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Abstract

One major objective in radiation oncology is the personalisation of cancer treatment. The im-
plementation of this concept requires the identification of biomarkers, which precisely predict
therapy outcome. Besides molecular characterisation of tumours, a new approach known as
radiomics aims to characterise tumours using imaging data. In the context of the presented
thesis, radiomics was established at OncoRay to improve the performance of imaging-based
risk models. Two software-based frameworks were developed for image feature computa-
tion and risk model construction. A novel data-driven approach for the correction of intensity
non-uniformity in magnetic resonance imaging data was evolved to improve image quality
prior to feature computation. Further, different feature selection methods and machine learn-
ing algorithms for time-to-event survival data were evaluated to identify suitable algorithms
for radiomics risk modelling. An improved model performance could be demonstrated using
computed tomography data, which were acquired during the course of treatment. Subse-
quently tumour sub-volumes were analysed and it was shown that the tumour rim contains
the most relevant prognostic information compared to the corresponding core. The incorpo-
ration of such spatial diversity information is a promising way to improve the performance of
risk models.

Kurzfassung

Ein neuer Schwerpunkt in der Radioonkologie ist die Personalisierung der Krebsbehand-
lung, um beispielsweise die Strahlendosis individuell auf einen spezifischen Tumor anzu-
passen. Die Implementierung eines solchen Ansatzes erfordert die Identifizierung von Merk-
malen zur präzisen Therapievorhersage. Statt der etablierten molekularen Tumorcharakte-
risierung verwendet radiomics, als neues Verfahren, bildbasierte Merkmale. In der vorlie-
genden Arbeit wurde radiomics am OncoRay etabliert, mit dem Ziel die Leistungsfähigkeit
von bildbasierten Risikomodellen zu verbessern. Zunächst wurden zwei softwarebasierte
Systeme für die Berechnung von Merkmalen und die Erstellung von Risikomodellen ent-
wickelt. Darüber hinaus wurde ein neues Verfahren für die Korrektur von Signalinhomoge-
nitäten in magnetresonanztomografischen Bilddaten implementiert, um die Bildqualität zu
verbessern. Zudem erfolgte eine umfassende Analyse verschiedener Methoden zur Merk-
malsauswahl und maschineller Lernverfahren für Überlebenszeitdaten, um geeignete Me-
thoden zur bildbasierten Risikomodellierung zu identifizieren. Durch die Hinzunahme von
Röntgen-Computertomographie Bilddaten, die während der Therapie erstellt wurden, konnte
eine Verbesserung der Risikomodelle erreicht werden. Darüber hinaus wurde gezeigt, dass
der Tumorrand, im Vergleich zum Tumorzentrum, die relevanten prognostischen Informatio-
nen enthält. Die Berücksichtigung der räumlichen Diversität ist daher ein vielversprechender
Weg, um die Leistungsfähigkeit von Risikomodellen zu verbessern.
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1. Introduction

The personalisation of treatment is a major objective for improving modern cancer therapy,
which for example tailors the prescribed type of chemotherapy, targeted drug or radiation
dose to the specific tumour for each patient individually. Radiotherapy is prescribed for more
than 50% of all cancer patients and attemps to eliminate all cancer stem cells of the pri-
mary tumour and regional lymph nodes using ionising radiation. In the last decade, the
treatment have been improved by technological advances and the integration of (radio-) bi-
ological knowledge. Consequently, these improvements led to an increased loco-regional
tumour control (LRC) describing the recurrence of the tumour in the same region or regional
lymph nodes after a disease free period (Baumann et al., 2016). In general, evidence for
novel treatment options are derived by clinical trials (e.g., Danish Head and Neck Cancer
Group) comprising large patient cohorts with the same type of cancer stratified by clinical
parameters, e.g., tumour stage or histology (Overgaard et al., 1998; Overgaard et al., 2003;
Bentzen et al., 2015; Baumann et al., 2016). This population-based evidence, tradition-
ally determined the treatment options for all patients with similar diagnoses and staging.
However, personalisation of treatment offers the potential to further improve radiotherapy by
considering the tumour characteristic of patients or subgroups individually. The implemen-
tation of this approach requires the identification of specific biomarkers, which are highly
correlated with tumour radio-sensitivity and precisely predict therapy response. Their iden-
tification would enable the stratification of patients into smaller subgroups with the same
tumour characteristic. For instance, patients at high risk of treatment failure and low risk of
severe side effects may receive intensified treatment while for patients at high risk of severe
toxicities and good chances for cure a lower radiation dose may be delivered (figure 1.1).
One example for treatment individualisation is aspired for patients with head and neck squa-
mous cell carcinoma (HNSCC) which comprise different types of tumours, e.g., larynx, oral
cavity and hypopharynx. The worldwide incidence rate of HNSCC is about 7% and the over-
all survival (OS) rate at five years after treatment for early-stage tumours ranges between
70 and 90%. However, patients with advanced disease show poorer survival rates of only
30 and 50% (Jemal et al., 2011; Gatta et al., 2015). Tumours in the head and neck region
comprise an additional challenge for radiotherapy because they are surrounded by various
organs, which are fundamental for, e.g., swallowing, sensation and communication. Con-
sequently, HNSCC treatment has to tackle two major challenges: achieving a high tumour
control rate while limiting the amount of side effects, which degrade the patients’ quality of
life. Therefore, patients could benefit from individualised radiotherapy based on risk models,
e.g., to adjust the applied total dose to the individual patient.
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Data

Clinical
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Figure 1.1.: Schematic representation of the workflow to individualise radiotherapy based on different
steps: From a heterogeneous patient population clinical data, imaging data (e.g., X-ray computed
tomography) and molecular data are combined to develop predictive or prognostic risk models for the
prediction of treatment outcome and patient stratification. The risk model can be used to personalise
treatment, e.g., by dose adaptation in clinical trials.

During the last years the identification of biomarkers for characterisation of the tumour
phenotype has focused on molecular biomarkers using genomics data (Toustrup et al., 2011;
Schmidt et al., 2018). One substiantial example of a radiobiological-associated biomarker is
the human papillomavirus (HPV), which is related to different types of cancer, e.g., cervical
cancer or HNSCC. For instance, Lohaus et al. (Lohaus et al., 2014) demonstrated that
the HPV status is a strong prognostic biomarker for LRC, in particular for oropharyngeal
tumours. As a result, patients with HPV-positive tumours may be qualified for dose de-
escalation strategies in future. Furthermore, it was shown that hypoxia-associated genes
and cancer stem cell markers are correlated with tumour recurrence for patients with HNSCC
(Toustrup et al., 2011; Eustace et al., 2013; Linge et al., 2016a; Linge et al., 2016c).

Despite these promising results, the spatial and temporal heterogeneity between different
patients and within tumours is a major challenge for development of molecular-based risk
models to personalise therapy. For the personalisation of cancer therapy tissue extractions
of the tumour by biopsies are required to analyse the molecular profiles for patients treated
with primary radio-chemotherapy. Recently, Gerlinger et al. (Gerlinger et al., 2012) observed
differences in gene expressions extracted from different parts of the tumour for patients
with renal cell carcinoma. Consequently, the development of risk models using biomarkers
obtained from a single biopsy may not represent the entire tumour and the outcome of the
patient may not be predicted correctly. To overcome this challenge, multiple and repeated
tumour biopsies would be needed, which seems to be limited due to the invasiveness of the
procedures (Gerlinger et al., 2012).
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However, medical imaging has the potential to circumvents these problems. Imaging data
are non-invasive and can provide comprehensive information regarding the entire tumour.
Furthermore, a variety of imaging data is acquired in clinical practice for diagnosis and treat-
ment guidance: X-ray computed tomography (CT), positron emission tomography (PET) and
magnetic resonance imaging (MRI). For example, it was shown that risk models based on
quantitative imaging features, such as tumour volume determined on CT and MRI scans or
uptake values of PET measurements, were able to predict treatment response (Partridge
et al., 2005; Hutchings et al., 2006; Zschaeck et al., 2017). Therefore, it is hypothesised that
detailed tumour phenotype characteristics may be extracted from imaging data. In the last
years radiomics emerged as a new approach, which is based on the extraction and analysis
of a large amount of quantitative biomarkers (features) from medical images by machine
learning algorithms to predict patient specific outcome. Imaging features may provide com-
plementary and interchangeable information compared to other patient data, e.g., clinical
or genetic data and may have the potential to enhance the effort to individualise radiation
oncology (Lambin et al., 2012). Radiomics features are based, e.g., on the one-dimensional
histogram of the grey values, spatial relationships between various intensity levels or tex-
ture heterogeneity patterns extracted from medical imaging data and various transformed
images. This results in a high variety of imaging features (≫1000). Subsequently, machine-
learning algorithms are applied to identify prognostic and non-redundant features, which
show a high association with clinical outcome to build predictive or prognostic radiomics
models.

The application of radiomics comprises mainly two different domains in clinical oncology:
diagnosis and tumour prognosis. Several studies demonstrated the potential of radiomics
in the field of cancer diagnosis. For instance, malignant and benign prostate tumours were
differentiated based on texture features computed from MRI or the incidence of lung cancer
was predicted using CT imaging (Wibmer et al., 2015; Hawkins et al., 2016). Further, in the
field of tumour prognosis and outcome prediction, radiomics has been successfully applied
using different image modalities such as CT, PET and MRI (Chicklore et al., 2013; Coroller
et al., 2015; Nicolasjilwan et al., 2015; Wibmer et al., 2015; Coroller et al., 2016). For
instance, loco-regional recurrences and distant metastases were predicted for risk assess-
ment using PET-CT imaging of HNSCC patients. Moreover OS was predicted for patients
with newly diagnosed glioblastoma multiforme based on a subset of radiomics features (sig-
nature) computed from MRI data (Kickingereder et al., 2016; Vallières et al., 2017). In
addtion, several studies have shown the discriminating capabilities of radiomics features for
the stratification of tumour histology, tumour grades or clinical outcomes (Ganeshan et al.,
2010; Yamamoto et al., 2012; Aerts et al., 2014; Jain et al., 2014; Hatt et al., 2015; Kather
et al., 2016). Besides the feasibility of radiomics-based risk models, the correlation between
imaging features and gene expression profiles have been demonstrated (Segal et al., 2007;
Panth et al., 2015; Grossmann et al., 2017).
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1. Introduction

Despite the potential of radiomics for the individulisation of cancer therapy, further re-
search and developments are required, e.g., regarding the choice of suitable machine learn-
ing algorithms for risk modelling (Kumar et al., 2012; Gillies et al., 2015; Aerts, 2016; Yip
and Aerts, 2016). The aim of this thesis was to establish and implement radiomics at the
National Centre for Radiation Research in Oncology (Dresden, Germany) to improve the
performance of imaging-based risk models. The presented results help to facilitate image-
based treatment decisions and to gain a deeper understanding of radiomics.

Image-based risk modelling comprises a complex task consisting of the feature computa-
tion and extraction based on the imaging data and the development of predictive or prog-
nostic models. In this thesis, two software-based frameworks for image feature computation
and risk modelling were developed and introduced (chapter 2).

The feature computation framework provides different pre-processing algorithms, e.g., to
enhance the image quality. Hence, a novel data-driven approach was developed to correct
intensity non-uniformity in MRI data to improve the image quality prior to feature computa-
tion. The proposed approach, which is introduced in chapter 3 is motivated by the physical
properties of a typical MRI coil system.

Feature reduction and selection of the most informative features are necessary for achiev-
ing high performance. Also the choice of the machine learning algorithm for risk modelling
may be vital in achieving a good performance. Consequently, the identification of suitable
methods are a integral component to develop highly accurate and reliable clinical risk mod-
els. An extensive evaluation of different feature selection methods and machine learning
algorithms for time-to-event survival data was realised using a large multi-centre cohort of
patients with locally advanced HNSCC (chapter 4).

In general, the improvement of the risk model performance is an essential factor to fa-
cilitate and to drive the success of radiomics applications for clinical decision making. In
chapter 5 the potential of CT imaging during the course of treatment was investigated. In
particular, an exploratory and an independent validation cohort of patients with locally ad-
vanced HNSCC were used to compare the performance of the risk models developed on
pre-treatment scans with the models based on in-treatment CT images.

Moreover, in radiomics, the characterisation of the tumour phenotype is usually based
on radiomics features extracted from the entire tumour. However, tumours are biologically
complex and exhibit spatial variations. Therefore, in chapter 6, different tumour sub-volumes
were investigated. In particular, risk models were developed and compared based on the
rim of the tumour and the corresponding core in terms of their prognostic performance and
their ability to stratify patients into low and high risk groups of recurrence. This analysis
enables to gain a deeper understanding which parts of the tumour contain the most relevant
prognostic informations and whether the incorporation of spatial diversity may improve the
model performance.

4



Chapter 7 provides a general summary of the work presented in this thesis and related
further perspectives.
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2. Theoretical background

2.1. Basic physical principles of image modalities

2.1.1. Computed tomography

Computed tomography (CT) is a commonly imaging technique in diagnostic radiology and
radiation oncology to provide three-dimensional (3D) information of anatomical structures
using X-rays from various directions. In radiation oncology an important application of CT
imaging is for treatment planning purposes. A CT scanner consists of an X-ray tube with
an opposing detector array which rotates around the scan object, while the scan object is
moved along the perpendicular axis to the rotation plane. The resulting 3D X-ray attenuation
profile can be described by the Lambert-Beer law. The detected signal Iφ at a given angle φ
is given by, (Bouguer, 1922):

Iφ(τ ) = I0 ·
ˆ

E
Ω(E) · e−

´ ´
µ[E ,rφ(τ )] d2 r d E . (2.1)

Here, I0 and rφ(τ ) defines the initial intensity emitted from the X-ray tube, which is attenuated
exponentially in dependence of the mass attenuation coefficient µ. The mass attenuation
coefficient µ depends on the photon energy E and the material at the distance rφ. The total
attenuation at the distance τ perpendicular from the rotation axis is calculated as the integral
over all energies. The attenuation coefficient µ can be described as a product of the electron
density ϱe of the material/tissue and the photon attenuation cross section per electron σe:

µ(E) = ϱe · σe(E). (2.2)

Thereby, for typical energies in diagnostic radiology (E < 200 keV ) the cross section σe(E) is
dominated by three different interactions with matter: photoelectric effect σph

e , coherent σcoh
e

which depend on the photon energy E and the atomic number Z and incoherent scattering
σinc

e , depending on the photon energy E only (Rutherford et al., 1976; Jackson and Hawkes,
1981).

Based on the measured X-ray attenuation profile for different projection angles φ, image
reconstruction algorithms, e.g., filtered back projection (FBP) provide the individual attenua-
tion coefficient µ of each volume element (Voxel) within the field of view (FOV) (Kachelriess
et al., 2004). The attenuation coefficient µ represents electron density of a material in rela-
tion to that of water and air, which is expressed as CT number H in Hounsfield units (HU):

H =
µ− µwater

µwater − µair
· 1000. (2.3)
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2. Theoretical background

In the clinical domain, the Hounsfield scale ranges from -1024 HU to 1024 HU to differentiate
human tissue with H=0 HU for water (figure 2.1). Some modern scanners have an extended
Hounsfield scale up to 4000 HU representing materials with high effective atomic numbers
(e.g., metallic implants).

1024-1024 -500 0-180 150 500

Bone
Soft tissue

Air Water

Figure 2.1.: Illustration of a commonly used Hounsfield scale, ranging from -1024 (Air) to 1024
Hounsfield unit (HU) (Bone). In radiomics studies the soft tissue range from -150 to 180 HU is of
most interest.

2.1.2. Magnetic resonance imaging

MRI is another established and non-invasive imaging technique for diagnostic radiology and
radiation oncology. MRI is used, e.g., for the assessment of characteristics of human tissue
(Low, 2007), to support therapy planning (Nomden et al., 2013) and to monitor therapy re-
sponse (Yamaner et al., 2012). The advantages of MRI are the excellent soft-tissue contrast
without loss of spatial resolution and the lack of undesirable X-ray radiation dose compared
to CT imaging. Furthermore, using MRI a high variety of images can be created reflecting dif-
ferent physical and physiologic phenomena such as tissue susceptibility variations (Haacke
et al., 2009), diffusion (Carr and Purcell, 1954; Stejskal and Tanner, 1965), biomechanical
properties (Muthupillai et al., 1995) and oxygen levels (Ogawa et al., 1990; Belliveau et al.,
1991).

MRI is based on the basic physics of nuclear magnetic resonance (NMR), which was first
experimentally demonstrated by Purcell et al. (Purcell et al., 1946) and Bloch et al. (Bloch,
1946). An atomic nucleus is comprised of protons and neutrons, and may have a non-zero
nuclear magnetic moment. The nuclear magnetic moment is determined through the pairing
of the constituent protons and neutrons. The proton (1H) is very important for MRI as it is
abundant in human tissue and possesses a non-zero nuclear magnetic moment. Typically,
due to thermal movement, the nuclear magnetic moments are randomly orientated resulting
in a non observable magnetisation (figure 2.2, left). However, when placed in a strong
uniform magnetic field B0, the nuclear magnetic moments within a scan object align with
the magnetic field, resulting in a measurable net magnetic moment M0 in the direction of B0

(figure 2.2, right).
Furthermore, protons experience a torque in perpendicular to the direction of the applied

magnetic field that causes precession. The precession occurs with an angular frequency ω0
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B0 M0

No magnetic field B0=0 External magnetic field

Figure 2.2.: Simplified distributions of "free" protons without (left) and with an external magnetic field
B0 (right). Without an external field, the magnetic moments of the protons are randomly orientated,
producing an overall magnetic moment of zero. Under the influence of an applied external magnetic
field B0 the protons assume a align in parallel and anti-parallel orientation to the applied magnetic
field. The alignment in parallel direction, results in a measurable net magnetic moment (magneti-
sation) M0 in the direction of B0. Picture is taken and modified from Bushberg et al. (Bushberg,
2002).

(Larmor frequency) that is proportional to the magnetic field strength B0, described by the
Larmor equation:

ω0 = γB0, (2.4)

where γ defines the nuclei-specific gyromagnetic ratio. For the 1H nucleus, γ is roughly
equal to 42.58 MHz/Tesla. Through the application of a radio-frequency (RF) pulse with
time-varying magnetic field B1(t) tuned to the Larmor frequency ω0 in the transverse plane
(x , y -plane) and tips the net magnetisation in this plane. As a result, M0 is excited into
the transverse plane and will precess as long as B1(t) is applied. After the RF pulse, the
magnetisation moment in the transverse plane Mxy will decay with a material-specific re-
laxation time T 2 (spin-spin relaxation time constant). The elapsed time between the peak
transverse signal (e.g., after a 90-degree RF pulse) and 37% of the peak level (1/e) is given
by, (Bushberg, 2002):

Mxy (t) = M0 e−t/T2, (2.5)

where Mxy (t) is the transverse magnetic moment at time t for a sample that has the maximum
transverse magnetisation M0 at t = 0. The longitudinal magnetisation Mz will recover with
the characteristic time T1 (spin-lattice relaxation time constant) to its previous equilibrium
state governed by B0. This occurs exponentially as:

Mz(t) = M0(1 − e−t/T1), (2.6)

where T1 is the time needed for the recovery to 63% of Mz after a 90-degree RF pulse.
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2. Theoretical background

A magnetic resonance (MR) image can be formed by the variation of the T 1 and T 2 re-
laxation times, where the contrast is based on the differences in T 1 or T 2 relaxation times
of different tissues of the human body, due to their different molecular environments. For
instance, the contrast in T1-weighted (T1w) images are chiefly based on the T 1 character-
istics of the tissue, while de-emphasis of T 2 and proton density contributions to the signal.
proton density-weighted (PDw) image relies mainly on differences in the number of magne-
tized protons per unit volume in tissue. For instance, tissue with a large proton density, e.g.,
fat and lipids have a corresponding large Mz compared to other soft tissues. The contrast in
PDw images are achieved by reducing the contributions of T 1 recovery and T 2 decay. Fur-
thermore, the contrast in a T2-weighted (T2w) image follows directly from the PDw image by
reducing the T 1 and emphasis of the T 2 differences in tissue (Bushberg, 2002).

2.2. Basic principles of survival analyses

Survival analyses comprise a collection of statistical techniques used to describe and quan-
tify time-to-event data. In survival analyses the term ‘failure’ defines the occurrence of an
event of interest (e.g., death). The term ‘survival time’ specifies the period of time until the
failure to occurs (e.g., time from entry into a clinical trial until death). Survival outcome is
investigated in different studies, e.g., retrospective observational studies or animal experi-
ments to compare two different treatments in terms of differences in overall survival time.
The survival function defines the probability of surviving up to time t and is expressed as:

S(t) = P(T > t) = 1 − F (t), 0 < t < ∞, (2.7)

where T defines a non-negative random variable representing the time until an event of in-
terest and F (t) = P(T ≤ t) defines the cumulative distribution function. In survival analyses,
the main objective is to calculate the instantaneous failure rate at time t , which is expressed
in terms of the hazard function h:

h(t) = lim
∆t→0

P(t < T < t + ∆t |T > t)
∆t

= lim
∆t→0

F (t + ∆t) − F (t)
∆t · S(t)

=
f (t)
S(t)

= − d
d t

ln(S(t)),

(2.8)
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where f (t) = − d
d t S(t) = d

d t F (t) defines the probability density function. The hazard function
h at time t described the failure rate, i.e., the frequency of events at time t . Based on (2.8) it
is possible to define the survival function by integrating both sides, yielding:

− ln(S(t)) =
ˆ t

0
h(s) d s = H(t), (2.9)

so that
S(t) = e−H(t), (2.10)

where H(t) defines the cumulative hazard function and S(0)=1. For modelling of survival
data different survival distributions are available, e.g., the exponential and the Weibull dis-
tributions, which are described in the following. The exponential survival distribution has a
constant hazard, h(t) = λ. Using (2.9) its cumulative hazard function may be derived as:

H(t) =
ˆ t

0
h(s) d s = λt . (2.11)

Subsequently, the survival function S(t) is given by:

S(t) = e−λt , (2.12)

and the probability density function:

f (t) = h(t)S(t) = λ · e−λt . (2.13)

A more sophisticated survival distribution is the Weibull distribution, which offers more flexi-
bility for modelling survival data. The hazard function h(t) is given by:

h(t) = αλ(λt)α−1 = αλαtα−1, (2.14)

where α defines the shape and λ the scale of the hazard function. The cumulative hazard
and survival function as well as the probability density function are respectively given by:

H(t) = (λt)α (2.15)

and
S(t) = e−(λt)α

(2.16)

as well as
f (t) = αλαtα−1 e−(λt)α

. (2.17)

Figure 2.3 shows an example of a hazard and a survival function based on the exponen-
tial and the Weibull distributions. While for the exponential distribution, survival decreases
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Figure 2.3.: Examples of the hazard (left) and the survival functions (right) for the exponential (λ=1)
and the Weibull distributions (λ=1, α=3).

exponentially with time t , the Weibull function allows for a more complex behaviour. Based
on the described survival theory, two general types of survival models, semi-parametric and
full-parametric survival models are briefly described in the following section.

2.2.1. Semi-parametric survival models

Semi-parametric survival models have an unspecific dependence on time. Two different
survival models, the Cox proportional hazard model (Cox) and the random survival forest
(RSF) are described to demonstrate the different algorithm concepts. The mathematical
nomenclature for this section is defined as follows. Given is an observed random variable
Zi = (X , Y ) where Xi = (Xi ,1, . . . , Xi ,p) defines the p-dimensional covariate (feature) vector
and Yi denotes the time-to-event survival data for a subject i = 1, ..., N. The survival data
Yi = (ti , δi ) consists of survival time ti at which an event occurred (δi = 1, e.g., death) or the
observation was censored (δi = 0).

Cox proportional hazards model

The Cox proportional hazards model assumes linearity of the covariates X on the log hazard
function to model the interactions between the covariates and the risk (Cox, 1972). It is given
by:

h(t ,β, X ) = h0(t)e
∑p

j=1 βj Xj , (2.18)

where Xj is a vector of covariate values for subjects i = 1, ..., N and β is a vector of coef-
ficients, with one coefficient for each covariate. The coefficients β are fitted using the like-
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2.2. Basic principles of survival analyses

lihood maximisation, which describes the probability to obtain the data with a given model.
The total partial likelihood L(β) is defined as:

L(β) =
N∏

i=1

⎡⎢⎣ h0(ti ) e
∑p

j=1 βj Xij∑
k∈Ri

h0(ti ) e
∑p

j=1 βj Xkj

⎤⎥⎦
δi

=
N∏

i=1

⎡⎢⎣ e
∑p

j=1 βj Xij∑
k∈Ri

e
∑p

j=1 βj Xkj

⎤⎥⎦
δi

,

(2.19)

where βj is a coefficient, for each covariate j and Ri = {k : tk ≥ ti} denotes the risk set
containing all subjects at risk at time ti . In other words, the numerator is the hazard for
the subjects who experienced the failure (δ = 1). However, the denominator is the sum of
all subjects (δ = 0 and δ = 1, respectively) in the risk set who are still at risk at time ti .
In practise, instead of using the partial likelihood L(β) the logarithm transformed likelihood
function LL = ln[L(β)] is used for the estimation of β, e.g., by the Newton Raphson algorithm.
Using (2.19) the LL is given by:

LL(β) =
N∑

i=1

δi

⎧⎨⎩
p∑

j=1

βjXij − ln

⎡⎣ ∑
k∈Ri

e
∑p

j=1 βj Xkj

⎤⎦⎫⎬⎭. (2.20)

One property of the Cox model is the unspecific baseline hazard function h0(t), which
cancels out of the numerator and denominator in (2.19). Therefore, instead of calculating
the hazard function directly the ratio of the hazard function (HR) is calculated, yielding to
the proportional hazards assumption. This assumption fulfilled if the ratio of the hazard
function is constant between two survival groups, e.g., a control and a treatment group. The
undefined baseline hazard function is one advantageous of the Cox model since it is robust
against misspecification and has fewer restrictions.

Random survival forest

The Cox model assumes linearity of the covariates X on the log hazard function. However,
for covariates with a non-linear structure this assumption may lead to misspecifications due
to not fitting the correct functional form. Therefore, for covariates with non-linear effects or
higher order interactions, non-linear machine learning algorithms are appropriate, e.g., the
Random forest (Breiman, 2001). For continuous time-to-event survival data, the RSF is an
extension of the Random forest (Ishwaran and Kogalur, 2007; Ishwaran et al., 2008). The
basic idea behind the random forest algorithm is to train several decision trees (nTree) by
bootstrapping the sample data and subsequently estimate an ensemble prediction using all
trees. For each bootstrap sample a tree is grown by selecting random covariates (mtry)
splitting the data. Subsequently, a maximum number of split points (nSplit) is randomly cho-
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sen from all possible split points within a selected splitting candidate (covariate). Finally,
a node is splitted on the particular split point which maximises the survival differences be-
tween the resulting daughter nodes. For RSF, two typical splitting rules for survival data are
the log-rank test (LR) and the log-rank-score test (LRS).

Both methods split a node q in the tree using a given covariate x ∈ X and a selected
split point c, which forms two daughter nodes (x ≤ c and x > c, respectively) and two new
sets of survival data. Let T1 < T2 < ... < TD, k = 1, ..., D be the distinct event times (e.g.,
death) in the parent node q, and let dk ,j be the number of events and Υk ,j be the number
of individuals at risk at time Tk in the daughter nodes j = 1, 2. The number of subjects in
daughter j that are alive or had an event at Tk , is defined by (Ishwaran et al., 2008):

Υk ,1 = #{ti ≥ Tk , xi ≤ c},

Υk ,2 = #{ti ≥ Tk , xi > c},
(2.21)

where xi and ti are the value of covariate x ∈ X and the survival time for subject i = 1, .., N,
respectively. The LR criteria for a split at the value c for covariate x ∈ X is given by:

LR(x , c) =

∑D
k=1(dk ,1 − Υk ,1

dk
Υk

)√∑D
k=1

Υk ,1
Υk

(1 − Υk ,1
Υk

)(Υk −dk
Υk −1 )dk

, (2.22)

where Υk = Υk ,1 +Υk ,2 and dk = dk ,1 +dk ,2 defines the total number of events and individuals
at risk at time Tk . A large value for LR(x , c), indicates a large difference between the two
groups.

Another useful splitting criterion is the LRS which computes the “ranks“ for each survival
time ti based on the ordered covariate x ∈ X such that x1 ≤ x2 ≤ ... ≤ xN (Hothorn and
Lausen, 2003):

ai = δi −
γi (t)∑
m=1

δm

n − γm(t) + 1
, (2.23)

where

γm(t) =
N∑

i=1

1 {ti ≤ tm}, (2.24)

is the number of observations which died or were censored before or at time ti and 1 {·}
denotes the indicator function. The resulting log-rank score test, is given by

LRS(x , c) =
∑

xi ≤c ai − n1ā√
n1(1 − n1

N )s2
a

, (2.25)

where ā, s2
a and n1 are the sample mean, the sample variance of ai :i = 1, ..., N and the

number of samples in the group formed by the split point c. Maximisation of LRS yields to
the optimal split point. The selection of splitting candidates and computation of split points
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2.3. Radiomics risk modelling

is repeated until either the terminal nodes contain no less than a defined number of subjects
(node-Size) with unique events or the maximal depth of the tree (max-Depth) is reached.
The estimation of the cumulative hazard function for a subject i , which is propagated down
the tree based on predictor xi and stops in terminal node q is calculated by:

Ĥ(t | xi ) =
∑

ti ,q≤t

di ,q

Υi ,q
, (2.26)

where ti ,q defines the distinct failures times, di ,q and Υi ,q are the number of failures and
individuals at risk at time ti ,q in terminal node q. The estimation of the ensemble cumulative
hazard function over all trees (nTree) is given by:

Ĥ∗
e (t | xi ) =

1
nTree

nTree∑
b=1

Ĥb(t | xi ). (2.27)

2.2.2. Full-parametric survival models

Full-parametric survival models allow to completely describe the structure (shape) of the
time-dependent baseline hazard function. A further advantage is that the extrapolations of
the survival function becomes possible. However, full-parametric models require to spec-
ify the shape of the expected baseline hazard function by a, e.g., Weibull, exponential or
Gaussian distribution. For instance, the Weibull probability density function is given by:

f (t) = h(t) · S(t) = αλαtα−1 · e−(λt)α
. (2.28)

The distribution parameters λ and α defines the scale and the shape of the Weibull distribu-
tion are estimated during the training phase. The hazard function of the Weibull distribution
in proportional hazard form is given by, (Therneau and Grambsch, 2000):

h(t , X ,β,λ) = λαtα−1 · eβX . (2.29)

In this thesis, the survival regression model (SRM) is used as a full-parametric model, which
provides different survival functions, e.g., Weibull, Exponential, Gaussian. In contrast to the
Cox model, for which the baseline hazard is unknown, this full-parametric regression allows
for predicting the time-dependent survival probability for each patient.

2.3. Radiomics risk modelling

Radiomics aims to characterise the tumour phenotype using quantitative imaging features
computed and extracted from medical imaging data, e.g., CT imaging data. After feature
computation, the resulting features are used to develop prognostic or predictive radiomics
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risk models, e.g., for predicting OS. Therefore, the radiomics process comprises two main
tasks: (I) the feature computation and extraction from the imaging data and (II) the applica-
tion of machine learning algorithms for risk modelling to predict patient specific outcome. In
the following, both processing steps are described more in detail, defining the basis proce-
dure for the further chapters in this thesis.

2.3.1. Feature computation framework

Feature computation consists of a sequence of different operations that are required to de-
rive the imaging features. Figure 2.4 shows the different processing steps, including image
pre-processing and feature computation. In general, two inputs are necessary to compute
imaging features: the imaging data and the region of interest (ROI), which is delineated
either by an human observer (e.g., physician) or generated by an (semi-)automatic segmen-
tation algorithm. Prior to the feature computation the imaging data have to be pre-processed,
e.g., to enhance the image quality. For instance, the intensity in MRI scans are often non-
uniform, which may affect the expression of the radiomics features and introduce additional
variance. Therefore, a reduction of image artefacts is required. In chapter 3 a novel data
driven algorithm to correct intensity non-uniformity in MRI data is presented. Furthermore,
imaging data are often acquired with different Voxel dimensions across different patients and
institutions. Therefore, image interpolation is performed to down- or up-sample the original
image to a uniform voxel spacing. In this thesis, trilinear interpolation is used to interpolate
the images. Trilinear interpolation uses the intensities of the eight closest neighbouring Voxel
in the original (base) image grid to interpolate the intensity using linear interpolation.

Subsequently, to quantify additional image characteristics such as edges and blobs, image
transformations (e.g., wavelet transformation) are applied to the base image. This procedure
generates additional images for feature computation. Details are described below. In case
of image interpolation, the ROI is likewise interpolated to the uniform voxel spacing. After-
wards, a morphological and an intensity mask is generated, based on the ROI. The ROI
is re-segmented to cover only soft tissue voxels using a specific defined intensity range to
create the intensity mask. For instance, to remove voxels containing air and bone from the
ROI in CT scans, an intensity range between -150 and 180 HU is reasonable. The morpho-
logical mask is identical to the original (interpolated) ROI. Subsequently feature computation
is performed on the processed set of images and by using both generated ROI masks.

Prior to the computation of texture features, intensities are discretised to reduce the cal-
culation time and to suppress image noise. Image intensities are discretised by assigning
each intensity gk of Voxel k to a bin number b in the range [1, Ng ]:

gk ,b =

⎧⎪⎨⎪⎩1 gk = gmin

⌈Ng
gk −gmin

gmax
− gmin⌉ gk ≥ gmin

, (2.30)
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Figure 2.4.: Illustration of the feature computation framework consists of a sequence of different
operations, which are required to derive the imaging features. For the computation of the imaging
features the imaging data and the region of interest (ROI) are required.

where gmin and gmax defines the lowest and the highest grey value in the intensity mask.

