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ABSTRACT 

 Techniques for processing and analysing images and medical data have become 
the main’s translational applications and researches in clinical and pre-clinical 
environments. The advantages of these techniques are the improvement of diagnosis 
accuracy and the assessment of treatment response by means of quantitative bio-
markers in an efficient way. In the era of the personalized medicine, an early and 
efficacy prediction of therapy response in patients is still a critical issue. 

In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high 
quality detailed images and excellent soft-tissue contrast, while Computerized 
Tomography (CT) images provides attenuation maps and very good hard-tissue 
contrast. In this context, Positron Emission Tomography (PET) is a non-invasive 
imaging technique which has the advantage, over morphological imaging techniques, 
of providing functional information about the patient’s disease.  

In the last few years, several criteria to assess therapy response in oncological 
patients have been proposed, ranging from anatomical to functional assessments. 
Changes in tumour size are not necessarily correlated with changes in tumour 
viability and outcome. In addition, morphological changes resulting from therapy 
occur slower than functional changes. Inclusion of PET images in radiotherapy 
protocols is desirable because it is predictive of treatment response and provides 
crucial information to accurately target the oncological lesion and to escalate the 
radiation dose without increasing normal tissue injury. For this reason, PET may be 
used for improving the Planning Treatment Volume (PTV). Nevertheless, due to the 
nature of PET images (low spatial resolution, high noise and weak boundary), 
metabolic image processing is a critical task. 

The aim of this Ph.D thesis is to develope smart methodologies applied to the 
medical imaging field to analyse different kind of problematic related to medical 
images and data analysis, working closely to radiologist physicians.  

Various issues in clinical environment have been addressed and a certain amount 
of improvements has been produced in various fields, such as organs and tissues 
segmentation and classification to delineate tumors volume using meshing learning 
techniques to support medical decision. 

In particular, the following topics have been object of this study: 
• Technique for Crohn’s Disease Classification using Kernel Support Vector 

Machine Based; 
• Automatic Multi-Seed Detection For MR Breast Image Segmentation; 
• Tissue Classification in PET Oncological Studies;  
• KSVM-Based System for the Definition, Validation and Identification of the 

Incisinal Hernia Reccurence Risk Factors;  
• A smart and operator independent system to delineate tumours in Positron 

Emission Tomography scans; 
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• Active Contour Algorithm with Discriminant Analysis for Delineating 
Tumors in Positron Emission Tomography; 

• K-Nearest Neighbor driving Active Contours to Delineate Biological Tumor 
Volumes; 

• Tissue Classification to Support Local Active Delineation of Brain Tumors; 
• A fully automatic system of Positron Emission Tomography Study 

segmentation. 
 

This work has been developed in collaboration with the medical staff and 
colleagues at the: 

• Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi 
(DIBIMED), University of Palermo 

• Cannizzaro Hospital of Catania 
• Istituto di Bioimmagini e Fisiologia Molecolare (IBFM) Centro Nazionale 

delle Ricerche (CNR) of Cefalù 
• School of Electrical and Computer Engineering at Georgia Institute of 

Technology 
 

The proposed contributions have produced scientific publications in indexed 
computer science and medical journals and conferences. They are very useful in 
terms of PET and MRI image segmentation and may be used daily as a Medical 
Decision Support Systems to enhance the current methodology performed by 
healthcare operators in radiotherapy treatments.  

The future developments of this research concern the integration of data acquired 
by image analysis with the managing and processing of big data coming from a wide 
kind of heterogeneous sources. 
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ABBREVIATIONS 

BTV: Biological Tumour Volume 

CT: Computerized Tomography 

DICOM: Digital Imaging and Communications in Medicine 

FBP: Filtered Back-Projection 

FDG: 8F-fluoro-2-deoxy-D-glucose 

GTV: Gross Tumour Volume 

HNC: Head and Neck Cancer 

MET: 11C-labeled Methionine 

MRI: Magnetic Resonance Imaging 

NSCLC: Non-Small Cell Lung Cancer 

PET: Positron Emission Tomography 

PVE: Partial Volume Effect 

PTV: Planning Treatment Volume 

ROI: Region Of Interest 

SUV: Standardized Uptake Value 

TPS: Treatment Planning Systems 
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CHAPTER 1 

 

1 Introduction 

 The medical imaging is a crucial field for diagnostic and treatment purposes. 
Several medical imaging techniques are available and their improvement is one of 
the most important goals in the health’s research. 
 

1.1 Medical Imaging 
 
 Medical imaging is characterized by great multitude of heterogeneous data 
enclosing several experts and expertise in different fields, such as physicians, 
engineers, biologists, and physics for disease staging and treatment purposes.  
 According to the source and the physical properties, the medical imaging 
techniques can be differentiated in two groups:  

• anatomical/structural images, and 
• functional images.  

