified by the CNN. The mean 
DAT-SPECT and the mean rel-
evance map in true negative and 
true positive cases (from Fig. 3) 
are shown for comparison. (I 
/ C, Ipsilateral / Contralateral 
to the hemisphere with lower 
specific FP-CIT binding ratio in 
the putamen)

Fig. 5  Outer contour of the 
large putamen ROI used to com-
pute the mean relevance in the 
ipsilateral putamen by hottest 
voxels analysis (left). The ROI 
is overlaid to the mean DAT-
SPECT of the true negative 
cases. The right part shows the 
histogram of the mean relevance 
of the ipsilateral putamen in the 
test set. The color indicates the 
CNN-based classification (TN, 
true negative; TP, true positive; 
FN, false negative; FP, false 
positive; I / C, Ipsilateral / Con-
tralateral to the hemisphere with 
lower specific FP-CIT binding 
ratio in the putamen)
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limitation, combined under the umbrella term “explainable 
AI”, resulted in the development of several methods to pro-
vide transparency of black-box models [26–29]. LRP is one 
of these new methods [6]. It allows tracking back the clas-
sification result from the output layer of the deep CNN to 
its input layer in order to generate an individual relevance 
map. The voxels with the highest relevance (highest absolute 
value) had the strongest impact on the CNN’s decision in 
this case. Thus, individual relevance maps allow the user 
to understand and check the CNN-based classification in 
individual patients. This is expected to improve acceptance 
of CNN-based classification for clinical use, provided that 
LRP works reliably in images from clinical routine. The pre-
sent study tested this for DAT-SPECT to detect or exclude 
nigrostriatal degeneration in patients with clinically uncer-
tain parkinsonian syndromes [17]. Previous LRP applica-
tions in medical brain imaging include MRI-based diagnosis 
of Alzheimer’s disease [9] and multiple sclerosis [30].

In DAT-SPECT, visual interpretation of the images by 
a trained physician is sufficient for clinical reporting in the 
majority of cases [31]. However, quantitative analysis and/
or automatic classification is a useful adjunct when used 
as an objective second reader, particularly in borderline 
cases and for less experienced readers [32]. Conventional 
machine learning methods using support vector machines 
[33–43], decision trees [44, 45], or cluster analyses [46] 
based on a (small) set of predefined image-derived features 
have been proposed for this purpose. However, recent work 
suggests that artificial neural networks, particularly deep 
CNN, outperform conventional approaches for the auto-
matic classification of DAT-SPECT [18, 47–58], partly 
because artificial neural networks can be less sensitive 
to camera- and site-specific variability of image quality 
(e.g., with respect to spatial resolution) [18]. Thus, deep 
CNN are very promising to support interpretation of DAT-
SPECT in clinical routine so that there is a high clinical 
need for methods to explain CNN-based classification in 
individual patients.

The custom CNN used in the present study achieved high 
overall accuracy of 95.8%, in line with previous studies dem-
onstrating excellent performance of artificial networks for 
automatic classification of DAT-SPECT [18, 47–58]. Speci-
ficity was somewhat higher than sensitivity. In order to test 
whether this is a characteristic of the custom CNN design 
and/or the patient sample used in this study, CNN training 
and testing was repeated several times (using the same ran-
dom split for training, validation, and testing, but with differ-
ent initialization of the CNN weights prior to the training). 
The overall accuracy was very similar in all repeats, but the 
ordering of sensitivity and specificity (“sensitivity > speci-
ficity” or “specificity > sensitivity”) varied between repeats 
(results not shown). This suggests that there was no bias in 
favor of sensitivity or specificity in this study.

LRP provided relevance maps that were easy to interpret 
in each individual patient, although the study did not impose 
specific eligibility criteria on the DAT-SPECT images. In 
particular, there were no requirements with respect to the 
total number of counts in order to restrict the analyses to 
images with high statistical image quality. This demon-
strates that CNN-based classification and LRP are stable 
with respect to variability of the statistical quality of DAT-
SPECT images encountered in clinical routine. This is an 
important requirement for widespread clinical use.

The putamen in the hemisphere most affected by nigros-
triatal degeneration was identified as the most relevant brain 
region for CNN-based classification in each individual 
patient. Much less relevance was attributed to extrastriatal 
brain regions by LRP, in line with the fact that extrastriatal 
signal in DAT-SPECT most likely represents tracer binding 
to serotonin transporters (not dopamine transporters), which 
are relatively preserved in Parkinson’s disease [59].

The mean relevance map of true negative cases was very 
similar to the mean relevance map of the true positive cases 
except for a sign flip (Fig. 3). That the same image vox-
els are the most relevant independent of the class (nega-
tive or positive), is a specific characteristic of binary image 
classification tasks. In the present case, FP-CIT uptake in 
the ipsilateral putamen was the most prominent difference 
between negative and positive DAT-SPECT. Thus, it was to 
be expected that the CNN attributed the highest relevance 
to the ipsilateral putamen independent of the class: normal 
FP-CIT uptake in the ipsilateral putamen was the strongest 
indicator of a negative DAT-SPECT; reduced FP-CIT uptake 
in the ipsilateral putamen was the strongest indicator of a 
positive DAT-SPECT.

A few of the cases misclassified by the CNN showed an 
“inconsistent” relevance map (peak relevance values in the 
ipsilateral putamen with the “wrong” sign) more typical for 
the true classification, suggesting that individual relevance 
maps might be useful to identify misclassified cases. This 
requires further investigation, although re-classification of 
DAT-SPECT based on the ipsilateral putaminal signal in 
the individual relevance maps in this study provided some 
evidence for it.