Imaging features

The radiomics image features, used in this thesis, can be categorised into four major fami-
lies, namely first-order statistical, morphological, shape and textural-based features. In gen-
eral, features are extracted and computed from a defined ROI, e.g., from the gross tumour
volume (GTV) using the base image or its transformations such as its decimated discrete
wavelet transform (UDWT) or laplacian of Gaussian (LoG) images. In the following sections,
the three feature groups are shortly described. Further details and the full mathematical de-
scription of all used imaging features can be found in Zwanenburg et al. (Zwanenburg et al.,
2016).

Morphological and shape features

Morphological and shape based imaging features describe geometric aspects of the ROI
using the morphological mask of the ROI. For instance, the volume V of the ROI may be
approximated by:

V =
NR∑
j=1

Vj , (2.31)
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where NR equals the number of voxels in the morphological mask and Vj the volume of
Voxel j . Another feature of this family is the surface area of the ROI. Prior to computing the
surface area, the morphological mask is transformed into a triangle mesh, for instance using
a meshing algorithm such as the Marching Cubes algorithm (Cubes, 1987; Lewiner et al.,
2003). The resulting mesh consists of Nfc triangle faces, spanned by Nvx vertex points, and
is used to calculate the surface area A by summing over the areas Ak of the triangle faces:

A =
Nfc∑
k=1

Ak =
Nfc∑
k=1

| abk · ack |
2

, (2.32)

where the edge ab = b − a defines the vector from vertex a to vertex b, and the edge
ac = c − a is the vector from vertex a to vertex c.

First-order statistical features

First-order statistical features provide information related to the distribution of intensities in
the ROI. For instance, the mean value Fmean of a ROI is given by:

Fmean =
1

Nxyz

Nxyz∑
i

I(i), (2.33)

where I denotes the ROI mask with Nxyz voxels. Additional statistical features were com-
puted based on the intensity histogram of the ROI after discretising intensities.

Texture features

The features computed from the first-order statistics provide information related to the in-
tensity distribution of the ROI. However, they do not incorporate any information about the
spatial positions of intensities within the ROI. For example, first-order statistics features are
not able to measure whether low intensities are clustered together or are, rather, mixed
with high intensities. Texture features enable the description of the tissue heterogeneity
observable within the ROI by considering discretised intensities (grey levels) within neigh-
bourhoods. Texture features are based on texture matrices, which can be calculated slice-
by-slice (two-dimensional (2D)) or volumetrically 3D. In this thesis several distinct types of
texture matrices have been considered: grey-level co-occurrence matrix (GLCM), grey-level
run length matrix (GLRLM), neighbourhood grey tone difference matrix (NGTDM), grey-level
size zone matrix (GLSZM), grey-level distance zone matrix (GLDZM) and neighbourhood
grey level dependence matrix (NGLDM).

The GLCM describes how combinations of discretised grey levels of neighbouring pixels,
or voxels in a 3D volume, are distributed along one of the specific image directions (Haralick
et al., 1973). In a 3D image, the direct neighbourhood of a voxel consists of the 26 directly
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Figure 2.5.: Example for the computation of the the grey-level co-occurrence matrix for a two-
dimensional segment (small red square) within a selected part of the tumour (patch) with a neigh-
bourhood distance d = 1 and the resulting four image directions: 0◦, 45◦, 90◦ and 135◦. Based on
the resulting single texture matrices imaging features can be computed.

neighbouring voxels. Thus, there are 13 unique direction vectors within a neighbourhood
distance d , e.g., d = 1. Figure 2.5 illustrates the computation of the GLCM texture matrix
for a 2D segment within a selected part of the tumour (patch) and the resulting four image
directions.

The GLRLM describes the distribution of discretised grey levels by assessing the run
lengths within the ROI (Galloway, 1975; Dasarathy and Holder, 1991). A run length is de-
fined as the length of a consecutive sequence of pixels or voxels with the same grey level
along a given direction. For instance, in a coarse texture, relatively long gray-level runs
would occur more often whereas a fine texture should contain primarily short runs. The
NGTDM contains the sum of grey level differences of pixels or voxels with discretised grey
level and the average discretised grey level of neighbouring pixels or voxels within a neigh-
bourhood distance d (Amadasun and King, 1989). The GLSZM counts the number of groups
(or zones) of linked voxels (Thibault et al., 2014). Voxels are linked when the neighbouring
Voxel has an identical discretised grey level. A voxel classifies as a neighbour depends on
its neighbourhood. In a 2D image slice a voxel has eight neighbourhood, whereas a voxel
within a 3D volume consists of 26 neighbourhood voxels. The GLDZM counts the number
of groups of connected voxels with a specific discretised grey level value and the distance
to the ROI edge. The matrix captures the relation between location and grey level (Thibault
et al., 2009). The NGLDM as an alternative to the GLCM, which quantifies the coarseness
of the overall texture and is rotationally invariant (Sun and Wee, 1983).

The above described Calculation of the texture matrices yields to one or more different sin-
gle matrices, e.g., thirteen matrices for the GLCM, due to specific image directions. There-
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M1, … ,M13 M f M f

(B)(A)

Figure 2.6.: Illustration of the computation of a feature f using different single texture matrices M. In
(A) the different single matrices, e.g., in the case of the grey-level co-occurrence matrix the thirteen
image directions are merged by summing the different matrix elements prior to feature calculation
and (b) a single matrix is constructed, e.g., using all thirteen directions simultaneous. (figure taken
from Zwanenburg et al. (Zwanenburg et al., 2016))

fore, texture-based features can be calculated either by averaging the values of the matrices
computed for thirteen distinct directions (figure 2.6 (A)) or by a single matrix. These accounts
for, e.g., co-occurrence information (GLCM) based on all thirteen directions simultaneous
(figure 2.6 (B)) to improve rotational invariance (Depeursinge and Fageot, 2017).

Image transformations

Image transformations enable to emphasise additional image characteristics such as edges
and blobs.

Discrete wavelet transform

A given signal or function f (x) can be decomposed using a family of wavelet basis functions.
These basis functions are generated from a mother wavelet by dilatation (or scale) and
translation operations (Burrus et al., 1998). The decomposition of a given signal or function
f (x) by a wavelet system can be represented by the series:

f (x) =
∑

k

∑
j

aj
kψ

j
k (x). (2.34)

Here, k and j are integer indices describing the space location (translation) and the scale
(resolution), respectively, aj

k are a set of expansion coefficients called the discrete wavelet
transform (DWT) of f (x) and ψj

k (x) is a set of real-valued functions of x called wavelet ex-
pansion set (Burrus et al., 1998; Usmanij et al., 2013). In contrast to the Fourier transforma-
tion, which decomposes a given signal according to its frequency content only, the wavelet
expansion maps it into a two-dimensional array of coefficients. This two-dimensional repre-
sentation allows for localising the signal in both time and frequency.
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2.3. Radiomics risk modelling

Figure 2.7.: Illustration of the translation (every fourth k ) and scaling of a single Daubechies mother
wavelet. (figure taken from Burrus et al. (Burrus et al., 1998))

The wavelet expansion functions ψ(x) are generated from a single scaling function or
wavelet by simple scaling and translation and is given by :

ψj
k (x) = 2j/2ψ(2jx − k ), (2.35)

where all wavelets ψj
k (x) are scaled and translated versions of the mother wavelet ψ(x)

defined by the integers j and k , respectively. Figure 2.7 illustrates the effect of the translation
and the scaling parameters k and j , respectively, of a single mother wavelet. A change of
index k leads to a change of the location of the wavelet along the horizontal axis. This
allows the expansion to explicitly represent the location of events in time or space. A change
of index j changes, the shape of the wavelet in scale. This allows a representation of detail
or resolution (Burrus et al., 1998).

Besides of the decomposition of a signal f (x) by wavelet expansion functions generated
from a single scaling function f (x) can also be expressed at different scales and spatial
locations. This allows for decomposing a signal into increasingly finer details, i.e., a cascade
filter. The formulation of such multi-resolution analysis is made in terms of two closely related
basis functions: a scaling function φ(x) and a wavelet function ψ(x). The scaling function
φ(x) can be expressed in terms of a weighted sum of translated versions of φ(2x) such as,
(Burrus et al., 1998):

φ(x) =
√

2
∑
nϵZ

l(n)φ(2x − n), (2.36)
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where l(n) defines the scaling (low-pass) coefficients. The wavelet function ψ(x) can be
represented by a weighted sum of shifted scaling functions φ(2x) by:

ψ(x) =
√

2
∑
nϵZ

h(n)φ(2x − n), (2.37)

where h(n) defines the wavelet (high-pass) coefficients. The relation between these coeffi-
cient is given by, (Burrus et al., 1998):

h(n) = (−1)nl(1 − n). (2.38)

Using both basis functions of (2.36) and (2.37), the decomposition of a signal f (x) into a
finite number of scaling levels J becomes:

f (x) =
∑

k

aj0
k 2j0/2φ(2j0x − k ) +

∑
k

J∑
j=j0

d j
k2j/2ψ(2jx − k ), (2.39)

where the coefficients aj0
k represent the approximation of the signal at the lowest level (or

scale) J with the scaling function φ(x). Thereby φ(x) represents the coarse details of the
signal, or its low-frequency components. The decomposition coefficients d j

k are used to
represent the fine details of the signal, or its high-frequency components. The coefficients
aj

k and d j
k at scale j can be expressed in terms of the coefficients of the previous scale using

the following recursive equations:

aj
k =

∑
nϵZ

aj−1
k l(n − 2k ),

d j
k =

∑
nϵZ

aj−1
k h(n − 2k ),

(2.40)

where l(n) and h(n) defines the set of scaling and wavelet coefficients. The wavelet co-
efficients aj

k and d j
k are obtained by the convolution over space of the scaling and wavelet

functions defined at each level j . Figure 2.8(A) shows an example of the coiflet-1 scaling ψ(x)
and wavelet ϕ(x) functions. The discrete wavelet decomposition leads to a down-sampling of
the input signal by a factor of two after each decomposition level J. However, down-sampling
of the input signal is sometimes undesired, e.g., in the case of medical imaging data anal-
yses. UDWT represents an alternative to the DWT. It is based on same wavelet theory as
previously described. However, instead of the incorporation of downsampling operations,
the UDWT inserts zeros after the low- and the high-pass filtering operations (Holschneider
et al., 1990), e.g., to preserve the original image size.

The wavelet theory described above has so far involved the transformation of one-dimensional
(1D) signals. The 1D multiresolution wavelet decomposition can be extended to two or three
dimensions. For instance, the 2D decomposition is performed by introducing 2D scaling and
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Figure 2.8.: (A) Illustration of the coiflet-1 scaling and wavelet functions. (B) Example of the wavelet
transformation using coiflet-1 wavelet applied in x and y direction of the two-dimensional tumour
patch. Coarse image characteristics are described by the low-frequency components, whereas fine
details are represented by the high-frequency components.

wavelet functions as tensor product of their 1D complements (Stollnitz et al., 1995) such
that:

IL,L(x , y ) = ϕ(x)ϕ(y ),

IL,H (x , y ) = ϕ(x)ψ(y ),

IH,L(x , y ) = ψ(x)ϕ(y ),

IH,H (x , y ) = ψ(x)ψ(y ).

(2.41)

Performing one level of a 2D-UDWT consists of filtering an image I(x ,y ) both horizontally
and vertically with the 1D low-pass filter (L) ψ and the 1D high-pass filter (H) ϕ. As a result,
the wavelet coefficients of four different sub-bands are generated: LL, LH, HL and HH
(figure 2.8 (B)). In the case of 3D-UDWT the wavelet coefficients of eight different sub-bands
are generated: LLL, LHL, LHH, HLL,HHL, HLH and HHH.

Laplacian of Gaussian transform

The LoG transformation is an isotropic filter and measures the 2nd spatial derivative of an
image I(x ,y ). The LoG transformation comprise two image filters: a smoothing operation by
a Gaussian filter G to reduce the noise in the image, followed by applying the Laplace filter
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∇2 to calculate the second derivative of the image intensity. Subsequently, the LoG image
ILoG is the result of the convolution of the filter ∇2G with image I, (Marr and Hildreth, 1980):

ILoG = ∇2G ∗ I. (2.42)

The 2D-LoG function is given by:

∇2G(x , y ) = − 1
πσ4

[
1 − x2 + y2

2σ4

]
e

−(x2+y2)
2σ2 , (2.43)

where σ defines the spatial scale of the Gaussian filter. A small value for σ may be used
to emphasize fine image details, whereas larger σ values highlight coarser image details,
respectively.

2.3.2. Risk modelling framework

The development of risk modelling framework (RMF) for decision support is a complex task.
Different challenges arise in typical radiomics studies due to the high number of different
radiomics features (typically ≫ 1000) relative to the limited number of data points (≪ 1000
patients). In machine learning theory, this problem is called the curse of dimensionality
(Bellman, 1961). With an increased dimensionality D the volume of the space increases
exponentially, so that the available data become sparse. Therefore, it is reasonable to limit
the number of radiomics features which are used to develop accurate and generalisable risk
model due to the few number of data points (patients). A further challenge and major pitfall
in radiomics risk modelling is model over-fitting. Model over-fitting occurs when the model is
closely fit to a set of given data points, e.g., the model captures the noise of the data. This
results in a poor generalisation error on new and unseen data. Model over-fitting usually
arises when the model complexity is increased beyond an optimal complexity, e.g., by using
a set of radiomics features (signature) which contains a high number of imaging features
during model development, which is illustrated in figure 2.9.

Therefore, a reduction of the high-dimensional feature vector by feature selection meth-
ods and an optimisation of the hyper-parameters of the learning algorithms are an essential
steps in risk modelling. The RMF was developed to perform such unbiased and automated
radiomics analyses. The RMF can be used to create radiomics signatures, to optimise the
hyper-parameters of machine learning algorithms, to train prognostic/predictive models and
subsequently to assess the model performance by a variety of different metrics. Figure 2.10
shows the RMF and its five major processing steps: (I) feature pre-processing, (II) feature
selection, (III) hyper-parameter optimisation, (IV) model development and (V) model valida-
tion. These steps are described in the following paragraphs.
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Figure 2.9.: Illustration of the behaviour of training and test prediction error as the model complexity
is varied, e.g., by different signature sizes. The light blue curves show the training error, while the
light red curves show the test error of bootstrap samples as the model complexity is increased. The
solid curves show the expected training and test error. (figure taken from Friedman et al. (Friedman
et al., 2001))
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Figure 2.10.: Illustration of the major radiomics processing chain within the risk modelling framework
(RMF): (I) feature pre-processing, (II) feature selection, (III) hyper-parameter optimisation, (IV) model
development and (V) model validation. Steps I-IV are performed only on the exploratory cohort.
Subsequently, the normalisation parameters and the cluster definitions were transferred and applied
to the independent validation cohort unchanged. Finally the trained models are validated.
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Risk modelling framework architecture

(I) Feature pre-processing

Based on the computed imaging features, the first steps comprise the normalisation of the
feature values to a defined range and the clustering of the radiomics features. The range
of imaging features may vary widely and a majority of machine learning algorithms will not
perform properly without normalisation. Therefore, a widely used normalisation strategy is
to standardise the radiomics feature values x ∈ X to have a zero-mean and a unit-variance,
given by:

x
′

=
x − µ(x)
σ(x)

, (2.44)

where µ(x) and σ(x) are the sample mean and the sample standard deviation of feature x ,
respectively (Jain and Dubes, 1988).

Furthermore, several radiomics features may be highly correlated. Highly correlated fea-
tures do not provide additional information to a model and may moreover lead to numerically
unstable risk models as well as an increase in the overall computational time. Therefore,
within feature pre-processing one further objective is to identify an initial non-redundant set
of radiomics features (Parmar et al., 2015c). In the proposed RMF, unsupervised clustering
is performed using hierarchical agglomerative clustering (HAC) (Langfelder and Horvath,
2012). The HAC is an iterative algorithm which defines each data point to be a cluster.
Subsequently, the distance between two clusters is estimated by computing the average
distance (or similarity) between the data points in the first cluster and the data points in the
second cluster. Based on the distance between the clusters, in each iteration those two
clusters will combined which have the smallest average linkage distance. The similarity can
be measured, e.g., either by the Pearson or Spearman correlation coefficient. The defini-
tion of clusters depends on the clustering height h, which is a threshold that describes the
minimum correlation which is required to cluster features into a single cluster. The resulting
clusters may be represented by: (a) a new meta-feature calculated by averaging over all fea-
tures within the cluster, (b) one selected feature which shows the highest correlation with the
outcome measured by mutual information criteria and (c) a central feature represented by
the feature which is the closest to the cluster centre. Figure 2.11 shows the effect of different
clustering heights (h = 0.9, 0.8, 0.5, 0.3) and different cluster representations as a function of
training and validation performance. The cluster height h = 0.8 and the method generating
a new meta-feature as cluster representation yields to a good performance on the training
and validation cohort. In contrast, no clustering leads to a reduced model performance on
the training and validation cohort, indicating that feature clustering is recommended.
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Figure 2.11.: Illustration of the effect of different clustering heights and different cluster representa-
tions as a function of training and validation error.

(II) Feature selection

The objective of feature selection is to identify a subset of biomarkers (signature) which
is strongly related to the endpoint and robust against perturbations in the data. Several
methods may be used to identify features, which are described in chapter 2.5.1.

To identify biomarkers that are stable and robust against data perturbations, feature selec-
tion is performed using a bootstrap sampling strategy. Bootstrap sampling randomly selects
samples from the training data set, with replacement, and results in the creation of a new
data set of the same size as the original data set, but with different contents (Friedman et al.,
2001). Bootstrapping is repeated B times (e.g., B=1000), producing B bootstrap data sets
where feature selection is performed.

Within each bootstrap data set, features are ranked according to their perceived impor-
tance. Subsequently, these results are aggregated to identify a small feature subset. For this
purpose, the top k best ranking imaging features are selected from each bootstrap sample
b = 1, ..., B. Afterwards, the selected top biomarkers f are aggregated over the bootstraps
by calculating an importance score Ff , given by:

Ff =

∑B
b=1

√
Rb,f

occ2
f

. (2.45)

Here, Rb,f defines the rank within the b-th bootstrap sample (low ranks for important features)
and occf is the frequency of occurrence of feature f over all bootstrap samples. The feature
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rank aggregation score above is based on the enhanced Borda score (Wald et al., 2012),
with the difference that feature occurrence receives a greater weight.

(III) Hyper-parameter optimisation

After feature selection and rank aggregation, hyper-parameters of the machine learning al-
gorithms, such as the signature size and other algorithm-specific settings require optimisa-
tion. A major objective of hyper-parameter optimisation is to limit model over-fitting and to
adjust the model parameters to the prediction task. The individual hyper-parameter set Ω
of each learning algorithm A is tuned using an internal cross-validation performed on the
training data. Cross-validation uses a part of the available data to train the model and the
remaining part to test the performance (Friedman et al., 2001). The basic idea is to split
the training data into K equal-sized sub-samples. Subsequently, a single sub-sample is re-
tained as a validation sample for testing the model, and the remaining K − 1 sub-samples
are used to train the model. The cross-validation (CV) procedure is then repeated K times,
with each of the K sub-samples being used exactly once for validation. Furthermore, the
whole cross-validation process is repeated Ncv times using the trainings data. In this thesis,
hyper-parameter optimisation is performed using a grid search through a pre-defined hyper-
parameter space with k = 2 and Ncv =40. The objective of the hyper-parameter optimisation
is to find a hyper-parameter configuration Ω∗ which minimises the performance differences
LH (A(X ),A(Y )) between the internal training and validation folds, X and Y , respectively, by
a trained learning algorithm A, given by:

Ω∗ = arg min
ω∈Ω

LH (Aω(X ), Aω(Y )). (2.46)

The minimisation criterion LH is defined by three penalties P,

LH (µX ,µY ) = P1(µX ,µY ) + P2(µbal) + P3(µX ,µY ). (2.47)

The term P1 defines a penalty for the training and test errors, which is given by:

P1(µX ,µY ) = max

(
1 − α

(µX − α)2 − 1,
1 − α

(µY − α)2 − 1

)
, (2.48)

where µX and µY define the average prediction accuracy of the internal training (X ) and
validation (Y ) folds. α=0.5 is a correction factor, representing the performance of a random
experiment. The term P2 penalises differences between training and test error, given by:

P2(µbal) = 50

(
1

(1 − µbal)2 − 1

)
, (2.49)
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where µbal is the difference in average prediction performance between training (X ) and val-
idation (Y ) folds. This leads to hyper-parameter sets where training and test error are more
similar (balanced), which may increase model generalisability. The penalty term P3 accounts
for the discordance in train µX and test µY errors, to avoid selecting hyper-parameters where
the predictions on the training set are concordant with the outcome, and discordant on the
validation set neither. P3 is given by:

P3 =

⎧⎪⎨⎪⎩1000 (µX > α ∨ µY < α) ∧ (µX < α ∨ µY > α)

0 otherwise
. (2.50)

(IV) Model development

Model development is performed using the imaging features, ordered by aggregated im-
portance, and the optimised hyper-parameter set. Model training is conducted using the
entire training data set once. In addition, it is performed multiple times (e.g., m=1000) us-
ing bootstrap samples (i.e.,.632 bootstrap method with replacement) of the training data to
enhance model robustness. Afterwards, an ensemble prediction is made by averaging the
predicted risk scores for every model using the validation data (Dietterich, 2000) . In this the-
sis different types of machine learning algorithms are used. Therefore, chapter 2.5.2 briefly
describes the basic concepts of the used machine learning algorithms.

2.4. Performance assessments

The RMF offers different performance metrics to assess the quality of the risk models using
internal or external validation data. In the case of continuous time-to-event survival data,
the model performance is usually measured by: I) the concordance index (C-Index) and II)
Kaplan-Meier analyses. Both metrics are described shortly in the following.

Concordance Index

The C-Index is a commonly used to assess the performance of time-to-event survival models
(Harrell et al., 1996b; Pencina and D’Agostino, 2004). For the C-Index calculation, only those
pairs of subjects are included, where at least one had an event, resulting in either event and
event or event and non-event comparisons. The C-Index is measured as the proportion of
all usable pairs in which the risk predictions and outcomes are concordant. It denotes by r
the predicted risk of the model and t the given survival time for a pair of subjects i and j , the
C-Index is given by:

C =
πc + 0.5 · πt

πc + πd + πt
, (2.51)
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where
πc = P(ri > rj ∧ ti < tj ) + P(ri < rj ∧ ti > tj ),

πd = P(ri > rj ∧ ti > tj ) + P(ri < rj ∧ ti < tj ),

πt = P(ti = tj ),

(2.52)

define the probability of concordance and of discordance as well as proportion of pairs that
are undesired, respectively. The value of the C-Index ranges between 0 and 1: a value of 0.5
indicates that the model has no ability to discriminate between low and high risk subjects,
whereas the values 0 and 1 indicate that the model can perfectly discriminate between these
subjects.

In the majority of radiomics studies the C-Index ranges approximately between 0.5 and
0.7 (Aerts et al., 2014; Coroller et al., 2015). Therefore, in this thesis the following rating
scale is defined: a C-Index≤0.55 indicates a close to random, a C-Index between 0.55 and
0.6 a moderate, a value between 0.6 and 0.65 a good and a C-Index>0.65 a high prognostic
performance.

Risk-based patient stratification

Besides assessing model performance using the C-Index, model performance may be as-
sessed by patient stratification into risk groups (e.g., low and high risk). These risk groups
are based on the estimated log hazard ratios or predicted survival times and formed by
setting a cut-off value. This value is usually determined on the training data. One straightfor-
ward method for setting the cut-off is by computing the median risk value. Alternatively, more
complex schemes may be used, for instance by bootstrapping. In the latter case different
bootstrap samples are generated from the training data. Afterwards, each potential cut-off
is applied to the bootstrap samples and the statistical differences between the risk groups
is measured. Subsequently, the fraction of significant stratification results (power) is calcu-
lated for each cut-off, leading to the optimal value which has the largest power (Linge et al.,
2016b). After patient stratification, survival curves are estimated using the Kaplan-Meier
method. The Kaplan-Meier estimator is non-parametric statistic to estimate the survival
function (Kaplan and Meier, 1958). The estimator is the product over the failure times of the
conditional probabilities of surviving to the next failure time and is given by,

Ŝ(t) =
∏
ti ≤t

[
1 − di

ni

]
, (2.53)

where ni and di defines the number of individuals at risk at time ti and the number of indi-
viduals who fail at this time, respectively. Subsequently, to quantify the statistical differences
between the resulting risk groups, the log-rank test is applied (Mantel, 1966; Cox, 1972).
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2.5. Feature selection methods and machine learning
algorithms

This section contains a short description of the different feature selection methods and ma-
chine learning algorithms that were used in this thesis. All described methods and algorithms
are able to process continuous time-to-event survival data.

2.5.1. Feature selection methods

The feature selection methods described in this section comprise simple linear methods as
well as advanced non-linear algorithms. The different hyper-parameters of the individual
methods are listed and defined in the appendix A. However, these parameters were kept
fixed and were not optimised during hyper-parameter optimisation, to reduce the overall
computational time for a Radiomics analysis.

Pearson correlation coefficient

The Pearson correlation coefficient is a measure of linear dependency between two random
variables. The correlation coefficient ρ for a feature x ∈ X and the corresponding outcome
Y is defined as (RJ and Nicewander, 1988),

ρ(x , Y ) =
Cov (x , Y )
σxσY

=
∑N

i=1(xi − x̄)(yi − Ȳ )√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − Ȳ )2

. (2.54)

Here, Cov (x , Y ) defines the covariance matrix and σx and σY the standard deviations of co-
variate x and outcome Y , respectively. In the case of time-to-event survival data, only those
times Y for which an event occurred (δ = 1) are taken into account. The correlation coeffi-
cient ρ ranges from -1 and +1, where 1 signifies perfect linear correlation, 0 no correlation
and -1 perfect anti-correlation.

Spearman correlation coefficient

The Spearman correlation coefficient provides a non-parametric measure of rank correlation
between two variables (Spearman, 1910). Spearman correlation is based on the Pearson
correlation coefficient in (2.54) using ranked variables xϵX and Y which is given by,

ρ(x , Y ) =
Cov (rank (x), rank (Y ))

σrank (x)σrank (Y )
. (2.55)

Like the Pearson correlation, Spearman correlation for time-to-event survival data is calcu-
lated using only those observations where an event occurred.
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Mutual information maximisation

The mutual information maximisation (MIM) method estimates the relevance of feature xϵX
for the corresponding outcome Y using a linear approximation based on the correlation ρ.
The mutual information MI is defined as (Gelfand and Iaglom, 1959),

MI(x , Y ) = −1
2

ln(1 − ρ(x , Y )2). (2.56)

In the case of survival outcome data ρ(x , Y ) = 2(C-Index −0.5) is based on the C-Index, in-
cluding a correction for C-Index<0.5. For mutual information of continuous data, the Spear-
man correlation coefficient is used.

Mutual information feature selection

The mutual information feature selection (MIFS) algorithm (Battiti, 1994) is based on a
greedy search and selects a subset of features SϵX which maximises the objective func-
tion f :

f (X , Y ) = arg max
xϵX

⎛⎜⎝MI(x , Y ) + β
∑
sj ϵS

I(x , sj )

⎞⎟⎠ . (2.57)

Here I(x , sj ) is the mutual correlation between features x and sj , as before. The parameter
β was set to 1 in this thesis (Battiti, 1994).

Minimum redundancy maximum relevance

The minimum redundancy maximum relevance (MRMR) algorithm (Peng et al., 2005) com-
bines two constraints: maximal mutual information between the features in feature subset
SϵX and the outcome Y , combined with minimal redundancy between the features in S.
This is done by selecting the feature that maximises f using an incremental search method
that is based on the mutual information MI,

f (X , Y ) = arg max
xϵX\S

⎛⎜⎝MI(x , Y ) − 1
| S |

∑
sj ϵS

MI(x , sj )

⎞⎟⎠ . (2.58)

Univariate- and multivariate-Cox-regression

The Cox proportional hazard regression model is trained for each feature (univariate) or a
subset of features (multivariate) to predict outcome using a k -fold cross validation scheme
which was repeated n times in the exploratory cohort. The resulting features are ranked
according to the C-Index of the prognostic performance of the univariate or multivariate
model.
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Random forest minimal depth

The random forest minimal depth (RF-MD) is a variable importance algorithm that assesses
feature importance by assessing the distance (depth) of each covariate relative to the root
node over all trees (Ishwaran et al., 2010; Ishwaran et al., 2011). The algorithm assumes
that covariates which occur at low depths, are more important for the model than those in
distant nodes.

Random forest variable hunting

The random forest variable hunting (RF-VH) algorithm uses training data from a stratified k -
fold subsampling to fit a random forest by m randomly selected covariates (Ishwaran et al.,
2008). The m features are ordered by increasing minimal depth and are added sequentially
until the joint variable importance (VIMP) no longer increases. The VIMP is calculated by
permuting a covariate (i.e., noising it up) and then calculating the change in prediction error,
between the original forest and the noised-up forest predictor. The process is repeated n
times and features are ranked by average minimal depth.

Random forest variable importance

The random forest variable importance (RF-VI) algorithm is similar to the RF-VH. However,
features are ranked by the VIMP score, described above (Ishwaran et al., 2008).

Maximally selected rank statistics random forest variable importance

The maximally selected rank statistics random forest variable importance (MSR-RFVI) al-
gorithm computes the maximally selected rank statistics for each candidate covariate as
follows (Wright et al., 2016). A split point is considered optimal if the separation of the sur-
vival curves in two groups is maximised. The linear rank statistic for a split point µ is the sum
of all log-rank scores a1, . . . , an in the group with xi ≤ µ, xϵX ,

Snµ =
n∑

i=1

1xi ≤µai ,

ai = δi −
γi (T )∑
j=1

δj

(n − γj (T ) + 1)
.

(2.59)
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Here T = (t1, . . . , tn) are the survival times, δ is the censoring indicator and γj (T ) =
∑n

i=1 1Ti ≤Tj

is the number of observations with survival time up to Tj . To compare different splits, the
score test statistic is given by,

Tnµ =
Snµ − EH0(Snµ | a, X )√

VarH0(Snµ | a, X )
, (2.60)

where EH0 and VarH0 define the expected value and the variance under the null hypothesis.
The null hypothesis assumes there is no influence of a split by the cut point µ on the distri-
bution of Y is given by: H0 : P(Y ≤ y | X ≤ µ) = P(Y ≤ y | X > µ) for all µ and all y . The
obtained p-value for the maximally selected rank statistic is used to rank each covariate.

Permutation variable importance random forest

The permutation variable importance random forest (PVI-RF) algorithm partitions the data
randomly into two sets of equal size. Each set is used to construct a random forest (Janitza et
al., 2015). The two forests are used to compute the importance of the hold-out observations
for each covariate. The null distribution F̂ is constructed afterwards based on variables that
are likely non-relevant (i.e., with negative or zero importance scores). Based on F̂ , a p-value
for a covariate xϵX is derived as,

px = 1 − F̂ (x). (2.61)

Finally the VIMP are ranked according their corresponding p-value.

2.5.2. Machine learning algorithms

this paragraphs presents further basic concepts of the machine learning algorithms which
were used in this thesis besides of the Cox and RSF algorithms previously described in
section 2.2.1. These algorithms comprise semi- and full-parametric survival algorithms.
Furthermore, the model-specific hyper-parameters of the individual algorithms are listed and
defined in the appendix B. These hyper-parameters are used during the hyper-parameter
optimisation, previously described in section 2.3.2.

Regularised Cox proportional hazard model

The regularised Cox proportional hazard model (NET-Cox) is based on the Cox model and
uses additional penalisation terms (Simon et al., 2011). This penalised constraint Pα(β) is
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2.5. Feature selection methods and machine learning algorithms

a mixture of the L1 (lasso) and L2 (ridge regression) penalty, which is used to maximise the
scaled log partial likelihood

β̂ = arg, max
β

⎡⎢⎢⎢⎢⎣ 2
N

⎛⎜⎜⎜⎝
N∑

i=1

δi

⎛⎜⎜⎝ p∑
j=1

βjXij − log

⎛⎜⎝∑
kϵRi

e
∑p

j=1 Xkj βj

⎞⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎟⎠− λPα(βj )

⎤⎥⎥⎥⎥⎦ , (2.62)

where

λPα(β) = λ

⎛⎜⎝α p∑
j=1

| βj | +
1
2

(1 − α)
p∑

j=1

β2
j

⎞⎟⎠ . (2.63)

Here, βj defines the coefficients of the covariates Xj of subject i . The lasso term penalise
the model optimisation, e.g., when two covariates are very correlated by picking one and
entirely ignore the other. The ridge regression term scales all the coefficients towards zero
but sets none to exactly zero. This helps to regularise the model training when the number
of covariates are larger than the number of samples, but does not give a sparse solution.
Furthermore, in the case that two covariates are correlated predictors than ridge regression
will tend to give them equal weights (Simon et al., 2011).

Boosted gradient linear and boosted tree models

The motivation of boosting is to produce a prediction model G(X ) based on a sequence of
weak prediction models Gm(X ), n = 1, ..., M in an iterative fashion. The final prediction model
G(X ) is given by,

G(X ) = sign(
M∑

m=1

αmGm(X )). (2.64)

Here α1, ...,αM are weights computed by the boosting algorithm which weights the contribu-
tion of each respective Gm(X ) (Friedman et al., 2001). The weights give a higher influence
to the more accurate weak prediction model Gm. The initialisation step trains the model on
the data in the usual manner. In each further iteration m = 2, ..., M the weights are individu-
ally modified. At step m the weights of those observations that were incorrectly predicted by
the model Gm−1(X ) at the previous step are increased, whereas the weights are decreased
for those that were correctly predicted. A more general formulation using basis function
expansions leads to the form,

G(X ) =
M∑

m=1

βmb(X ,Θm), (2.65)

where βm, m = 1, ..., M are the expansion coefficients and b(X ,Θm) are the weak (or base)
learners of the covariates X , characterised by a set of parameters Θ. Typically, the training
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of these models (2.65) are fitted by minimising a loss function L averaged over the training
data,

min
{βm,Θm}M

1

N∑
i=1

L(yi ,
M∑

m=1

βmb(xi ,Θm)). (2.66)

In this thesis, different types of boosted gradient linear model (BGLM) and boosted tree (BT)
models were used: BGLM-Cox, BGLM-CIndex and BT-Cox, BT-CIndex, respectively as well
as the full-parametric models: BGLM-Weibull and BT-Weibull.