 In particular, Positron Emission Tomography (PET), Computerized Tomography 
(CT), and Magnetic Resonance Imaging (MRI) are in-vivo tomographic techniques 
that allows showing axial, sagittal and coronal images without moving the patient. 
Furthermore, these techniques can be classified on the use of ionized or non-ionized 
radiation as well as external or internal sources. 
 To support clinical decisions is mandatory to develop computer-assisted methods 
of quantitative biomarker extraction by medical images. To date, the computational 
power is mature: an effort is mandatory to address this power to analyze and process 
medical data in the best possible way. Fast and operator independent approaches are 
the crucial keywords in clinical environment to obtain an effective impact in the 
work of medical operators involved in diagnosis and treatment assessment. 
 Developing computer decision support systems that integrate the knowledge of 
the medical experts, and facilitate the diagnostic procedure are need for a better 
patient management. In particular, computer-assisted methods for segmenting 
regions of interests (ROIs) in medical images are increasingly important in assisting 
and automating specific radiotherapy tasks.  
 

1.1.1  DICOM Protocol 
 
 The medical images produced by special diagnostic equipment, such as PET, CT, 
and MRI, are compliant with the DICOM (Digital Imaging and Communications in 
Medicine) standard.  
 DICOM standard was created by National Electrical Manufacturers Association 
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(NEMA) and it enables users to retrieve images and related information from 
different medical imaging modalities with a standardized way allowing the 
communication between electronic devices and biomedical computing from different 
vendors facilitating the management of digital images. In this way, the introduction 
of new services that support the medical applications is facilitated: DICOM enables 
the integration of scanners, servers, workstations, printers, and network hardware 
from multiple manufacturers. 
 A DICOM file consists of a header (so called metadata) and image data. The 
header includes image related information such as image type, study, information on 
the mode of acquisition, resolution (height and width), colour, size of the voxel, 
number of stored bits, and patient’s information.  
 In conclusion, the DICOM standard describes a directory structure that facilitates 
access to medical images and related information. 
 

1.1.2 PET Imaging 
 
 PET is a non-invasive nuclear medical imaging technique based on the 
visualization of functional processes showing complementary information with 
respect to anatomical imaging. It provides an in vivo measure of the tumor biological 
processes [1]. Among several PET radiotracers derived from isotopes, 18F-fluoro-2-
deoxy-D-glucose (FDG) is a glucose analogue widely used in the evaluation of 
several neoplastic pathologies as well as in radiotherapy planning. FDG uptake is 
increased in tissue with a high metabolic rate, such as tumor or inflammation regions. 
These areas appear as hot spots on PET images. FDG PET is able to identify the 
location of many primary tumors and metastases offering the opportunity to radically 
change patient treatment (i.e. from radiotherapy to chemotherapy) or the 
radiotherapy planning treatment volume (PTV) [2]. For these reasons, the oncology 
field is the most used and developed for PET studies: this technique has been 
recognized as an adequate staging and restaging tool in various cancer types. In 
addition, metabolic changes are often faster and more indicative of the effects of the 
therapy with respect to morphological changes [3]. To obtain a tomographic study, 
many acquisitions of the same object at different angles are executed; the object is 
reconstructed in three dimensions using complex mathematical algorithms such as 
the Filtered Back-Projection algorithm (FBP) or iterative methods. After applying 
reconstruction algorithms, a digital image that represents the uptake distribution in 
the tissues is obtained. Figure	1.1.1 an example of PET study (coronal, sagittal, and 
axial imaging planes). 
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Figure 1.1.1 An example of PET study (coronal, sagittal, and axial imaging planes). 
 

1.1.3  CT Imaging 
 
 CT is a diagnostic imaging technique that uses ionizing radiation. CT studies are 
acquired by rotating an X-ray source around the patient. X-ray sensors are positioned 
on the opposite side, and the patient's bed is continuously moved to obtain a helical 
acquisition mode. X-ray beam intensity exponentially decreases in extent to the mass 
attenuation coefficient: the beam will be more attenuated by tissues with a high 
atomic number. Vice versa, if the beam crosses a low density tissue, the attenuation 
will be less. In this way, high-density tissues appear clear (maximum attenuation) 
and lower-density tissue appear dark (minimum attenuation). 
 After reconstruction, the CT images reflect the attenuation of each voxel 
according to the Hounsfield scale, where air has a radio-density of -1000 Hounsfield 
Units (HU) and distilled water a radio-density of 0 HU. CT provides high resolution 
morphological images of the body, with an excellent contrast between air, adipose 
tissue, soft tissue and bone. However, the soft tissue contrast is poor if compared to 
other imaging modalities such as MRI. Contrast agents may additionally be used to 
highlight some regions, such as the gastrointestinal tract or the blood vessels. Figure	
1.1.2 an example of CT acquisition (coronal, sagittal, and axial imaging planes). 
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Figure 1.1.2 An example of CT acquisition (coronal, sagittal, and axial imaging planes). 