The relevance map of an individual DAT-SPECT image 
is not intended to provide new insights into the pathophysi-
ology of clinically uncertain parkinsonian syndromes but 
rather to explain the classification of the CNN for this DAT-
SPECT image. However, on the group level, LRP might 
be useful to extract information from a trained CNN about 
extrastriatal signal in DAT-SPECT that might contribute 
to the differentiation between neurodegenerative and non-
neurodegenerative etiologies. This might contribute to a 
better understanding of clinically uncertain parkinsonian 
syndromes.
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Magesh and coworkers recently suggested the Local 
Interpretable Model-Agnostic Explainer (LIME) method 
to explain automatic classification of DAT-SPECT with the 
VGG16 network [60] adapted for this task by transfer learn-
ing [48]. The LIME method identifies “supervoxels” in the 
SPECT images for visual control. The authors concluded 
that the VGG16 network combined with LIME-based expla-
nation is useful to support interpretation of DAT-SPECT 
[48].

The following limitation of this study should be noted. 
The CNN was trained to reproduce the visual interpretation 
of DAT-SPECT by experienced readers and, therefore, might 
not provide the correct etiological/biological diagnosis in all 
cases. We also do not claim that the specific CNN used in 
this study is superior to other CNN for the classification of 
DAT-SPECT described previously. However, the primary 
aim of this study was not to propose a specific CNN for 
automatic classification of DAT-SPECT but rather to evalu-
ate layer-wise relevance propagation to explain CNN-based 
classification of DAT-SPECT in individual cases. LRP is 
a novel explainable AI technique. It is not restricted to the 
specific CNN used in the present study but it is easily imple-
mented for other CNN with different structure (e.g., different 
number of layers).

In conclusion, layer-wise relevance propagation is useful 
to provide explanation of CNN-based decisions in individual 
DAT-SPECT and, therefore, can be recommended to support 
CNN-based classification of DAT-SPECT in clinical rou-
tine. Total computation time of 3 s is compatible with busy 
clinical workflow. The use of relevance maps to improve 
the classification by identifying misclassified cases requires 
further investigation.
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Data‑driven identification 
of diagnostically useful 
extrastriatal signal in dopamine 
transporter SPECT using 
explainable AI
Mahmood Nazari1,2, Andreas Kluge2, Ivayla Apostolova3, Susanne Klutmann3, 
Sharok Kimiaei2, Michael Schroeder1 & Ralph Buchert 3*

This study used explainable artificial intelligence for data‑driven identification of extrastriatal brain 
regions that can contribute to the interpretation of dopamine transporter SPECT with 123I‑FP‑CIT 
in parkinsonian syndromes. A total of 1306 123I‑FP‑CIT‑SPECT were included retrospectively. Binary 
classification as ‘reduced’ or ‘normal’ striatal 123I‑FP‑CIT uptake by an experienced reader served 
as standard‑of‑truth. A custom‑made 3‑dimensional convolutional neural network (CNN) was 
trained for classification of the SPECT images with 1006 randomly selected images in three different 
settings: “full image”, “striatum only” (3‑dimensional region covering the striata cropped from the 
full image), “without striatum” (full image with striatal region removed). The remaining 300 SPECT 
images were used to test the CNN classification performance. Layer‑wise relevance propagation 
(LRP) was used for voxelwise quantification of the relevance for the CNN‑based classification in 
this test set. Overall accuracy of CNN‑based classification was 97.0%, 95.7%, and 69.3% in the “full 
image”, “striatum only”, and “without striatum” setting. Prominent contributions in the LRP‑based 
relevance maps beyond the striatal signal were detected in insula, amygdala, ventromedial prefrontal 
cortex, thalamus, anterior temporal cortex, superior frontal lobe, and pons, suggesting that 123I‑FP‑
CIT uptake in these brain regions provides clinically useful information for the differentiation of 
neurodegenerative and non‑neurodegenerative parkinsonian syndromes.

Abbreviations
2d  2-Dimensional
3d  3-Dimensional
CBS  Corticobasal syndrome
CUPS  Clinically uncertain parkinsonian syndrome
DAT  Dopamine transporter
DLB  Dementia with Lewy bodies
123I-FP-CIT  N-ω-Fluoropropyl-2β-carbomethoxy-3β-(4-I-123-iodophenyl)nortropane
LRP  Layer-wise relevance propagation
MSA-P  Parkinsonian variant of multiple system atrophy
PD  Parkinson’s disease
PET  Positron emission tomography
PSP  Progressive supranuclear palsy
ROC  Receiver operating characteristic
ROI  Region-of-interest
SBR  Specific binding ratio
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SERT  Serotonin transporter
SNRI  Serotonin and norepinephrine reuptake inhibitor
SPECT  Single-photon emission computed tomography
SSRI  Selective serotonin reuptake inhibitor

Neurodegenerative parkinsonian syndromes including Parkinson’s disease (PD) and the rarer atypical neuro-
degenerative parkinsonian syndromes such as progressive supranuclear palsy (PSP), parkinsonian variant of 
multiple system atrophy (MSA-P), and corticobasal degeneration are associated with nigrostriatal degeneration 
resulting in the loss of dopamine transporters (DAT) in the caudate and putamen nuclei of the (dorsal) striatum 
secondary to the degeneration of pigmented cells in the substantia nigra pars  compacta1,2. The nigrostriatal 
degeneration is the major pathophysiological correlate of the motor symptoms in neurodegenerative parkinso-
nian syndromes. Clinical guidelines recommend single photon emission computed tomography (SPECT) with 
the DAT ligand N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-123I-iodophenyl)nortropane (123I-FP-CIT) for the 
detection (or exclusion) of relevant DAT loss in the striatum to support the diagnostic workup in patients with 
clinically uncertain parkinsonian syndrome (CUPS)3,4. In clinical routine, both visual interpretation and semi-
quantitative analysis of 123I-FP-CIT SPECT are focused on the striatum and its  subregions5–7.