Maximally selected rank statistics random forest

The maximally selected rank statistics random forest (MSR-RF) algorithm is based on an
improved split point criterion to reduce split point selection bias (Wright et al., 2016). In MSR-
RF a split point is considered optimal if the separation of survival curves in the two groups
is maximised. The standard split criterion for the RSF is the logrank or the logrankscore
test statistic. In contrast, the MSR-RF uses either the maximally selected rank statistics
(maxstat) or the Harrell’s C statistics (C) for split point selection (Harrell et al., 1996a). As
described above, the covariate with the lowest p-value is selected as splitting candidate. If
the adjusted p-value is not smaller than the threshold α, no splitting is performed.
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3. A physical correction model for automatic
correction of intensity non-uniformity in magnetic
resonance imaging

Medical imaging is one of the major tasks in medical science and treatment. In particular,
MRI is an established non-invasive imaging technique for clinical diagnostics and in radiation
oncology. However, MR images may be influenced by artefacts caused by different sources.
One of the most frequent artefact is intensity non-uniformity (Bias) induced by a number of
factors, such as magnetic field inhomogeneity caused by the choice of the RF coil or patient
anatomy (Bellon et al., 1986; Condon et al., 1987; Simmons et al., 1994; Herrick et al., 1997;
Krupa and Bekiesińska-Figatowska, 2015).

Intensity non-uniformity occurs as a smooth intensity variation across the image, such that
the intensity of the same tissue changes within the image region. This degrades the quality
of acquired data. For a human observer it is usually difficult to perceive, whereas automatic
image segmentation or registration algorithms are very sensitive to such variations of image
intensities, as shown in figure 3.1. Likewise, the prediction results of radiomics risk models
may be negatively influenced. In particular, the disturbed tissue intensities may lead to large
variations in the expression of radiomics features. Consequently, the risk models may not
predict the patient outcome correctly. Therefore, a reduction of intensity non-uniformity prior
to performing automated and quantitative image analyses is required (Kickingereder et al.,
2016; Milletari et al., 2016; Lao et al., 2017; Li et al., 2017). Hence, a new data-driven
approach motivated by the physical properties of a typical MRI coil system (e.g., head coil)
was developed to correct intensity non-uniformity. One advantage of the proposed approach
is the application of only smooth and gradual intensity corrections due to the derived correc-
tion model and the introduced penalty concept. This helps to enhance the image quality and
preserves a too strong intensity correction compared to other methods. The work presented
within this chapter has been published in an international journal (Leger et al., 2017a) and
was presented at several international conferences (Leger et al., 2014; Leger et al., 2015).

3.1. Intensity non-uniformity correction methods

Several methods have been developed to correct Bias in MRI during the last years. These
methods can be classified into two major groups: prospective and retrospective methods
(Vovk et al., 2007). Prospective methods assume that intensity non-uniformity is caused
by a systematic error of the MRI acquisition process. Thus, additional information about the
non-uniformity is acquired by either measuring homogeneous objects or additional images of
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3. A physical correction model for automatic correction of intensity non-uniformity

the same object using different coils (Liney et al., 1998; Collewet et al., 2002). Nevertheless,
a disadvantage of the prospective methods is that they do not consider patient dependent
inhomogeneities.

Retrospective correction methods are applied after the image acquisition and can be cate-
gorised as: (I) filtering methods, (II) surface fitting methods, (III) segmentation methods and
(IV) histogram based methods. (I) Filtering methods are based on the assumption that the
intensity non-uniformity is a low-frequency artefact, which can be extracted by a low-pass
filter from the high-frequency content (Cohen et al., 2000; Zhou et al., 2001; Chang et al.,
2017). For instance, George et al. proposed a 2D non-iterative multi-scale approach using
Log-Gabor filter bank (George et al., 2017). (II) Surface fitting methods fit a parametric sur-
face, typically modelled by a polynomial or spline function to different image features which
contain information about intensity non-uniformity (Dawant et al., 1993; Zhuge et al., 2002;
Milles et al., 2007). (III) Segmentation based intensity non-uniformity correction methods
perform the segmentation and the correction task simultaneously, which benefit from each
other to yield a better segmentation and a corrected image (Wells et al., 1996; Van Leemput
et al., 1999). For instance, Ivanovska et al. presented a level-set based approach for simul-
taneous intensity non-uniformity correction and segmentation of MR images (Ivanovska et
al., 2016). Segmentation-based Bias correction methods usually depend on the segmenta-
tion accuracy which may lead to good correction results in the case of homogeneous tissue
structures. For instance, MR scans of the human brain consist mainly of grey-matter (GM),
white-matter (WM) and cerebro-spinal fluid (CSF). However, for the correction of more het-
erogeneous tissue regions, e.g., in human abdominal scans, the correction may lead to poor
results due to an imprecise segmentation. (IV) Histogram-based methods estimate the cor-
rection function directly from the image intensity histograms. A typical strategy is based on
an iterative deconvolution approach which attempts to maximise the high frequency content
of the tissue intensity distribution (Sled et al., 1998; Vovk et al., 2006; Dzyubachyk et al.,

T1w Segmentation T1w Segmentation

Figure 3.1.: Examples of two uncorrected T1-weighted (T1w) image slices and the corresponding
segmentation results using the fuzzy c-means segmentation algorithm (Bezdek et al., 1984). The
influence of intensity non-uniformity is apparent in the direction from anterior to posterior (red circle),
which degrades the quality of acquired data and the segmentation results.
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2013). For instance, a well-known and widely established correction approach is the N4
algorithm (Tustison et al., 2011).

3.2. Physical correction model

The proposed physical correction model (PCM) is based on the assumption that the effect of
intensity non-uniformity in MRI occurs due to the image signal emitted by the tissue which is
slowly decreasing towards the center of the coil array. Furthermore, we hypothesise that this
decrease is basically caused by damping of the RF intensity emitted by the coil and the tissue
response. To support this hypothesis we performed an MRI experiment using a cylindrical
water phantom, which is supposed to have uniform intensity in the image region. The image
volume was acquired with a 1.5 Tesla MRI scanner (Siemens Avanto) using a typical MRI
receiver head coil array with eight single coil segments. Figure 3.2(A) illustrates the 3D-
view of the used water phantom. Due to the fixed geometry of the head coil the phantom
lies close to the lower coil segments, while there exists an intermediate space between the
upper segments and the phantom. This leads to a higher image signal around the lower coil
segments (figure 3.2(A), orange arrows) and a lower image signal close to the upper coil
segments (figure 3.2(A), blue arrow). Furthermore, it is observable that the image signal
is slowly exponentially decreasing in the direction towards the centre of the coil array. We
quantified this assumption by plotting the intensity values along the y - and in longitudinal
z- direction, which are shown in figure 3.2(B-C). The signal decrease from the lower coil
segments to the image centre can be described by an exponential function (figure 3.2(B))
with sufficient accuracy, which is motivated by the damping effects of body tissue, whereas
in longitudinal z-direction we assume a Gaussian like intensity profile ( figure 3.2(C)).

3.2.1. Correction strategy and model definition

To correct intensity non-uniformity in MRI scans, an established formation model is a sim-
plified multiplicative approach (Axel et al., 1987; Dawant et al., 1993). According to this
approach, the acquired image I(x , y , z) is obtained by:

I(x , y , z) = I
′
(x , y , z) · f (x , y , z) + ξ(x , y , z), (3.1)

where (x , y , z) is the spatial position, I
′

is the desired uniform image emitted by the tissue,
f is an unknown non-uniformity function and ξ describes independent additive noise. The
noise will be neglected in the following considerations. The multiplicative model (3.1) can be
used to obtain the uniform image I

′
which is emitted by the tissue,

I
′
(x , y , z) =

I(x , y , z)
f (x , y , z)

. (3.2)
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Figure 3.2.: (A) Three-dimensional view of the used water phantom. The phantom lies close to the
lower coil segments of the head coil leading to a higher image signal around the lower coil segments
(orange arrows) and a lower image signal close to the other coil segments (blue arrow). Intensity
profiles are shown for T1- (T1w), T2- (T2w) and PD-weighted scans of the water phantom plotted in
y - (B) and longitudinal z-direction (C). The measured data (triangles) are fitted by an exponential (B)
and a Gaussian function (C).

The derivated physical correction model f is based on the experimental results as previ-
ously described. The gradually decreasing image signal to the coil centre (x0, y0) is modelled
by an exponential base function for each coil segment i = 1...n,

f (x , y , z) = fz(z) ·
n∑

i=1

e−ai
√

(fix (z)+x)2+(fiy (z)+y )2
. (3.3)

The exponential decay rate of coil segment i is described by ai . The functions fix and fiy
describe the geometric location of coil segment i and are given by

fix = cos(iα + ω) · di − x0 − Sx (z),

fiy = sin(iα + ω) · di − y0 − Sy (z),

where di is the distance from image centre to coil i , α is a constant angle between the
coil segments i and ω is the angular shift, describing a global rotation angle of the entire
coil array. Furthermore, linear shifts Sx and Sy in z-direction have been included in the
correction function (3.3) to compensate horizontal and vertical shifts of the patient due to
the positioning on the scanner table,

Sx (z) = sx · z + vx ,

Sy (z) = sy · z + vy ,
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Figure 3.3.: Illustration of the geometric parameters of the physical correction model (PCM) for a
typical magnetic resonance imaging head coil consisting of eight single coil segments.

where sx and sy define the slope and vx and vy the intercept in x- and y -direction, respec-
tively. The intensity non-uniformity in longitudinal z-direction is described by a Gaussian
base function fz ,

fz(z) =
q1√
2πσ2

1

e
− (z−vz )2

2σ2
1 , (3.4)

in which vz describes the shift in z-direction and σ1 the standard deviation of the Gaussian
function. The parameter q1 is a global pre-factor to scale the whole correction function.
Figure 3.3 shows a schematic 2D-view of a typical MRI head coil as well as the geometric
parameters of the introduced model. For this head coil array consisting of eight single coil
segments (n = 8), the proposed correction model has 27 degrees of freedom in total. Three
of these parameters, x0, y0 and α = 360 · n−1 are given by the geometry of the coils which
can be extracted, e.g., from the meta information of the image file.

For the compensation of intensity non-uniformity im MR images using (3.2), parameters
of the correction function f (3.3) are determined by maximisation of the image information.
This is expressed by the fitness function F ,

F (I) = E(I
′
) + ϵ, (3.5)

where E(I
′
) is the Shannon entropy and ϵ is an additional penalty term. The Shannon entropy

E(I
′
) is given by (Shannon, 1948):

E(I
′
) = − 1

X
·

B∑
b=1

pb · log2(pb). (3.6)

It is based on the intensity distribution of the MRI scan I
′

computed by a grey value his-
togram. Furthermore, it contains the volume X of the spatial domain as normalisation factor,
the number of bins B of the histogram and pb · log2(pb) represents the joint probability of bin
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value b. The Shannon entropy is a non-negative value and reaches its maximum if all grey
levels are equally distributed. The penalty term ϵ prevents an excessive image correction
and consists of two different penalty functions,

ϵ = P1 + P2, (3.7)

which will be explained in the next section.
The entire workflow of the correction process is depicted in figure 3.4. First, the fore- and

background regions of the uncorrected image I, are identified using the Otsu threshold algo-
rithm, which sets a threshold based on the image histogram (Otsu, 1975). Since the back-
ground regions do not provide additional information concerning intensity non-uniformity,
they are subsequently removed to reduce computation time. For further reduction of the
computation time, the uncorrected image is down-sampled (e.g., by factor 4) prior to the
image correction. Subsequently, the image is corrected through an iterative process that op-
timises and fits the model parameters according to the optimisation criteria in (3.5). Due to
the high dimensionality of the proposed physical correction model (PCM) in (3.3), a swarm
intelligence optimisation algorithm is used, called artificial bee colony (ABC) (Karaboga,
2005). The ABC algorithm is inspired by the collective behaviour of a honey bee swarm
and is suitable for the numerical optimisation of high dimensional functions(Karaboga and
Basturk, 2007; Karaboga and Basturk, 2008). The whole optimisation process is executed
multiple times, e.g., pN=10, to reduce the negative influence of non-optimal random initial-
isations of the model parameters. The optimisation process stops if one of the following
stopping criteria are reached: (I) the ratio of the estimated optimum values between subse-
quent optimisation iterations is smaller than a defined convergence threshold (e.g., 0.0001)
or (II) the maximal number of iterations is reached. Subsequently, the final model parameters
are selected according to the best global optimum determined by the optimisation process.
In order to further improve the image quality, the entire correction process starts again using
the corrected image I

′
until the maximal number of correction iterations K are reached.

3.2.2. Model parameter constraints

In order to reduce the high dimensional parameter space of the correction function (3.3),
valid ranges for each model parameter were defined. These ranges were derived from the
coil geometry and from results of the initial water phantom experiments. The geometric
parameters of the model (3.3) are depend on the size of the voxel grid of the MRI scan. The
limits for a 1 × 1 × 1 mm3 voxel grid size are defined as follows: vx = vy = [-75.0, 75.0]
mm, di = [100.0, 300.0] mm, ω = [-360.0n−1, 360.0n−1], sx = sy = [-0.5, 0.5] mm, q1 = [6.0,
3000.0] mm, ai = [0.0, 0.05] mm−1, σ1 = [50.0, 900.0] mm and vz = [0.0, 140.0] mm, where n
describes the number of coil segments. During the iterative correction process an excessive
increase or reduction of the image signal intensity has to be avoided. Therefore, additional

42



3.2. Physical correction model

Uncorrected image I

Corrected image

C
or
re
ct
io
n
ite
ra
tio
n
k=
1,
...
,K

Identify foreground

Down-sampling

Optimal model parameters

Process p1

P
ar
am

et
er
op
tim

is
at
io
n

by
A
B
C
al
go
rit
hm

Estimation f

Correction image I'

Estimation
image entropy E(I')

Stopping criteria
reached

Penalty P2Penalty P1

Initial parameters

P
ar
am

et
er
op
tim

is
at
io
n

by
A
B
C
al
go
rit
hm

Estimation f

Correction image I'

Estimation
image entropy E(I')

Stopping criteria
reached

Penalty P2Penalty P1

Initial parameters Process pN

...

Figure 3.4.: Illustration of the correction process for the proposed physical correction model (PCM).
The correction process consists of two major steps: image pre-processing (i.e., identify background)
and the estimation of the correction function f through an iterative optimisation performed by the
artificial bee colony (ABC) algorithm. The result of the entire correction process is the corrected
image I

′
.

model constraints were defined, which penalise such undesirable effects. The optimisation
process is penalised when the image signal increases over a defined threshold, expressed
by the penalty function P1,

P1 = 1 + erf

(
r

σ2 ·
√

2

)
· 1 + r̄ . (3.8)

Here r = max(I
′(k ))

max(I(0)) − 1 is the ratio between the maximum grey value of the corrected image
I

′(k ) within the k -th correction step and the maximum grey value of the original image I(0),
σ2 is a constant parameter and erf(x) = 2√

π

´ x
0 e

−x2
dx is the error function, which allows

for a continuous penalisation of the optimisation criteria. The second penalty function P2

penalises the geometric misbehaviour of (3.3) to prevent an excessive intensity correction
by single coils, which is illustrated in figure 3.5. Therefore, it prevents single coils from
moving within a defined margin window (figure 3.5, red lines) around the scan object such
as patient body. The size and location of the margin window is derived from the resulting
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Figure 3.5.: Illustration of the second penalty term P2 for a head coil array, which penalises the
geometric misbehaviour of the correction function (3.3). The left and the right border of the margin
window (bx ,r , by ,r , bx ,l and by ,l , respectively) prevents that single coil segments move into the window
to avoid an excessive intensity correction by single coils.

foreground image, which is determined during the correction process. The second penalty
term is defined as

P2 =

⎧⎪⎨⎪⎩C = 1000, if min(vx ) ≥ bx ,l ∨ min(vy ) ≥ by ,l ∨ min(vx ) ≤ bx ,r ∨ min(vy ) ≤ by ,r

0, otherwise.
(3.9)

Here, bx ,l , by ,l , bx ,r and by ,r define the left (l) and the right (r) border of the margin window,
respectively, and vx and vy the geometric shift of the coils in x , y -direction of the correction
function (3.3).

3.3. Experiments

The performance and applicability of the PCM algorithm were demonstrated on three differ-
ent MRI data sets. The first experiment uses the water phantom and a simulated MRI data
set based on the Brain-Web-Simulator to test and to optimise the PCM algorithm (data set I)
(Cocosco et al., 1997). In a second experiment, the PCM was evaluated on two real human
brain MRI data sets acquired on a 1.5 Tesla and a 3.0 Tesla MRI scanner, respectively (data
set II). In the third experiment an abdominal MRI data set was used, which was acquired
on a 1.5 Tesla MRI instrument (data set III).The assessment of the correction quality was
performed using the sum of the coefficient of variation (COV) over different tissue classes T
(Wicks et al., 1993), which is defined by,

COV =
∑
t∈T

σt

µt
. (3.10)
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Here σt and µt are the standard deviation and the mean of the intensities of the generated
tissue classes. Different tissue classes were generated for the specific performed exper-
iments. In theory, a small COV value indicates a more uniform intensity distribution and
indicates a better image quality.

Furthermore, the achieved COV of the PCM algorithm was compared with the COV of
the original data and the established bias correction algorithm N4 for data sets II and III
(Tustison et al., 2011). The N4 algorithm based on the assumption that the corruption of
the low frequency bias field can be modelled by a convolution of the intensity histogram
with a Gaussian function. The correction is performed during an iterative deconvolution of
the intensity histogram with the Gaussian function followed by a spatially smoothing of the
resulting correction function using a B-spline function (Tustison et al., 2011). For the N4 cor-
rection algorithm two different parameter configurations were used. The first configuration
(N4100) is the default configuration suggested in Tustison et al. (Tustison et al., 2011). The
second configuration (N450) is based on the custom configuration with the following settings:
full width at half maximum = 0.15, convergence threshold = 0.0001, maximum number of it-
erations = 500, 400, 300, bins = 250 and spline distances 50 mm. Finally, differences in the
achieved COV were statistically evaluated using a two-sided Wilcoxon signed-rank test with
a significance level of α = 0.05.

3.3.1. Phantom and simulated brain data set

Experimental design

Data set I consists of three scans of a water phantom acquired on a 1.5 Tesla MRI scan-
ner and of nine different simulated MRI brain scans created by the BrainWeb-MRI simulator
(Cocosco et al., 1997) with different intensity non-uniformity levels: 0%, 20% and 40%,
respectively. The used MR sequences were T1w, T2w and PDw. The considered MR se-
quence parameters are summarised in table 3.1. For quantitative evaluation of the correction
performance, the phantom scans were automatically segmented using the Otsu threshold
method to identify the foreground of the images (Otsu, 1975). For the simulated data set,
the segmented tissue classes: GM, WM and CSF were available for all MR scans.

Characterisation of hyper-parameters for the PCM algorithm

Aside from the model parameters of the proposed correction function (3.3), other algorithm-
specific hyper-parameters of the PCM need to be selected, e.g., the bee swarm colony
size for the ABC optimisation algorithm and the maximal number of correction iterations
k . Therefore, the phantom data set was used to evaluate the effect of the colony size and
number of correction iterations k on the correction performance. Figure 3.6 shows the results
of the experiment for different colony sizes (20, 50, 100, 200) and different numbers of
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3. A physical correction model for automatic correction of intensity non-uniformity

Table 3.1.: Magnetic resonance sequence parameters of the water phantom and the simulated brain
data sets.

Sequence parameter Water phantom scans Simulated brain scans
T1w T2w PDw T1w T2w PDw

Sequence type
spin echo turbo spin echo spin echo turbo spin echo

Magnetic field strength
in Telsa 1.5

Echo time
in ms 7.7 81 13 10 35

Repetition time
in ms 500 3330 18 3300

Flip angle
in degrees 90 150 30 90.0

Acquisition matrix size
for x , y , z 384 × 512 × 23 288 × 384 × 23 181 × 217 × 181

Voxel size (x , y , z)
in mm 0.6 × 0.6 × 6.0 1.0 × 1.0 × 1.0

Abbreviations: T1w, T1-weighted; T2w, T2-weighted;
PDw, PD-weighted MRI scans

correction iterations (k = 1 − 50) for all MR sequences. The results showed that the COV
converged to a steady solution after about k=15 iterations for the T1w, T2w and PDw scans.
Furthermore, a colony size of 200 leads to the lowest COV for the T2w and PDw scans
and a comparable performance in the case of the T1w scan. Therefore, the following hyper-
parameters of the PCM were used for all experiments: colony size = 200, maximum number
of iterations k = 15, convergence threshold = 0.001, down-sampling factor = 10 and the
penalty parameter σ2 = 0.1.

Intensity non-uniformity correction performance

After the characterisation of the algorithm specific hyper-parameters, the phantom and sim-
ulated brain data set were used to demonstrate the applicability of the developed PCM al-
gorithm. An example of the correction using the PCM algorithm for the initial phantom data
set is shown in figure 3.7. The PCM improved image quality and created a more uniform
intensity distribution of the water compared to the original data (figure 3.7, red circle). Fur-
thermore, the applied correction function is very smooth and gradually which is one property
of the PCM algorithm (figure 3.7, right). Steep correction gradients are not possible, leading
to the fact that intensity correction of high intensity changes within small image regions can-
not be performed (figure 3.7, orange arrows). The improved image quality of the phantom
data is demonstrated by the COV analysis, leading to a reduced COV in comparison to the
original data, which is summarised in table 3.2. Also, the results of the COV analysis for
the simulated brain data set are shown in table 3.2. The simulated data could be success-
fully corrected by the PCM, leading to a similar COV value as the non-Bias (0%) images.
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Figure 3.6.: Correction performance as a function of the number of correction iterations k for different
colony sizes on T1-weighted (T1w), T2-weighted (T2w) and PD-weighted (PDw) scans of the water
phantom. The correction performance reached an optimum after about 15 correction iterations in
combination with a colony size of 200.

Furthermore, the correction performance by the N4 algorithm led to results comparable with
the PCM. However, in some cases (e.g., T1w scan) the N4 led to a too strong correction of
intensity non-uniformity.

2.2

1.0

0.8

T1w-original T1w-PCM Correction function

Figure 3.7.: Example of an uncorrected (left) and corrected (middle) T1-weighted (T1w) scan of
the water phantom data set as well as the estimated correction function (right) by the physical cor-
rection model (PCM). The image quality could be improved through the reduction of the intensity
non-uniformity regions (high signal: orange arrows, low signal: red circle).
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Table 3.2.: Coefficient of variation (COV) for the phantom and the simulated magnetic resonance
brain scans (data set I) for different bias levels.

MRI sequence Water phantom scans Simulated brain scans
Original PCM Bias (%) Original PCM N450 N4100

T1w 0.22 0.07
0 0.39 0.39 0.40 0.38
20 0.42 0.39 0.39 0.38
40 0.49 0.39 0.40 0.38

T2w 0.23 0.06
0 0.43 0.43 0.43 0.42
20 0.45 0.43 0.43 0.42
40 0.51 0.43 0.45 0.44

PDw 0.22 0.06
0 0.17 0.17 0.20 0.19
20 0.21 0.17 0.20 0.19
40 0.30 0.17 0.20 0.19

Abbreviations: T1w, T1-weighted; T2w, T2-weighted;
PDw, PD-weighted MRI scans

3.3.2. Clinical brain data set

Experimental design

Data set II consists of 93 multi-channel images from the human brain of 27 patients which
were consecutively acquired in the third quarter of 2013 on a 1.5 Tesla MR Siemens Avanto
system during clinical routine. The data set comprises 24 T1w, 16 T2w and 14 PDw MR
images without contrast agent as well as 21 T1w, 9 T2w and 9 PDw MR images with contrast
agent (gadolinium). In addition, 54 MR scans (27 T1w and 27 T2w), from a publicly available
database of the Human Connectome Project consortium were investigated (Van Essen et
al., 2013). The MR scan were acquired using a 3.0 Tesla scanner. The used MR sequence
parameters are shown in table 3.3. The required tissue classes (i.e., GM, WM and CSF) for
the quantitative analysis were automatically segmented using the Expectation-Maximisation
algorithm of the Slicer 3D Software for all modalities (Fedorov et al., 2012).

Intensity non-uniformity correction performance

Figure 3.8 shows examples of corrected T1w and T2w 1.5 Tesla MR brain scans. The
PCM image correction led to an improved image quality through reduction of intensity non-
uniformity regions (figure 3.8, red circles) compared to the original images. This is also
demonstrated by an improved segmentation result using fuzzy c-means segmentation algo-
rithm (Bezdek et al., 1984). Furthermore, the correction result of the N4100 method shows
in some cases (e.g., figure 3.8, orange arrows) a too strong intensity correction for the T1w
image through steep correction gradient which influences the image quality and the seg-
mentation result.

The result of the quantitative evaluation are summerised in table 3.4 for the 1.5 and 3.0
Tesla MR images. For all 1.5 Tesla MR scans the proposed PCM could significantly enhance
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Table 3.3.: Magnetic resonance sequence parameters for the 1.5 Tesla and 3.0 Tesla brain data sets.

Sequence parameter 1.5 Tesla brain scans 3.0 Tesla brain scans
T1w T2w PDw T1w T2w PDw

Sequence type spin echo turbo spin echo spin echo turbo spin echo
Magnetic field strength

in Tesla 1.5 3.0
Echo time

in ms 7.7 81 13 10 35
Repetition time

in ms 450 3330 18 3300
Flip angle

in degrees 90 150 30 90
Acquisition matrix size

for x , y , z 384 × 512 × 27 181 × 217 × 181
Voxel size (x , y , z)

in mm 0.5 × 0.5 × 6.0 1.0 × 1.0 × 1.0
Abbreviations: T1w, T1-weighted; T2w, T2-weighted;
PDw, PD-weighted MRI scans

the image quality compared to the original data (p ≤ 0.001). Furthermore, the PCM algo-
rithm outperformed the N450 approach for the T1w and PDw scans (T1w: p<0.001, PDw:
p=0.038, respectively). For the 1.5 Tesla T2w the PCM algorithm achieved no better image
correction performance than the N450 approach (T2w: p=0.047). Also the N4100 algorithm
showed a similar or slightly better correction performance for 1.5 Tesla MR images compared
to the PCM algorithm (T1w: p>0.05, T2w: p<0.001 and PDw: p=0.019, respectively).

For the 3.0 Tesla MR scans the PCM approach could significantly enhance the image
quality for all MRI sequences compared to the original data (p<0.001). In addition, the
PCM outperformed the N4100 algorithm (p=0.002) for T2w images. For the T2w images
the PCM was not able to achieved a better correction performance compared to the N4100

algorithm. In comparison to the N450 the PCM showed a slightly better or a similar correction
performance (T1w: p<0.001 and T2w: p>0.05, respectively)

Table 3.4.: Results of the coefficient of variation (COV) analysis as well as the statistical results for
data set II consisting of 1.5 and 3.0 Tesla MRI brain scans. The mean and standard deviation (SD)
of the differences in COV between the physical correction model (PCM) and the original images as
well as two configurations of the N4 algorithm are shown.

MRI-Sequence PCM-Original PCM-N450 PCM-N4100

Mean/SD p-value Mean/SD p-value Mean/SD p-value

1.5 T
T1w -0.09/0.06 <0.001 -0.14/0.34 <0.001 -0.02/0.14 >0.05
T2w -0.07/0.04 <0.001 0.01/0.02 0.047 0.02/0.02 <0.001
PDw -0.13/0.07 <0.001 -0.01/0.03 0.038 0.01/0.02 0.019

3.0 T T1w -0.33/0.08 <0.001 -0.04/0.02 <0.001 0.03/0.02 <0.001
T2w -0.20/0.08 <0.001 -0.02/0.07 >0.05 -0.04/0.06 0.002

Abbreviations: T1w, T1-weighted; T2w, T2-weighted;
PDw, PD-weighted MRI scans

49



3. A physical correction model for automatic correction of intensity non-uniformity
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Figure 3.8.: Examples of uncorrected and corrected (A) T1-weighted (T1w) and (B) T2-weighted
(T2w) images of the human brain as well as the estimated correction functions (right column) by the
physical correction model (PCM) and N4100 algorithm. Furthermore, the segmentation results by the
fuzzy c-means algorithm are depicted (Bezdek et al., 1984). The red circles indicate the regions of
intensity non-uniformity. The orange arrows in (A) show an example of the N4100 in which a excessive
intensity correction was applied.
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3.3.3. Abdominal data set

Experimental design

Data set III comprises 14 T1w and 14 T2w MRI abdominal scans with and without con-
trast agent (gadolinium), which were acquired between 2011 and 2014. All data sets were
acquired on a 1.5 Tesla MR Siemens Avanto system. The imaging parameters of the MR
sequences are shown in table 3.5. The tissue classes for the quantitative evaluations consist
of: kidney, liver and spleen. Those three tissue classes were generated semi-automatically
with the Slicer 3D software for all MR scans (Fedorov et al., 2012).

Table 3.5.: Magnetic resonance sequence parameters for the 1.5 Tesla abdominal data set.

Sequence parameter Abdominal scans
T1w T2w

Sequence type gradient echo turbo spin echo
Magnetic field strength

in Tesla 1.5
Echo time

in ms 2.2 86.0
Repetition time

in ms 4.9 4101
Flip angle

in degrees 10 140
Acquisition matrix size

for x , y , z 512 × 416 × 80
Voxel size (x , y , z)

in mm 0.8 × 0.8 × 3.0
Abbreviations: T1w, T1-weighted; T2w, T2-weighted MRI scans

Intensity non-uniformity correction performance

Figure 3.9 show examples of a corrected T1w and T2w MR abdominal scan. PCM im-
proved the image quality compared to the original data, which could also be demonstrated
by the improved segmentation result. In both examples, the N4100 method corrected the
intensity non-uniformity for the T1w image too strongly through steep correction gradients
(figure 3.9(A), orange arrows). This led to the fact that the whole surrounding tissue had
nearly the same signal intensity after the correction and that the contrast enhanced region
was almost not visible anymore (e.g., kidney).

The results of the COV analysis as well as the statistical results are shown in table 3.6.
For all considered 1.5 Tesla MR scans, the PCM algorithm could significantly enhance the
image quality compared to the original data (T1w: p=0.001 and T2w: p=0.002, respectively).

Furthermore, the PCM algorithm showed reduced or similar correction performance for
the T1w and T2w images, respectively, compared to the results of the N450 (T1w: p=0.001
and T2w: p=0.054, respectively). For the 1.5 Tesla T1w and T2w scans, the N4100 algorithm
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3. A physical correction model for automatic correction of intensity non-uniformity

achieved better correction results and showed similar correction performance compared to
the PCM method (T1w: p=0.001 and T2w: p>0.05, respectively).

However, the N4 correction usually led to a too strong intensity correction which cannot
be necessarily expressed by the COV. Figure 3.9 shows such an example. The calculated
COV value is lower for the N4100 than for the PCM algorithm, 0.49 and 0.51, respectively, al-
though the obtained result of the PCM is preferable. Therefore, an additional tissue contrast
analysis was performed by evaluating the ratio of the mean intensity values for the different

Original MR image Corrected MR images

Original MR image Corrected MR images

T1w-PCMT1w

T1w-N4100
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Figure 3.9.: Examples of uncorrected and corrected (A) T1-weighted (T1w) and (B) T2-weighted
(T2w) images of the abdominal data set as well as the estimated correction functions (right column)
by the physical correction model (PCM) and N4100 algorithm. Furthermore, the segmentation results
by the fuzzy c-means method are depicted (Bezdek et al., 1984). The orange arrows in (A) show
an example of the N4100 in which a excessive intensity correction was applied. The different tissue
classes (liver or kidney) as well as the surrounding tissue had almost the same tissue signal after
correction and the contrast agent (e.g., kidney) was almost not visible anymore.
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tissue types liver, spleen and kidney in the abdominal MR data set. Only T1w images were
considered due to the higher signal to noise ratio between the different tissue classes. The
results are depicted in figure 3.10. While a correction using the PCM method preserves the
tissue intensity differences between the tissue types, the correction using the N4 algorithm
leads to similar signal intensities for all three tissue types. This is not preferable especially
in the case of contrast-enhanced images.

Table 3.6.: Results of the coefficient of variation (COV) analysis as well as the statistical results
for data set III consisting of 1.5 Tesla MRI abdominal scans. Shown are the mean and standard
deviation (SD) of the differences in (COV) between the physical correction model (PCM) and the
original images as well as two configurations of the N4 algorithm.

MRI-Sequence PCM-Original PCM-N450 PCM-N4100

Mean/SD p-value Mean/SD p-value Mean/SD p-value

1.5 T T1w -0.06/0.03 0.001 0.07/0.02 0.001 0.02/0.02 0.004
T2w -0.08/0.03 0.002 -0.05/0.08 0.054 -0.01/0.05 >0.05

Abbreviations: T1w, T1-weighted; T2w, T2-weighted MRI scans
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Figure 3.10.: Tissue intensity analysis for the three tissue types of the T1-weighted MR abdominal
images. Shown are the ratio of the mean intensity values between the different tissue classes in the
original and the corrected images by the physical correction model (PCM) and N4. A ratio of one
means almost no difference between the two tissue types.
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3.4. Summary and discussion

A typical phenomenon in MRI is intensity non-uniformity, which influences the image quality
and interferes with automated and quantitative image analysis. Therefore, we present a
novel fully automatic intensity non-uniformity correction approach for MR images.