 
 

1.1.4  MR Imaging 
 
 MRI is based on the different relaxation times of tissues after being subjected to 
an electromagnetic stimulus:  

• T1-weighted images: the time T1, or longitudinal relaxation time is a measure 
of the time for which the protons to return to the initial equilibrium 
conditions, through the transfer of energy to the surrounding 
microenvironment (lattice), in order to obtain a T1-weighted SE sequence, 
using a short relaxation time (TR) associated with a short echo time (TE). On 
T1-weighted images, the cerebrospinal fluid is dark while the fat is brilliant.  

• T2-weighted images: the time T2, or transverse relaxation time, is a measure 
of the time taken by the spin of protons to get out of sync. This progressive 
desynchronization will void the transverse magnetization. A sequence to get a 
T2-weighted sequence will have a long TR associated with a long TE. 
Liquids or at least very hydrated tissues, appear bright white in T2-weighted 
images. 

 The relaxation time of a tissue is related with its water content. 
 MRI provide excellent soft tissue contrast. For this reason, MRI is widely applied 
in the diagnosis and treatment of neurological, cardiovascular, musculoskeletal, liver 
and gastrointestinal diseases. Moreover, contrast can be further enhanced through the 
injection of a contrast enhancement agent. 
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1.2 Radiation Therapy Planning 
 
 Radiotherapy aims to deliver the necessary therapeutic dose of ionizing radiation 
to the oncological lesions minimizing irradiation to normal tissues. In this way, 
radiation is delivered to target to damage and to kill the cancerous cells stopping 
them from regenerating. Since both cancer and healthy tissues are affected by 
radiation, any treatment plan should be designed in such a way that the radiation dose 
delivered to the tumor is high enough to destroy the cancer cells avoiding the 
delivery of excessive doses of radiation to surrounding normal tissue. Precise tumour 
volume delineation is a very critical step in order to ensure safe and effective 
radiation therapies. 
 The Radiation Therapy Planning (RTP) is to implement the treatment strategy 
assigning the desired dose to the various ROI. Recent advances in radiotherapy, such 
as intensity modulated radiation therapy, have improved the dose painting of RTP. 
These techniques enable a precise delivery of a high dose to the target maintaining a 
low radiation dose to nearby critical organs. However, the hardware precision in the 
delivering radiation dose is far greater than the software precision in the target 
volume delineation: accurate target volume definition is essential for escalating the 
radiation dose without increasing normal tissue injury.  
 CT and MRI are considered the standard for target volume delineation in many 
cancer district. Radiotherapy results based on morphological target volume 
delineation are disappointing due to the radio resistance of the tumor and/or 
inadequate dose to target due to missed lesion. CT or MRI imaging may not show the 
viable extension of tumors and not localize isolated positive lymph nodes [5]. To 
improve these results, PET has been introduced in the radiotherapy field to assist the 
radiation oncologist in RTP: within the Gross Tumor Volume (GTV), defined on 
anatomical images, it is possible to define target volumes based on functional area 
(BTV – Biological Target Volume) and to apply a strategy that will deliver radiation 
to these regions. Though the use of PET images has been shown to improve target 
volume definition by reducing intra and inter-observer variability compared to CT 
images only [6].  
 

1.3 Thesis Outline 
 
 The thesis is structured as follows: 

• Chapter 2 describes the state-of-the-art of segmentation approaches in 
medical imaging. 

• Chapter  3 describes an innovative method to segmentation MR breast Image. 
• Chapter 4 presents Machine Learning and Data Analysis system in clinical 

applications  to predict the disease in patients. 
• Chapter 5 describes new segmentation methods for tumors delineation in 

PET. 
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• Chapter 6 shows the experimental results. 
• Discussion and conclusion about this thesis. 
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CHAPTER 2 

 

2 Review of the State of the Art 

 
2.1 Medical Image Segmentation 

 
 Image segmentation is a fundamental and critical task in numerous biomedical 
imaging applications. It corresponds to extract a target out of an image identifying 
edges and areas of similar features.  
 Various delineation methods have been proposed in the literature. Each 
segmentation method has a different approach to find the optimal segmentation: 
depending on the application, appropriate segmentation algorithm must be chosen. It 
is impossible to make a categorical statement; different segmentation methods have 
different goals, and each method may be useful in different imaging applications.  
 In this study, the aim is to segment functional and anatomical regions for RTP. In 
the next paragraphs, various methods for BTV and multimodality image delineation 
are discussed. 
 