However, loss of dopaminergic neurons in PD is not restricted to the nigrostriatal pathway. There is also 
PD-related loss of dopaminergic neurons in the ventral tegmental area that directly project to extrastriatal brain 
regions including nucleus accumbens, medial prefrontal cortex, hippocampus and  amygdala8–12. Degeneration 
of these dopaminergic pathways most likely contributes to cognitive and behavioral symptoms in PD.

As a consequence, the diagnostic accuracy of 123I-FP-CIT SPECT might be improved by taking into account 
extrastriatal signal in addition to the striatal signal. In fact, a previous study provided evidence that taking into 
account the 123I-FP-CIT uptake in the insular cortex might increase the accuracy of 123I-FP-CIT SPECT for the 
detection of  PD13. This previous study did not find PD-related differences in 123I-FP-CIT uptake in the frontal, 
parietal, and temporal lobes. To some extent this might be explained by limited sensitivity of the a priori defined 
bilateral regions-of-interest (ROIs) covering the entire brain lobes used in this study. PD-related alterations of 
extrastriatal 123I-FP-CIT uptake may not be uniform throughout entire brain lobes, but they might be restricted 
to rather small parts within a lobe, for example the orbitofrontal part of the frontal lobe or the amygdala in the 
temporal  lobe14. Furthermore, PD-related alterations of extrastriatal 123I-FP-CIT uptake might be left–right 
asymmetric, that is, more pronounced in one hemisphere, similar to PD-related reduction of striatal 123I-FP-CIT 
uptake, which generally is more pronounced in the brain hemisphere contralateral to the side of the body that 
is more strongly affected by the motor  symptoms15. Thus, the use of a priori defined ROIs covering the whole 
bilateral frontal or parietal or temporal lobe might have resulted in considerable ‘dilution’ of more localized and 
lateralized effects, which in turn reduced the sensitivity to detect them.

Against this background, the aim of the present study was to identify extrastriatal brain regions that might 
contribute to the differentiation between neurodegenerative and non-neurodegenerative CUPS by 123I-FP-CIT 
SPECT using a deep learning approach based on a custom-made convolutional neural network (CNN)16,17 and 
layer-wise relevance propagation (LRP). This fully data-driven approach does not require a priori hypotheses on 
which extrastriatal brain regions might provide most information for the differentiation between neurodegenera-
tive and non-neurodegenerative CUPS. Furthermore, this approach is voxel-based and, therefore, is expected 
to provide high sensitivity for the identification of small and/or lateralized clusters of extrastriatal 123I-FP-CIT 
signal for this task.

The study retrospectively included a large sample of 123I-FP-CIT images from clinical routine (n = 1306). The 
sample was randomly split into training sample, validation sample and test sample in order to improve specificity 
by reducing the risk of erronously identifying nonrelevant brain regions due to overfitting.

Results
Overall accuracy, sensitivity, and specificity of the CNN for classification of the 123I-FP-CIT SPECT in the test set 
are given in Table 1, separately for the three settings. The highest accuracy (97.0%) with almost balanced sensitiv-
ity and specificity was obtained in the “full image” setting. Overall accuracy in the “striatum only” setting was 
slightly lower (95.7%), mainly driven by an increased rate of false positive cases (specificity 92.1% versus 96.0% 
in the “full image” setting). Overall accuracy was strongly reduced (69.3%) in the “without striatum” setting, but 
still considerably better than chance level (50%). Loss of sensitivity was more pronounced than loss of specificity.

A transversal slice through the striatum of the mean relevance maps of the 123I-FP-CIT SPECT images cor-
rectly classified by the CNN is shown in Fig. 1, separately for correctly classified normal SPECT and for cor-
rectly classified reduced SPECT. The mean relevance map of the correctly classified normal 123I-FP-CIT SPECT 
was the inverse (change of sign) of the mean relevance map of the correctly classified reduced SPECT to good 

Table 1.  Overall accuracy, sensitivity, and specificity of the CNN-based classification of the 123I-FP-CIT 
SPECT images in the test set.

Setting Overall accuracy Sensitivity Specificity

“Full image” 97.0 98.0 96.0

“Striatum only” 95.7 99.3 92.1

“Without striatum” 69.3 59.7 78.8
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approximation, independent of the setting. This indicates that the same brain regions were the most relevant for 
classification of the DAT SPECT as normal or reduced, as is to be expected for a binary classification task. This 
was the rationale for computing a “heat map” by voxel-wise subtraction of the mean relevance map of correctly 
classified normal 123I-FP-CIT SPECT from the mean relevance map of correctly classified reduced 123I-FP-CIT 
SPECT. This was done separately for each of the three settings.

A transversal slice through the striatum of the resulting heat maps is shown in Fig. 2. Highest relevance was 
attributed to the ipsilateral putamen, followed by the contralateral putamen and the ipsilateral caudate nucleus 
in the “full image” setting as well as in the “striatum only” setting. For assessment of extrastriatal relevance, 
the heat maps of the “full image” setting and of the “without striatum” setting were dichotomized at their 95th 
percentile and overlaid to the single subject T1w-MRI template of SPM12 (Fig. 3). The relevance clusters in 
the ipsilateral and in the contralateral striatum in the “full image” setting clearly extended beyond the striatum 
into the insula region, the thalamus, and into the amygdala region. The relevance cluster in the insula region in 
both hemispheres was confirmed in the “without striatum” setting, although localization, size and shape of the 
cluster slightly differed between the “full image” and the “without striatum” setting. At least to some extent this 
is explained by the fact that parts of the insula region were cut from the brain in the “without striatum” setting 
(Fig. 3). Thalamus and amygdala were completely cut from the images in the “without striatum” setting and, 
therefore, could not be assessed in this setting (Fig. 3). Further relevance clusters that were consistently detected 
in both settings were located in the ventromedial prefrontal cortex and in the anterior temporal cortex/temporal 
pole in both hemispheres. Additional relevance clusters in the superior frontal lobe and in the pons were detected 
in the “without striatum” setting only (Fig. 3).