The main characteristic of our algorithm is the physically motivated correction approach
based on the geometry and physical properties of the MRI coil array. In general, the pro-
posed PCM algorithm significantly improved the image quality for all considered data sets in
comparison to the original MRI scans. Furthermore, the PCM algorithm often outperformed
or achieved similar results compared to the N4 algorithm. While the N4 generally performs
well in the case of simple tissue structures, e.g., in brain images, a strong intensity correc-
tion can occur when the tissue structures are more complex, like in MR abdominal scans.
Because abdominal images, usually contain heterogeneous tissues, in terms of the tissue
intensity, e.g., due to blood arteries in the liver or in the case of contrast agents, the N4
algorithm could reduce the COV significantly more than the PCM approach. However, the
N4 algorithm often changed the soft tissue signal intensities in an undesired way, such that
the intensity between different tissue types appeared similar, leading to lower COV values.
Our tissue intensity analysis confirmed this observation and figure 3.9(A) shows an example
of such a correction result by the N4 approach. The strong intensity correction of the liver
and spleen affects the relative tissue intensity. Especially the strong intensity signal of the
tissue surface caused by the contrast agent is almost completely removed. In contrast, an
advantage of the PCM is the application of only smooth and gradual intensity corrections
due to the exponential base functions and the introduced penalty concept. This prevents a
spot-like correction, which is possible for the N4. Especially a non-optimal algorithm confi-
guration, e.g., a low spline (knots) distance in combination with a high number of iterations,
high intensity changes caused by steep gradients within small image regions cannot occur.

The derivation of the proposed model (3.3) was based on the water phantom experiment
using a 1.5 Tesla MR scanner. However, for MR scans acquired with other magnetic field
strengths our assumption, that the intensity is exponential decreasing to the centre of the
coil array, may not be valid. Intensity non-uniformity in 3.0 Tesla or 7.0 Tesla MR images
may occur due to inhomogeneous excitations caused by interactions between RF waves
and electromagnetic properties of the tissues (Van de Moortele et al., 2009). Therefore, the
cause of intensity non-uniformity is not only dependent on the coil array, which may influ-
ence the correction performance of the PCM. Furthermore, with modern MRI scanners an
automatic Bias correction during the image acquisition is in principle possible. For instance,
in the case of the 3.0 Tesla Philips Ingenuity TF scanner (Eindhoven, The Netherlands) a
constant level appearance (CLEAR) correction can be performed which may significantly af-
fect the performance of the PCM (figure 3.11). Further investigations to correct MR images
with higher magnetic field strength are required to improve the performance of the PCM.
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Still, the PCM was able to significantly reduce the intensity non-uniformity in 1.5 Tesla, but
also in 3.0 Tesla MR images, which is essential for retrospective image evaluation such as
for radiomics studies.

The PCM is based on a high-dimensional correction function which is iteratively optimised
during the optimisation process. The iterative update of the large number of model param-
eters leads to a high computation time of the correction process, especially if the physical
MRI coil array consists of a large number of coil segments (e.g., up to 2 minutes). The
computation time also depends on the voxel grid size, which will further decrease in future.
Therefore, a reduction of computation time might be required by further parallelisation of the
PCM, e.g., by transferring the algorithm to graphics processing units. Furthermore, the high
number of model parameters, especially by a large number of coil segments, is challenging
for the optimisation algorithm to find a globally optimal solution. This requires an optimi-
sation algorithm which is able to handle high-dimensional functions, such as the employed
ABC optimisation algorithm. To further improve the optimisation of the model parameters,
other optimisation algorithms may be investigated. Furthermore, the lower and upper limits
of the model parameters were derived from the coil geometry and from the phantom exper-
iment. However, for scans from other vendors the parameter limits of the PCM might differ,
e.g., the decay parameters ai or the global pre-factor q1.

The quantitative evaluation was performed by measuring the COV of different tissue classes,
which requires a segmentation of each class. For brain data sets, the segmentations were
automatically created. However, e.g., in case of tumour structures, the resulting automatic
segmentations may not be necessarily correct, which may affect the COV value. Further-
more, the COV value is based on the assumption that the spatial intensity distribution of a
tissue of interest is piecewise constant. That assumption is not optimal, especially in the
case of tumour regions which are usually more heterogeneous. Therefore, it is recommend

T1w-original
with CLEAR

T1w-Original
without CLEAR

T1w-PCM
without CLEAR

2.0

1.0

0.5

Figure 3.11.: Example of 3.0 Tesla T1-weighted (T1w) image, acquired with and without automatic
constant level appearance correction (CLEAR) as well as the corrected image using physical cor-
rection model (PCM) and the correction function. The red and orange arrows show the region of
intensity non-uniformity. In the case of the automatic CLEAR correction the physically motivated
correction assumption becomes invalid.
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to perform a smooth Bias correction, as done by the PCM, which is important, e.g., for
advanced image analyses such as radiomics studies.
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4. Comparison of feature selection methods and
machine learning algorithms for radiomics
time-to-event survival models

4.1. Motivation

The development of radiomics risk models employs various machine learning algorithms to
characterise and quantify the tumour phenotype using advanced imaging features (Lambin
et al., 2012). Different studies have investigated various radiomics features in terms of their
prognostic or predictive abilities and their reliability across several tumour entities such as
lung, head and neck as well as brain tumours (Aerts et al., 2014; Vallières et al., 2015; Hatt
et al., 2016; Kickingereder et al., 2016; Song et al., 2016).

In such radiomics studies, feature selection is used to identify prognostic radiomics fea-
tures and to reduce the dimensionality of the feature space (Guyon and Elisseeff, 2003).
Machine learning algorithms subsequently use a subset of selected radiomics features (sig-
nature) to construct prognostic models by learning the decision boundaries of the underlying
data distribution.

A variety of different feature selection methods and machine learning approaches have
been developed as described previously in section 2.5. Most radiomics studies consider a
combination of only one feature selection method and one learning algorithm. For instance,
a univariate feature selection using the Cox followed by a multivariable Cox model to predict
clinical endpoints such as OS (Aerts et al., 2014; Fave et al., 2017). Kickingereder et al.
(Kickingereder et al., 2016) used a Cox regression model combined with a supervised prin-
ciple component analysis based on the model coefficients as feature selection method to
develop the radiomics signature and a Cox model for the prediction of OS. L. van Dijk et al.
(van Dijk et al., 2017a) used Pearson correlation coefficients to identify relevant image fea-
tures in combination with Lasso regularisation to develop a multivariable logistic regression
model. It is uncertain whether these methodological choices led to the most accurate and
reliable radiomics risk models. The usage of only one combination may also increase the
risk of incidental findings and requires prior knowledge of the underlying data structure. For
example, in the case of the Cox model the selected features have to show a linear corre-
lation with the considered outcome, otherwise this may lead to wrong model predictions.
Therefore, the identification of suitable feature selection methods and learning algorithms is
a important integral step to develop highly accurate and reliable radiomics risk models.

In the field of radiomics only few studies have performed such an extensive analysis.
Recently, Parmar et al. (Parmar et al., 2015a; Parmar et al., 2015b) investigated different
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algorithms in two different studies on patients with non-small cell lung cancer (NSCLC) as
well as HNSCC. However, in these studies the outcome of interest, OS, was transformed to
a binary endpoint. While dichotomisation of the endpoint is a common method for stratifying
patient groups, it incurs the risk of biasing prognostic accuracy (Dupuy and Simon, 2007).
Therefore, this study compared the prognostic ability of twelve feature selection methods
and eleven learning algorithms, which are able to deal with continuous time-to-event survival
data. The work in this chapter has been published in a peer-reviewed journal (Leger et
al., 2017b) and was presented at the international conference of the European Society for
Radiotherapy and Oncology (Leger et al., 2016).

4.2. Patient cohort and experimental design

4.2.1. Characteristics of patient cohort

The systematic evaluation is based on data from a multi-centre cohort consisting of 293 HN-
SCC patients. All patients suffered from histologically confirmed loco-regionally advanced
HNSCC and received primary radio-chemotherapy. The cohort was divided into an ex-
ploratory and a validation cohort by an ratio of a approximately 2:1 based on the different
included studies rather than on the treatment places. The exploratory cohort included 213
patients from which 152 patients were treated at one of the seven partner sites of the Ger-
man Cancer Consortium Radiation Oncology Group (DKTK-ROG) between 2005 and 2011
(Linge et al., 2016b). The remaining 61 patients of the exploratory cohort were treated at the
University Hospital Dresden (UKD) between 1999 and 2006. The validation cohort consisted
of 80 patients. 50 of these patients received their treatment between 2006 and 2012 within
a prospective clinical trial (NCT00180180) at the UKD (Zips et al., 2012; Löck et al., 2017).
The remaining 30 patients were treated at the UKD or at the Radiotherapy Center Dresden-
Friedrichstadt (RCDF) between 2005 and 2009. The details of the patient characteristics for
both cohorts are summarised in table 4.1.

Radiomics risk models for the prediction of the primary endpoint LRC and secondary end-
point OS were developed using non-contrast enhanced CT scans. Both clinical endpoints
LRC and OS were calculated from the first day of radio-chemotherapy to the date of the
event or censoring. The number of events for LRC and OS were 86 and 120 for the ex-
ploratory cohort, and 26 and 51 for the validation cohort, respectively. The median follow-up
time was 28.8 months (range 1.3-70.3 months) for the exploratory cohort and 21.5 months
(1.4-107.2 months) for the validation cohort. The two year LRC rate was 63.0% for the ex-
ploratory and 56.0% for the validation cohort (log-rank: p=0.61). Overall survival after two
years was 50.0% for the exploratory and 53.0% for the validation cohort (log-rank: p=0.56).
The Kaplan-Meier curves are are shown for both endpoints in figure 4.1.
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Table 4.1.: Patient characteristics of the exploratory cohort and the validation cohort.

Clinical variable Exploratory cohort Validation cohort p-value

Number of patients 213 80 -
Gender

male 181 70 0.581

female 32 10
Age in years

median 59 54 0.0053

range 39.0 - 81.9 37 - 74
TN staging

T stage 1 / 2 / 3 / 4 / missing 3 / 24 / 53 / 133 / 0 3 / 9 / 27 / 40 / 1 0.192

N stage 0 / 1 / 2 / 3 / missing 25 / 8 / 166 / 14 / 0 10 / 8 / 57 / 4 / 1 0.192

UICC stage 2010
I / II / III / IV / missing 0 / 0 / 13 / 139 / 61 1 / 2 / 9 / 68 / 0 0.0961

Tumour volume in cm3

median 27.6 34.8 0.193

range 0.3 - 276.3 2.7 - 244.8
Dose in Gy

median 72 72 <0.0013

range 68 - 77 69 - 77
HPV–16 DNA

negative / positive / missing 164 / 27 / 22 39 / 5 / 36 0.632

Number of events
LRC 86 26 -
OS 120 51

Follow up time of patients alive in months
median 52.6 52.7 -
range 4.2 - 131.9 7.8 - 107.2
Abbreviations: T, clinical tumour stage; N, clinical nodal stage; UICC, Union internationale contre le cancer
Gy, Gray; HPV, human papillomavirus; DNA, deoxyribonucleic acid
LRC, loco-regional tumour control; OS, overall survival

1 exact Fisher test; textsuperscript2 χ2 test; 3 Wilcoxon-Mann-Whitney test

4.2.2. Experimental design

The experimental design is depicted in figure 4.2. The feature computation and the risk mod-
elling were performed within the two developed software frameworks previously described
in chapter 2.3. Radiomics risk models were developed using the exploratory cohort for LRC
and OS. Prognostic model performance and patient risk group stratification were evaluated
on the validation cohort. Furthermore, the feature stability of the radiomics signatures were
assessed by applying image perturbations such as image rotations and translations in x-y -
directions.

Feature computation and risk modelling

The GTV of the primary tumour was manually delineated by a radiation oncologist on each
CT scan separately. The voxel spacing was resampled using trilinear image interpolation to
an isotropic voxel size of 1.0×1.0×1.0 mm3 to correct for differences in voxel spacing and
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Figure 4.1.: Kaplan-Meier curves of the exploratory and validation cohort for (left) the primary end-
point loco-regional tumour control and (right) the secondary endpoint overall survival.

slice thicknesses between cohorts. Additional images were created by applying spatial filter-
ing on the base image to emphasise image characteristics such as edges and blobs. Eight
additional images were created by applying a stationary coiflet-1 wavelet high-/low-pass fil-

Feature computation
(~1500)

Exploration (n=213) Validation (n=80)

(I) Prognostic performance (II) Risk-based stratification

(III) Aerts' signature (IV) Feature stability
analysis

Risk modelling: (a) Loco-regional tumour control
(b) Overall survival

HNSCC patients (n=293)
Non-contrast enhanced CT scans

Entire tumour

Figure 4.2.: Experimental design of the systematic evaluation. Radiomics risk models were devel-
oped from the exploratory cohort to predict loco-regional tumour control (LRC) and overall survival
(OS). Prognostic models were also trained using the radiomics signature obtained by Aerts et al.
(Aerts et al., 2014). The performance of the prognostic models and patient risk group stratification
were assessed on the validation cohort. Furthermore, the feature stability of the radiomics signa-
tures were assessed by applying image perturbations such as image rotations and translations in
x-y -directions.
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ter along each of the three spatial dimensions. One further image was created by applying
a LoG filter consisting of five different filter kernel widths (0.5, 1.0, 2.0, 3.0, 5.0 mm). Subse-
quently, the GTV mask was re-segmented to cover only soft tissue voxels between -150 and
180 HU, thereby removing voxels containing air and bone, which may affect feature expres-
sion. Finally, 18 statistical, 38 histogram-based and 95 texture features were extracted from
the GTV within each image set (base and transformed images). 28 morphological features
were computed within the base image only, leading to 1538 computed features in total.

Prior to the risk model development, the computed image features were normalised on the
exploratory cohort using z-score normalisation in (2.44). The resulting scale and shift con-
stants were applied to the independent validation cohort. Subsequently, feature clustering
was performed on the exploratory cohort to obtain an initial non-redundant set of features,
as described in section 2.3.2. A total of 229 non-singular clusters were created. The same
clusters and meta-features were generated for the validation cohort. After clustering, the
resulting feature set of the exploratory cohort was used to identify the most relevant fea-
tures using twelve different feature selection algorithms. Feature selection was repeated
100 times using bootstrap samples (i.e.,.632 bootstrap method with replacement) of the
exploratory cohort to ensure the selection of stable features and to increase the model gen-
eralisability. During feature selection each feature is ranked according to the weighted im-
portance score introduced in section 2.3.2. Also, the training of the eleven risk models was
performed 100 times using bootstrap samples (i.e.,.632 bootstrap method with replacement)
of the exploratory cohort. Prior to model training, hyper-parameters of the machine learning
algorithms, such as signature size or algorithm-specific settings were optimised using the
balanced selection strategy (section 2.3.2) for each combination of feature selection and
machine learning algorithm. The learning algorithms were trained on the generated boot-
strap samples based on the best ranked features as well as the optimised hyper-parameter
set. Finally, an ensemble prediction was made by averaging the predicted risk scores of
each model for both the exploratory and the independent validation cohort.

Feature selection methods and machine learning algorithms

The comprehensive analyses comprised, twelve feature selection methods and eleven ma-
chine learning algorithms for the prediction of continuous time-to-event survival data to cover
a wide range of different algorithm concepts.

The feature selection methods can be divided into three groups based on (a) statistical
correlations, (b) mutual information optimisations and (c) model-based approaches. The
group (a) comprised the Pearson and the Spearman correlation coefficient methods. The
feature selection methods in group (b) are the MIM, the MIFS and the MRMR. The model
based approaches in group (c) consisted of: a univariable (uni)- and a multivariable (multi)-
Cox-regression model, a RF-MD, a random forest variable importance (RF-VI), a random
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forest based on variable hunting (RF-VH), a random forest based on maximally selected
rank statistics (MSR-RFVI) and a random forest based on permutation variable importance
(PVI-RF). Additionally, imaging features were selected at random (RAND) and no feature
selection (None) was performed.

The investigated machine learning algorithms can be divided in mainly two groups: (i)
non-/semi-parametric and (ii) full-parametric models. The non-/semi-parametric models (i)
comprise the Cox model and the NET-Cox with lasso and elastic-net regularisation. Fur-
thermore, group (i) contains of the BT-Cox and the BT-CIndex models as well as of the
BGLM-Cox and the BGLM-CIndex models. In addition, this group comprised random forest
based methods: RSF and MSR-RF. The second group (ii) consists of the full-parametric
SRM, BT and BGLM models based on the Weibull distribution (Weibull).

Performance assessments

The systematic evaluation consists of four analyses (figure 4.2), which are described in more
detail in the following paragraph.

(I) Prognostic performance of all combinations of feature selection methods and ma-
chine learning algorithms was evaluated based on the validation C-Index. Furthermore the
median and standard deviation (SD) of the validation C-Index of a feature selection method
over all machine learning algorithms and vice versa was assessed to measure the variance
induced by the respective algorithms.

(II) Risk-based patient stratification is an important application of radiomics models for
treatment individualisation. Patients were stratified based on the median risk (medianrisk)
cut-off value and the cut-off value using the bootstrapped method (bootrisk; section 2.4)
determined on the exploratory cohort. Cut-off values were applied unchanged to the vali-
dation cohort. Survival curves were estimated by the Kaplan-Meier method and differences
between the two risk groups were compared by log-rank tests and p-values≤0.05 were con-
sidered as statistically significant.

(III) Feature stability analysis is an important aspect to build accurate and generalisable
radiomics risk models. For instance, due to motion of the patient during the image acqui-
sition radiomics imaging features may change their expression values leading to incorrect
predictions. Therefore, to assess the stability of the selected features within the developed
signatures six image rotations (±2◦, ±6◦, ±10◦) and two image translations in x-y-direction
(0.25 mm, 0.75 mm) were applied on the original images of the exploratory cohort as well as
all combinations thereof. Subsequently, the feature stability was measured by calculating the
intra-class correlation coefficient (ICC) for the various feature selection methods using the
different image rotations and translations. The ICC is given by, (Shrout and Fleiss, 1979):

ICC =
BMS − WMS
BMS + WMS

, (4.1)
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where BMS and WMS are the between-subjects and within-subjects mean squares, respec-
tively. The ICC ranges from -1 (perfect anti-agreement) to +1 (perfect agreement), where
+1 meaning that the feature values are identical and therefore robust against those image
manipulations. An ICC≥0.9 indicates a high feature stability, a ICC value between 0.9 and
0.8 a good and a value between 0.8 and 0.6 a moderate stability.

(IV) Assessment of the prognostic performance using the Aerts’ signature may help
to confirm the presented results to reduce the risk of incidental findings. For this purpose,
the machine learning algorithms were built using the previously developed radiomics signa-
ture by Aerts et al. (Aerts et al., 2014) for both endpoints. The Aerts’ signature consists of
four imaging features derived from CT scans: a first order statistic feature (energy) describ-
ing the overall density of the GTV, a shape based feature (compactness) quantifying the
compactness of the GTV volume relative to a sphere, a texture feature and a wavelet based
feature (gray level non-uniformity) measuring the intra-tumour heterogeneity. These features
were selected based on their stability across test-retest image scans and multiple tumour de-
lineations by different observers as well as over 100 bootstrap samples on the exploratory
cohort of 422 lung cancer patients. Subsequently, the signature was independently validated
on 225 lung cancer and 231 HNSCC patients (Aerts et al., 2014). The differences between
the signatures were quantified by a non-parametric analytical (NPA) approach (Kang et al.,
2015) and p-values<0.05 were considered as statistically significant.

4.3. Results of feature selection methods and machine learning
algorithms evaluation

(I) Prognostic performance

The prognostic performance of twelve feature selection methods combined with eleven ma-
chine learning algorithms was evaluated for the primary clinical endpoint LRC and the sec-
ondary endpoint OS.

For LRC, the considered learning algorithms achieved in general a good prognostic per-
formance on the validation cohort (figure 4.3 (A)). The best performances were obtained by
the semi-parametric models: MSR-RF (C-Index: 0.71, 95% confidence interval [0.62–0.83]),
the BT-CIndex (C-Index: 0.71, [0.62–0.82]) and the BT-Cox (C-Index: 0.70, [0.59–0.81]) al-
gorithms as well as by the full-parametric BT-Weibull model (C-Index: 0.70, [0.60–0.82]) , all
in combination with the Spearman feature selection method.

For OS, the performance was in general lower in comparison to LRC and similar between
the different learning algorithms (figure 4.3 (B)). The best prognostic performances were
obtained by the semi-parametric BGLM-CIndex and BGLM-Cox models as well as the full-
parametric BGLM-Weibull algorithm (C-Index: 0.64, [0.53–0.71], 0.64, [0.52–0.70] and 0.64,
[0.51–0.68], respectively), all in combination with the random feature selection. The result-
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ing concordance indices for the exploratory cohort for both clinical endpoints are shown in
appendix C.1.

For LRC, the median performance of the learning algorithms over all feature selection
methods was generally similar (figure 4.4 (A)). The highest median performances were ob-
tained by the RSF (C-Index: median±SD, 0.64±0.03), the MSR-RF (C-Index: 0.64±0.04)
followed by the NET-Cox (C-Index: 0.63±0.04) and the BGLM-CIndex (C-Index: 0.63±0.03).
For the feature selection methods the differences of the concordance indices (C-Index) were
in general larger between over the machine learning algorithms (figure 4.4 (A)). The high-
est median performance of the feature selection methods was achieved by the Spearman
correlation coefficient (C-Index: 0.68±0.01). Furthermore, the mutual information optimisa-
tion based MRMR and MIFS methods showed a good performance on the validation cohort
(C-Index: 0.65±0.01 and 0.64±0.01, respectively). Also the model-based approaches multi-
Cox, PVI-RF and RF-VI displayed a good performance (C-Index: 0.64±0.01, 0.63±0.01 and
0.63±0.01, respectively).

For OS, the highest median performances were revealed by BGLM-Cox (C-Index:
0.61±0.02) and SRM algorithm (C-Index: 0.61±0.03, figure 4.4 (B)). The performance of the
feature selection methods was in general similar among the methods and lower compared
to the LRC (figure 4.4 (B)). The highest median performances were achieved by the feature
selection methods based on mutual information optimisation: MIM and MRMR (both C-
Index: 0.61±0.01) and the model-based approach: uni-Cox (C-Index: 0.61±0.01) as well as
by None feature selection (C-Index: 0.61±0.04).

(II) Risk-based patient stratification

For each combination of a feature selection method and a learning algorithm, patients were
stratified into low and high risk groups using cut-off value based on the predicted risk de-
termined on the exploratory cohort. The stratification results are shown in table 4.2 for the
highest performing models on the validation cohort for LRC. These particular models were
able to stratify the patients into low and high risk groups with a statistically significant differ-
ence in LRC using both cut-off selection methods, confirming the applicability of each model.
The Kaplan-Meier curves for the BT-Weibull model on the exploratory and validation cohort
are shown as an example in figure 4.5(A). However, several models with a high C-Index in
the validation cohort were not able to separate the patients into two groups with significantly
different in LRC on the validation cohort. For instance, the Cox model in combination with
Spearman feature selection method achieved a high C-Index of 0.68, however, it was not
able to stratify patients with a significant differences in LRC patients into two risk groups us-
ing both cut-off values (medianrisk: p=0.058 and bootrisk: p=0.27, respectively). Figure 4.5(B)
shows the Kaplan-Meier curves as an example. On the contrary, some models with a moder-
ate prognostic performance could stratify patient into two significantly different groups, e.g.,
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Figure 4.3.: Concordance indices for the prediction of loco-regional tumour control (top) and overall
survival (bottom) depending on the feature selection method (columns) and learning algorithm (rows)
for the validation cohort are depicted. Furthermore the performance using the Aerts et al. (Aerts et
al., 2014) signature is shown.
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Figure 4.4.: Boxplots of the concordance indices (C-Index) on the validation for the different machine
learning algorithms over all feature selection methods (top) and vice-versa (bottom) for the prediction
of loco-regional tumour control (green) and overall survival (blue). Furthermore, the median values
(orange line and numbers) and the average prognostic performances (asterisk) are shown.
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the RSF model trained with the feature determined by the RF-MD feature selection method
(C-Index: 0.61, both medianrisk and bootrisk: p=0.011, respectively).

For OS, the stratification results for the highest performing models are summarised in
table 4.2. Stratification using the medianrisk method was not able to stratify the patients
into low and high risk groups with a statistically significant difference in OS. However, the
separation using the bootrisk method led to significantly different OS between the patients
in the low and high risk groups on the validation cohort. Kaplan-Meier curves of the BT-
Weibull model in combinaiton with the random feature selection methods are shown as an
example in figure 4.5(A). Furthermore, several models with a low C-Index in the validation
cohort were able to separate the patients into two groups with significantly different in OS on
the validation cohort. For instance, the RSF algorithm trained with the features obtained by
the RF-VI feature selection method achieved only a moderate prognostic performance but a
good stratification result using the bootstrapped cut-off method (C-Index: 0.60, medianrisk:
p=0.13, bootrisk: p=0.008), which is depicted as an example in figure 4.6(B). The p-values
of the log-rank tests for all model combinations and both clinical endpoints on the validation
cohort using the medianrisk and the bootrisk cut-off calculations methods are depicted in
appendix C.2 and appendix C.3, respectively.

(III) Radiomics feature stability

The stability analysis showed generally a high feature stability against the different image
rotations and translations for the signatures selected for the endpoints LRC and OS. Fig-
ure 4.7 shows the boxplots of the obtained ICC values including the average ICC value over
the feature selection methods in combination with all machine learning algorithms.

For LRC, radiomics features selected by the feature selection methods with the highest
median performances showed high ICC values on average (MIM: 0.95, MRMR: 0.82, multi-

Table 4.2.: For the best performing model combinations, consisting of one feature selection method
and one machine learning algorithm, the concordance index (C-Index) on the exploratory and vali-
dation cohort for loco-regional tumour control (LRC) and overall survival (OS) are summarised. Fur-
thermore the p-values of the log-rank tests on the validation cohort are shown.

Endpoint Model combination C-Index p-value
Exploratory Validation medianrisk bootrisk

LRC

Spearman
MSR-RF 0.84 0.71 0.008 0.008
BT-Weibull 0.80 0.70 0.036 0.004
BT-Cox 0.80 0.70 0.016 0.023
BT-CIndex 0.80 0.71 0.022 0.032

OS

Random
BGLM-CIndex 0.59 0.64 0.052 0.009
BGLM-Cox 0.59 0.64 0.052 0.015
BGLM-Weibull 0.61 0.64 0.083 0.008
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Figure 4.5.: Examples of Kaplan-Meier curves for the prediction of loco-regional tumour control
(LRC) for patients of the validation cohort stratified into a low (LR) and a high (HR) risk groups using
the bootrisk cut-off value method determined on the exploratory cohort. (A) The BT-Weibull model in
combination with Spearman feature selection showed a patient stratification with significantly differ-
ences as well as a high predictive performance (C-Index: 0.71). (B) The Cox model in combination
with Spearman feature selection achieved a high prognostic performance (C-Index: 0.68) but the
difference in LRC between low and high risk groups was not significant.

Cox: 0.97, PVI-RF: 0.92 and RF-VI: 0.92, respectively). The features selected by Spearman
feature selection method achieved a moderate feature stability (ICC: 0.65). For OS, the
signatures of the feature selection methods with the highest median performances achieved
a high feature stability for the different image rotations and translations operations (MIM:
0.96, MRMR: 0.96 and uni-Cox: 0.96, respectively). The variability of the ICC for both
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endpoints are low within a feature selection method and the different learning algorithms,
since the learning algorithms were developed with different signature sizes determined by
the hyper-parameter optimisation.
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Figure 4.6.: Examples of Kaplan-Meier curves for overall survival for patients of the validation cohort
stratified into a low (LR) and a high (HR) risk groups based on the bootrisk cut-off method determined
on the exploratory cohort. (A) The boosted gradient linear-based Weibull model (BGLM-Weibull) in
combination with random feature selection achieved a high prognostic performance (C-Index: 0.64)
as well as a significant patient stratification.(B) The random survival forest model (RSF) in combina-
tion with random forest variable importance feature (RF-VI) selection method achieved also a patient
separation result with significantly differences between both groups although the prognostic perfor-
mance was only moderate (C-Index: 0.60).
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Figure 4.7.: Boxplots of the resulting intra-class correlation coefficient (ICC) of the radiomics feature
stability analysis against different image rotations and translations for the developed signatures based
on the features determined by the feature selection methods. The feature stability was measured of
the signatures developed for the prediction of loco-regional tumour control (blue) and overall survival
(green). Furthermore, the median ICC (orange line and numbers) and the average values (asterisk)
are shown.

(IV) Assessment of the prognostic performance using the Aerts’ signature

The previously developed radiomic signature by Aerts et al. (Aerts et al., 2014) showed a
good performance on the validation cohort for LRC in combination with different learning
algorithms (figure 4.3 (A)). The highest prognostic performance could be achieved by the
BT-COX (C-Index: 0.65, [0.56–0.76]) and by the BT-Weibull algorithm (C-Index: 0.64, [0.55–
0.75]). From the best performing models described above only the BT-CIndex model (C-
Index: 0.71) achieved a significantly improved performance compared to the BT-Cox model
(C-Index: 0.65) trained with the Aerts’ signature (NPA test: p<0.001).

For OS, the highest prognostic performance was achieved by the RSF (C-Index: 0.63,
[0.54–0.70]), the BGLM-Weibull (C-Index: 0.63, [0.55–0.72]), and the NET-Cox algorithm
(C-Index: 0.63, [0.54–0.71]) (figure 4.3 (B)). Using the best performing models developed
in this thesis no model achieved a significantly improved performance compared to the best
performing models trained with the Aerts’ signature (NPA-test: p>0.05).

The patient stratification into low and high risk groups based on the predicted risk of the
BT-Cox model for LRC and the BGLM-Weibull model for OS showed significant differences

70



4.3. Results of feature selection methods and machine learning algorithms evaluation

BT-Cox - Aerts et al.
Exploration Validation(A)

BGLM-Weibull - Aerts et al.

Time after treatment in months

O
ve
ra
ll
su
rv
iv
al

Lo
co
-r
eg
io
na
lt
um

ou
rc
on
tro
l

Time after treatment in months

(B)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 12 24 36 48 60 0 12 24 36 48 60

0

LR
HR

12 24 36 48 60

128 102 72 59 50 25
85 54 26 22 15 3

41 37 22 15 11 11
39 27 15 10 9 6

0 12 24 36 48 60Patients
at risk

LR
HR

141 99 79 64 55 23
72 20 10 8 5 3

46 34 20 18 13 13
34 17 11 7 6 3

Patients
at risk

LR

HR

p<0.001

LR

HRp=0.03

LR

HRp<0.001

LR

HR

p=0.02

Figure 4.8.: Examples of Kaplan-Meier curves for (A) loco-regional tumour control and (B) overall
survival for patients of the validation cohort stratified into low and high risk groups by the cut-off
determined on the exploratory cohort. The Aerts et al. (Aerts et al., 2014) signature in combination
with the boosted tree-based Cox model and the boosted gradient linear-based Weibull model showed
a significant patient stratification as well as a high prognostic performance (concordance index: 0.65
and 0.63, respectively)

between the risk groups in the validation cohort (LRC: p=0.019 and OS: p=0.026, respec-
tively). The Kaplan-Meier curves of the BT-Cox model for LRC and the BGLM-Weibull model
for OS are shown as an example in figure 4.8.
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4.4. Summary and discussion

In general, the systematic evaluation of comparing twelve feature selection methods and
eleven learnings algorithms are showed a good prognostic performance with a C-Index up
to 0.7 for LRC. However, there was no method which noticeably outperformed all others. In-
stead, a subset of different feature selection methods and learning algorithms led to similar
results. This indicates that a wide range of different methods are useful and should be con-
sidered for further radiomics analyses. Moreover, applying multiple methods may decrease
the influence of incidental findings which may occur in selecting one single approach. For in-
stance, a typical choice in radiomics studies could be the Cox model combined with the Pear-
son feature selection method, which showed a low prognostic performance (C-Index<0.6) for
the primary endpoint LRC (figure 4.3 (A)).

Furthermore, the evaluation showed that the performance differences between the learn-
ing algorithms were smaller than between the feature selection methods. This result is in
line with the findings of published data. For instance, Parmar et al. (Parmar et al., 2015a;
Parmar et al., 2015b) showed that the feature selection is an important aspect in the process
of developing accurate radiomics model.

In contrast to LRC, the prognostic performance for OS was generally lower. This may
occur since the cause of death does not necessarily have to be related to cancer, which led
to additional bias and increases the noise on the outcome data. The best performances for
OS were achieved by the BGLM-CIndex, BGLM-Weibull and BGLM-Cox models in combi-
nation by the Random feature selection method. One explanation for the good performance
of Random feature selection may be that the hyper-parameter optimisation selected larger
signature sizes, which were subsequently reduced by feature selection, which is performed
internally by several of the machine learning algorithms, leading to this high model perfor-
mance. However, for the particular risk models with such a high prognostic performance
on the validation cohort showed an actually lower C-Index on the exploratory cohort. For
instance, the BGLM-Cox model in combination with the Random feature selection method
achieved a C-Index of 0.59 on the exploratory cohort and a higher C-Index on the validation
cohort (C-Index: 0.64). This indicates that the resulting validation performance may be a
statistical coincidence.

A significant difference in LRC was found between patients stratified into low and high risk
groups using the best performing models, which confirms their clinical relevance. However,
the results strongly depend on the selection process of the cut-off value, and not necessarily
on the performance of the risk model. This was the case for multiple models which predicted
risk well, yet did not lead to a stratification of patients to risk groups with significant differ-
ences in LRC. Therefore, the applied cut-off selection process, which is based on different
bootstrap samples, could be an alternative for patient stratification compared to the median
cut-off selection. For instance, the cut-off determination based on bootstrap samples led
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to more significant results (n=30) than the median cut-off selection process (n=20) on the
validation cohort for LRC. Furthermore, it may be conceivable to stratify patients using un-
supervised learning techniques, e.g., fuzzy c-means clustering algorithms (Bezdek et al.,
1984). This has the advantage that the stratification could be learned based on the pre-
dicted risk using the exploratory cohort and the patients could be stratified in more than two
risk groups (e.g., a low, middle and high risk group).