2.1.1  PET, MRI, and CT Segmentation 
	

 Most of the segmentation techniques on medical images have been applied on CT, 
MR or ultrasound images and not on PET images since PET has received increasing 
attention only in recent years in order to incorporate metabolic information in RTP 
and to evaluate early treatment response in oncological patients.   
 To date, clinical analyses of PET studies are performed on software platforms 
with predefined window-level setting. The nuclear physician, altering the visual 
appearance of PET lesions, can liberally modify this setting. The manual 
segmentation approach is then dependent on the experience of the nuclear physician 
limiting the measurement accuracy. In addition, the manual segmentation is time-
consuming and impaired by inter and intra-observer variability. 
 Currently available tumor delineation methods in PET imaging are based on a 
fixed threshold of the maximum tracer uptake value in the lesion. Other methods 
based on fuzzy c-means (FCM) [7], region growing [8] or watershed segmentation 
[9] have been suggested, but few validation studies are available and there is no 
consensus for a proper BTV delineation method with no clear guidelines on how to 
incorporate metabolic data into target delineation [10]. Moreover, PET delineation 
approaches can be categorized on the basis of anatomical sites or radio-tracers used 
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and, according to a comprehensive review of segmentation algorithms in PET 
imaging [11], some segmentation methodology categories can be identified. 
 Image threshold methods are the most widely used due to their intuitive basis and 
simple implementation. Usually, each PET image voxel is initially converted into its 
corresponding body-weight Standardized Uptake Value (SUV). The SUV is a widely 
used PET semi-quantitative parameter, calculated as a ratio of tissue radioactivity 
concentration and FDG injected dose at the time of injection divided by body weight. 
Subsequently, a fixed, or adaptive, or iterative threshold [12][13][14][15] based on 
phantom simulations and on scanner hardware features is calculated. An absolute 2.5 
SUV value, independent of background and lesion volume, was proposed by Paulino 
et al. [16] to discriminate benign from malignant lesions and to delineate the BTV. 
This approach is very controversial and not accepted by the whole scientific 
community. However, some fixed threshold methods based on analytical equations 
extracted from realistic phantom experiments can have a better accuracy with respect 
to more complex adaptive or iterative approaches. These techniques need to be 
calibrated for each PET scanner and should not be used without optimization. 
Generally, image threshold methods are inter- and intra-operator independent but 
strongly scanner dependent, requiring a significant effort in the calibration data to 
identify the equation parameters. In addition, they are too sensitive to image noise 
and heterogeneity and partial volume effect (PVE) due to the limited spatial 
resolution of the PET scanner [17]. 
 Region growing is a recursive algorithm that groups pixels or sub-regions into 
larger regions. The grouping is based on predefined criteria, such as grey level 
threshold values. A region growing usually starts off with one seed point and then 
recursively add neighbouring pixels that fulfil the criteria to the region. Different 
connectivities can be used, in 2-D region growing the choice is usually between four 
and eight-connectivity. The algorithm ends by itself when no more pixels fulfil the 
criteria on a pixel level [8]. 
 Supervised and unsupervised learning methods such as artificial neural networks 
(ANN), support vector machines (SVM), k-means algorithms, FCM algorithms are 
efficient but only in large lesions of simple shape. These approaches discriminate 
target from background based on a set of image features. However, supervised 
algorithms (ANN and SVM) have limited application in PET imaging, unlike in the 
MRI or CT fields, due to high heterogeneity that makes the recognition of stable 
features in the training set difficult. On the other hand, clustering methods such as 
FCM or Fuzzy Locally Adaptive Bayesian are optimal for the fuzzy nature of the 
PET lesion edge where a finite number of levels, rather than only two (foreground 
and background), is used to label voxels within the target area [7][17]. The main 
issue is the correct identification of the cluster number; Zaidi et al. [7] started the 
algorithm with an oversized number of clusters followed by a merging process to 
group clusters with similar properties to reach a number of clusters in agreement with 
uniform attenuation areas based on anatomical delineation. However, learning 
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methods require high computational steps, especially in supervised methods, and 
they are sensitive to image heterogeneity and to study protocol variability, as for 
example scanner characteristics, PET radiotracers, radiotracer injected dose and 
interval between radiotracer injection and examination start.  
 Variational approaches are based on gradient differences between target and 
background regions attempting to exploit information provided by intensity variation 
[18]. They require smooth regions with reliable boundary information but PET 
images are characterized by low contrast. In the study proposed by El Naqa et al. 
[19], deformable active contour models are computed as directional gradients by 
means of energy minimization. These approaches are mathematically efficient but 
require an initialization and are sensitive to image noise and subject to numerical 
fluctuation.  
 In clinical routine, it is highly desirable to have both functional and structural 
quantifiable information so the disease can be both identified and localized, 
potentially resulting in an earlier diagnosis and more effective treatment plan.  A 
concise but complete review of the state of the art regarding multimodal co-
segmentation approaches is reported in the following. 
 Several studies approach PET/CT tumor identification and characterization in 
radiation therapy scenarios. In [20], co-registered FDG-PET/CT were used for the 
textural characterization of head and neck cancer (HNC) for radiotherapy treatment 
planning. After a manual segmentation on co-registered PET/CT images (performed 
by an experienced radiation oncologist), useful textural features were selected for 
distinguishing tumor from normal tissue in HNC subjects. Both k-nearest neighbours 
(KNNs) and decision tree (DT)-based KNN classifiers were employed to 
discriminate images of cancerous and healthy tissues. Han et al. [21] presented a 
Markov random field (MRF)-based co-segmentation of the PET/CT image pair with 
a regularized term that penalizes the segmentation difference between PET and CT. 
This graph-based method utilizes the strength of PET and CT modalities for target 
delineation in a group of 16 patients with HNC. Background and foreground seed 
voxels must be always manually identified by the user. A similar approach is 
reported in [22], where the segmentation is seen as a minimization problem of a 
MRF model, which encodes the information from both modalities. This optimization 
is solved using a graph-cut based method, by constructing two sub-graphs for PET 
and CT segmentation, respectively. The algorithm was validated in robust 
delineation of lung tumors on 23 PET/CT datasets and two HNC subjects. A further 
MRF-based systematic solution for the automated co-segmentation of brain PET/CT 
images into grey matter, white matter and CSF regions is exposed in [23]. A PET/CT 
image pair and its segmentation result are modelled as a MRF triplet, and 
segmentation is eventually achieved by solving a maximum a posteriori (MAP) 
problem using the expectation maximization (EM) algorithm with simulated 
annealing. The overall MRF-MAP model was tested both on both simulated and real 
patient PET/CT data. 
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 The authors of [24] proposed a method for automated delineation of tumor 
boundaries in whole-body PET/CT by jointly using information from both PET and 
diagnostic CT images. After an initial robust hot-spot detection and segmentation 
performed in PET, a model for tumor appearance and shape in corresponding CT 
structures is learned by weighted non-parametric density estimate. This voxel-based 
CT classification is then probabilistically integrated with PET classification using the 
joint likelihood ratio test technique to derive the final segmentation. The algorithm 
was tested on patient studies with lung and liver tumors identifiable in both the PET 
and CT images acquired using the same scanner.  
 Yezzi et al. [25] introduced a geometric variational framework that uses active 
contours to simultaneously segment and register features from multiple images. The 
key aspect of this approach is that multiple images may be segmented by evolving a 
single contour as well as the mappings of that contour into each image during 
feature-based realignment steps. The results of three experiments on MRI/CT images 
of the head and the spine are reported. Also the authors of [19] developed variational 
methods based on multivalued level set deformable models for simultaneous 2D or 
3D segmentation of multimodality images consisting of combinations of co-
registered PET, CT, or MRI datasets. In particular, only three patients are 
considering: a non-small cell lung cancer case with PET/CT, a cervix cancer case 
with PET/CT, and a prostate patient case with CT/MRI. In addition, CT, PET, and 
MRI phantom data were used for quantitative validation of the proposed 
multimodality segmentation approach. 
 An automatic algorithm for the co-segmentation of HNC based on PET/MRI data 
was proposed in [26], in order to standardize tumor volume delineation. For both 
imaging modalities tumor probability maps were derived, assigning each voxel a 
probability of being cancerous according to its signal intensity. A combination of 
these maps was subsequently segmented using a threshold level set algorithm. The 
algorithm processes both the anatomical T2-weighted MRI and FDG-PET data 
concerning 10 HNC patient datasets acquired in a combined PET/MRI system. 
 The group led by Bagci developed co-segmentation approach in multimodal 
medical imaging, using the Random Walker (RW) algorithm [27] and unifying graph 
representation of each image modality in a single product lattice. The overall method 
results in a fully automatic framework, providing an automated object detection via 
interesting uptake region algorithm to avoid users foreground and background seed 
detection. Afterwards, prior to the initiation of the segmentation process, these 
identified seeds are propagated to the corresponding anatomical images. Although no 
significant anatomical and functional changes between the scans have to be assumed, 
the study used PET, PET/CT, MRI/PET, and fused MRI/PET/CT scans from 56 
patients who had various lesions in different body regions.  
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CHAPTER 3 