In order to further evaluate these findings, the relevance clusters in the “without striatum” setting were used 
as ROIs to compare the 123I-FP-CIT uptake in these clusters between the 123I-FP-CIT SPECT images with PD-
characteristic reduction of striatal uptake (according to the visual classification) and the 123I-FP-CIT SPECT 
images with normal striatal uptake. In the training set, the 123I-FP-CIT uptake was significantly reduced in the 
123I-FP-CIT SPECT images with reduced striatal uptake in the insula, ventromedial prefrontal cortex, and anterior 
temporal cortex/temporal pole in both hemispheres. The extrastriatal 123I-FP-CIT uptake was not significantly 
asociated with the striatal status in the superior frontal cortex and in the pons. In the test set, only the reduction 
of the 123I-FP-CIT uptake in the ipsilateral and in the contralateral insula cluster in 123I-FP-CIT SPECT images 
with reduced striatal signal remained statistically significant (P ≤ 0.001). Receiver operating characteristic (ROC) 
analysis of the 123I-FP-CIT uptake in the ipsilateral insula with respect to the differentiation between reduced 
and normal 123I-FP-CIT SPECT revealed an area of 0.668 (95%-confidence interval 0.633–0.704, P < 0.0005) 

Figure 1.  Mean relevance maps. Transversal slice through the striatum of the mean relevance maps of the 
123I-FP-CIT SPECT images correctly classified as normal (middle row) or correctly classified as reduced (bottom 
row) by the CNN in the three different settings (“full image”: left column, “striatum only”: middle column, 
“without striatum”: right column) (C contralateral, I ipsilateral).
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under the ROC curve in the training set and an area of 0.621 (95%-confidence interval 0.557–0.684, P < 0.0005) 
in the test set (Fig. 4).

The 123I-FP-CIT uptake in the ipsilateral insula cluster was positively correlated with the 123I-FP-CIT SBR in 
the ipsilateral putamen in the whole patient sample (n = 1306, Pearson correlation coefficient R = 0.331, P < 0.0005, 
Fig. 5). The correlation was also significant in the subset of 123I-FP-CIT SPECT images with PD-typical reduction 
of the striatal signal according to visual inspection (R = 0.158, P < 0.0005) as well as in the subset of 123I-FP-CIT 
SPECT images with normal striatal signal according to visual inspection (R = 0.270, P < 0.0005).

Discussion
This study provides further evidence of extrastriatal alterations in 123I-FP-CIT SPECT with typical striatal reduc-
tion that might be clinically useful for the differentiation between neurodegenerative and non-neurodegenerative 
parkinsonian syndromes. CNN-based automatic classification of 123I-FP-CIT SPECT images performed slightly 
worse in the “striatum only” setting compared to the “full image” setting (overall accuracy in the test set 97.0% 
versus 95.7%) suggesting that relevant (extrastriatal) information was missing in the “striatum only” setting. 
This was confirmed by CNN-based classification accuracy in the “without striatum” setting (69.3%) clearly 
above chance level.

For the identification of the extrastriatal brain regions that most strongly contributed to CNN-based classifi-
cation of 123I-FP-CIT SPECT, layer-wise relevance propagation (LRP) was used. This fully data-driven approach 
identified the bilateral insula as the most relevant extrastriatal brain region. The 123I-FP-CIT uptake in the ipsi-
lateral insula cluster was positively correlated with the 123I-FP-CIT SBR in the ipsilateral putamen in the whole 
sample as well as in the subset of 123I-FP-CIT SPECT images with normal striatal signal according to visual 
inspection. This suggests an association between the loss of putaminal DAT and the loss of insular 123I-FP-CIT 
binding sites in neurodegenerative parkinsonian syndromes as well as a physiological association between the 
density of dopaminergic innervation of the putamen and the density of monoaminergic innervation of the insula 
in subjects without nigrostriatal degeneration. Further extrastriatal relevance of 123I-FP-CIT uptake was identi-
fied by LRP in the amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal cortex/temporal pole, 
superior frontal lobe, and in the pons.

Figure 2.  Mean heat maps through the striatum. Transversal slice through the striatum of the mean heat maps 
(middle row) of the correctly classified 123I-FP-CIT SPECT images in the three different settings (“full image”: 
left column, ”striatum only”: middle column, “without striatum”: right column). The mean heat maps were 
obtained by voxel-wise subtraction of the mean relevance map of the 123I-FP-CIT SPECT images correctly 
classified as reduced and the mean relevance map of the 123I-FP-CIT SPECT images correctly classified as 
normal by the CNN (Fig. 1) (C contralateral, I ipsilateral).
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The diagnostic relevance of the 123I-FP-CIT uptake in the amygdala and in the ventromedial prefrontal cortex 
might be related to the degeneration of further dopaminergic pathways in addition to the nigrostriatal pathway, 
particularly the mesocortical pathway from the ventral tegmental area to the prefrontal cortex and the mesoa-
mygdaloid pathway from the ventral tegmental area to the amygdala.

However, degeneration of the serotonergic neurotransmitter  system18 might also have contributed to the 
observed diagnostic relevance of extrastriatal signal in 123I-FP-CIT SPECT, as 123I-FP-CIT binds also to the 
serotonin transporter (SERT)19, although with about three times lower affinity than to the  DAT19,20. This is sup-
ported by the finding that 123I-FP-CIT binding in SERT-rich brain regions can be blocked by selective serotonin 
reuptake  inhibitors21,22, but not by selective DAT  blockers21,23. Furthermore, extrastriatal 123I-FP-CIT uptake 
declines during healthy  aging24,25. In some extrastriatal brain regions, including insulo-opercular and the anterior 
cingulate/medial frontal cortices, thalamus, and pons, the rate of the age-related percentage decline is higher 
than in the  striatum24,26. For example, Koch et al.26 reported an 8% decline per decade of the specific 123I-FP-CIT 
binding ratio in the thalamus, considerably larger than the 4% per decade striatal decline observed in the same 
study. This is in good agreement with the age-related decline of 9.6% per decade of the non-displaceable bind-
ing potential of the SERT ligand  [11C](+)McN565 in the  thalamus27. Binding to the norepinephrine transporter 
can be neglected in 123I-FP-CIT SPECT, because the affinity of 123I-FP-CIT for the norepinephrine transporter 
is about 40 times lower than for the  DAT19.