The signature obtained by the Spearman feature selection method achieved a higher val-
idation performance than the published signature by Aerts et al. (Aerts et al., 2014), which
comprises the best features from each of the four feature groups (statistical, shape, texture
and wavelet features). In contrast, our radiomics signature for the Spearman method con-
sisted mainly of features extracted from transformed images (e.g., wavelet), which showed
an increased sensitivity against image perturbations, e.g., image rotations and translations
nut still achieved the highest validation performance. This indicates a limited effect on the
prognostic performance of those image perturbations. Signatures obtained by different fea-
ture selection methods were generally robust against image rotations and translations. One
explanation for this behaviour could be the included patients from different institutions, result-
ing in a highly heterogeneous data set, which captures the variability between different CT
settings and reconstruction parameters (Kim et al., 2016; Zhao et al., 2016). Therefore, the
obtained signatures might be less biased from single-centre selection effects and thereby
more generalisable and stable against such image perturbations. Furthermore the stability
of feature selection methods was not assessed directly during the feature selection process,
since the selected features in a particular bootstrap varied greatly from one bootstrap to the
next. The features were aggregated according to their ranks and selected based on the rank
and the occurrence using an adaptation of the enhanced Borda score (Wald et al., 2012),
which may also increase the feature stability. To further enhance the stability of radiomics
signatures, feature stability information, e.g., derived from test re-test datasets, could be
included in the future. Furthermore, to improve the comparability and applicability of ra-
diomics signatures, image processing should be done according to the recommendations of
the imaging biomarker standardisation initiative (Zwanenburg et al., 2016).

Based on the systematic evaluation of feature selection methods and machine learning
algorithms for continuous time-to event survival data we conclude that the Cox model can
be used as a baseline prognostic model. The Cox model, despite its simplicity was able
to achieve results comparable to the more complex models. In additional, the tree based
methods (BT-Cox, RSF, MSR-RF) or the full parametric models like BT-Weibull and the
BGLM-Cox should be considered. In the case of feature selection methods the Spearman
correlation coefficient and mutual information based methods (MRMR, MIM and MIFS) are
recommended. Multivariate-Cox feature selection as well as random forest baseds method
(RF-VI, PVI-RF) led to an acceptable performance and may also be evaluated. In conclu-
sion, a wide range of available machine learning methods appear useful for future radiomics
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studies. The application of suitable feature selection methods and learning algorithms is an
important step to develop highly accurate and reliable clinical risk models and to reduce the
risk of incidental findings.

74



5. Characterisation of tumour phenotype using
computed tomography imaging during treatment

5.1. Motivation

Most radiomics models are based on pre-treatment imaging, which has shown promising
results in several studies using different image modalities, such as CT, PET or MRI to predict
survival outcome data (El Naqa et al., 2009; King et al., 2013; Aerts et al., 2014; Parmar et
al., 2015c; Kickingereder et al., 2016; Song et al., 2016). Imaging during treatment may be of
additional value, since it may reflect biological processes associated with therapy response,
such as re-oxygenation and/or tumour shrinkage (Dietz et al., 2003; Ljungkvist et al., 2007;
Linge et al., 2016b). Therefore, the consideration of CT imaging data acquired during the
course of treatment may enhance the prognostic performance of radiomics risk models.

Several studies investigated the prognostic value of specific image feature over time, e.g.,
using PET imaging (van Putten, 1968; Dietz et al., 2003; Ljungkvist et al., 2007; Yaromina
et al., 2011; Zips et al., 2012). For patients with locally advanced HNSCC, Hentschel et al.
(Hentschel et al., 2011) showed that the decrease of the maximum standard uptake value
(SUV) extracted from 18F-fluorodeoxyglucose (FDG)-PET imaging in treatment weeks one
or two had a higher prognostic value than at baseline. Furthermore, Zips et al. (Zips et al.,
2012) demonstrated the strong prognostic value of 18F-fluoromisonidazole (FMISO)-PET
imaging parameters after week one and two of radiotherapy, which was recently validated
(Löck et al., 2017).

In the field of radiomics, so far only few studies have assessed the change or the prog-
nostic value of radiomics features during the course of treatment. Cunliffe et al. (Cunliffe
et al., 2015) investigated the relationship between radiation dose characteristics and the
change of CT-based radiomics features with the development of radiation pneumonitis us-
ing imaging before and after treatment. Recently, Fave et al. (Fave et al., 2017) showed
that quantitative radiomics features derived from CT significantly change during treatment.
However, they also found that these changes contain only limited prognostic value for pa-
tients with non-small cell lung cancer (delta radiomics). Van Timmeren et al. (van Timmeren
et al., 2017a) described a feature selection methodology using cone beam CT (CBCT) to
select reproducible delta radiomics features that are informative due to their change during
treatment. However, the prognostic value of those features was not investigated. With those
limited data available, additional studies are required to evaluate the possible improvement
of prognostic radiomics models on CT imaging data acquired during treatment. Therefore,
the main objective of this study was to investigate the potential of radiomics risk models (for
LRC and OS) trained on pre-treatment planning CT imaging in comparison to CT imaging in
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the second week of radio-chemotherapy and to the combination of both data sets for patients
with locally advanced HNSCC.

5.2. Patient cohort and experimental design

5.2.1. Characteristics of patient cohort

Radiomics risk models were developed and validated on two different patient cohorts with 78
patients in total. All patients were diagnosed with histologically confirmed locally advanced
HNSCC and received primary radio-chemotherapy (RCT). The study design is presented
in figure 5.1. The exploratory cohort consisted of 48 patients, treated within a prospective
clinical trial (NCT00180180, (Zips et al., 2012; Löck et al., 2017)) at the UKD between 2006
and 2012. The imaging data comprises an FDG-PET/CT scan (CTW0-FDG), which was used
for treatment planning. Furthermore, FMISO-PET/CT scans were acquired between two and
four days after the planning CT scan, but prior to initiation of RCT (CTW0-FMISO), and after a
dose of 18-20 Gray (Gy) (CTW2, end of week two of RCT).

The validation cohort consisted of 30 patients, who were treated at the UKD and the
Hospital Dresden-Friedrichstadt between 2005 and 2009. Imaging in this cohort contained
an FDG-PET/CT (CTW0-FDG) scan for treatment planning and a subsequent CT scan after
a dose of 18-20 Gy (CTW2, end of week two or three) during RCT. All imaging data were
acquired with treatment masks in supine radiotherapy position.

Due to the differences between CTW0-FDG and the CTW2 in terms of the CT acquisition
parameters, e.g., CT exposure feature stability was assessed prior to model development.
Therefore, an additional cohort of 18 patients with HNSCC was included to assess the sta-
bility of radiomics features. These patients were treated within a prospective clinical trial at
the UKD between 2014 and 2016 (DRKS00006007). Imaging data and time points in this
cohort were comparable to the exploratory cohort. This cohort was excluded from further
analyses due to insufficient follow-up for the evaluation of LRC and OS.

The patient characteristics of the exploratory and the validation cohorts are summarised
in table 5.1. The clinical endpoints LRC (primary) and OS (secondary) were calculated from
the first day of RCT to the date of event or censoring. Binary variables were compared
between the patient cohorts using exact Fisher or χ2 tests, while differences in continuous
variables were evaluated by Mann-Whitney-U tests. Median follow-up time was 28.8 months
(range: 1.3–70.3 months) for the exploratory cohort and 21.5 months (range: 1.4–107.2
months) for the validation cohort. The two-year LRC rate was 63.0% for the exploratory and
56.0% for the validation cohort (log-rank test: p=0.61). Overall survival after two years was
50.0% for the exploratory and 53.0% for the validation cohort (log-rank test: p=0.56). The
corresponding Kaplan-Meier curves for both endpoints are shown in figure 5.2. Patients in
the validation cohort had a significantly lower clinical T stage (χ2 test: p<0.001).

76



5.2. Patient cohort and experimental design

Feature computation
(~1500)

Stable features

Exploration (n=48)

Exploration (n=50)

Stability cohort (n=18) (I) Feature stability
analysis

Validation (n=30)

(II) Prognostic performance (III) Risk-based stratification

(IV) Aerts' signature &
volume assessment (V) Signature analysis

Risk modelling: (a) CT0W-FDG, (b) CT2W, (c) Combined

1 patient with tumour stage 23 patients without CT2W

Stable
features

Figure 5.1.: Representation of the study design. Three cohorts were included. Computed tomogra-
phy (CT) images from the exploratory cohort and stability cohort were used to identify a stable feature
set. Subsequently, pre-treatment (CTW0-FDG) and in-treatment (CTW2) images from the exploratory
cohort as well as their combination were used to train prognostic radiomics models. Prognostic
models were also trained using the radiomics signature obtained by Aerts et al. (Aerts et al., 2014)
and the tumour volume. Prognostic model performance and patient risk group stratification were as-
sessed on the validation cohort. In addition, correlation of the signatures with 18F-fluoromisonidazole
positron emission tomography parameters was investigated using the exploratory cohort.
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Figure 5.2.: Kaplan-Meier curves of the exploratory and validation cohort for (left) the primary end-
point loco-regional tumour control and (right) the secondary endpoint overall survival.
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Table 5.1.: Patient characteristics of the exploratory and the validation cohort.

Clinical variable Exploratory cohort Validation cohort p-value

Number of patients 48 30 -
Gender 0.471

male 41 27
female 7 3

Age in years
median 53.5 54.5 0.793

range 42 - 74 37 - 74
TN staging

T stage 1 / 2 / 3 / 4 / missing 0 / 1 / 17 / 30 / 0 3 / 8 / 9 / 9 / 1 <0.0012

N stage 0 / 1 / 2 / 3 / missing 4 / 6 / 37 / 1 / 0 4 / 2 / 21 / 2 / 1 0.432

UICC stage 2010
I / II / III / IV / missing 0 / 0 / 7 / 41 / 0 1 / 2 / 1 / 26 / 0 0.0691

Tumour volume in cm3

median 40.7 23.4 0.943

range 7.3 - 239 2.7 - 183
In-treatment tumour volume in cm3

median 39.5 18.1 1.03

range 6.8 - 248 2.8 - 173.6 -
Prescribed dose in Gy

median 72 72 0.323

range 69 - 72 71 - 77
HPV16 DNA status

negative / positive / missing 36 / 5 / 7 0 / 0 / 30 -
Number of events

LRC 15 11 -
OS 33 17 -

Follow up time of patients alive in months
median 38.4 61.7 -
range 23.8 - 70.3 7.8 - 107.2
Abbreviations: T, clinical tumour stage; N, clinical nodal stage; UICC, Union internationale contre le cancer
Gy, Gray; HPV, human papillomavirus; DNA, deoxyribonucleic acid
LRC, loco-regional tumour control; OS, overall survival

1 exact Fisher test; 2 χ2 test; 3 Wilcoxon-Mann-Whitney test

5.2.2. Experimental design

Feature computation and radiomics risk modelling

The GTV of the primary tumour was manually delineated by a radiation oncologist and inde-
pendently validated on each CT scan separately. The voxel spacing was resampled using
trilinear image interpolation to an isotropic voxel size of 1.0×1.0×1.0 mm3 to correct for
differences in voxel spacing and slice thicknesses between the cohorts (Aerts et al., 2014;
Shafiq-UI-Hassan et al., 2017). Additional images were created by applying spatial filtering
to the base image to emphasise image characteristics such as edges and blobs. Eight ad-
ditional images were created by applying a stationary coiflet-1 wavelet high-/low-pass filter
along each of the three spatial dimensions (section 2.3.1). One mean LoG image was addi-
tional created by applying a LoG filter consisting of five different filter kernel widths (1.0, 2.0,
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3.0, 5.0, 6.0 mm, section 2.3.1). Subsequently, the GTV mask was re-segmented to cover
only soft tissue voxels between -150 and 180 HU, thereby removing voxels containing air
and bone, which may affect feature expression. Finally, according to the image biomarker
standardisation initiative (ISBI) 18 statistical, 38 histogram-based and 95 texture features
were extracted from the GTV within each image set (base image and nine transformed im-
ages). 28 morphological features were computed using the base image only, leading to
1538 features in total (Zwanenburg et al., 2016).

The radiomics risk models were developed within the RMF (section 2.3) consisting of
five major processing steps: (I) feature pre-processing, (II) feature selection, (III) hyper-
parameter optimisation, (IV) model development and (V) model validation. Feature selection
was repeated using 1000 bootstrap samples (i.e.,.632 bootstrap method with replacement)
of the exploratory cohort to reduce randomness in the selection of relevant features. Af-
terwards, the hyper-parameter optimisation was performed followed by model training. The
models were trained using 1000 bootstrap samples (i.e.,.632 bootstrap method with replace-
ment) of the exploratory cohort for each combination of feature selection method and ma-
chine learning algorithm. Subsequently, an ensemble prediction was made by averaging the
predicted risk scores for each model using data of the independent validation cohort.

Feature selection methods and machine learning algorithms

For the risk modelling six different feature selection methods and learning algorithms were
used to avoid incidental findings. The considered methods were found as most reliable
according to the previous chapter 4. The following feature selection methods were applied:
Spearman correlation, MIM, MIFS, MRMR, RF-VI and a forward feature selection based
on Cox regression model (multi-Cox). For model building the following algorithms were
used: Cox, BT-Cox, BGLM-Cox, RSF and MSR-RF. Additionally, we investigated the full-
parametric BT-Weibull model.

Performance assessments

The systematic evaluation consists of five analyses (figure 5.1):
(I) The stability of radiomics image features was assessed prior to model development

and validation to reduce the influence of different CT acquisition parameters on the prog-
nostic models (table 5.2). The in-treatment scans (CTW2) were acquired with a lower ex-
posure than the pre-treatment images (CTW0-FDG) in the exploratory and validation cohorts
to limit patient radiation dose, while the acquisition parameters between the CTW0-FMISO

pre-treatment and the CTW2 scans were similar. Therefore, feature stability was assessed
using the CTW0-FDG and CTW0-FMISO images of the exploratory cohort and the additional
cohort of 18 patients, leading to 66 patients in total. The CTW0-FDG and the CTW0-FMISO

scans were rigidly registered with RayStation (version 6.0, RaySearch Laboratories AB,
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Table 5.2.: Image acquisition parameters of the different cohorts.

Imaging parameter Exploratory cohort Stability cohort Validation cohort
CTW0-FDG CTW0-FMISO CTW2 CTW0-FDG CTW0-FMISO CTW0-FDG CTW2

x , y spacing in mm
(0.85, 0.85) 0 1 0 0 0 0 0
(0.97, 0.97) 12 1 0 18 0 1 0
(1.36, 1.36) 36 46 48 0 18 29 30

z spacing in mm
2.0 0 0 1 6 18 0 0
3.0 12 1 0 12 0 1 0
5.0 36 47 47 0 0 29 30

Image reconstruction
kernel

B10s 1 0 0 0 0 0 0
B19f 0 10 12 0 18 0 0
B20f 32 37 36 0 0 28 30
B20s 0 0 0 0 0 2 0
B31f 12 0 0 18 0 0 0
NA 3 47 1 0 0 0 0

Mean exposure
in mAs

30.8 7.7 7.9 39.0 9.6 39.1 8.1
Mean exposure time
in ms

420–500
Tube voltage
in kV

120
Abbreviations: NA, not available; mAs, milliampere second; kv, kilovolt

Stockholm, Sweden). Afterwards, the GTV was manually transferred from the CTW0-FDG

to the CTW0-FMISO images. Imaging features with a Spearman rank correlation coefficient
(SCC)≥0.8 between CTW0-FDG and CTW0-FMISO were considered stable and used for feature
selection and model building (Leijenaar et al., 2013).

(II) The prognostic performance was evaluated and compared based on (a) CTW0-FDG,
(b) CTW2 and (c) the combination of CTW0-FDG, CTW2 using the corresponding delta features
(∆CT=CTW2/CTW0-FDG), i.e. the ratio of feature values derived from CTW2 and CTW0-FDG for
every feature to investigate the potential of the single time points and their complementary
information, using the exploratory and the validation cohort. The prognostic performance
of radiomics models (a)-(c) was assessed using the C-Index. Furthermore, the average
model performances were compared by a multi-level model (MLM) to quantify statistical
differences. Multi-level models are regression models that incorporate group-specific effects,
i.e., the effect of treatment time, feature selection methods and machine learning algorithms,
measured on different levels (Demidenko, 2013; Brown and Prescott, 2014). Here, a MLM
was developed for assessing the differences in C-Index between the CTW0-FDG images and
CTW2 scans independent from the effects of the feature selection methods and learning
algorithms. The MLM is described in appendix D.A. The model was fitted using Markov
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chain Monte Carlo in STAN software, using seven chains with 250 warm-up iterations and
250 sample iterations each (Carpenter et al., 2016).

Subsequently, models (a)-(c) generated by the feature selection method and the learning
algorithm with the highest mean performance in pre-treatment using the exploratory cohort
were selected as single representative models and analysed in more detail.

In addition to the external validation of the models (a) and (b), internal cross-validation
experiments using the combined cohorts for the primary endpoint LRC was performed. The
models were developed with RMF using a three-fold cross validation scheme with 33 repe-
titions. At each fold, feature selection and model training were performed 20 times.

(III) Risk-based patient stratification is an important application of radiomics risk mod-
els to show their clinical reliability, e.g., for treatment individualisation. Therefore, patients
were stratified into low and high risk groups based on their predicted risk according to the
radiomics models. For the cut-off calculation two different methods were applied: cut-off
based on the median predicted risk value (medianrisk) and based on the predicted risk
value computed using bootstrap samples (bootrisk)(section 2.4). Cut-off values were applied
unchanged to the validation cohort. Survival curves were estimated by the Kaplan-Meier
method and differences between the two risk groups were compared by log-rank tests and
p-values<0.05 were considered as statistically significant.

(IV) Assessment of the prognostic performance using a established signature may
further validate the results and reduce the risk of incidental findings. The risk models were
trained and validated based on the CTW0-FDG images and CTW2 scans using the Aerts’
signature consisting of four imaging features as previously described in section 4.2.2. Fur-
thermore, the prognostic performance of the tumour volume was evaluated for models (a)
and (b) reflecting the clinical importance of this parameter.

(V) The developed radiomics signatures for the representative models for LRC were
analysed in detail. Features within the signatures and their expression values are depicted
as heatmaps for the exploratory and the validation cohort to represent the level of expres-
sion and to show possible differences between the time points. For this purpose, patients
were ordered according to their predicted risk and to their risk group membership. Further-
more, the association between the radiomics features within the signatures and LRC was
measured by the univariate Cox model based on bootstrap samples using the entire patient
cohort to quantify their overall importance.

Moreover, Spearman correlation coefficient ρ between the developed signatures and
hypoxia-specific FMISO-PET imaging features for LRC of models (a) and (b), as well as
those in Aerts’ signature were investigated to assess the link between the signatures and tu-
mour hypoxia. The enhancement of tumour hypoxia and the capacity for re-oxygenation dur-
ing radiotherapy vary amongst patients. If tumours partially or fully re-oxygenate early during
the course of treatment they have a more favourable prognosis. Therefore, two FMISO-PET
imaging features were analysed: (1) the hypoxic volume (HV1.6), calculated using 1.6 as
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threshold relative to the background and (2) the peak tumour-to-background-ratio (TBRpeak)
representing the maximum ratio between FMISO up-take in the tumour and the background,
i.e., in deep neck muscles (Zips et al., 2012; Löck et al., 2017). This analysis was performed
in the exploratory cohort only.

5.3. Results of computed tomography imaging during treatment

(I) Radiomics feature stability

In order to develop radiomics risk models, 1538 imaging features were extracted per CT
scan. Feature stability assessment between the CTW0-FDG and CTW0-FMISO scans reduced
the feature set to 269 stable imaging features (SCC≥0.8), consisting of 12 statistical, 18
morphological, 26 histogram-based and 213 texture features, entering into the following
analyses.

(II) Prognostic performance

The prognostic performance of different feature selection methods combined with machine
learning algorithms was evaluated for the clinical endpoints LRC (primary) and OS (sec-
ondary) using imaging data acquired (a) pre-treatment (CTW0-FDG), (b) after the second week
of treatment (CTW2) and (c) their combination including delta features. Figure 5.3 shows the
resulting concordance indices for LRC using the validation cohort and the exploratory cohort.

The validation C-Index averaged over all learning algorithms and feature selection meth-
ods was significantly higher on the in-treatment CTW2 images (C-Index: 0.73±0.04,
mean±SD) than on the pre-treatment CTW0-FDG images (C-Index: 0.62±0.04) (MLM: p=0.005).
Using the combined feature set also led to improved results with a mean C-Index of 0.70±0.05
compared to the pre-treatment CTW0-FDG scans (MLM: p=0.06).

According to the introduced selection strategy (chapter 5.2.2), a representative model for
LRC was selected based on the baseline pre-treatment CTW0-FDG scans, namely the BT-
Cox algorithm in combination with the Spearman feature selection method. This particular
combination showed a prognostic performance of 0.95 (C-Index) on the exploratory cohort
(95% confidence interval [0.92–1.00]). At baseline, the model achieved a good prognostic
performance of C-Index=0.65 ([0.51–0.79]) on the validation cohort. The model based on
CTW2 scans achieved a higher performance (C-Index: 0.79, [0.77–0.96]), while the model
based on the combined feature set (∆CT) performed similar to the baseline model (C-Index:
0.65, [0.49–0.88]).

The internal cross validation experiments confirmed that the in-treatment CTW2 images
were more prognostic on average than pre-treatment imaging using the entire data set for
LRC (CTW0-FDG: 0.61 and CTW2: 0.70, respectively, MLM: p=0.16, appendix D.1).
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Figure 5.3.: Concordance indices for the prediction of loco-regional tumour control for the exploratory
cohort (in parentheses) and the validation cohort. Radiomics models were developed using a feature
selection method (columns) and a learning algorithm (rows), based on (a) pre-treamtent computed
tomography (CT) images (CTW0-FDG), (b) in-treatment CT scans (CTW2) and (c) the combined feature
set. Furthermore, the performance of the Aerts et al. (Aerts et al., 2014) signature and the tumour
volume is shown.

For OS, the resulting C-Index for the validation and exploratory cohort are shown in fig-
ure 5.4. The validation C-Index averaged over all feature selection methods and learning
algorithms was slightly higher on the in-treatment CTW2 images (C-Index: 0.62±0.04) than
on the pre-treatment CTW0-FDG images (C-Index: 0.59±0.04), which was not statistically sig-
nificant different (MLM: p=0.28). Using the combined feature set also did not led to improved
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results with a mean C-Index of 0.54±0.05 compared to the pre-treatment CTW0-FDG scans
(MLM: p=0.73).

The selected representative model for the baseline CTW0-FDG scans was obtained by MIM
feature selection combined with the BT-Cox model with an average performance of 0.85 on
the exploratory cohort. In validation, a slightly improved performance of the CTW2 scans
was observed compared to pre-treatment CTW0-FDG images (C-Index: 0.59 and 0.61, re-
spectively).

(III) Risk-based patient stratification

For each combination of feature selection methods and learning algorithms, patients were
stratified into low and high risk groups based on the predicted risk of the radiomics risk
models on the exploratory cohort. Patients were stratified into low and high risk groups
according to the median risk (medianrisk) and to the bootstrapped-based method (bootrisk).
The representative BT-Cox models trained on the pre-treatment CTW0-FDG scans and on
the combined feature set were not able to stratify patients of the validation cohort with a
significant difference in LRC using both cut-off calculation methods (medianrisk: p=0.06 and
p=0.19 as well as bootrisk: p=0.18 and p=0.46, respectively), whereas the model trained
on the CTW2 scans led to a significant stratification for LRC based on both cut-off values
(medianrisk: p=0.002 and bootrisk: p<0.001). Figure 5.5 exemplary shows Kaplan-Meier
curves for models (a)-(c) using the median cut-off values for LRC.

For OS, the representative models based on the CTW0-FDG, the CTW2 and the combined
feature set were not able to stratify patients of the validation cohort with a significant differ-
ence in OS using both cut-off calculation methods (both medianrisk: p=0.61, p=0.68, p=0.64
and bootrisk: p=0.61, p=0.68 and p=0.64, respectively). The resulting p-values of the log-
rank tests using both cut-off value methods for LRC and OS are depicted in appendix D.2
and appendix D.3, respectively.

(IV) Assessment of the Aerts’ radiomics signature and tumour volume

For LRC the in-treatment BT-Cox model based on Aerts’ signature also led to improved
prognostic performance on the validation cohort compared to the pre-treatment model con-
firming the achieved result using the newly developed signatures (C-Index: CTW2: 0.74,
[0.61–0.91] and CTW0-FDG: 0.66, [0.51–0.89], respectively).

However, the resulting cut-off values of the proposed methods (medianrisk/bootrisk) from
both models were not able to stratify patients of the validation cohort into low and high risk
groups with a significant difference in LRC (CTW0-FDG: p=0.53/p=0.23 and CTW2:
p=0.30/p=0.97, respectively).

For OS the pre-treatment model based on Aerts’ signature achieved a higher performance
(C-Index: 0.66, [0.52–0.82]) than the in-treatment model (C-Index: 0.62, [0.48–0.80]).
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5.3. Results of computed tomography imaging during treatment

Kaplan-Meier analysis of the representative model based on the CTW0-FDG scans could
not separate the patients into two risk groups with a significant difference in OS using both
cut-off methods (medianrisk/bootrisk: p=0.13/p=0.05). However the CTW2 based model was
able to stratify patients of the validation cohort into low and high risk groups with a significant
difference in OS using the median cut-off value (medianrisk/bootrisk: p <0.001/p=0.30). The
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Figure 5.4.: Concordance indices for the prediction of overall survival for the the exploratory cohort (in
parentheses) and validation cohort. Radiomics models were trained using a feature selection method
(columns) and a learning algorithm (rows), based on (a) pre-treamtent computed tomography (CT)
images (CTW0-FDG), (b) in-treatment CT scans (CTW2) and (c) the combined feature set. Furthermore,
the performance of the Aerts et al. (Aerts et al., 2014) signature and the tumour volume is shown.
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Figure 5.5.: Kaplan-Meier curves for loco-regional tumour control for patients of the exploratory (left)
and the validation cohort (right) stratified into a low (LR) and a high (HR) risk group based on the
median risk value determined on the exploratory cohort based on the boosted tree-based Cox model
in combination with Spearman feature selection.
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5.3. Results of computed tomography imaging during treatment

resulting p-values of the log-rank tests using both cut-off value methods for LRC and OS are
depicted in appendix D.2 and appendix D.3, respectively.

Additional BT-Cox models were built using the tumour volume for both clinical endpoints.
For LRC, these models achieved a good performance of C-Index=0.65 [0.51–0.84] and
a high prognostic performance C-Index=0.67 [0.53–0.88] on the validation cohort for pre-
treatment and in-treatment images, respectively. The representative models for OS using
the tumour volume showed a good performance of C-Index=0.63 [0.50–0.80] using pre-
treatment CT scans and a high prognostic performance C-Index=0.67 [0.56–0.83] for in-
treatment scans.

(V) Signature analysis

Radiomics signatures were investigated for the representative models (a)-(c) for LRC. Fig-
ure 5.6 shows the feature expressions of the developed signatures for LRC. For OS, fea-
ture expressions of the developed signatures are show in appendix D.4. The names of the
selected radiomics features within the signatures are summarised in appendix D.1. The
signature for the pre-treatment based model consists of a first-order statistical, two texture
based and a morphology based radiomics feature. One of four selected radiomics features
within the signature were significant associated with LRC using univariate Cox analysis on
the entire patient cohort (F1T: p=0.003). The signature for the in-treatment model consists
of four radiomics features, which were mainly texture based. For instance, the radiomics
feature F1T is cluster based and comprises mainly GLRLM features measuring the intra-
tumour heterogeneity by assessing the gray level run lengths. Three of the four selected
radiomics features within the signature showed a significant association with LRC on the
entire patient cohort (F1T: p=0.001, F2T: p=0.001 and F4T: p=0.02, respectively). The rep-
resentative model based on the combined signature contains only delta radiomics features
(∆CT), which are texture based. Furthermore, two of the five selected features were signifi-
cant associated with LRC based on the univariate Cox analyses for the entire patient cohort
(∆F2T: p=0.01 and ∆F5T: p <0.001, respectively).

The correlation analysis between the radiomics signature of the representative models
based on pre-treatment and in-treatment images and the FMISO-PET parameters are de-
picted in figure 5.7. The selected features of the radiomics signature using the pre-treatment
scans were weakly correlated to both FMISO-PET parameters HV1.6 and TBRpeak (ρ<0.50),
with the exception of the texture-based features (F2T), which were moderately correlated
to HV1.6 (0.50≤ ρ<0.70). For the signature based on the in-treatment scans, a moderate
correlation with HV1.6 and TBRpeak exists for the F1T (HV1.6: ρ=0.54 and TBRpeak: ρ=0.55,
respectively) and for the F2T (both ρ=-0.56). The remaining features were only weakly cor-
related (ρ<0.5).
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Figure 5.6.: Feature expressions of developed signatures for the representative models, boosted
tree-based Cox model in combination with the Spearman feature selection method, trained on the
CTW0-FDG, CTW2 and combined feature set to predict loco-regional tumour control (LRC). LRC during
follow-up (yes, light; no, dark) and features with a significant correlation with LRC are shown (*p<0.05
and **p<0.001). A detailed description of the feature abbreviations can be found in appendix D.1.
Abbreviations: F cluster feature consisting of several features represented by the mean value as a
new meta-feature, FS first order statistical feature, FM morphological feature, FT texture feature, ∆F
delta feature.

The Aerts’ signature contains a first-order statistical (F1S), a morphological (F2M) and two
texture based features (F3T and F4T). Figure 5.8 shows the results of the correlation analy-
sis. The features F1S, F3T and F4T based on the CTW0-FDG showed a moderate correlation
with HV1.6 (ρ=0.64, ρ=0.68 and ρ=0.58, respectively) and a weak correlation with TBRpeak

(all: ρ<0.5). The morphological feature (F2M) showed a weak Spearman correlation with
both hypoxia FMISO-PET imaging features (both ρ=0.13). Furthermore, Aerts’ signature
based on the CTW2 showed similar or slightly higher correlations for the features F1S, F3T

and F4T with the HV1.6 (ρ=0.64, ρ=0.69 and ρ=0.55, respectively) and with TBRpeak (ρ=0.63,
ρ=0.68 and ρ=0.56, respectively). The morphological feature (F2M) showed a weak Spear-
man correlation with both hypoxia FMISO-PET imaging features (both ρ=-0.13).
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5.4. Summary and discussion
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Figure 5.7.: Correlation plots of the developed signatures for the representative models for the pre-
diction of loco-regional tumour control and the 18F-fluoromisonidazole positron emission tomography
(FMISO-PET) parameters HV1.6 and TBRpeak (Zips et al., 2012; Löck et al., 2017). The correlations
between the selected features within the signatures and the FMISO-PET parameters were deter-
mined using Spearman rank correlation coefficient. Abbreviations: F cluster feature consisting of
several features represented by the mean value as a new meta-feature, FS first order statistical fea-
ture, FM morphological feature, FT texture feature.

5.4. Summary and discussion

The aim of this study was to evaluate and compare the prognostic value of radiomics risk
models using CT images obtained during treatment to models based on pre-treatment CT
images.

For LRC, newly developed risk models trained on in-treatment scans (CTW2) on average
achieved a significantly higher prognostic performance and led to improved patient risk strat-
ifications in comparison to pre-treatment CT scans (CTW0-FDG). The improved performance
was also observed for the published Aerts’ signature. Models based on in-treatment imag-
ing showed a higher prognostic value than tumour volume, which performed similar to the
pre-treatment models. These results indicate that CT imaging during treatment contains
additional prognostic information.
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5. Characterisation of tumour phenotype using computed tomography imaging during treatment
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Figure 5.8.: Correlation plots of the Aerts’ signature for the prediction of loco-regional tumour control
and the 18F-fluoromisonidazole positron emission tomography (FMISO-PET) parameters HV1.6 and
TBRpeak (Zips et al., 2012; Löck et al., 2017). The correlations between the selected features within
the signatures and the FMISO-PET parameters were determined using Spearman rank correlation
coefficient. Abbreviations: FS first order statistical feature, FM morphological feature, FT texture
feature.

Image features may be modified due to changes in tumour biology during the course of
treatment. Such biological changes comprise RCT-induced re-oxygenation and shrinkage
of the tumour which have been associated with treatment response (Stadler et al., 1998;
Yaromina et al., 2011; Wiedenmann et al., 2015; Linge et al., 2016c). For instance, Zips
et al. (Zips et al., 2012) showed in a prospective study that the hypoxic volume and the
tumour to background ratio obtained from FMISO-PET images have a strong association
with LRC. Furthermore, they observed an improved prognostic performance after week one
and two of RCT in comparison to the pre-treatment images, which was validated recently
(Löck et al., 2017). The developed CT-based radiomics signatures contained mostly texture
and morphological features. The correlation of these features were assessed with tumour
hypoxia, measured by the FMISO-PET imaging parameters hypoxic volume and the tumour
to background ratio (Zips et al., 2012; Löck et al., 2017). Most texture-based features from
the newly developed signatures and from Aerts’ signature were moderately correlated with
one or more hypoxia markers. This correlation slightly increased in the second week of
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5.4. Summary and discussion

treatment, where FMISO-PET showed improved prognostic value. This may be one expla-
nation for the similarly improved performance of the CT-based radiomics models and gives
an indication that changing tumour hypoxia may be observable in macroscopic CT imaging.
However, the links between imaging features and tumour hypoxia, as well as other biolog-
ical tumour mechanisms, should be studied in closer detail, as these are generally poorly
understood.

The combined feature set, consisting of pre-treatment, week two and delta CT imaging
features, likewise led to an improved model performance compared to models only based
on pre-treatment CT-based features. However, the selected features were predominantly
extracted from the second week CT scans or were delta features, which underlines the im-
portance of the in-treatment data. Moreover, signatures containing only features from the
second week CT scans showed a higher performance (e.g., MIM feature selection method)
for predicting LRC than signatures including delta features (e.g., Spearman feature selec-
tion). This is in line with the study by Fave et al. (Fave et al., 2017), which showed that delta
radiomics features are changing during treatment but provide limited additional prognostic
information compared to baseline imaging.