 

3 MR Breast Image Segmentation 

 
In breast MRI, several elements are required to perform automatic analysis. Many 

examples of medical imaging require an initial segmentation phase: multimodal 
breast image registration, computer aided analysis of DCE (dynamic contrast 
enhanced) MRI [30], and breast density assessment [1], [29]. In [30] the authors 
detected the left side and the right side of the breast and the center of mass in each 
side is used as the seed points for region growing. The region detection and 
extraction from the anatomical regions are very difficult tasks. Complicating factors 
are the large shape variations of pectoral muscles across different patients, the 
similarity between intensity distributions and texture descriptors of the breast MR in 
muscle and fibroglandular tissues. 

In last few years, many researches appears in medical imaging and precise 
segmentations of relevant anatomical structures such as breast region and 
fibroglandular tissue are required. Most of state of the art methods for breast 
segmentation on MRI are semi or fully automated, furthermore they can be grouped 
in contour-based, region-based and atlas-based approaches [31]. Generally, on Breast 
MRI, the following operations precede the breast segmentation task: Pectoralis 
muscle boundary segmentation, breast-air boundary segmentation. In [32] the authors 
proposed a method based on the observation that the pectoralis muscle and breast-air 
boundaries exhibit smooth sheetlike surfaces in 3D. This surfaces that can be 
simultaneously enhanced by a Hessian-based sheetness filter. The authors in [33] 
proposed a method for breast segmentation, but it needs manual intervention. In [34] 
breast segmentation was based on a semiautomated model that accounting for partial 
volume effects. 
 