The findings of the present study are in good agreement with previous studies. Pilotto et al. compared extras-
triatal SBR of 123I-FP-CIT between 56 non-demented patients with clinical diagnosis of PD and 54 control 
patients with clinical diagnosis of isolated action or rest tremor syndrome and visually normal 123I-FP-CIT SPECT 
using a priori defined anatomical ROIs in the frontal, parietal, temporal and cingulate cortices, and in the insula, 
thalamus and  midbrain13. Amongst these extrastriatal brain regions, only the insula and the thalamus showed a 
significant effect (reduced SBR in the PD group). Discriminant analysis demonstrated the 123I-FP-CIT SBR in the 
insula to be the best single extrastriatal parameter for the detection of PD. The authors concluded that “assessment 
of insular 123I-FP-CIT SBR might increase the accuracy of classical nigrostriatal evaluations in PD patients”13.

Nicastro et al. performed ROI-based analyses with MRI-based partial volume correction of 123I-FP-CIT 
SPECT in a clicical sample of 157 patients with neurodegenerative parkisonian syndrome comprising PD, MSA-
P, PSP, corticobasal syndrome (CBS), and dementia with Lewy bodies (DLB) together with 58 control subjects 
with parkinsonism or tremor not asociated with dopaminergic  degeneration28. The proportion of patients with 

Figure 3.  Mean heat maps throughout the whole brain. Mean heat map of the correctly classified 123I-FP-CIT 
SPECT images in the “full image” setting (left) and in the “without striatum” setting (right) overlaid to the single 
subject T1w-MRI template of SPM12. The mean heat maps were thresholded at the 95th percentile of the heat 
values in the brain except the striatum region (white contour), separately in both settings. The arrow heads point 
to the clusters of increased relevance in the insula region (white), the amygdala (aquamarine), the ventromedial 
prefrontal cortex (purple), the thalamus (blue), the anterior temporal cortex/temporal pole (yellow), the 
superior frontal lobe (green) and in the pons (orange) (C contralateral, I ipsilateral).
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Figure 4.  123I-FP-CIT uptake in the ipsilateral insula. Histograms and ROC curves of the 123I-FP-CIT uptake in 
the relevance cluster in the ipsilateral insula region (Fig. 3) in the training set and in the test set. The dashed red 
lines in the histograms indicate their mean values.

Figure 5.  Scatterplot of the scaled 123I-FP-CIT uptake in the ipsilateral insula cluster identified by LRP in 
the “without striatum” setting (Fig. 3) versus the specific binding ratio (SBR) of 123I-FP-CIT in the ipsilateral 
putamen in the whole sample (n = 1306). The color of the symbols indicates PD-typical reduction of (green) or 
normal (blue) striatal 123I-FP-CIT uptake according visual interpretation.
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an atypical neurodegenerative parkisonian syndrome (MSA-P, PSP, CBS, DLB) amongst the patients with nigros-
triatal degeneration was considerably higher than in the present study (62% compared to about 10%). Statisti-
cal testing with correction for age, sex and the use of antidepressant medication (selective serotonin reuptake 
inhibitors, SSRI/serotonin and norepinephrine reuptake inhibitors, SNRI) revealed a significant reduction of the 
specific 123I-FP-CIT binding ratio in caudate nucleus, putamen, pallidum and insula in each diagnostic subgroup 
of the patients with neurodegenerative parkinsonian syndrome. In addition, the specific 123I-FP-CIT binding 
ratio was reduced in the thalamus in PSP and MSA-P patients, in the midbrain in PD and PSP patients, and in 
the amygdala in PSP  patients28. ROC analyses demonstrated a significant improvement in the differentiation of 
the whole group of patients with neurodegenerative parkinsonian syndrome from the controls when including 
the extrastriatal signals in the  model28.

Premi and co-workers, using independent component analysis of the whole brain, identified six spatial covari-
ance patterns in 123I-FP-CIT SPECT images of 84 PD patients and a control group of 59 patients with a tremor 
syndrome without nigrostriatal  degeneration29. The covariance patterns identified by the multivariate analysis 
included cortical, thalamic and brain stem regions in addition to the striatum despite the fact that the reduction 
of 123I-FP-CIT binding in the PD patients revealed by conventional univariate voxel-based testing was restricted 
to the bilateral  striatum29.

Ouchi and co-workers performed positron emission tomography (PET) with the DAT ligand 11C-beta-CFT 
in eight unmedicated early stage PD patients and six healthy control  subjects14. Using tracer kinetic modelling of 
time activity curves from dynamic PET imaging and the input function generated from arterial blood samples, 
these authors estimated the 11C-beta-CFT binding potential in the orbitofrontal cortex and in the amygdala. 
The 11C-beta-CFT binding potential was significantly reduced in the PD patients in both regions. The authors 
concluded that orbitofrontal and amygdalar presynaptic dopaminergic functions are reduced in early PD and 
that this might be a pathophysiological correlate of cognitive and behavioral alterations in  PD14. Given that 
(1) 11C-beta-CFT is particularly selective to the DAT (compared to other monoamine transporters)30 and (2) 
dopaminergic axon terminals have been found in the orbitofrontal cortex and the  amygdala31, Ouchi and co-
workers assumed that the reduction of the 11C-beta-CFT binding potential observed in their study indicates loss 
of dopaminergic axon terminals in the orbitofrontal cortex and the amygdala in PD.