For OS, similar results for in-treatment and pre-treatment imaging and a generally lower
performance compared to LRC were observed. The overall decreased prognostic perfor-
mance compared to LRC models may be due to the fact that the cause of death was not
necessarily cancer-related, which causes the OS endpoint to be comparatively noisy. Fur-
thermore, the combined feature set led to a lower performance in the validation cohort than
the in-treatment feature set. One explanation for the reduced performance could be the
selected features. In the developed signature, the two delta features were discordantly ex-
pressed between the exploratory and the validation cohort (appendix D.4). This may nega-
tively effect the risk prediction. Interestingly, OS models based on Aerts’ signature achieved
the highest accuracy using pre-treatment CT scans, not in-treatment scans. This result is
reasonable, since this signature was developed for the prediction of OS using pre-treatment
CT scans.

Radiomics feature stability analysis was performed prior to model development, as several
acquisition parameters differed between the pre-treatment and the in-treatment CT scans,
e.g., the mean CT exposure settings. A lower CT exposure leads to increased image noise,
which in turn affects imaging features. Feature stability was measured by the Spearman rank
correlation coefficient to consider non-linear correlation effects. Moreover, the stability is also
influenced by other factors, such as uncertainties in image registration or dissimilarities due
to the GTV transfer. To further enhance the robustness, feature stability information, e.g.,
from test re-test or multiple tumour delineations datasets, may be included in future (Kim et
al., 2016; Zhao et al., 2016). Furthermore, initiatives such as the Quantitative Imaging Net-
work (QIN) of the National Institute of Health may help to establish open and standardised
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5. Characterisation of tumour phenotype using computed tomography imaging during treatment

protocols for image acquisition, reconstruction and analysis (Buckler et al., 2011a; Buckler
et al., 2011b; Clarke et al., 2014).

A limitation of this study is the relatively low number of patients and the small number of
events for both endpoints. At the participating institutions, CT scans during treatment are
generally not acquired as part of the clinical routine, except, e.g., for treatment re-planning.
Therefore, only data from clinical imaging trials were available for this analysis. Further val-
idation of the achieved findings is planned through retrospective analysis of additional data
sets from other centres and data recorded in an on-going prospective clinical study. Due to
the limited number of data samples additional cross validation experiments on the combined
cohorts were performed to compare the average performance of several feature selection
methods and machine learning algorithms between the time points. Both analyses showed
a prognostic advantage of in-treatment imaging and limit the probability of false positive
results. In addition, the analyses excluding twelve patients with differing CT-acquisition pa-
rameters in the exploratory cohort (see table 5.2) were performed, leading to similar results.

An alternative to in-treatment CT may be CBCT, which is routinely acquired in many cen-
tres during RCT for quality assurance, such as treatment position verification. However, the
applicability of CBCT for radiomics risk modelling requires further investigation (Van Tim-
meren et al., 2016). For instance, the image quality of CBCT is low in comparison to con-
ventional CT imaging, and the limited field of view may not be large enough to cover large
tumours. These limitations may negatively affect the accuracy of radiomics risk models, but
their influence may be somewhat mitigated by improved image reconstruction algorithms
(van Timmeren et al., 2017b).

Radiomics risk models may not be limited to predicting survival-based endpoints, but may
be used to predict the risk for occurrence of late radiation-induced side effects as well. For
instance, radiomics models were recently built to predict the occurrence of xerostomia and
sticky saliva for HNSCC patients (Pilz et al., 2017; van Dijk et al., 2017a; van Dijk et al.,
2017b). Incorporating imaging during treatment to predict late side effects may lead to a
higher prognostic accuracy, e.g., by capturing RCT-induced reactions of the normal tissue.

The present study showed that the incorporation and consideration of CT imaging ac-
quired during treatment may be a promising way to improve radiomics risk models. This was
demonstrated by newly developed radiomics models as well as by the established Aerts’
signature for the endpoint LRC. Both models showed an improved validation performance
compared to the tumour volume. Moreover, the investigated time point (second week of
treatment) is suitable to make an early treatment adaptation in patients not responding to
radio(chemo)therapy.

92



6. Tumour phenotype characterisation using tumour
sub-volumes

6.1. Motivation

Characterisation of the tumour phenotype using imaging data is commonly based on ra-
diomics features which were computed using the entire gross tumour volume (GTVentire).
Such an approach assumes that the individual tumour appearance is homogeneous, or het-
erogeneous but uniformly distributed over the entire tumour volume. However, tumours are
biologically complex and exhibit substantial spatial variation, e.g., in gene expression and in
macroscopic structure (Wu et al., 2016b). One reason for such spatial variations may be,
e.g., necrosis which mainly appears in the tumour core and high cell proliferation mostly oc-
curs at the tumour periphery. Some regional tumour variations, e.g., necrosis or contrast en-
hanced vascularisation are even apparent in imaging data (Gatenby et al., 2013; O’Connor
et al., 2015). Furthermore, different regions within an individual tumour may differ in radio-
sensitivity, which depends on the tumour micro-environment, the distribution of cancer stem
cells and localised genetic or molecular alterations (Schütze et al., 2007; Schütze et al.,
2014). As a consequent, such spatial variations may effect the performance of image-based
risk models.

The analysis of specific tumour sub-volumes revealed an improved prognostic perfor-
mance of radiomics models. For instance, Grove et al. (Grove et al., 2015) showed that
the expressions of 2D radiomics features computed on the rim of the tumour differed from
those calculated on the tumour core. Furthermore, the ratio of tumour rim and core fea-
tures led to an improved prediction of OS in NSCLC patients. Wu et al. (Wu et al., 2016b)
identified clinically relevant tumour sub-volumes to characterise the regional heterogeneity
of tumours in breast cancer patients based on dynamic contrast enhanced MRI. The re-
sulting risk models based on the identified sub-volumes showed also an improved outcome
prediction compared to models based on the GTVentire. In another study, Wu et al. (Wu
et al., 2016a) identified different tumour sub-volumes using CT and FDG-PET imaging of
lung cancer patients. It was shown that spatially distinct sub-volumes are linked to higher
risk of recurrence compared to the volume of the GTVentire, resulting in an improved model
prediction of OS.

Aside from such initial findings, in most of the previously described studies, only single
clinical parameters or radiomics features (e.g., tumour volume) were investigated. Therefore,
the investigation of the potential of radiomics risk models based on tumour sub-volumes are
still sparse and has not been independently validated. In particular, for patients with HNSCC.
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6. Tumour phenotype characterisation using tumour sub-volumes

Based on the GTVentire two sub-volumes were defined using CT images of HNSCC pa-
tients: an outer tumour rim and the complementary tumour core. Subsequently, radiomics
features were extracted from each sub-volume separately. For the prediction of LRC risk
models were developed and applied on an external validation cohort. Parts of this work
were presented at the international conference of the European Society for Radiotherapy
and Oncology (Leger et al., 2018).

6.2. Patient cohort and experimental design

6.2.1. Characteristics of patient cohorts

A retrospective multi-centre cohort consisting of 302 patients with histologically confirmed
loco regionally advanced HNSCC was used. All patients received primary RCT and under-
went a non-contrast-enhanced CT scan for treatment-planning purpose. The multi-centre
cohort was divided into an exploratory and a validation cohort by an approximate ratio of
2:1. In the exploratory cohort 152 of the 207 patients were treated in one of the six partner
sites of the DKTK-ROG between 2005 and 2011 (Linge et al., 2016b). The remaining 55 pa-
tients were treated at the UKD between 1999 and 2006. The validation cohort consisted of
95 patients from which 50 patients received their treatment within a prospective clinical trial
(NCT00180180) at the UKD between 2006 and 2012 (Zips et al., 2012; Löck et al., 2017).
The remaining 45 patients were treated at the UKD or the RCDF between 2005 and 2009 as
well as at the University Hospital Tübingen between 2008 and 2013. Patient characteristics
for the exploratory and validation cohorts are summarised in table 6.1.

Radiomics risk models were developed to predict the primary clinical endpoint LRC. The
event time for LRC was calculated from the first day of radio-chemotherapy to the date of
the event or censoring. The number of events for LRC was 85 for the exploratory and 31
for the validation cohort, respectively. The median follow-up time was 15.8 months (range:
1.2–127.9 months) for the exploratory and 19.3 months (range: 1.3–75.2 months) for the
validation cohort. Furthermore, the two-year LRC rate was 58.0% for the exploratory and
63.0% for the validation cohort (log-rank test: p=0.18). The corresponding Kaplan-Meier
curves are shown in figure 6.1.

6.2.2. Experimental design

Tumour sub-volume definition and feature computation

The GTVentire of the primary tumour was manually delineated on each planning CT scan by
a radiation oncologist. Subsequently, the voxel spacing was resampled using trilinear image
interpolation to an isotropic voxel size of 1.0×1.0×1.0 mm3 to correct for differences in voxel
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6.2. Patient cohort and experimental design

Table 6.1.: Patient characteristics of the exploratory and the validation cohort.

Clinical variable Exploratory cohort Validation cohort p-value

Number of patients 207 95 -
Gender

male 176 71
0.712

female 31 10
missing 0 14

Age in years
median 58.5 54 0.0073

range 39 - 80 37 - 74 -
TN staging

T stage 1 / 2 / 3 / 4 / missing 2 / 24 / 51 / 130 / 0 3 / 10 / 34 / 47 / 1 0.081

N stage 0 / 1 / 2 / 3 / missing 24 / 8 / 160 / 15 / 0 10 / 8 / 58 / 9 / 10 0.181

UICC stage 2010
I / II / III / IV / missing 0 / 0 / 13 / 136 / 58 1 / 2 / 9 / 69 / 14 0.101

Tumour volume in cm3

median 29.1 39.4 0.183

range 4.3 - 322.2 2.7 - 239.0 -
Prescribed total dose in Gy

median 72 72 <0.0013

range 68 - 77 69 - 77 -
HPV16 DNA

negative / positive / missing 159 / 26 / 22 50 / 7 / 38 0.71

Number of events
LRC 85 (41 %) 31 (33 %) -

Follow up time of patients alive
in months

median 52.6 52.7 -
range 4.2 - 131.9 7.8 - 107.2 -
Abbreviations: T, clinical tumour stage; N, clinical nodal stage; UICC, Union internationale contre le cancer
Gy, Gray; HPV, human papillomavirus; DNA, deoxyribonucleic acid; LRC, loco-regional tumour control

1 χ2 test; 2 exact Fisher test; 3 Wilcoxon-Mann-Whitney test

spacings and slice thicknesses between the cohorts (Aerts et al., 2014; Shafiq-UI-Hassan
et al., 2017).

The analysis was divided into two subsequent steps which are shown in figure 6.2. Based
on the delineated GTVentire two distinct sub-volumes were generated. The outer contour
of the GTVentire was cropped by different widths (3, 5, 10 mm) to define the rim of the
tumour (GTVrim). The corresponding remaining sub-volumes were defined as tumour core
(GTVcore). The minimum core volume was restricted to 40% of the entire tumour volume
to avoid disappearance of the core sub-volume in small tumours. Furthermore, the best
performing tumour rim sub-volume was selected and extended (GTVrim+ext) into surrounding
tissue with different distances (1, 2, 3, 5 mm) to assess the prognostic performance outside
of the tumour delineation.

Nine additional images were created by applying spatial filtering to the base image to
emphasise image characteristics such as edges and blobs. Eight additional images were
created by applying a stationary coiflet-1 wavelet high-/low-pass filter along each of the three
spatial dimensions (section 2.3.1). One further image was created by applying a Laplacian
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6. Tumour phenotype characterisation using tumour sub-volumes

of Gaussian (LoG) filter consisting of five different filter kernel widths (1.0, 2.0, 3.0, 5.0,
6.0 mm, (section 2.3.1). Subsequently, the GTV mask was re-segmented to include only
soft tissue voxels between -150 and 180 HU, thereby removing voxels containing air or
bone, which may affect feature expression. Features were implemented in compliance with
the Image Biomarker Standardisation Initiative (Zwanenburg et al., 2016). A total of 1538
features were computed and extracted from each sub-volume. 18 statistical, 38 histogram-
based and 95 texture features were calculated on the base image and the nine transformed
images. Moreover 28 morphological features were determined on the base image.

Radiomics risk modelling

Radiomics risk models were developed using the RMF, which consists of five steps: (I)
feature pre-processing, (II) feature selection, (III) hyper-parameter optimisation, (IV) model
development and (V) model validation (section 2.3.2). The risk models were generated as
previously described in section 5.2.2. Briefly, after feature normalisation and clustering, fea-
ture selection was performed multiple times using 1000 bootstrap samples of the exploratory
cohort. Subsequently, model training was conducted on 1000 bootstrap samples of the ex-
ploratory cohort, using the highest ranked features as well as the optimised hyper-parameter
set. Finally, an ensemble prediction was made by averaging the predicted risk scores of each
model for both the exploratory and the independent validation cohort separately.

Combinations of five feature selection methods and six learning algorithms were used for
model development to reduce the risk of incidental findings based on the recommendation in
chapter 4. The following feature selection methods were used: Spearman correlation, MIM,
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Figure 6.1.: Kaplan-Meier curves for loco-regional tumour control of the exploratory and the validation
cohort.
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HNSCC patients (n=302)
Non-contrast enhanced CT scans

Entire tumour (GTVentire)

Core

GTVcore GTVrim GTVrim+ext

Rim

Feature computation (~1500)

Extension
(1, 2, 3, 5 mm)

Sub-volumes
(3, 5, 10 mm)

Risk modelling

Exploration (n=207) Validation (n=95)

(I) Prognostic performance (II) Risk-based stratification

Loco-regional tumour control

(IV) Signature analysis(III) Aerts' signature &
volume analyses

Figure 6.2.: Experimental design. A cohort of 302 patients with loco regionally advanced head and
neck squamous cell carcinoma (HNSCC) was used to generate different sub-volumes based on the
delineated entire tumour. The entire cohort was split into an exploratory and an external validation
cohort for risk modelling. Prognostic model performance and patient risk group stratification were
assessed on the validation cohort. Prognostic models were also trained using the radiomics signature
obtained by Aerts et al. (Aerts et al., 2014) and the tumour volumes. Selected features within the
developed signatures were analysed in terms of their univariate association with loco-regional tumour
control using the entire cohort.

MIFS, MRMR and RF-VI. The six learning algorithms comprised: Cox, BT-Cox, BGLM-Cox,
RSF and MSR-RF as well as the full-parametric BT-Weibull model.

Performance assessments

Four analyses were conducted to assess the radiomics models, as depicted in figure 6.2.
(I) The prognostic performance of the radiomics models was assessed on the exploratory

and the validation cohort using the C-Index. Risk models were developed based on GTVentire,
GTV3mm-rim, GTV5mm-rim and GTV10mm-rim as well as the corresponding core volumes
GTV3mm-core, GTV5mm-core and GTV10mm-core. The median C-indices over all combination
of feature selection methods and machine learning algorithms were determined based on
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6. Tumour phenotype characterisation using tumour sub-volumes

the exploratory and the validation cohort for each tumour sub-volume to avoid incidental
findings.

Subsequently, representative model combinations for each sub-volumes were selected,
consisting of one feature section method and one learning algorithm. In particular, those
model combinations were selected which showed the highest median performance of one
feature selection method over all machine learning algorithms and vice-versa on the ex-
ploratory cohort. For the further analyses the bets performing representative models based
on the sub-volume of (a) the GTVentire, (b) the tumour rim, (c) the corresponding core and (d)
the extended rim were investigated in more detail. The differences between the prognostic
performance of the representative rim- (a) and the corresponding core-based model (b) was
compared using a non-parametric analytical (NPA) approach based on the C-Index (Kang
et al., 2015). The resulting p-values<0.05 were considered as statistically significant.

(II) Risk-based patient stratification into groups of low and high risk of loco-regional re-
currence was performed for each tumour sub-volume and for all model combinations. The
results for the selected models (a)-(d) are shown more in detail. Patients were stratified
based on the median risk cut-off value (medianrisk) and the cut-off value using the boot-
strapped method (bootrisk, section 2.4) determined on the exploratory cohort. The resulting
cut-off values were directly applied to the validation cohort. Survival curves were estimated
using the Kaplan-Meier method and the stratification was compared using log-rank tests.
Log-rank test p-values<0.05 were considered to be statistically significant.

(III) Assessment of the established Aerts’ radiomics signature and the tumour vol-
ume. For further validation of the results and to reduce the risk of incidental findings an
externally developed radiomics signature by Aerts et al. Aerts2014b was assessed. For
the sub-volumes (a)-(d) risk models were trained and validated using the Aerts’ signature
consisting of four imaging features as previously described in section 4.2.2. The prognostic
performance of the tumour volume determined on the sub-volumes (a)-(d) were assessed
reflecting the clinical importance of this parameter. Subsequently, for the each sub-volume
a representative model based on the Aerts’ signature and the tumour volume were selected
for further analyses.

(IV) The developed signatures were analysed in detail for the models trained on the
different selected tumour sub-volumes (a)-(d). Features included in the signatures and their
expression values are depicted as heatmaps for the exploratory and the validation cohort
to represent the level of expressions and to show possible differences between the tumour
sub-volumes. For this purpose, all patients were sorted according to their predicted risk and
to their risk group stratification. To quantify the overall importance of the identified features,
univariate prognostic power of the individual radiomics features included in the signatures
were measured by the Cox model on the entire patient cohort.
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6.3. Results of tumour sub-volumes evaluation

(I) Prognostic performance

The median volume fraction of the defined tumour rim sub-volumes was 47% (range: 26%–
60%) for the GTV3mm-rim and 53% (range: 32%–60% ) for the GTV5mm-rim and GTV10mm-rim

sub-volumes, respectively, compared to the volume of the GTVentire. The median perfor-
mance on the exploratory cohort was similar between the GTVentire and the rim-based mod-
els (C-Index: 0.75–0.78). For the validation cohort, models based on the GTVentire achieved
a median prognostic performance of 0.64±0.03 (median±SD). The models based on the
tumour rim sub-volumes showed similar median performance on the validation cohort (C-
Index: GTV3mm-rim: 0.64±0.03, GTV5mm-rim: 0.64±0.04 and GTV10mm-rim: 0.64±0.02, re-
spectively). The core-based risk models revealed lower prognostic performance on the vali-
dation cohort (C-Index: GTV3mm-core: 0.60±0.05, GTV5mm-core: 0.60±0.02 and GTV10mm-core:
0.60±0.03, respectively).

The C-Indices of the representative models for each tumour sub-volume are shown in
table 6.2. Among all GTVentire-based risk models, the BT-Cox algorithm in combination
with the MRMR feature selection method was selected for further analysis, as it showed
the best performance in the exploratory cohort (C-Index: 0.81, 95% confidence interval
[0.76–0.85]). On the validation cohort, this model achieved a C-Index of 0.68 ([0.60–0.77]).
The BT-Cox–MIM model trained on the GTV5mm-rim achieved the highest prognostic perfor-
mance compared to all other rim-based models on the exploratory cohort (C-Index: 0.92,
[0.90–0.95]). This representative model attained a high performance on the validation co-
hort (C-Index: 0.68, [0.60–0.77]), which was similar to the GTVentire-based model. The
corresponding GTV5mm-core-based model (BT-Cox–Spearman) showed a significantly lower
prognostic performance on the validation cohort (C-Index: 0.57, [0.47–0.77]) compared to
the GTV5mm-rim model (NPA-test: p=0.047). Figure 6.3 shows the prognostic performance
based on the GTVentire, GTV5mm-rim and GTV5mm-core of the feature selection methods and
learning algorithms on the exploratory and the validation cohorts. The resulting C-Indices for
the GTV3mm-rim and the GTV10mm-rim based models on the exploratory and on the validation
cohort for the considered feature selection methods and learning algorithms are depicted in
appendix E.1.

The GTV5mm-rim sub-volume, which achieved the highest prognostic performance among
all rim-based models was subsequently extended by different widths beyond the originally
delineated tumour into surrounding tissue. The tumour extension GTV5mm-rim+2mm (figure 6.3)
and GTV5mm-rim+3mm showed the highest median performance on the validation cohort (both
C-Indices: 0.64±0.04,). The other remaining extensions achieved a slightly reduced me-
dian performance in validation (appendix E.2). The C-Index of the representative models
trained on the different tumour extensions are shown in table 6.2. The models (MSR-RF–
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6. Tumour phenotype characterisation using tumour sub-volumes

Table 6.2.: Concordance indices (C-Index) of the representative model combinations consisting of a
feature selection (FS) and a learning algorithm (ML) using the entire gross tumour volume (GTVentire)
and the different tumour rim and core as well as the extended rim sub-volumes for the exploratory and
the validation cohort. Furthermore, the p-values of the log-rank tests of the Kaplan-Meier analyses
using the medianrisk and the bootrisk cut-off calculation methods are shown.

Tumour sub-volume C-Index p-value
Combination (ML–FS) Exploratory Validation medianrisk bootrisk

GTVentire

BT-Cox–MRMR 0.81 0.68 0.005 0.001
GTV3mm-rim

MSR-RF–MRMR 0.86 0.65 0.02 0.001
GTV3mm-core

MSR-RF–MRMR 0.84 0.55 0.72 0.63
GTV5mm-rim

BT-Cox–MIM 0.92 0.68 <0.001 <0.001
GTV5mm-core

BT-Cox–Spearman 0.93 0.57 0.40 0.40
GTV10mm-rim

BT-Cox–MRMR 0.88 0.62 0.16 0.16
GTV10mm-core

BT-Cox–Spearman 0.87 0.60 0.30 0.30

Tumour extension based on GTV5mm-rim

GTV5mm-rim+1mm

BT-Cox–MIM 0.80 0.63 0.08 0.02
GTV5mm-rim+2mm

MSR-RF–MRMR 0.86 0.70 0.01 0.01
GTV5mm-rim+3mm

MSR-RF–MRMR 0.83 0.69 0.07 0.07
GTV5mm-rim+5mm

BT-Weibull–MRMR 0.81 0.64 0.06 0.06

MRMR) trained on the GTV5mm-rim+2mm and on the GTV5mm-rim+3mm achieved the highest
performance in the exploratory cohort and a high performance in validation (C-Index: 0.70,
[0.63–0.79] and 0.69, [0.60–0.79], respectively).

(II) Risk-based patient stratification

Patients were stratified into low and high risk groups based on the risk predicted by the
radiomics risk models within the exploratory cohort. Table 6.2 shows the p-values of the log-
rank test for LRC for all representative models on the validation cohort using the medianrisk

and the bootrisk cut-off calculation methods. Kaplan-Meier analyses using both calculation
methods for the GTVentire, GTV5mm-rim, GTV5mm-core and GTV5mm-rim+2mm and the remaining
sub-volumes are summarised in appendix E.3 and appendix E.4, respectively.

The BT-Cox model trained on GTVentire was able to stratify patients into low and high
risk groups with a significant difference in LRC using the medianrisk and the bootrisk cut-off
values (p=0.005 and p=0.001, respectively). An improved stratification could be achieved by

100



6.3. Results of tumour sub-volumes evaluation

MSR-RF

RSF

BT-Weibull

BT-Cox

BGLM-Cox

Cox

MSR-RF

RSF

BT-Weibull

BT-Cox

BGLM-Cox

Cox

S
pe
ar
m
an

M
IF
S

M
IM

M
R
M
R

R
F-
V
I

S
pe
ar
m
an

M
IF
S

M
IM

M
R
M
R

R
F-
V
I

A
er
ts
et
al
.

A
er
ts
et
al
.

Vo
lu
m
e

Vo
lu
m
e

0.63
(0.76)

0.65
(0.70)

0.65
(0.77)

0.59
(0.74)

0.67
(0.76)

0.65
(0.71)

0.65
(0.66)

0.63
(0.71)

0.60
(0.72)

0.67
(0.71)

0.68
(0.81)

0.61
(0.85)

0.60
(0.84)

0.58
(0.84)

0.61
(0.81)

0.66
(0.80)

0.61
(0.75)

0.66
(0.79)

0.58
(0.84)

0.65
(0.78)

0.67
(0.82)

0.65
(0.78)

0.60
(0.80)

0.58
(0.88)

0.64
(0.82)

0.65
(0.71)

0.65
(0.66)

0.62
(0.71)

0.60
(0.70)

0.62
(0.69)

(a) GTVentire

(c) GTV5mm-core

0.63
(0.71)

0.62
(0.66)

0.62
(0.75)

0.64
(0.71)

0.63
(0.78)

0.62
(0.65)

0.75
0.70
0.65

C-Index

0.60
0.55
0.50

0.63
(0.72)

0.62
(0.61)

0.64
(0.79)

0.63
(0.59)

0.62
(0.78)

0.62
(0.61)

0.63
(0.81)

0.59
(0.68)

0.69
(0.76)

0.65
(0.76)

0.68
(0.73)

0.61
(0.68)

0.59
(0.65)

0.68
(0.75)

0.62
(0.71)

0.67
(0.67)

0.63
(0.83)

0.57
(0.84)

0.68
(0.92)

0.62
(0.92)

0.67
(0.91)

0.62
(0.87)

0.59
(0.70)

0.65
(0.87)

0.66
(0.77)

0.64
(0.77)

0.63
(0.80)

0.60
(0.78)

0.68
(0.88)

0.64
(0.81)

0.69
(0.78)

0.64
(0.75)

0.59
(0.64)

0.68
(0.74)

0.64
(0.71)

0.67
(0.67)

(b) GTV5mm-rim

(d) GTV5mm-rim+2mm

0.63
(0.71)

0.63
(0.66)

0.61
(0.79)

0.61
(0.71)

0.65
(0.80)

0.62
(0.64)

0.67
(0.71)

0.63
(0.61)

0.65
(0.74)

0.65
(0.60)

0.65
(0.73)

0.63
(0.61)

0.59
(0.76)

0.59
(0.70)

0.61
(0.73)

0.56
(0.74)

0.63
(0.71)

0.55
(0.67)

0.60
(0.64)

0.61
(0.65)

0.59
(0.64)

0.61
(0.65)

0.60
(0.75)

0.61
(0.79)

0.53
(0.92)

0.57
(0.93)

0.52
(0.89)

0.61
(0.77)

0.57
(0.76)

0.60
(0.84)

0.61
(0.78)

0.61
(0.76)

0.61
(0.77)

0.61
(0.79)

0.59
(0.79)

0.60
(0.82)

0.60
(0.80)

0.55
(0.67)

0.60
(0.64)

0.61
(0.65)

0.60
(0.64)

0.62
(0.65)

0.61
(0.73)

0.58
(0.66)

0.57
(0.77)

0.59
(0.73)

0.58
(0.78)

0.60
(0.65)

0.64
(0.73)

0.62
(0.60)

0.65
(0.78)

0.62
(0.73)

0.66
(0.74)

0.62
(0.60)

0.71
(0.80)

0.62
(0.69)

0.68
(0.75)

0.62
(0.75)

0.68
(0.75)

0.68
(0.67)

0.62
(0.64)

0.66
(0.68)

0.64
(0.67)

0.69
(0.72)

0.70
(0.79)

0.62
(0.74)

0.68
(0.84)

0.60
(0.83)

0.64
(0.81)

0.70
(0.86)

0.62
(0.70)

0.64
(0.86)

0.64
(0.85)

0.64
(0.86)

0.70
(0.82)

0.62
(0.75)

0.63
(0.79)

0.58
(0.88)

0.62
(0.79)

0.68
(0.67)

0.62
(0.64)

0.65
(0.68)

0.64
(0.68)

0.64
(0.70)

0.66
(0.72)

0.63
(0.61)

0.65
(0.78)

0.62
(0.59)

0.65
(0.73)

0.63
(0.61)

0.61
(0.69)

0.66
(0.64)

0.64
(0.76)

0.61
(0.66)

0.63
(0.74)

0.64
(0.62)

Figure 6.3.: Concordance indices for the risk models based on the entire gross tumour volume
(GTVentire), GTV5mm-rim, GTV5mm-core and GTV5mm-rim+2mm sub-volumes on the exploratory (in paren-
theses) and the validation cohort for different feature selection methods (columns) and learning algo-
rithms (rows). Model performance using the Aerts et al. (Aerts et al., 2014) signature and the volume
parameter are depicted.

the GTV5mm-rim-based model using both cut-off calculation methods (p<0.001). Stratification
based on the predicted risk for the GTV5mm-core model did not lead to significant differences
in LRC between both groups (medianrisk: p=0.40 and bootrisk: p=0.40). Figure 6.4 shows
the Kaplan-Meier curves using the medianrisk cut-off values for the representative models
based on GTVentire, GTV5mm-rim and GTV5mm-core, respectively, for the exploratory and the
validation cohort.

The p-values of the representative models based on extended tumour rim for the vali-
dation cohort are summarised in table 6.2. The selected model, which was based on the
GTV5mm-rim+2mm was able to stratify the patients into low and high risk groups with a signifi-
cant difference in LRC using both cut-off values (p=0.016). The Kaplan-Meier curves for this
model on the exploratory and the validation cohort are shown in figure 6.5. The resulting
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Figure 6.4.: Kaplan-Meier curves for the prediction of loco-regional tumour control (LRC) of the rep-
resentative models based on the GTVentire, the GTV5mm-rim and the GTV5mm-core volumes for patients
in the exploratory (left) and in the validation cohort (right). Patients were stratified into low (LR) and
high (HR) risk groups based on the median risk of LRC determined on the exploratory cohort.
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(d) GTV5mm-rim+2mm
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Figure 6.5.: Kaplan-Meier curves for the prediction of loco-regional tumour control of the represen-
tative model (table 6.2) based on the GTV5mm-rim+2mm for patients in the exploratory (left) and in the
validation cohort (right). Patients were stratified into low (LR) and high (HR) risk groups of recurrence
based on the median risk of loco-regional recurrence determined on the exploratory cohort.

p-values for all tumour extensions and for all feature selection methods as well as machine
learning algorithms are depicted in appendix E.5.

(III) Assessment of the Aerts’ signature and tumour volume

In general, the median performance of the radiomics models using Aerts’ signature deter-
mined on the sub-volumes (a)-(d) were reduced compared to the newly developed radiomics
models on the exploratory (C-Index: 0.71–0.73) and the validation cohort (C-Index: 0.59–
0.63).

The BT-Weibull model based on Aerts’ signature determined on GTVentire showed the
highest performance on the exploratory cohort. It attained a C-Index of 0.63 (95% con-
fidence interval, [0.54–0.73]) on the validation cohort. The BT-Weibull model based on
GTV5mm-rim achieved a slightly improved performance on the validation cohort (C-Index:
0.65, [0.56–0.73]), whereas the BT-Weibull model trained on the corresponding tumour core
revealed a significantly reduced performance in validation (C-Index: 0.58, [0.48–0.69], NPA-
test: p=0.049). Furthermore, the representative models based on the Aerts’ signature for
the extended GTV5mm-rim+2mm (BT-Cox) showed also a similar performance (C-Index: 0.64,
[0.54–0.74]), whereas the GTV5mm-rim+3mm (MSR-RF) tumour extension showed an improved
prognostic performances on the validation cohort (C-Index: 0.68 [0.59–0.78]) compared to
the GTVentire-based model trained on the Aerts’ signature.
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The representative models trained on the tumour volume determined on the GTVentire

(BT–Cox), GTV5mm-rim (BT–Cox), GTV5mm-core (BT–Cox) and GTV5mm-rim+2mm (MSR-RF)
sub-volumes showed a good performance on the validation cohort (C-Indices: 0.63, 0.65,
0.65 and 0.62), respectively. The resulting C-Indices for the learning algorithms based on
the Aerts’ signature and the tumour volume parameter are summarised in figure 6.3, ap-
pendix E.1 and appendix E.5.

The representative GTV5mm-rim-based model trained with the Aerts’ signature could strat-
ified the patients into low and high risk groups with significant differences on LRC using
the bootstrapped cut-off calculation method (p=0.028). The remaining models did not lead
to significant differences on LRC between both risk groups. For the representative tumour
volume-based models (b) and (c) patients could be stratified with significant differences in
LRC between both risk groups using both cut-off calculation methods (p<0.05). The re-
maining models based on the tumour volume did not lead to significant differences in LRC
between both risk groups. The resulting p-values of the log-rank tests are depicted in ap-
pendix E.3, appendix E.4 and appendix E.5.

(IV) Signature analysis

Radiomics signatures were investigated for the representative models based on (a) GTVentire,
(b) GTV5mm-rim, (c) GTV5mm-core and extended (d) GTV5mm-rim+2mm. Figure 6.6 shows the fea-
ture expressions of the newly developed signatures for each patient in a heatmap. Feature
names of the selected features within the signatures are explained in appendix E.C.

The signature of the GTVentire model consists of two first-order statistical radiomics fea-
tures computed on the wavelet transformed images. For instance, feature F1S is based on
the intensity-volume histogram and describes the differences between the volume fractions
at two different intensity fractions (El Naqa et al., 2009). The two radiomics features in the
signature showed a significant association to LRC based on the univariate Cox model using
the entire patient cohort (F1S: p<0.001 and F2S: p<0.001).

The GTV5mm-rim-based model was trained on a signature that contains ten radiomics fea-
tures which were mainly texture-based features extracted from the original base images. For
instance, feature F5T is based on the GLDZM, capturing the relation between location and
grey level to measure the intra-tumour heterogeneity. All features within the signature were
significantly prognostic for LRC in univariate analyses, except of feature F2S.

The developed signature for the model based on the corresponding GTV5mm-core sub-
volume also consisted of ten radiomics features which were either first-order statistical or
texture-based features extracted from different wavelet transformed images. Only features
F2S, F4S and F8T were significantly associated with LRC using univariate Cox analyses.