3.1 Automatic Multi-seed Detection for MR Breast Image Segmentation 
 

The proposed method consists of three steps: (1) pre-processing step to locate 
three regions of interest (axillary and sternal regions); (2) processing step to detect 
maximum concavity points for each region of interest; (3) breast image segmentation 
step. Eighteen patients have been manually segmented accordingly to three expert 
Radiologists to generate Gold Standard ground-truth used to evaluate the 
effectiveness of the proposed method. The acquisition parameters and characteristics 
are depicted in the next section. The algorithms used in the proposed segmentation 
method are briefly described in the next sections. The proposed system consists of 
three main steps, as depicted in Figure	3.1.: 
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• The pre-processing output as depicted in Figure 3.1.1; 
• The processing output as depicted in Figure 3.1.2; 
• The segmentation output as depicted in Figure 3.1.3. 
 

 
Figure 3.1.1 Block scheme of the proposed method: pre-processing, processing, and segmentation. 
 

3.1.1 Pre-processing 
	

The pre-processing step is as follows: 
1. A breast MRI study is loaded. It contains, more or less 30 slices with thickness 

5.00mm (a single slice as shown in Figure 3.1.1 a); 
2. A first binarization step is required to extract the boundary of the breast as shown 

in Figure 3.1.1 b), an adaptive thresholding is applied to the image by analyzing 
the trimodal distribution of intensity histogram; 

3. An image crop containing the breast regions is considered (approximatively 2/3 
of the whole image) as shown in Figure 3.1.1 c); 

4. The holes are filled in the image, as shown in Figure 3.1.1 d); 
5. The Largest Connected Component is found in the MRI and all other components 

are removed, as shown in Figure 3.1.1 e); 
6. The objective is to find the coordinates of three pairs of points (A, B, C, D, E, F 

as shown in Figure 3.1.1 f), each pair of points includes a concave region of the 
breast boundary. The first and the third pair of points correspond to the vertices 
of axillary regions; the second pair of points correspond to the sternalregion. The 
task is to find an n-by-2 matrix that specifies the convex hull includingthe Breast 
Region and each row includes the coordinates of the convex hull corners. We 
notice that the larger side of the convex hull correspond to our regions of interest 
i.e. the axillary and stern regions (as suggested by the radiologists). In few words 
we find the three pairs of points by detecting and sorting the larger sides of the 
aforementioned convex hull. The first three sides of the convex polygon 
respectively correspond to the axillary (A, B, E, F see in Figure 3.1.1 f) and the 
sternal regions (C, D see in Figure 3.1.1 f). We sort the vector including the 
distances between the consecutive vertices of the convex polygon, in descend 
order, then we select the first three pairs of coordinates as the vertices of our 
regions of interest (axillary and sternal regions), as shown in Figure 3.1.1 f; 
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7. The convex hull of the binary regions found in step 5 is computed, as showing 
Figure 3.1.1 g; 

8. The boundary of image obtained in item 5 is extracted with the canny filter, as 
shown in Figure 3.1.1 h; 

 
Figure 3.1.1 Pre-processing: (a) a breast MRI is loaded; (b) the adaptive thresholding is applied in the 
MRI to emphasize the contours of the breast; (c) image crop containingthe breast regions is 
considered; (d) the holes are filled in the image obtained in (c); (e) the Largest Connected Component 
is found in the MRI and all other components are removed; (f) the coordinates of three pairs of green 
points (A, B, C, D, E, F) are found; (g) the convex hull is computed in the image obtained in Figure e 
and it is returned a binary convex hull image; (h) the boundary of image obtained in Figure e is 
extracted with the canny filter. 
 

3.1.2 Processing 
	

The coordinates of the points A–F (see in Figure	3.1.1 f) are grouped in three pairs: 
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A and B belong to the first side of the convex hull (axillary region), C and D belong 
to the second side of the convex hull (stern region), E and F belong to the third side 
of the convex hull (axillary region). To detect the maximum concavity points (in 
breast image, see green points G, H, I in Figure	3.1.2 c) we process three regions of 
interest i.e. the axillary regions and the stern region. We highlight that the maximum 
concavity points correspond to the landmarks identified by the radiologists. To 
accomplish the detection of the maximum concavity points, each region of interest is 
processed as it follows: 
 
1. To detect the maximum concavity, we first apply Delaunay Triangulation 

between the two vertices of each region of interest (in first instance A–B in 
Figure 3.1.1 f) and all the boundary points between the two vertices (yellow dots 
in Figure 3.1.2 a); 

2. The area of each triangles is computed; 
3. The triangles are sort in descend order with respect to area value; 
4. The first triangle is selected, it includes the larger area in the concave region of 

interest; 
5. The maximum concavity point of the region is the third vertex of the triangle 

selected in the previous step (see green point G in Figure 3.1.2 c); 
6. To avoid the exclusion of some region of interest including important features 

such as Skin, subcutaneous fat pad, and chest fat pad we add and additional 
margin to the G coordinates; 