Oh and co-workers, combining resting-state functional MRI and DAT-PET with 18F-FP-CIT in 59 patients 
with clinically diagnosed PD, reported altered intrinsic functional activity of the right insular cortex that was 
correlated with decreased DAT availability in the caudate nucleus as well as with lower performance in executive, 
visuospatial and language  tasks32.

Nocker et al.33 and Joling et al.34 reported that extrastriatal signals in DAT-SPECT might also contribute 
to the differentiation of atypical neurodegenerative parkinsonian syndromes from PD, particularly PSP and 
MSA-P. Alterations of extrastriatal signal in DAT-SPECT might also contribute to a better understanding of 
the pathophysiological mechanisms underlying psychiatric  symptoms35–37 or altered pain  perception38 in PD.

The clinical utility of extrastriatal 123I-FP-CIT signals might be limited by somewhat lower test–retest stabil-
ity compared to the striatal signal (3.6–9.1% test–retest variability in the lateral frontal/temporal cortex and 
combined cortical  regions39). Reduced test–retest stability of extrastriatal signals in clinical 123I-FP-CIT SPECT 
might be related to the fact that the optimal time frame for imaging SERT with 123I-FP-CIT is between 2 and 3 h 
post intravenous injection, which is somewhat earlier than the 3–6 h time window for DAT  imaging40.

The following limitations of this study should be noted. First, patients had not been asked to discontinue 
antidepressant medication with SSRI or SNRI, because SSRI and SNRI do not significantly affect visual inter-
pretation of 123I-FP-CIT  SPECT41. However, small (about 10%) increases of the striatal 123I-FP-CIT SBR under 
SSRI/SNRI medication have been reported, presumably due to the blocking of 123I-FP-CIT binding to SERT in 
the (extrastriatal) reference region used to estimate the non-displaceable binding of 123I-FP-CIT41. It cannot be 
ruled out, therefore, that the findings of the present study were affected by blocking of extrastriatal SERT by 
SSRI/SNRI medication, particularly if SSRI/SNRI usage differed between patients with versus patients with-
out nigrostriatal degeneration. This, however, might not be expected. A recent retrospective study including a 
similar sample of patients from clinical routine found no difference between patients with neurodegenerative 
parkinsonian syndrome and patients with non-neurodegenerative parkinsonian syndrome with respect to the 
proportion of patients under SSRI/SNRI  treatment28. In the present study, information about SSRI/SNRI use 
was not available in the vast majority of the patients. Most sites do not ask patients to discontinue SSRI/SNRI 
prior to 123I-FP-CIT SPECT in clinical routine so that the findings of the present study might be translated to 
everyday clinical routine at most sites. Second, 123I-FP-CIT SPECT images were not corrected for photon attenu-
ation in this study. The rationale for this was that neither visual interpretation nor semi-quantitative analysis of 
123I-FP-CIT SPECT necessarily benefit from correction of attenuation (and/or scatter and/or septal penetration), 
although values of the 123I-FP-CIT SBR depend on whether and how attenuation correction is  performed5,42. 
As a consequence, many sites do not perfom attenuation correction in 123I-FP-CIT SPECT in clinical routine, 
not only to save the radiation dose to the patient in CT-based attenuation correction or the technician’s time for 
manual or semi-automatic delineation of the outer contour of the head for Chang attenuation correction, but also 
to avoid artifacts by the attenuation correction that might affect visual interpretation (e.g., apparent left–right 
asymmetry of the striatal signal caused by head motion between the low-dose CT and the SPECT acquisition, 
or by inaccurate delineation of the outer contour of the head by less experienced technicians). However, correct 
attenuation correction might reduce between-subjects variability of no interest (associated with varying head 
size) in 123I-FP-CIT SPECT and, therefore, might improve the power for the detection of clinically useful extras-
triatal signal. Finally, visual interpretation as reduced or normal striatal 123I-FP-CIT uptake by an experienced 
reader was used as standard-of-truth in this study. The clinical diagnosis after a follow-up of ≥ 12 months would 
have been prefered as standard-of-truth but was available in less than 10% of the included patients. Amongst the 
patients with neurodegenerative parkinsonian syndrome included in this study most likely about 10% suffered 
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from PSP, MSA-P, CBS or DLB rather than PD, which might have affected the findings. For example, patients 
with PSP or MSA-P might have contributed to the increased pontine relevance for the classification of 123I-FP-
CIT SPECT  images43.

In conclusion, the present study provides further evidence that alterations of 123I-FP-CIT uptake in extras-
triatal brain regions including insula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal 
cortex/temporal pole, superior frontal lobe, and pons might be used to improve the accuracy of clinical 123I-FP-
CIT SPECT for the differentiation of neurodegenerative and non-neurodegenerative parkinsonian syndromes.

Methods
123I‑FP‑CIT SPECT data. The PACS of the Department of Nuclear Medicine of the University Medical 
Center Hamburg Eppendorf was searched using the following inclusion criteria: (I1) 123I-FP-CIT SPECT had 
been performed in clinical routine to support the etiological diagnosis of a CUPS, (I2) 123I-FP-CIT SPECT had 
been performed with a double head SPECT system equipped with low-energy-high-resolution parallel-hole 
collimators according to standard procedure  guidelines44, and (I3) raw projection data were digitally available 
for consistent retrospective image reconstruction. No exclusion criteria were applied. This resulted in the inclu-
sion of 1306 123I-FP-CIT SPECT. Mean age of the included patients was 67.5 ± 11.2 years (range 20–90 years), 
41.8% of the patients were females. The activity dose of 123I-FP-CIT injected intravenously ranged between 139 
and 199 MBq (mean 184 ± 10 MBq). Patients had discontinued medication and drugs of abuse that may signifi-
cantly interfere with the visual interpretation of 123I-FP-CIT SPECT (cocaine, amphetamine, metamphetamine, 
dextroamphetamine, methylphenidat, modafinil, amfepramone, mazindol, phentermine or ephedrines, bupro-
pion, radafaxine, fentanyl, ketamine, isoflurane, and phencyclidine)5,44. Patients had not discontinued selective 
serotonin reuptake inhibitors (SSRI) nor serotonin and norepinephrine reuptake inhibitors (SNRI) that do not 
significantly affect visual interpretation of 123I-FP-CIT  SPECT41.