The extended GTV5mm-rim+2mm-based model was trained on a radiomics signature with
seven features, which comprised mainly morphological and texture features. The texture-
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6.3. Results of tumour sub-volumes evaluation
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Figure 6.6.: Heatmaps showing different expression patterns of the radiomics features within the
developed signatures for the representative models based on the (a) GTVentire, (b) GTV5mm-rim, (c)
GTV5mm-core and (d) GTV5mm-rim+2mm. Feature expression values are sorted according to the predicted
risk and the risk group based on the determined medianrisk cut-off values. Loco-regional tumour
control (LRC) during follow-up (yes, light; no, dark) and features with a significant association with
LRC are shown (*p<0.05 and **p<0.001). A detailed description of the feature abbreviations can be
found in appendix E.C. Abbreviations: F̄ cluster feature consisting of several features represented
by the mean value as a new meta-feature, FS first order statistical feature, FM morphological feature
and FT texture feature.
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6. Tumour phenotype characterisation using tumour sub-volumes

based features were commonly extracted from wavelet transformed images. For example,
feature F2M quantified the compactness of the GTV5mm-rim+2mm volume relative to that of a
sphere. The univariate Cox regression revealed that features F1M, F2M, F5T and F6T were
significantly associated with LRC.

6.4. Summary and discussion

Tumours may contain biologically complex structures and exhibit substantially spatial varia-
tion, e.g., necrosis may appear in the core of the tumour and high cell proliferation may occur
along the tumour periphery. The main objective of this study was to investigate and compare
different sub-volumes based on the tumour rim and the core to identify those region which
contains the relevant prognostic information using macroscopic CT imaging for patients with
HNSCC.

Radiomics risk models based on tumour rim sub-volumes were superior for the prediction
of LRC and the stratification of patients into low and high risk groups than models based on
the corresponding core. This may indicate that the tumour rim is biologically more diverse
and important treatment-related processes occur primarily in the rim. Moreover, it indicates
that these processes are observable in macroscopic CT imaging. The strong variability of
the radiomics feature expressions especially of patients with an event may be explain the
reduced performance of the tumour-core based models. Furthermore, the heatmap showed
that the expression values for several features within the signature were nearly zero for many
patients of the representative tumour core-based model. Usually feature values around zero
are not informative and thereby contain limited prognostic information for the radiomics risk
models. These results are in-line with previously published data (Gatenby et al., 2013;
O’Connor et al., 2015; Dou et al., 2017). For example, Grove et al. (Grove et al., 2015)
showed that tumour-rim based radiomics features led to a higher expression compared to
features extracted from corresponding tumour-core sub-volumes in NSCLC patients. The
performance differences between the tumour rim and the corresponding core sub-volumes
were also observed for the published Aerts’ signature. In particular, the tumour-rim based
model (GTV5mm-rim) showed a significantly improved C-Index compared to the model based
on the corresponding core (GTV5mm-core). The tumour volume of the rim (b) and the core (c)
sub-volume showed a good C-Index which demonstrated the relevance of this parameter.

Defining the precise extent of the macroscopic tumour is difficult, especially using CT
imaging without contrast enhancement. Slight extensions of the delineated tumour volume
into normal tissue did not reduce the performance of the radiomics risk models, which in-
dicates that these regions may also contain prognostic information. In addition, the slightly
extensions of the tumour may be useful for assessing feature stability using small tumour
extensions, simulating different tumour delineations of different observers.

106



6.4. Summary and discussion

This study is based on the assumption that necrotic regions may appear in the tumour
core due to inadequate vascular supply and that proliferating cancer cells are mainly occur
in the tumour periphery (Vaupel et al., 1989). However, it is challenging to distinct between
the proliferating and the necrotic part of the tumour by means of a static definition as used
in this study. Furthermore, such a simple approach does not take into account complex
spatial variations in tumours, e.g., non-uniform necrotic regions which may appear in dif-
ferent parts of the tumour. The identification and incorporation of tumour specific regional
variations by more sophisticated image analysis techniques may help to overcome this gap.
For instance, differential information from multi-modal imaging data such as PET-CT may be
used. Moreover, super-voxel algorithms can be applied to group voxels into super-voxel seg-
ments based on their grey value, e.g., using the FDG uptake value (Kanungo et al., 2002).
Subsequently, the resulting super-voxel segments can be further merged to generate tumour
sub-volumes, e.g., by hierarchical or fuzzy c-means clustering algorithms across the entire
patient cohort. Wu et al. (Wu et al., 2016a) proposed such a two-stage clustering process,
for the identification and determination of sub-volumes based on CT imaging combined with
FDG-PET scans in lung cancer patients. However, due to missing functional imaging, it is
was not possible to use such imaging data in this thesis. Nevertheless, an adaptation of
the proposed sub-volume generation process by a more advanced image analysis in com-
bination with incorporating complementary imaging information may offer the potential to
enhance radiomics risk models in the future.

The identification of tumour sub-volumes which enable the potential to improve the per-
formance of conventional radiomics risk models may also be interesting for risk models
based on deep learning algorithms. Deep learning algorithms, in particular convolutional
neural networks (CNN) consist of a sequence of convolutional and sub-sampling operations
to learn complex feature representation directly from the imaging data (Greenspan et al.,
2016). Consequently these results in a large number of model parameters, which may lead
to model over-fitting, especially in the case of few training data. Therefore, a reduction of
the learning data by usage of using tumour sub-volumes instead of the entire tumour vol-
ume may help to develop generalisable and better performing deep learning models, e.g.,
by fewer convolutional operations.

In conclusion, the consideration and application of tumour sub-volumes are a promising
techniques to improve the performance of radiomics risk models.
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7. Summary and further perspectives

The personalisation of cancer treatment is one major objective in radiation oncology, e.g.,
to tailor the radiation dose individually to patients or to small subgroup. This approach
requires the identification of biomarkers, which characterise the tumour phenotype and pre-
cisely predict therapy response. Next to molecular-based biomarkers, radiomics attempts to
characterise the tumour using imaging data. Radiomics is based on the extraction and anal-
ysis of quantitative image features by machine learning algorithms to develop prognostic or
predictive risk models.

This thesis was dedicated to establish and implement a radiomics workflow at the National
Centre for Radiation Research in Oncology. Further, methodological developments are pro-
vided, which aims to enhance the prognostic performance of image-based risk models.

The precise prediction of therapy response requires different processing steps to evolve
imaging-based risk models. Consequently, in this thesis two novel software-based frame-
works were developed to compute a wide range of different quantitative features, which
were extracted from medical imaging data and to build generalisable radiomics risk models.
In particular, the feature computation framework provides the mathematical definitions of the
radiomics features and different image pre-processing algorithms, e.g., to enhance the im-
age quality prior to feature extraction. Hence, a novel data-driven physical correction model
for the correction of intensity non-uniformity, which is a typical artefact in MRI data, was
developed and integrated. The new pre-processing algorithm is motivated by the physical
properties of a typical MRI coil system and provides smooth intensity corrections.

The developed risk modelling framework provides a wide range of different machine learn-
ing algorithms to identify informative features and to evolve automatic and unbiased pre-
dictive and prognostic risk models. In addition to the provided algorithms, the framework
enables building risk models using data resampling strategies, e.g., bootstrapping or cross
validation to select features and to build models, which are robust against influence of data
perturbation.

The evaluation and identification of suitable feature selection methods and learning algo-
rithms are integral components for the development of reliable clinical risk models. Within in
this thesis, an extensive evaluation of twelve different feature selection methods and eleven
machine learning algorithms for time-to-event survival data was realised. Moreover, ra-
diomics risk models were developed and externally validated for the prediction of LRC and
OS using CT scans of a multi-centre HNSCC patient cohort. Consequently, six different fea-
tures selection methods and seven learning algorithms were identified and recommended
for use in future radiomics studies.
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7. Summary and further perspectives

In general, the improvement of radiomics risk models is an essential step to facilitate
image-based risk models for treatment decisions in clinical care. Therefore, the potential of
CT imaging during the course of treatment was investigated. For this purpose, pre-treatment
CT images were compared with in-treatment CT imaging (after the second week of primary
RCT) based on their prognostic value to predict LRC for patients with HNSCC. As a re-
sult, the risk model performance for the prediction of LRC could be significantly improved
by more than 10% using in-treatment CT scans compared to pre-treatment CT imaging.
Furthermore, an improvement of risk-based patient stratification was demonstrated. The
incorporation of in-treatment CT imaging is a promising way to improve radiomics risk mod-
els. Moreover, the time-point of the in-treatment image acquisition still permits a clinical
treatment adaptation.

Imaging-based risk models are usually built on the characteristics of the entire tumour.
However, tumours are biologically complex and exhibit substantial spatial variation, e.g., ex-
pressing necrosis mainly in the core and high tumour cell proliferation at the periphery. Such
spatial variations may influence the prognostic performance of the risk models. For that rea-
sons, tumour sub-volumes were investigated, with the aim to gain a deeper understanding
which part of the tumour contains more prognostic information and whether incorporation
of this spatial diversity improves the model performance. In particular, risk models, which
are based on the pre-defined tumour rim and the corresponding core, were developed and
compared. The analyses demonstrated that the rim of the tumour contains more prognostic
information, leading to higher model performance and better patient stratification compared
to the core. Moreover this indicates that spatial variations within the tumour can be mea-
sured by macroscopic CT imaging.

The field of radiomics still offers many interesting challenges and open research questions
for the future. Some of them are shortly discussed in the following paragraphs.

Radiomics risk modelling

Radiomics feature robustness and reproducibility are vital factors for the successful clini-
cal application of radiomics risk models (Gillies et al., 2015). However, radiomics features
may be influenced, e.g., by differences in patient positioning or the usage of different image
acquisition parameters like image resolution or reconstruction algorithms. The resulting ra-
diomics risk models based on non-robust features may lead to a poor model generalisability
and to false outcome prediction. Therefore, feature stability analyses are recommended to
identify radiomics features, which are non-robust against such influences and could be dis-
missed, consequently. These stability analyses are often performed using test-retest data,
where two or more images of a patient or a phantom are acquired within a short time inter-
val (Aerts et al., 2014; Mackin et al., 2015; Shafiq-UI-Hassan et al., 2017). However, such
data sets are scarcely available, e.g., due to effort of acquiring process. An additional prob-
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lem is that feature robustness depends on the particular tumour phenotype and the used
image modality (Leijenaar et al., 2013; van Timmeren et al., 2016). Consequently, these
factors may hamper the application and translation of radiomics risk models into the clinical
workflow. This leads to a need for increasing the robustness of radiomics features by new
strategies. For instance, it is possible to incorporate radiomics features, which are computed
and extracted from the original images as well as from images perturbed by translations or
rotations. These data augmentation strategies are an effective technique to stabilise ra-
diomics features, e.g., by averaging over the produced perturbed feature values to create
new meta features. As an alternative, all generated perturbation values may be included as
additional data samples into the modelling process. Moreover this approach enlarges the
data distributions of the features and may enable the risk models to learn robust decision
boundaries to reduce the risk of false model predictions.

A further important step for the acceptance of radiomics risk models is the linkage be-
tween the features derivated from imaging data and the underlying tumour biology (Segal
et al., 2007; Grossmann et al., 2017). Aerts et al. (Aerts et al., 2014) reported significant
associations between the radiomics features within the developed signature and the gene
expression profiles of lung cancer patients. For instance, both texture based features in
the signature were strongly correlated with cell-cycling pathways, indicating an increased
proliferation in the more heterogeneous tumours (Aerts et al., 2014). However, only few
studies systematically investigated the causal relationships between radiomics features and
the underlying tumour biology (Panth et al., 2015; Incoronato et al., 2017). In particular,
for patients with HNSCC further investigations are required to gain deeper understanding of
potential causality. These analyses would allow to dismiss radiomics features which are not
associated with known biological tumour mechanisms.

Deep learning based radiomics risk modelling

The predictive or prognostic performance of radiomics risk models may be further improved
using the deep-learning approach. In particular CNN are able to learn feature representa-
tions directly from the imaging data instead of using engineered radiomics features. The
application of CNN showed promising results in the medical imaging domain, e.g., for image
segmentation or lesion detection (Greenspan et al., 2016; Pereira et al., 2016; Roth et al.,
2016). However, only few studies investigated the potential of the deep learning approach
for radiomics (Liu et al., 2016; Lao et al., 2017). For instance, Paul et al. (Paul et al., 2016)
showed that deep learning features alone did not improve the model accuracy in comparison
to traditional quantitative imaging features. Consequently, the adaptation of deep learning
to radiomics risk modelling still requires substantial fundamental research. Deep learning
is usually based on 2D images, which reduce the available information of the entire tumour
and result in a loss of information concerning the relation between subsequent image slices.
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7. Summary and further perspectives

Conceptually, 3D CNN are possible, however, no pre-trained networks are available. Hence,
a large number of training data samples (i.e., ≫ 1000) would be required, e.g., to avoid
model overfitting, which is difficult to achieve. A further unresolved limitation of deep learn-
ing is the missing ability to handle (censored) continuous time-to-event survival data. Also,
the linkage between the learned feature representations and tumour biology is challenging,
e.g., due to the unclear meaning of these features. Therefore, new strategies and algorithms
have to be implemented to increase the application of deep learning. Still, deep-learning is a
promising approach for radiomics and the individualisation of cancer treatment in the future.

Combination of radiomics models with in-silico modelling

Radiomics risk models are usually based on imaging data acquired once at a fixed time
point. For the precise characterisation and analysis of the tumour phenotype, it may not be
sufficient to use the detailed tumour characteristics only based on information derived from
one specific time point. Furthermore, several other challenge arise by the usage of imaging
during treatment, e.g., late imaging time points (e.g., fourth week of treatment) may also
contain additional informations but may be too late for consideration.

To overcome this gap, it is conceivable to combine conventional radiomics risk models
by in-silico models. In particular, in-silico models enable to simulate the tumour behaviour
and their micro-environment on a fine time scale, which allows a precise observation of the
tumour dynamics. The gained knowledge from in-silico models may be used as additional
features for conventional radiomics risk models to improve the prediction performance. Fur-
thermore, the information derived from medical imaging data can be used to develop realistic
in-silico models and the acquired imaging data during the treatment provides the ability to
continuously update and adjust such models.

Ferranti et al. (Ferranti et al., 2017) generated and simulated networks analogous to bio-
logical systems and incorporated these data into machine learning approaches as additional
knowledge about the underlying system. The usage of these data increased the prediction
performance of the machine learning algorithms. Another common approach is the appli-
cation of agent-based models, which are powerful simulations to investigate the interactions
in complex systems (Bonabeau, 2002). An agent is the smallest unit in this model and
can show different types of stochastic behaviour, by interaction with other agents. Although
these models simplify many aspects of reality, they have been shown to be useful in can-
cer research, e.g., to study tumour growth processes or the mutational landscape of solid
tumours (Waclaw et al., 2015; Poleszczuk and Enderling, 2016). Kather et al. (Kather et al.,
2016) developed a multiagent-based model from quantitative histological and other micro-
scopic data. This agent-based model simulated interactions between tumour cells, immune
cells, and stroma and represented diverse spatial patterns observed in histological samples
of human colorectal cancer. Subsequently, a Cox model was trained based on the number
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of stroma cells and additional clinical parameters to predict OS. Jalalimanesh et al. (Jalal-
imanesh et al., 2017) developed an agent based model to simulate different scenarios of
radiotherapy with the aim to optimise the therapy of solid tumours. The agent-based ap-
proach considered the heterogeneity of tumour oxygen diffusion and effects of hypoxia on
radiotherapy. The mathematical modelling and simulation of tumour behaviour based on
imaging or other types of data may provide additional information about the complex biolog-
ical system of a tumour. Incorporation of these data into conventional radiomics risk models
may be a promising and effective way to improve outcome prediction.

In summary, the presented thesis established the developed radiomics workflow at Na-
tional Centre for Radiation Research in Oncology. Furthermore, the observed advantage
of in-treatment imaging and the consideration of spatial diversity into radiomics risk models
are important contributions for improving their accuracy. Moreover, the results provide an
substantial step towards personalisation of cancer treatment and may be applied in inter-
ventional clinical trials after prospective validation.
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8. Zusammenfassung

Die Personalisierung der Krebsbehandlung ist ein wesentliches Ziel in der modernen Ra-
dioonkologie, indem z.B. die Strahlendosis für einen Patienten und dessen Tumor individuell
angepasst wird. Die Implementierung eines solchen Ansatzes erfordert die Identifizierung
von spezifischen Merkmalen, welche den Tumor charakterisieren, um das Therapieanspre-
chen präzise vorhersagen zu können. Neben der molekularen Charakterisierung, hat sich
radiomics als ein vielversprechendes Verfahren erwiesen, welches den Tumor anhand von
Bilddaten beschreibt. Dazu werden quantitative Merkmale aus den medizinischen Bildda-
ten extrahiert, die anschließend mittels intelligenter Lernverfahren analysiert werden, um
prognostische oder prädiktive Risikomodelle zu entwickeln.

Die vorliegende Arbeit diente der Etablierung und Implementierung von radiomics inner-
halb des Nationalen Zentrums für Strahlenforschung in der Onkologie, sowie der methodi-
schen Weiterentwicklung mit dem Ziel die Genauigkeit von bildbasierten Risikomodellen zu
verbessern.

Die präzise Vorhersage des Therapieansprechens erfordert eine Vielzahl von Verarbei-
tungsschritten, um bildbasierte Risikomodelle zu entwickeln. Daher wurden in dieser Arbeit
zwei neuartige software-basierte Systeme (frameworks) erarbeitet, welche die Extraktion
der quantitativen Bildmerkmale sowie die Erstellung von Risikomodellen ermöglichen. Das
framework zur Merkmalsberechnung stellt die mathematischen Definitionen der Bildmerk-
male sowie verschiedene Algorithmen für die Bildvorverarbeitung zur Verfügung, um bei-
spielsweise die Bildqualität zu verbessern. Des Weiteren wurde ein neues Verfahren zur
Korrektur von Signalinhomogenitäten, die ein typisches Bildartefakt in Magnetresonanzto-
mographie (MRT)-Bilddaten sind. entwickelt und in das framework integriert. Das vorge-
schlagene Korrekturmodell basiert auf den physikalischen Verhalten eines typischen MRT-
Spulensystems und verhindert somit zu starke Intensitätskorrekturen. Das zweite framework
umfasst eine Vielzahl von unterschiedlichen intelligenten Lernverfahren für die Erkennung
von relevanten Merkmalen sowie zur automatischen Entwicklung von Vorhersagemodellen.
Zudem ermöglicht es zufällige Stichproben zu generieren z.B. mittels Kreuzvaliderungs-
verfahren, um Merkmale zu selektieren und Modelle zu generieren, die robust gegenüber
dem Einfluss von Datenveränderungen sind. Die Evaluierung und Identifizierung geeigneter
Methoden für die Merkmalsselektion sowie des maschinellen Lernverfahrens ist ein inte-
graler Bestandteil für die Entwicklung von klinisch anwendbaren Risikomodellen. In einer
umfassenden Analyse wurden zwölf Methoden zur Merkmalsselektion und elf maschinelle
Lernverfahren für Überlebenszeitdaten untersucht. Die Risikomodelle wurden anhand von
Röntgen-Computertomographie (CT) Bilddaten für die Vorhersage der loko-regionären Tu-
morkontrolle (LRC) und des Gesamtüberlebens (OS) von Patienten mit fortgeschrittenen

115



8. Zusammenfassung

Kopf-Hals-Tumoren (HNSCC) entwickelt und bewertet. Insgesamt wurden sechs Methoden
zur Merkmalsselektion und sieben Lernverfahren als geeignet vorgeschlagen, welche in zu-
künftigen radiomics-basierten Studien verwendet werden sollten. Die kontinuierliche Ver-
besserung der bildbasierten Risikomodelle ist eine Voraussetzung für die Einführung in den
therapeutischen Entscheidungsprozess. Daher wurden in dieser Arbeit CT-Bildgebung die
während der Therapie (in-treatment) erstellt wurde hinsichtlich ihrer prognostischen Aus-
sagekraft für die Vorhersage von LRC und OS innerhalb einer HNSCC Patientenkohorte,
untersucht. In dieser Untersuchung konnte gezeigt werden, dass die Genauigkeit der Risi-
komodelle für die Vorhersage von LRC mittels in-treatment CT-Bildgebung im Vergleich zur
Bildgebung vor der Therapie um mehr als 10% verbessert werden konnte. Die Verwendung
von in-treatment CT-Bildgebung stellt somit einen vielversprechenden Ansatz dar, um die
Genauigkeit von bildbasierten Risikomodellen zu verbessern.

Radiomics-basierte Risikomodelle verwenden häufig Bildmerkmale, welche unter Verwen-
dung des gesamten sichtbaren Tumors berechnet und extrahiert wurden. Tumore sind je-
doch biologisch komplex und weisen häufig eine unterschiedliche räumlich Verteilung auf
molekularer Ebene auf, z.B. nekrotische Areale im Tumorzentrum und eine starke Zellproli-
feration entlang der Peripherie. Solche räumlichen Variationen können die Genauigkeit der
Risikomodelle beeinflussen. Daher wurden in dieser Arbeit verschiedene Subvolumina in-
nerhalb des Tumors untersucht, um ein tieferes Verständnis über die prognostische Aus-
sagekraft der verschiedenen Tumorareale zu erlangen. Des Weiteren wurde analysiert, ob
die Einbeziehung dieser Diversität zu einer Verbesserung der Genauigkeit von Risikomodel-
len führen kann. Die Analyse zeigte, dass der Tumorrand die wesentlichen prognostischen
Informationen, im Vergleich zum Tumorzentrum, enthält und das diese biologischen Variatio-
nen innerhalb des Tumors mit Hilfe von makroskopischer CT-Bildgebung gemessen werden
kann.

In der vorliegenden Arbeit wurde radiomics am Nationalen Zentrum für Strahlenforschung
in der Onkologie erfolgreich etablierte und eingeführt. Die entwickelten frameworks ermög-
lichen somit die Durchführung von radiomics-basierten Analysen. Zudem leisten die vor-
geschlagen methodischen Weiterentwicklungen, wie die Verwendung von CT-Bildgebung
während der Therapie und die Berücksichtigung der räumlichen Diversität, einen wichtigen
Beitrag zur Steigerung der Genauigkeit von bildbasierten Risikomodellen. Die erreichten
Verbesserungen, stellen darüber hinaus einen wichtigen Schritt zur Individualisierung der
Krebsbehandlung von Patienten dar und könnten somit nach einer prospektiven Validierung
in interventionellen klinischen Studien angewendet werden.
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Krupa K and Bekiesińska-Figatowska M. 2015. Artifacts in magnetic resonance imaging.
Polish Journal of Radiology 80:93–106.

Kumar V, Gu Y, Basu S, Berglund A, Eschrich S, Schabath M, Forster K, Aerts H, Dekker
A, Fenstermacher D, et al. 2012. Radiomics: the process and the challenges. Magnetic
Resonance Imaging 30:1234–1248.

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout R, Granton P, Zegers C,
Gillies R, Boellard R, Dekker A, et al. 2012. Radiomics: extracting more information from
medical images using advanced feature analysis. European Journal of Cancer 48:441–
446.

Langfelder P and Horvath S. 2012. Fast R functions for robust correlations and hierarchical
clustering. Journal of Statistical Software 46.

Lao J, Chen Y, Li Z, Li Q, Zhang J, Liu J, and Zhai G. 2017. A Deep Learning-Based
Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Scientific Reports
7:10353.

Leger S, Bandurska-Luque A, Pilz K, Zöphel K, Baumann M, Troost EGC, Löck S, and
Richter C. 2016. OC-0262: Comparison of machine-learning methods for predictive ra-
diomic models in locally advanced HNSCC. Radiotherapy and Oncology 119:121–122.

Leger S, Löck S, Hietschold V, Haase R, Böhme H, and Abolmaali N. 2014. Reproducible
and Accurate Automatic Correction of Intensity Non-Uniformity in MRI Data. In: Joint Con-
ference of the SSRMP, DGMP, ÖGMP 2014, pp. 45–47.

Leger S, Löck S, Hietschold V, Haase R, Böhme H, and Abolmaali N. 2015. Automatic
Intensity Non-Uniformity Correction in MRI Data. In: IEEE 12th International Symposium
on Biomedical Imaging (ISBI).

Leger S, Löck S, Hietschold V, Haase R, Böhme H, and Abolmaali N. 2017a. Physical cor-
rection model for automatic correction of intensity non-uniformity in magnetic resonance
imaging. Physics and Imaging in Radiation Oncology 4:32–38.

Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, Kotzerke J, Schreiber A,
Tinhofer I, Budach C, Sak A, Stuschke M, Balermpas P, Rödel C, Ganswindt U, Belka C,
Pigorsch S, Combs S, Mönnich D, Zips D, Krause M, Baumann M, Richter C, Troost E, and
Löck S. 2018. Identification of tumour sub-volumes for improved radiomic risk modelling
in locally advanced HNSCC. Radiotherapy and Oncology.

125



Bibliography

Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, Kotzerke J, Schreiber A,
Tinhofer I, Budach C, Sak A, Stuschke M, Balermpas P, Rödel C, Ganswindt U, Belka
C, Pigorsch S, Combs S, Mönnich D, Zips D, Krause M, Baumann M, Troost E, Löck S,
and Richter C. 2017b. A comparative study of machine learning methods for time-to-event
survival data for radiomics risk modelling. Scientific Reports 7:13206.

Leijenaar R, Carvalho S, Velazquez E, Van Elmpt W, Parmar C, Hoekstra O, Hoekstra C,
Boellaard R, Dekker A, Gillies R, et al. 2013. Stability of FDG-PET Radiomics features: an
integrated analysis of test-retest and inter-observer variability. Acta Oncologica 52:1391–
1397.

Lewiner T, Lopes H, Vieira A, and Tavares G. 2003. Efficient implementation of marching
cubes’ cases with topological guarantees. Journal of Graphics Tools 8:1–15.

Li Q, Bai H, Chen Y, Sun Q, Liu L, Zhou S, Wang G, Liang C, and Li Z. 2017. A Fully-
Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imag-
ing Signature for Prediction of Overall Survival in Glioblastoma Multiforme. Scientific Re-
ports 7:14331.

Liney G, Turnbull L, and Knowles A. 1998. A simple method for the correction of endorectal
surface coil inhomogeneity in prostate imaging. Journal of Magnetic Resonance Imaging
8:994–997.

Linge A, Löck S, Krenn C, Appold S, Lohaus F, Nowak A, Gudziol V, Baretton G, Buchholz
F, Baumann M, et al. 2016a. Independent validation of the prognostic value of cancer
stem cell marker expression and hypoxia-induced gene expression for patients with locally
advanced HNSCC after postoperative radiotherapy. Clinical and Translational Radiation
Oncology 1:19–26.

Linge A, Lohaus F, Löck S, Nowak A, Gudziol V, Valentini C, von Neubeck C, Jütz M, Tin-
hofer I, Budach V, et al. 2016b. HPV status, cancer stem cell marker expression, hy-
poxia gene signatures and tumour volume identify good prognosis subgroups in patients
with HNSCC after primary radiochemotherapy: A multicentre retrospective study of the
German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiotherapy and
Oncology 121:364–373.

Linge A, Löck S, Gudziol V, Nowak A, Lohaus F, von Neubeck C, Jütz M, Abdollahi A, Debus
J, Tinhofer I, et al. 2016c. Low cancer stem cell marker expression and low hypoxia identify
good prognosis subgroups in HPV (-) HNSCC after postoperative radiochemotherapy: a
multicenter study of the DKTK-ROG. Clinical Cancer Research 22:2639–2649.

126



Bibliography

Liu R, Hall L, Goldgof D, Zhou M, Gatenby R, and Ahmed K. 2016. Exploring deep features
from brain tumor magnetic resonance images via transfer learning. In: Neural Networks
(IJCNN), 2016 International Joint Conference on. IEEE, pp. 235–242.

Ljungkvist A, Bussink J, Kaanders J, and van der Kogel A. 2007. Dynamics of tumor hypoxia
measured with bioreductive hypoxic cell markers. Radiation Research 167:127–145.

Löck S, Perrin R, Seidlitz A, and Bandurska-luque A. 2017. Residual tumour hypoxia in
head-and-neck cancer patients undergoing primary radiochemotherapy , final results of
a prospective trial on repeat FMISO-PET imaging. Radiotherapy and Oncology 124:533–
540.

Lohaus F, Linge A, Tinhofer I, Budach V, Gkika E, Stuschke M, Balermpas P, Rödel C,
Avlar M, Grosu A, et al. 2014. HPV16 DNA status is a strong prognosticator of loco-
regional control after postoperative radiochemotherapy of locally advanced oropharyngeal
carcinoma: results from a multicentre explorative study of the German Cancer Consortium
Radiation Oncology Group (DKTK-ROG). Radiotherapy and Oncology 113:317–323.

Low R. 2007. Abdominal MRI advances in the detection of liver tumours and characterisa-
tion. The Lancet Oncology 8:525–535.

Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones
A, and Court L. 2015. Measuring CT scanner variability of radiomics features. Investigative
Radiology 50:757.

Mantel N. 1966. Evaluation of survival data and two new rank order statistics arising in its
consideration. Cancer Chemotherapy Reports 50:163–170.

Marr D and Hildreth E. 1980. Theory of edge detection. Proceedings of the Royal Society of
London B: Biological Sciences 207:187–217.

Milles J, Zhu Y, Gimenez G, Guttmann C, and Magnin I. 2007. MRI intensity nonuniformity
correction using simultaneously spatial and gray-level histogram information. Computer-
ized Medical Imaging and Graphics 31:81–90.

Milletari F, Navab N, and Ahmadi S. 2016. V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. In: Fourth International Conference on 3D Vision,
pp. 565–571.

Muthupillai R, Lomas D, Rossman P, Greenleaf JF, Manduca A, and Ehman RL. 1995.
Magnetic resonance elastography by direct visualization of propagating acoustic strain
waves. Science 269:1854–1857.

127



Bibliography

Nicolasjilwan M, Hu Y, Yan C, Meerzaman D, Holder C, Gutman D, Jain R, Colen R, Rubin D,
Zinn P, et al. 2015. Addition of MR imaging features and genetic biomarkers strengthens
glioblastoma survival prediction in TCGA patients. Journal of Neuroradiology 42:212–221.

Nomden C, de Leeuw A, Van Limbergen E, De Brabandere M, Nulens A, Nout R, Laman M,
Ketelaars M, Lutgens L, Reniers B, et al. 2013. Multicentre treatment planning study of
MRI-guided brachytherapy for cervical cancer: comparison between tandem-ovoid appli-
cator users. Radiotherapy and Oncology 107:82–87.

O’Connor J, Rose C, Waterton J, Carano R, Parker G, and Jackson A. 2015. Imaging intra-
tumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clinical
Cancer Research 21:249–257.

Ogawa S, Lee T, Nayak A, and Glynn P. 1990. Oxygenation-sensitive contrast in magnetic
resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine
14:68–78.

Otsu N. 1975. A threshold selection method from gray-level histograms. Automatica 11:23–
27.

Overgaard J, Hansen H, Overgaard M, Bastholt L, Berthelsen A, Specht L, Lindeløv B,
and Jørgensen K. 1998. A randomized double-blind phase III study of nimorazole as a
hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carci-
noma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85.
Radiotherapy and Oncology 46:135–146.

Overgaard J, Hansen H, Specht L, Overgaard M, Grau C, Andersen E, Bentzen J, Bastholt
L, Hansen O, Johansen J, et al. 2003. Five compared with six fractions per week of con-
ventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6&7
randomised controlled trial. The Lancet 362:933–940.

Panth K, Leijenaar R, Carvalho S, Lieuwes N, Yaromina A, Dubois L, and Lambin P. 2015.
Is there a causal relationship between genetic changes and radiomics-based image fea-
tures? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells.
Radiotherapy and Oncology 116:462–466.

Parmar C, Grossmann P, Bussink J, Lambin P, and Aerts H. 2015a. Machine learning meth-
ods for quantitative radiomic biomarkers. Scientific Reports 5:13087.

Parmar C, Grossmann P, Rietveld D, Rietbergen M, Lambin P, and Aerts H. 2015b. Ra-
diomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer.
Frontiers in Oncology 5:272.

128



Bibliography

Parmar C, Leijenaar R, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D, Rietbergen
M, Haibe-Kains B, Lambin P, and Aerts H. 2015c. Radiomic feature clusters and Prog-
nostic Signatures specific for Lung and Head & Neck cancer. Scientific Reports 5:1–10.

Partridge S, Gibbs J, Lu Y, Esserman L, Tripathy D, Wolverton D, Rugo H, Hwang E,
Ewing C, and Hylton N. 2005. MRI measurements of breast tumor volume predict re-
sponse to neoadjuvant chemotherapy and recurrence-free survival. American Journal of
Roentgenology 184:1774–1781.

Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L, and Goldgof D. 2016.
Deep Feature Transfer Learning in Combination with Traditional Features Predicts Sur-
vival Among Patients with Lung Adenocarcinoma. Tomography: A Journal for Imaging
Research 2:388.

Pencina M and D’Agostino R. 2004. Overall C as a measure of discrimination in survival
analysis: Model specific population value and confidence interval estimation. Statistics in
Medicine 23:2109–2123.

Peng H, Long F, and Ding C. 2005. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27:1226–1238.

Pereira S, Pinto A, Alves V, and Silva C. 2016. Brain tumor segmentation using convolutional
neural networks in MRI images. IEEE Transactions on Medical Imaging 35:1240–1251.

Pilz K, Leger S, Zwanenburg A, Richter C, Krause M, Baumann M, Löck S, and Troost E.
2017. EP-1065: Prediction of Dysphagia and Xerostomia based on CT imaging features
of HNSCC Patients. Radiotherapy and Oncology 123:S585–S586.

Poleszczuk J and Enderling H. 2016. Cancer stem cell plasticity as tumor growth promoter
and catalyst of population collapse. Stem Cells International 2016.

Purcell E, Torrey H, and Pound R. 1946. Resonance absorption by nuclear magnetic mo-
ments in a solid. Physical Review 69:37.

RJ L and Nicewander W. 1988. Thirteen ways to look at the correlation coefficient. The
American Statistician 42:59–66.

Roth H, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, and Summers R. 2016. Improving
computer-aided detection using convolutional neural networks and random view aggrega-
tion. IEEE Transactions on Medical Imaging 35:1170–1181.

Rutherford R, Pullan B, and Isherwood I. 1976. Measurement of effective atomic number
and electron density using an EMI scanner. Neuroradiology 11:15–21.