7. The additional margin is computed by measuring the vertical distance between G 
and the inner boundary extracted by filtering with canny algorithm. The same 
technique is applied to the other maximum concavity points, as depicted in 
Figure 3.1.2 c) by red points; 

8. When the maximum concavity points are detected, a line is drawn to join these 
points. All the elements located above the line are deleted, as shown in Figure 
3.1.2 d). 
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Figure 3.1.2 Processing: (a) the boundary points between the two vertices A–B (yellow dots) are 
plotted; (b) Delaunay Triangulation is applied between the two vertices of each region of interest (in 
first instance A–B) and all the boundary points between the two vertices (yellow dots in (a); (c) for 
each concavity to detect the maximum concavity points (in breast image, see green points G, H, I); an 
additional margin is computed by measuring the vertical distance between G and the inner boundary 
extracted by filtering with canny algorithm, as depicted by red points in (c); (d) when the extraction of 
concavity points stage is complete, a line is drawn to join these points. All components above this line 
are removed. 
 

3.1.3 Segmentation 
The segmentation phase consists of three steps: 
1. First, a region growing algorithm [37] with standard parameters (threshold) is 

applied to the image processed as described in the previous section. Region 
Growing algorithm needs a seed point to be executed. The maximum concavity 
points are then used as seed points for region growing. The result is shown in 
Figure 3.1.3 a); 

2. In second step, morphological close operation has been used to fill the holes 
emerged from region growing. The structuring element of morphological 
operations is a disk with radius of 20 pixels so that the largest hole gets filled. 
The disk structuring element is used to preserve the circular nature of the object. 
The result is shown in Figure 3.1.3 b); 
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Figure 3.1.3 Segmentation: (a) the region growing is applied to the image obtained in the end of 
processing step Fig. 3d; (b) the holes emerged form region growing are filled by applying the 
morphological close operations. 
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CHAPTER 4 

 

4 Machine Learning and Data Analysis in Medical Data  

	

Incisional hernia is one of the most common complications after abdominal 
surgery with an incidence rate of 11 to 20% post laparotomy. The impact in terms of 
Quality of Life (QoL) worsening and public health costs is relevant. Moreover, the 
recurrence of incisional hernia after surgical operation of incisional hernia repair has 
an incidence rate of 18 to 50% during the first post-operative year depending on 
some variables [38][39]. Particularly, many different factors can be considered as 
risk factors of incisional hernia recurrence such as the surgical technique performed, 
the use of a mesh, the anatomical site of the mesh positioning, the emergency 
regimen of the surgical operation, the presence of a dirty/contaminated surgical field, 
the oldness, the sex, the obesity, the diabetes mellitus type 2, the tobacco use, the 
malnutrition, the use of immunosuppressor, the chronic pulmonary disease, the 
ascites and the chronic anaemia [40].  