The projection data were reconstructed to tomographic SPECT images using filtered backprojection and 
a Shepp-Logan filter with cutoff 1.25 cycles/cm45. Neither attenuation correction nor scatter correction were 
 applied46. Image reconstruction was performed using the “iradon” function of MATLAB (www. mathw orks. com). 
All 1306 projection data were reconstructed fully automatically in a single batch using a custom MATLAB script 
in order to avoid errors by manual interaction.

Individual SPECT images were transformed (affine) into the anatomical space of the Montreal Neurological 
Institute (MNI) using the Statistical Parametric Mapping software package (version SPM12)47 and a custom-
made 123I-FP-CIT template. Voxel intensities were scaled to the  75th percentile in a reference region comprising 
whole brain except striata, thalamus, brain stem, and  ventricles26,48.

The 123I-FP-CIT SPECT images were classified as ‘reduced’ (PD-characteristic reduction of striatal 123I-FP-CIT 
uptake) or ‘normal’ by an experienced reader based on visual inspection of a standardized display of the stereo-
tactically normalized SPECT  images49. The reader was blinded for all clinical information. Binary classification 
of the images was repeated by the same reader in a second reading session. Images with discrepant classification 
in the two reading sessions (29 of the 1306 cases, 2.2%) were assessed a third time by the same reader to obtain 
an “intra-reader consensus” that then was used as standard-of-truth in the further analyses (reduced: n = 637, 
48.8%, normal: n = 669, 51.2%).

Clinical follow-up was not available in the vast majority of the included patients. From the subsample of 
patients in whom clinical follow-up was available it might be assumed that amongst the patients with reduced 
123I-FP-CIT SPECT about 90% suffered from PD (without and with cognitive impairment) whereas the remain-
ing 10% had an atypical neurodegenerative parkinsonian syndrome including parkinsonian variant of multiple 
system atrophy (MSA-P), progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and dementia 
with Lewy bodies (DLB)50. The diagnoses of the patients with normal 123I-FP-CIT SPECT most likely included 
essential tremor, drug-induced parkinsonism, various types of dystonia, psychogenic parkinsonism, and various 
other diagnoses not associated with nigrostriatal  degeneration50. The patient sample is representative of everyday 
clinical routine at the Department of Nuclear Medicine of the University Medical Center Hamburg-Eppendorf.

Image preprocessing for automatic classification. Specific 123I-FP-CIT binding to the DAT in the 
unilateral putamen was characterized by the specific binding ratio (SBR) of 123I-FP-CIT estimated by hottest 
voxels analysis as described  previously50, separately in both hemispheres. Stereotactically normalized 123I-FP-
CIT SPECT images in which the putaminal SBR was lower in the right hemisphere were left–right mirrored at 
the midsagittal plane such that the putaminal SBR was lower in the left hemisphere in all cases. In the following, 
the left and right hemisphere are referred to as ‘ipsilateral’ and ‘contralateral’ hemisphere, respectively.

Three different settings were tested for automatic classification of 123I-FP-CIT SPECT (Fig. 6). In the “full 
image” setting, the CNN was trained for classification of the complete 3-dimensional SPECT image (71 × 90 × 72 
voxels of 2 × 2 × 2  mm3). In the “striatum only” setting, a 3-dimensional image (61 × 44 × 35 voxels) covering the 
whole striatum in both hemispheres was cropped from the full 3-dimensional 123I-FP-CIT SPECT and then used 
for the CNN training. The full 123I-FP-CIT SPECT images with the same 3-dimensional striatum region removed 
were used for the CNN training in the “without striatum” setting (71 × 90 × 72 voxels). The 3-dimensional stria-
tum region was chosen big enough to largely eliminate spill-out (by partial volume effects) of striatal signal into 
the rest of the brain that might contaminate the “without striatum” setting by striatal signal.

Convolutional neural networks. The structure of the custom-made CNN trained for automatic clas-
sification of 123I-FP-CIT SPECT is shown in Fig. 7. The same structure was used for each of the three different 
settings. The CNN comprised four 3-dimensional convolutional layers with 16 filters, kernel size of 3 × 3 × 3. 
Stride and dilation were set to 1. The convolutional layers were followed by three fully connected neuron layers 
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each with 16 neurons, followed by a 2-way softmax output layer for binary classification. The rectified linear unit 
was used as activation function at all hidden layers. No pooling layers were used, mainly because all input images 
were in MNI space so that translation invariance was not required, but also to achieve a simple form of routing 
which routes all the features in the lower layer to the higher  layer51. Drop out (0.2) was implemented in the first 
fully connected layer only. The total number of trainable CNN parameters was 236 million for the ”full image” 
and the “without striatum” settings, it was 25 million for the striatum only setting.

For the training of the CNN, the subjects were randomly split into training sample (n = 876: 453 normal, 423 
reduced), validation sample (n = 130: 65 normal, 65 reduced) and test sample (n = 300: 151 normal, 149 reduced). 
All subsamples of the random split were well balanced with respect to age and sex. Univariate analysis of variance 
of age or sex as dependent variable and subset (training, validation, test) and visual classification of the DAT 
SPECT (normal, reduced) as fixed factors did not reveal any significant effect, despite the rather large sample 
size providing sufficient statistical power to detect also rather small differences (age: P = 0.592, 0.071, 0.373 for 
subset, visual classification and interaction of subset × visual classification; sex: P = 0.415, 0.694, 0.288 for subset, 
visual classification and interaction of subset × visual classification). The same random split was used for all 
settings. The validation dataset was used only to check for overfitting during the training (no model selection).