129



Bibliography

Schmidt S, Linge A, Zwanenburg A, Leger S, Lohaus F, Krenn C, Appold S, Gudziol V,
Nowak A, von Neubeck C, et al. 2018. Development and validation of a gene signature
for patients with head and neck squamous cell carcinomas treated by postoperative radio
(chemo) therapy. Clinical Cancer Research.

Schütze C, Bergmann R, Brüchner K, Mosch B, Yaromina A, Zips D, Hessel F, Krause M,
Thames H, Kotzerke J, et al. 2014. Effect of [18F] FMISO stratified dose-escalation on
local control in FaDu hSCC in nude mice. Radiotherapy and Oncology 111:81–87.

Schütze C, Bergmann R, Yaromina A, Hessel F, Kotzerke J, Steinbach J, Baumann M, and
Beuthien-Baumann B. 2007. Effect of increase of radiation dose on local control relates
to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiotherapy and Oncology
83:311–315.

Segal E, Sirlin C, Ooi C, Adler A, Gollub J, Chen X, Chan B, Matcuk G, Barry C, Chang
H, et al. 2007. Decoding global gene expression programs in liver cancer by noninvasive
imaging. Nature Biotechnology 25:675.

Shafiq-UI-Hassan MZ GG, Latifi K, Ullah G, Hunt D, Balagurunathan Y, Abdalah M, Matthew
B, Goldgof D, Mackin D, Court L, James R, and Moros E. 2017. Intrinsic dependencies of
CT radiomic features on voxel size and number of gray levels. Medical Physics 44:1050–
1062.

Shannon C. 1948. A mathematical theory of communication. Bell System Technical Journal
27:379–423.

Shrout P and Fleiss J. 1979. Intraclass correlations: uses in assessing rater reliability. Psy-
chological Bulletin 86:420.

Simmons A, Tofts P, Barker G, and Arridge S. 1994. Sources of intensity nonuniformity in
spin echo images at 1.5 T. Magnetic Resonance in Medicine 32:121–128.

Simon N, Friedman J, Hastie T, and Tibshirani R. 2011. Regularization paths for Cox?s
proportional hazards model via coordinate descent. Journal of Statistical Software 39:1.

Sled J, Zijdenbos P, and Evans C. 1998. A nonparametric method for automatic correction
of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17:87–97.

Song J, Liu Z, Zhong W, Huang Y, Ma Z, Dong D, Liang C, and Tian J. 2016. Non-small
cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of
prognosis. Scientific Reports 6:1–9.

Spearman C. 1910. Correlation calculated from faulty data. British Journal of Psychology
3:271–295.

130



Bibliography

Stadler P, Feldmann H, Creighton C, Kau R, and Molls M. 1998. Changes in tumor oxy-
genation during combined treatment with split-course radiotherapy and chemotherapy in
patients with head and neck cancer. Radiotherapy and Oncology 48:157–64.

Stejskal E and Tanner J. 1965. Spin diffusion measurements: spin echoes in the presence
of a time-dependent field gradient. The Journal of Chemical Physics 42:288–292.

Stollnitz E, DeRose A, and Salesin D. 1995. Wavelets for computer graphics: a primer. 1.
IEEE Computer Graphics and Applications 15:76–84.

Sun C and Wee W. 1983. Neighboring gray level dependence matrix for texture classifica-
tion. Computer Vision, Graphics and Image Processing 23:341–352.

Therneau T and Grambsch P. 2000. Modeling Survival Data: Extending the Cox Model. New
York.

Thibault G, Angulo J, and Meyer F. 2014. Advanced statistical matrices for texture charac-
terization: application to cell classification. IEEE Transactions on Biomedical Engineering
61:630–637.

Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, Sequeira J, and Mari J. 2009.
Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification.
Pattern Recognition and Information Processing.

Toustrup K, Sørensen B, Nordsmark M, Busk M, Wiuf C, Alsner J, and Overgaard J. 2011.
Development of a hypoxia gene expression classifier with predictive impact for hypoxic
modification of radiotherapy in head and neck cancer. Cancer Research 71:5923–5931.

Tustison N, Cook P, and Gee J. 2011. N4ITK: Improved N3 Bias Correction. IEEE Transac-
tions on Medical Imaging 29:1310–1320.

Usmanij E, de Geus-Oei L, Troost E, Peters-Bax L, van der Heijden E, Kaanders J, Oyen W,
Schuurbiers O, and Bussink J. 2013. 18F-FDG PET Early Response Evaluation of Locally
Advanced Non–Small Cell Lung Cancer Treated with Concomitant Chemoradiotherapy.
Journal of Nuclear Medicine 54:1528–1534.

Vallières M, Freeman C, Skamene S, and El Naqa I. 2015. A radiomics model from joint
FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue
sarcomas of the extremities. Physics in Medicine and Biology 60:5471–96.

Vallières M, Kay-Rivest E, Perrin L, Liem X, Furstoss C, Aerts H, Khaouam N, Nguyen-Tan
P, Wang C, Sultanem K, et al. 2017. Radiomics strategies for risk assessment of tumour
failure in head-and-neck cancer. Scientific Reports 7:10117.

131



Bibliography

Van de Moortele P, Auerbach E, Olman C, Yacoub E, Uurbil K, and Moeller S. 2009. T1
weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil
receive B1 sensitivity with simultaneous vessel visualization. NeuroImage 46:432–446.

Van Essen D, Smith S, Barch D, Behrens T, Yacoub E, Ugurbil K, Consortium WMH, et
al. 2013. The WU-Minn Human Connectome Project: An Overview David. NeuroImage
70:646–656.

Van Leemput K, Maes F, Vandermeulen D, and Suetens P. 1999. Automated model-based
bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging
18:885–896.

Van Timmeren J, Leijenaar R, Van Elmpt W, and Lambin P. 2016. Are planning CT radiomics
and cone-beam CT radiomics interchangeable? Radiotherapy and Oncology:446–447.

Van Dijk L, Brouwer C, van der Schaaf A, Burgerhof J, Beukinga R, Langendijk J, Sijtsema N,
and Steenbakkers R. 2017a. CT image biomarkers to improve patient-specific prediction
of radiation-induced xerostomia and sticky saliva. Radiotherapy and Oncology 122:185–
191.

Van Dijk L, Noordzij W, Brouwer C, Boellaard R, Burgerhof J, Langendijk J, Sijtsema N,
and Steenbakkers R. 2017b. 18F-FDG PET image biomarkers improve prediction of late
radiation-induced xerostomia. Radiotherapy and Oncology 120:89–95.

Van Putten L. 1968. Tumour reoxygenation during fractionated radiotherapy; studies with a
transplantable mouse osteosarcoma. European Journal of Cancer 4:172–82.

Van Timmeren J, Leijenaar R, van Elmpt W, Reymen B, and Lambin P. 2017a. Feature se-
lection methodology for longitudinal cone-beam CT radiomics. Acta Oncologica 56:1537–
1543.

Van Timmeren J, Leijenaar R, van Elmpt W, Reymen B, Oberije C, Monshouwer R, Bussink
J, Brink C, Hansen O, and Lambin P. 2017b. Survival prediction of non-small cell lung
cancer patients using radiomics analyses of cone-beam CT images. Radiotherapy and
Oncology 123:363–369.

Van Timmeren J, Leijenaar R, van Elmpt W, Wang J, Zhang Z, Dekker A, and Lambin P.
2016. Test-retest data for radiomics feature stability analysis: generalizable or study spe-
cific. Tomography: A Journal for Imaging Research 2:361–365.

Vaupel P, Kallinowski F, and Okunieff P. 1989. Blood flow, oxygen and nutrient supply, and
metabolic microenvironment of human tumors: a review. Cancer Research 49:6449–6465.

132



Bibliography

Vovk U, Pernuš F, and Likar B. 2006. Intensity inhomogeneity correction of multispectral MR
images. NeuroImage 32:54–61.

Vovk U, Pernuš F, and Likar B. 2007. A review of methods for correction of intensity inho-
mogeneity in MRI. IEEE Transactions on Medical Imaging 26:405–421.

Waclaw B, Bozic I, Pittman M, Hruban R, Vogelstein B, and Nowak M. 2015. A spatial model
predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525:261.

Wald R, Khoshgoftaar T, Dittman D, Awada W, and Napolitano A. 2012. An extensive com-
parison of feature ranking aggregation techniques in bioinformatics. In: Information Reuse
and Integration (IRI), 2012 IEEE 13th International Conference on. IEEE, pp. 377–384.

Wells W, Grimson W, Kikinis R, and Jolesz F. 1996. Adaptive segmentation of MRI data.
IEEE Transactions on Medical Imaging 15:429–442.

Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman
D, Moskowitz C, Fine S, et al. 2015. Haralick texture analysis of prostate MRI: utility for
differentiating non-cancerous prostate from prostate cancer and differentiating prostate
cancers with different Gleason scores. European Radiology 25:2840–2850.

Wicks D, Barker G, and Tofts P. 1993. Correction of intensity nonuniformity in MR images of
any orientation. Magnetic Resonance Imaging 11:183–196.

Wiedenmann N, Bucher S, Hentschel M, Mix M, Vach W, Bittner M, Nestle U, Pfeiffer J, We-
ber W, and Grosu A. 2015. Serial [18F]-fluoromisonidazole PET during radiochemother-
apy for locally advanced head and neck cancer and its correlation with outcome. Radio-
therapy and Oncology 117:113–117.

Wright M, Dankowski T, and Ziegler A. 2016. Random forests for survival analysis using
maximally selected rank statistics. arXiv preprint arXiv:160503391.

Wu J, Gensheimer M, Dong X, Rubin D, Napel S, Diehn M, Loo B, and Li R. 2016a. Robust
Intratumor Partitioning to Identify High-Risk Subregions in Lung Cancer: A Pilot Study.
International Journal of Radiation Oncology Biology Physics 95:1504–1512.

Wu J, Gong G, Cui Y, and Li R. 2016b. Intratumor partitioning and texture analysis of
dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict
pathological response of breast cancer to neoadjuvant chemotherapy. Journal of Mag-
netic Resonance Imaging 44:1107–1115.

Yamamoto S, Maki D, Korn R, and Kuo M. 2012. Radiogenomic analysis of breast cancer us-
ing MRI: a preliminary study to define the landscape. American Journal of Roentgenology
199:654–663.

133



Bibliography

Yamaner S, Güllüoğlu M, Kapran Y, and Özel S. 2012. Can diffusion-weighted MRI deter-
mine complete responders after neoadjuvant chemoradiation for locally advanced rectal
cancer? Diagnostic and Interventional Radiology 18:574–581.

Yaromina A, Kroeber T, Meinzer A, Boeke S, Thames H, Baumann M, and Zips D. 2011.
Exploratory study of the prognostic value of microenvironmental parameters during frac-
tionated irradiation in human squamous cell carcinoma xenografts. International Journal
of Radiation Oncology Biology Physics 80:1205–1213.

Yip S and Aerts H. 2016. Applications and limitations of radiomics. Physics in Medicine and
Biology 61:R150.

Zhao B, Tan Y, Tsai W, Qi J, Xie C, Lu L, and Schwartz L. 2016. Reproducibility of radiomics
for deciphering tumor phenotype with imaging. Scientific Reports 6:23428.

Zhou L, Zhu Y, Bergot C, Laval-Jeantet A, Bousson V, Laredo J, and Laval-Jeantet M. 2001.
A method of radio-frequency inhomogeneity correction for brain tissue segmentation in
MRI. Computerized Medical Imaging and Graphics 25:379–389.

Zhuge Y, Udupa J, Liu J, Saha P, and Iwanage T. 2002. Scale-based method for correct-
ing background intensity variation in acquired images. In: Medical Imaging. International
Society for Optics and Photonics, pp. 1103–1111.

Zips D, Zöphel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, Appold S, Steinbach J,
Kotzerke J, and Baumann M. 2012. Exploratory prospective trial of hypoxia-specific PET
imaging during radiochemotherapy in patients with locally advanced head-and-neck can-
cer. Radiotherapy and Oncology 105:21–28.

Zschaeck S, Löck S, Leger S, Haase R, Bandurska-Luque A, Appold S, Kotzerke J, Zips D,
Richter C, Gudziol V, et al. 2017. FDG uptake in normal tissues assessed by PET during
treatment has prognostic value for treatment results in head and neck squamous cell
carcinomas undergoing radiochemotherapy. Radiotherapy and Oncology 122:437–444.

Zwanenburg A, Leger S, Vallières M, Löck S, et al. 2016. Image biomarker standardisation
initiative. arXiv preprint arXiv:161207003.

134



Appendix

A. Hyper-parameters for the feature selection methods

Table A.1.: Definition of the hyper-parameters for the feature selection methods. These parameters
were kept fixed and were not optimised during hyper-parameter optimisation.

Feature selection method Hyper-parameter name Parameter value(s)

MRMR topFeatures 100

RelativeImportanceThreshold 0

MIFS topFeatures 100

RelativeImportanceThreshold 0.05

uni-Cox nIterations 10

nFolds 2

multi-Cox nIterations 20

nFolds 3

nTopFeatures 20

modelSize 3

α 0.1

PVI-RF topFeatures 100

nTree 1000

mTry 10

nodeSize 45

splitrule maxstat

α 0.5

minprop 0.5

MSR-RF topFeatures 100

nTree 1000

mTry 10

nodeSize 20

splitrule maxstat

α 0.5
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Feature selection method Hyper-parameter name Parameter value(s)

minprop 0.5

RF-VI topFeatures 20

nTree 1000

K 2

nRepetition 50

nSteps 2

nSplits 1

splitrule logrank

nodeSize 45

mTry 500

nVariables 10

RF-MD topFeatures 20

nTree 2000

K 5

nRepetition 50

nSteps 5

nSplits 1

splitrule logrank

nodeSize 20

mTry 100

nVariables 100

RF-VH topFeatures 100

nTree 1000

K 2

nRepetition 50

nSteps 2

nSplits 1

splitrule logrank

nodeSize 20

mTry 500

nVariables 10
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B. Hyper-parameters for the machine learning algorithms

B. Hyper-parameters for the machine learning algorithms

The following paragraph defined the different hyper-parameters of the individual machine
learning algorithms. The hyper-parameter optimisation aims to find an optimal configuration
for the machine learning algorithms to adjust the specific algorithms to the prediction task,
which may improve the prognostic accuracy and reduce the influence of model over-fitting.
This is particularly important for the more complex models (e.g., BT-Weibull, BT-Cox and
RSF), as the choice of their hyper-parameters influences how well they can learn the under-
lying data distribution. One challenge of hyper-parameter optimisation arises with the high
number of different model parameters, which requires computational resources to optimise
them. To limit these resources, hyper-parameter ranges for each algorithm were manually
defined with the aim to reduce the possible parameter space. The parameter space was
defined based on prior knowledge, e.g., the maximum signature size was derived by the
number of events, i.e., 10 events per predictor variable as well as identifying those settings
that led to balanced performance in the internal cross-validation of the exploratory cohort.
In future, a further time reduction could be achieved by replacing the exhaustive grid search
optimisation by a random search strategy (Bergstra and Bengio, 2012).
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Table B.1.: Definition of the hyper-parameters for the for the machine learning algorithms, which
were used during the hyper-parameter optimisation.

Machine learning algorithm Hyper-parameter name Parameter value(s)

Cox model
Signature size 2, 3, 4, 5, 7, 10

NET-Cox model
Signature size 2, 3, 4, 5, 7, 10

α 0–1.0, step size 0.2
ω lambda.min1, lambda.1se2

BT based models
Signature size 2,3,4,5,7,10

α 0.001, 0.01, 0.05
ω lambda.min1, lambda.1se2

mStop 200
RSF model

Signature size 2, 3, 4, 5, 7, 10
ntree 2000
mtry 100

node − Size 25–50, step size 1
maxDepth 10, 15

nSplit 1, 2, 100
splitRule logrank, logrankscore

MSR-RF model
Signature size 2, 3, 4, 5, 7, 10

ntree 2000
mtry 100

node − Size 25–50, step size 1
minprop 0.1

α 0.1, 0.5
splitRule C, maxstat

SRM model
Signature size 2, 3, 4, 5, 7, 10

Distribution weibull, gaussian, exponential
1minimum mean cross-validated error
2Error within one standard error of the minimum
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C. Comparison of feature selection methods and machine learning algorithms

C. Comparison of feature selection methods and machine
learning algorithms for time-to-event survival models

C.A. Prognostic performances on the exploratory cohort
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Figure C.1.: Concordance indices (C-Index) to predict loco-regional tumour (top) control and overall
survival (bottom) depending on the feature selection methods (columns) and learning algorithms
(rows) for the exploratory cohort. Performance of the Aerts et al. (Aerts et al., 2014) signature is
depicted.
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C.B. Risk-based patient stratification
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Figure C.2.: Resulting p-values of the log-rank tests for loco-regional tumour control (top) and overall
survival (bottom) for the considered feature selection methods (columns) and learning algorithms
(rows) as well as the signature by Aerts et al. (Aerts et al., 2014). The cut-off values used for
stratification were based on the median predicted risk value determined on the exploratory cohort.
Cut-off values were applied to the validation cohort unchanged.
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Figure C.3.: Resulting p-values of the log-rank tests for loco-regional tumour control (top) and over-
all survival (bottom) for the considered feature selection methods (columns) and learning algorithms
(rows) as well as the signature by Aerts et al. (Aerts et al., 2014). The cut-off values used for strat-
ification were selected by 1000 bootstrap samples based on the exploratory cohort. The fraction of
significant stratification results was calculated for each cut-off, leading to the optimal value which has
the largest power. Cut-off values calculated on the exploratory cohort were applied to the validation
cohort unchanged.

141



Appendix

D. Characterisation of tumour phenotype using computed
tomograpy imaging during treatment

D.A. Multi-level model

The MLM consists of three levels (L) representing the different levels of effect. The top level
L0 describes the effect of the imaging time point as well as the effects of the feature selection
method i and learning algorithm j :

yi ,j = αmethod,i ,j + βtimextime + εtime

εtime ∼ N (0,σ2
time),

where yi ,j defines the C-Index of the bootstrap sample. The term αmethod,i ,j is an offset term,
modelled separately in levels L1 and L2 and xtime is a contrast variable, which is 0 for pre-
treatment imaging and 1 for imaging in the second week. βtime is the effect of second week
imaging compared to pre-treatment imaging, and has a weakly informative prior N (0, 1) and
is limited to the range [−1, 1]. The error term εtime is modelled with a normal distribution
with mean 0 and standard deviation σtime ϵ [0, 1]. The level L1 models the effect of learning
algorithm (learner) j dependent on feature selection (fs) method i :

αmethod,ij = αfs,i + βlearner,j + εlearner,j

εlearner,j ∼ N (0,σ2
learner,j ),

where αfs,i is an offset modelled separately in level L2. βlearner,j defines the effect of the
learning algorithm j . It has a weakly informative prior N (0, 1) and is limited to the range
[−1, 1]. The error term εlearner ,j is modelled with a normal distribution with mean 0 standard
deviation σlearner,j , with σlearner,j ϵ [0, 1]. The level L2 models the effect of feature selection
method i :

αfs,i = βfs,i + εfs,i

εfs,i ∼ N (0,σ2
fs,i ),

(D.1)

where βfs,i . βfs,i has a weakly informative prior N (0.5, 1) and is limited to the range [0, 1].
The error term εfs,i is modelled with a normal distribution with mean 0 and standard deviation
σfs,i , with σfs,i ϵ [0, 1].
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D. Characterisation of tumour phenotype using computed tomograpy imaging during treatment

D.B. Prognostic performance

The results of the internal cross-validation experiments using the combined cohorts for the
primary endpoint LRC are shown in figure D.1. The models were trained using a three-
fold cross validation scheme with 33 repetitions. At each fold, feature selection and model
training were performed 20 times. The C-Index is shown based on (a) pre-treatment and
(b) week two CT scans for the internal validation cohorts and the internal training cohorts
(brackets). On average the validation C-Index increased by 0.09 in week two (CTW0-FDG:
0.61±0.01 and CTW2: 0.70±0.05, respectively) (MLM: p=0.16).

MSR-RF

RSF

BT-Weibull

BT-Cox

BGLM-Cox

Cox

S
pe
ar
m
an

M
IF
S

M
IM

M
R
M
R

(b) Week 2

S
pe
ar
m
an

M
IF
S

M
IM

M
R
M
R

R
F-
V
I

R
F-
V
I

(a) Pre-treatment

0.61
(0.73)

0.60
(0.73)

0.62
(0.75)

0.60
(0.72)

0.61
(0.74)

0.61
(0.89)

0.61
(0.89)

0.62
(0.89)

0.59
(0.91)

0.63
(0.90)

0.61
(0.81)

0.61
(0.81)

0.64
(0.85)

0.60
(0.78)

0.63
(0.85)

0.61
(0.85)

0.61
(0.85)

0.64
(0.86)

0.63
(0.85)

0.64
(0.87)

0.60
(0.85)

0.60
(0.86)

0.61
(0.85)

0.58
(0.87)

0.61
(0.87)

0.60
(0.73)

0.60
(0.73)

0.62
(0.74)

0.60
(0.71)

0.61
(0.74)

0.70
(0.79)

0.70
(0.79)

0.71
(0.79)

0.69
(0.77)

0.70
(0.78)

0.67
(0.90)

0.68
(0.90)

0.67
(0.90)

0.67
(0.91)

0.67
(0.90)

0.69
(0.85)

0.69
(0.85)

0.72
(0.87)

0.68
(0.86)

0.71
(0.87)

0.71
(0.87)

0.71
(0.87)

0.72
(0.87)

0.71
(0.87)

0.73
(0.87)

0.67
(0.87)

0.67
(0.87)

0.67
(0.88)

0.68
(0.86)

0.68
(0.87)

0.69
(0.78)

0.69
(0.78)

0.70
(0.78)

0.69
(0.76)

0.69
(0.78)

0.70

0.80

0.60

0.50

C-Index

Figure D.1.: Concordance indices (C-Index) are shown for the feature selection methods (columns)
and learning algorithms (rows) based on (a) pre-treatment and (b) week 2 CT scans for the internal
validation cohorts and the internal training cohorts (in parentheses).
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Appendix

D.C. Risk-based patient stratification
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Figure D.2.: Resulting p-values of the log-rank tests for loco-regional tumour control for the con-
sidered feature selection methods (columns) and learning algorithms (rows) based on (left) median
(medianrisk) and (right) bootstrapped (bootrisk) cut-off values using the predicted risk value. Further-
more, p-values of the log-rank tests for the signature by Aerts et al. (Aerts et al., 2014) and tumour
volume based on the pre-treatment (CTW0-FDG) and in-treatment (CTW2) images are shown. The
cut-off values used for stratification were determined on the exploratory cohort and applied to the
validation cohort unchanged.
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Figure D.3.: Resulting p-values of the log-rank tests for overall survival for the considered feature
selection methods (columns) and learning algorithms (rows) based on (left) median (medianrisk) and
(right) bootstrapped (bootrisk) cut-off values using the predicted risk value. Furthermore, p-values
of the log-rank tests for the signature by Aerts et al. (Aerts et al., 2014) and tumour volume based
on the pre-treatment (CTW0-FDG) and in-treatment (CTW2) scans are shown. The cut-off values used
for stratification were determined on the exploratory cohort and applied to the validation cohort un-
changed.
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Appendix

D.D. Developed radiomics signatures

Table D.1.: Radiomics signatures for loco-regional tumour control (LRC) based on Spearman feature
selection and for overall survival (OS) based on mutual information maximisation (MIM) feature se-
lection for different time points. The mathematical description and the abbreviations of features can
be found in Zwanenburg et al. (Zwanenburg et al., 2016).

Endpoint Time point Feature name Synonym Image Cluster

LRC

Pre-treatment

stat_mean F1S wav_coif1_lhl Yes

dzm_lde, dzm_zd_var F2T wav_coif1_lhl No

ngl_dcnu, szm_lzlge F3T wav_coif1_lhh No

morph_pca_flatness F4M Base Yes

Week 2
cm_inv_diff, cm_inv_diff_mom,
rlm_lre, rlm_r_perc, rlm_rl_var,
rlm_rlnu_norm, rlm_sre

F1T wav_coif1_lll Yes

cm_info_corr2 F2T wav_coif1_hll No

morph_pca_flatness F3M Base No
ngt_busyness, ngt_coarseness,
rlm_glnu_3d

F4T wav_coif1_hlh Yes

Combined
ih_max_grad_delta, ih_min_grad_delta,
ngl_glnu_delta

∆F1T wav_coif1_lhh Yes

dzm_zdnu_delta ∆F2T wav_coif1_lhh No

rlm_glnu_delta ∆F3T wav_coif1_lhh No

ngt_contrast_delta ∆F4T wav_coif1_llh No

dzm_glnu_delta, szm_glnu_delta ∆F5T wav_coif1_llh No

OS Pre-treatment

cm_contrast, cm_diff_avg,
cm_diff_entr, cm_diff_var,
cm_dissimilarity, cm_inv_diff_mom_norm,
cm_inv_diff_norm, dzm_z_perc,
ngl_lde, ngl_ldhge, ngt_contrast,
rlm_rlnu_norm, rlm_sre, szm_z_perc

F1T wav_coif1_lll Yes

morph_pca_min_axis F2M Base No
cm_inv_diff, cm_inv_diff_mom,
rlm_lre, rlm_r_perc, rlm_rl_var

F3T wav_coif1_lll No

ngt_strength, rlm_rlnu F4T wav_coif1_llh Yes

morph_area_dens_conv_hull F5M Base Yes

Week 2
dzm_glnu, szm_glnu,
dzm_glnu, szm_glnu

F1T
wav_coif1_lhh
wav_coif1_lhl

Yes
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D. Characterisation of tumour phenotype using computed tomograpy imaging during treatment

Endpoint Time point Feature name Synonym Image Cluster

dzm_glnu, rlm_rlnu, szm_glnu F2T LoG Yes

morph_area_mesh, morph_pca_least_axis,
morph_vol_approx, morph_volume,
ngl_dcnu, ngl_glnu, ngt_busyness,
ngt_coarseness, ngt_strength,
rlm_glnu, rlm_rlnu,
szm_glnu, szm_lze,
szm_lzhge, szm_lzlge,
szm_zs_var, dzm_glnu,
ih_max, ih_min

F3T Base Yes

ih_max, ih_min, ngl_dcnu,
ngl_glnu, ngt_busyness,
ngt_coarseness, ngt_strength,
rlm_glnu, szm_lze,
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Endpoint Time point Feature name Synonym Image Cluster

dzm_glnu, ih_max,
ih_min, ngl_dcnu,
ngl_glnu, ngt_coarseness,
rlm_glnu, szm_glnu,
szm_lze, szm_zs_var

wav_coif1_llh

ih_max, ih_min,
ngl_dcnu, ngl_glnu,
szm_lze, szm_zs_var

wav_coif1_lll

cm_inv_diff, cm_inv_diff_mom,
rlm_lre, rlm_r_perc,
rlm_rl_var, rlm_rlnu_norm,
rlm_sre

∆F4T wav_coif1_lll Yes

morph_pca_min_axis F5M Base No

morph_area_dens_conv_hull F6M Base No

Combined dzm_glnu_delta, szm_glnu_delta ∆F1T wav_coif1_lhl Yes

ngt_complexity_delta, rlm_lre_3d_delta,
rlm_r_perc_delta, rlm_rl_var_delta

∆F2T LoG Yes

dzm_glnu_2W, szm_glnu_2W,
dzm_glnu_2W, szm_glnu_2W

F3T wav_coif1_lhh Yes

dzm_glnu_delta, rlm_rlnu_delta,
szm_glnu_delta

F4T LoG Yes

ih_max_grad_2W, ih_min_grad_2W,
ngl_glnu_2W, szm_lze_2W,
szm_lzhge_2W, szm_lzlge_2W,
szm_zs_var_2W

F5T Base Yes

ih_max_grad_2W, ih_min_grad_2W,
ngl_glnu_2W, szm_lze_2W,
szm_lzhge_2W, szm_lzlge_2W,
szm_zs_var_2W

wav_coif1_lll
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D. Characterisation of tumour phenotype using computed tomograpy imaging during treatment

OS
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Figure D.4.: Feature expressions of developed signatures for the representative models, boosted
tree Cox model in combination with the mutual information maximisation feature selection method,
trained on the CTW0-FDG, CTW2 and combined feature set. Overall survival (OS) during follow-up (yes,
light; no, dark) and features with a significant correlation with OS are shown (*p<0.05 and **p<0.001).
A detailed description of the feature abbreviations can be found in appendix D.1. Abbreviations: F
cluster feature consisting of several features represented by the mean value as a new meta-feature,
FS first order statistical feature, FM morphological feature, FT texture feature, ∆F delta feature.
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Appendix

E. Tumour phenotype characterisation using tumour
sub-volumes

E.A. Prognostic performance
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Figure E.1.: Concordance indices for the feature selection methods (columns) and the learning al-
gorithms (rows) trained on the GTV3mm-rim and the GTV10mm-rim as well as the corresponding tumour
core sub-volumes on the exploratory (in parentheses) and the validation cohort. Furthermore, the
performance of the models using the Aerts et al. (Aerts et al., 2014) signature are shown.
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E. Tumour phenotype characterisation using tumour sub-volumes
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Figure E.2.: Concordance indices for the feature selection methods (columns) and the learning al-
gorithms (rows) trained on the GTV5mm-rim+1mm, the GTV5mm-rim+3mm and the GTV5mm-rim+5mm tumour
sub-volumes on the exploratory (in parentheses) and the validation cohort. Furthermore, the perfor-
mance of the models using the Aerts et al. (Aerts et al., 2014) signature are shown.
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Appendix

E.B. Risk-based patient stratification
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Figure E.3.: Resulting p-values of the log-rank tests for loco-regional tumour control for the fea-
ture selection methods (columns) and the learning algorithms (rows) trained on the GTVentire, the
GTV5mm-rim, the corresponding GTV5mm-core and the extended GTV5mm-rim+2mm sub-volumes based on
median (medianrisk) (left) and bootstrapped (bootrisk) cut-off values (right) using the predicted risk val-
ues. The cut-off values used for stratification were determined on the exploratory cohort and applied
to the validation cohort unchanged. Furthermore, the results of the log-rank tests for the models
using the Aerts’ signature (Aerts et al., 2014) and the volume parameter are shown.
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Figure E.4.: Resulting p-values of the log-rank tests for loco-regional tumour control for the fea-
ture selection methods (columns) and the learning algorithms (rows) trained on the GTV3mm-rim, the
GTV10mm-rim and the corresponding core sub-volumes based on median (medianrisk) (left) and boot-
strapped (bootrisk) cut-off values (right) using the predicted risk values. The cut-off values used
for stratification were determined on the exploratory cohort and applied to the validation cohort un-
changed. Furthermore, the results of the log-rank tests for the models using the Aerts’ signature
(Aerts et al., 2014) are shown. 153
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Figure E.5.: Resulting p-values of the log-rank tests for loco-regional tumour control for the feature
selection methods (columns) and the learning algorithms (rows) trained on the different extended
rim sub-volumes based on median (medianrisk) (left) and bootstrapped (bootrisk) cut-off values (right)
using the predicted risk values. The cut-off values used for stratification were determined on the
exploratory cohort and applied to the validation cohort unchanged. Furthermore, the results of the
log-rank tests for the models using the Aerts’ signature (Aerts et al., 2014) are shown.
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E. Tumour phenotype characterisation using tumour sub-volumes

E.C. Developed signatures

Table E.1.: Radiomics signatures for predicting loco-regional tumour control for the representative
models based on entire gross tumour volume, the selected rim and the core tumour as well as the
selected extended tumour rim sub-volumes. The mathematical description and the abbreviations of
features can be found in Zwanenburg et al. (Zwanenburg et al., 2016).

Tumour sub-volume Feature name Synonym Image Cluster

GTVentire

ivh_diff_v10_v90 F1S wav_coif1_llh No

loc_peak_loc F2S wav_coif1_hlh No

GTV5mm-rim

ivh_diff_v10_v90 F1S wav_coif1_llh No

ivh_v10 F2S wav_coif1_llh No

dzm_ldhge F3T Base No
morph_integ_int, stat_energy,
stat_energy

F4S Base, wav_coif1_lll Yes

dzm_ldhge F5T wav_coif1_lll No
dzm_lgze, dzm_sdlge,
szm_lgze, szm_szlge

F6T Base Yes

szm_zs_entr F7T Base, wav_coif1_lll Yes
dzm_hgze, szm_hgze,
szm_szhge

F8T Base Yes

loc_peak_loc F9S wav_coif1_hlh No

dzm_lgze, szm_lgze, szm_szlge F10T wav_coif1_hlh No

GTV5mm-core

cm_clust_shade F1T wav_coif1_lhh No

ivh_i50 F2S wav_coif1_lhl No
cm_auto_corr, cm_joint_avg,
cm_sum_avg, dzm_hgze,
ih_max_grad, ih_mean,
ih_median, ih_min_grad,
ih_mode, ih_p90,
ivh_auc, ivh_v50,
ngl_hgce, ngl_lgce
rlm_hgre, rlm_lgre,
rlm_srhge, szm_hgze,
szm_szhge,

F3T wav_coif1_hhh Yes

ih_skew, stat_skew F4S wav_coif1_llh Yes

ih_skew, stat_skew F5S wav_coif1_lhh Yes

ih_skew, stat_skew F6S wav_coif1_hhh Yes

ivh_diff_v25_v75 F7S wav_coif1_hhl No

ngt_strength, rlm_rlnu F8T wav_coif1_llh Yes

dzm_zdnu F9T wav_coif1_llh No
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Tumour sub-volume Feature name Synonym Image Cluster

stat_median F10S wav_coif1_hhh No

GTV5mm-rim+2mm

morph_moran_i F1M Base No

morph_com F2M Base No

stat_cov F3S wav_coif1_lhl No

ngl_dcnu_norm F4T wav_coif1_hhh No

rlm_srlge F5T wav_coif1_lhl No

dzm_ldhge F6T Base, wav_coif1_lll Yes

stat_qcod F7S wav_coif1_hhl No
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