The CNN was trained with a batch-size of 8 against the categorical cross-entropy loss using the Adam opti-
mizer with learning rate of  10–4. Loss weighting for different classes was not used, because the data were balanced 
with respect to the class to good approximation.

Using a Nvidia Titan XP graphic card with 12 GB graphic memory, the training of the CNN for “full image” 
and “without striatum” settings took approximately 72 s per epoch. The CNN could be trained without notice-
able overfitting and converged in less than 50 epochs in the “full image” setting. The total training time until 
convergence was approximately one hour. In the “without striatum” setting, the CNN was trained for 200 epochs 
and the total training time until convergence was approximately 4 h. In the “striatum only” setting, the training 
of the CNN took 16 s per epoch. The CNN could be trained without noticeable overfitting and converged in less 
than 50 epochs with total training time until convergence of approximately 15 min.

Figure 6.  Settings for the CNN training: (i) full 3-dimensional 123I-FP-CIT SPECT images (“full image”), 
(ii) the 3-dimensional region of the striata cropped from the full image (“striatum only”), and (iii) full 
3-dimensional 123I-FP-CIT SPECT with the region of the striata removed (“without striatum”). The mask of 
the striatal region used to generate the images for the “striatum only” and the “without striatum” settings was 
chosen with large safety margin around the striata in order to largely eliminate spill-out of striatal signal into the 
rest of the brain (C contralateral, I ipsilateral).
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Layer‑wise relevanvce propagation. CNN-based classification of medical images is often considered a 
black-box approach, because it is difficult to retrospectively identify the features learned during the  training52. 
Layer-wise relevance propagation (LRP) is an explainable AI technique that allows generation of an individual 
relevance map for each individual  image53. The individual relevance map is in the same space as the input image 
and its voxel intensity values indicate the relevance/importance of the voxels for the CNN-based classification 
of this  image54.

In order to estimate the relevance of each single voxel of the subject’s image for the classification of the whole 
image by the CNN, LRP takes advantage of the CNN graph structure for layer-wise redistribution of relevance 
from the most activated output neuron up to the input  layer53,55. More precisely, LRP is based on a local redis-
tribution rule to redistribute relevance from neurons in a given layer to the neurons in the preceding layer. If zij 
denotes the fraction of the relevance R[k]

j  at neuron j in the CNN layer k that is redistributed to neuron i in the 
preceding layer k-1, then the total relevance R[k−1]

i  at neuron i is given by

The scaling factors 
∑

i∈[k−1] zij in the denominator on the right-hand side guarantee that the relevance is 
preserved during redistribution at each neuron. When the rectified linear unit is used as activation function, 
first order Taylor expansion at the prediction point suggests the following standard choice for the redistribution 
 coefficients56

where ai is the activation of neuron i for the considered image in the prediction phase (forward pass) and wij is 
the weight factor for the input to neuron j from neuron i fixed during the training phase.

Several variations of the LRP rule according to Eqs. (1, 2) have been  proposed56,57. In the present study three 
of these variations were combined for (1) improved robustness of LRP by avoiding noise amplification due to 

(1)R
[k−1]
i =

∑

j∈[k]

zij∑
i∈[k−1]zij

R
[k]
j

(2)zij = aiwij

Figure 7.  Structure of the CNN used for binary classification of the 123I-FP-CIT SPECT images. The same CNN 
structure was used for each of the three setting (full image, striatum only, without striatum). The CNN was 
trained separately for each setting resulting in three different CNN. The LRP redistribution rules at the different 
CNN layers are shown in red.
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the gradient shattering  effect58,59, (2) reduced spill-out of relevance, and (3) discrimination between features that 
support the prediction and features that oppose it.

The redistribution rule

with zij according to Eq. (2) was used for relevance redistribution at the fully connected layers close to the output 
of the CNN (Fig. 7). Here sign(x) denotes the sign of x, that is, sign(x) = 1 for x ≥ 0 and sign(x) = -1 for x < 0. The 
ε-term is introduced to limit noise amplification. ε = 0.0001 was used.

The redistribution rule

with zij according to Eq. (2) was used for relevance redistribution at the fourth and the third convolutional layer 
(Fig. 7). Here “+ ” and “−” indicate the positive and the negative part, respectively, that is

The parameter α was chosen as α = 2 in order to allow for both positive and negative relevance. Positive rel-
evance indicates that the feature supports the classification decision whereas negative relevance indicates that 
the feature provides evidence against it.

Finally, uniform redistribution (LRP-c) defined by Eq. (1) with zij = 1 was used at the first two layers close to 
the input of the CNN for improved control of resolution and semantics in the relevance  maps60 (Fig. 7).

Statistical analysis. The classification performance of the three different CNN (one for each setting) was 
estimated in the test set (independent of the training set). Overall accuracy, sensitivity and specificity were used 
to characterize classification performance.

Mean relevance maps for correctly classified (by the CNN) normal 123I-FP-CIT SPECT and mean relevance 
maps for correctly classified reduced 123I-FP-CIT SPECT were obtained by voxel-wise averaging the individual 
relevance maps of correctly classified normal cases and correctly classified reduced cases, respectively. This was 
done separately for each setting.

Ethics declarations. Waiver of informed consent for the retrospective analysis of the clinical data was 
obtained from the ethics review board of the general medical council of the state of Hamburg, Germany. All 
procedures performed in this study were in accordance with the ethical standards of the ethics review board of 
the general medical council of the state of Hamburg, Germany, and with the 1964 Helsinki declaration and its 
later amendments.
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