Crohn’s Disease (CD) is a life-long idiopathic, often debilitating, chronic 
inflammatory disease of the gut, which can potentially involve the entire 
gastrointestinal tract [1]. It arises from an interaction between genetic and 
environmental factors, and it is characterized by granulomatous autoimmune reaction 
of the bowel walls, from the mucosal layer to the serosa one, and frequent 
extraluminal and extra-intestinal features. The incidence peak is in adolescents and 
young adults, between 15 and 25 years old [41][42]. CD comprehends a variety of 
complex phenotypes in terms of disease location and behavior, characterized by 
different events within time, healing and relapses. This phenotypical heterogeneity 
depends on many factors: the age of appearance, time elapsed from symptoms to 
diagnosis, site, extent and behavior of disease, and other anamnestic features [43]. 
Because of these heterogeneities the last European Consensus by European Crohn’s 
and Colitis Organization (ECCO) agreed on the lack of a single gold standard for 
diagnosis of CD: “A single gold standard for the diagnosis of CD is not available. 
The diagnosis is confirmed by clinical evaluation and a combination of endoscopic, 
histological, radiological, and/or biochemical investigations” [44]. The recent new 
therapies, both biological ones and immuno-modulators, are very effective in 
downgrading disease activity and in symptoms control, but their real effect on 
disease course is mostly unknown. Moreover different therapy strategies must be 
tailored on disease evolution during treatment, thus allowing to prolong remission, to 
improve life quality, to prevent or manage hospitalization and surgery, and finally to 
prevent disability [43]. Imaging plays a pivotal role on disease evaluation during life-
time, allowing a non-invasive patients follow up. That’s the reason why non ionizing 
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imaging technics must be preferred [43][45]. Enterography magnetic resonance 
imaging (E-MRI) was recently yielded as useful diagnostic tool that can afford 
radiation free diagnosis where other imaging examinations have failed, or when 
involved areas are not easily reachable by endoscopy [42][43][46]. It is considered 
the gold standard for CD diagnosis and is not able to provide a comprehensive 
assessment of extra-luminal features and extraintestinal manifestations of disease 
[43]. In the last decades, MRI represented a valid technique for evaluation of disease 
extension and activity, for patient follow-up or for a pre-operative assessment in 
patients with histologically proven CD [43]. Its role as first step examination in 
diagnosis for suspected but not confirmed CD was explored only recently, showing 
high accuracy (sensitivity 93%, specificity 90%) [47]. Up to date, many studies have 
been published, concerning the use of imaging evaluation in CD diagnosis and 
grading, although nowadays there is not yet an adequate consensus about its actual 
reliability in clinical practice [44][48][49]. Because of the widely heterogeneous 
clinical features of CD, the role of radiologists may be challenging [43][46][50][51]. 
Nevertheless, worldwide literature has reported typical E-MRI features, which are 
frequently associated with CD, and whose evaluation may help in diagnosis by 
imaging [43][50][51]. The possibility of early CD diagnosis has great clinical 
implications, considering the impact on public health that such a chronic and 
disabling disease can imply, due to the high economic costs necessary for patients 
management, and which may be potentially reduced by imaging early diagnosis, and 
pattern definition [43]. This is particularly important considering that time elapsed 
from symptoms to diagnosis, site, extent and behavior of disease deeply influence 
patient prognosis, outcome, therapy, and complications. 
Automatic diagnosis of CD is a very challenging task and can have a great clinical 
implication in CD affected patients. In last years, a lot of approaches to classify MRI 
images into healthy or unhealthy classes have been proposed. Supervised 
classification techniques include support vector machine (SVM) [52] and k-nearest 
neighbors (k-NN) [53][54]. Unsupervised classification techniques [55][56] include 
self-organization feature map (SOFM) [52] and fuzzy c-means [54][57]. Generally, 
all these methods achieve good classification results. 
Among supervised classification methods, SVMs are common classification methods 
based on machine learning [58][59][60]. Compared against other methods such as 
artificial neural networks, decision trees, and Bayesian networks, SVMs have 
significant advantages in high accuracy, elegant mathematical tractability, and direct 
geometric interpretation. Moreover, they do not need a large number of training 
samples to avoid over-fitting [61]. To the best of our knowledge, there are not SVM 
based applications for CD in literature. In [62], it has been applied a SVM method 
for data classification. The SVM modeling is a promising classification approach for 
predicting medication adherence in Heart Failure (HF) patients. This predictive 
model helps to stratify the patients so that evidence-based decisions can be made and 
patients can be managed appropriately. In [63], a novel hybrid system to classify a 
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given MR brain image as either normal or abnormal is proposed. The method 
employed digital wavelet transform to extract features and principal component 
analysis (PCA) to reduce the feature space. Afterwards, a KSVM with Radial basis 
function (RBF) kernel, using particle swarm optimization (PSO) to optimize the 
parameters C and σ is adopted. Five-fold cross-validation was utilized to avoid over-
fitting. Wavelet transform is an effective tool for feature extraction from MR brain 
images, because it allows images analysis at various levels of resolution due to its 
multi-resolution analytic property. This technique requires large storage and it is 
computationally expensive [64]. PCA is appealing since it effectively reduces data 
dimensionality and computational cost [65]. In this paper a supervised Crohn’s 
disease patient’s classification technique based on Kernel Support Vector Machine 
(KSVM) algorithm using a Stratified K-Fold Cross Validation strategy is presented. 
The proposed technique aims to apply a KSVM technique on E-MRI qualitative 
extracted features to simplify classification task complexity and preserve technique 
accuracy and quality when compared against manual methods [47]. 
 

4.1 Use of the KSVM-based system for the definition, validation and 
identification of the incisional hernia recurrence risk factors 

 
The proposed intelligent data analysis and classification technique are based on 
machine learning algorithms used to classify the proprietary University of Palermo 
Policlinico Hospital (UPPH) Dataset. The dataset is composed of 154 patients, each 
of one codified by 34 qualitative features and classifier into Positive for recurrence 
risk or Negative for recurrence risk by expert surgeons. The purpose of the study is 
reached developing an objective tool for incisional hernia affected patients 
classification, using a Kernel Support Vector Machine (KSVM) based technique. 
The proposed technique uses 103 vectors composed of 34 qualitative features used 
for KSVM training to identify incisional hernia recurrence; 51 vectors com- posed of 
34 qualitative features used to validate the proposed technique. In order to make 
reliable the classifier, generalized to other sets of independent data and to limit 
problems as over-fitting, without increasing the precision of final standings, the 
cross- validation is integrated into the proposed technique. In Stratified K-fold cross-
validation, the data set is divided into k equal subsets, and the holdout method is 
repeated k times. Each time, one of the k subsets is used as the validation set, and the 
other K-1 subsets are put together to form a training set. Then the average error 
across all K experiments is computed. In this work K has been empirically 
determined as 5 through the trial-and-error method. 
 

4.2 A Kernel Support Vector Machine Based Technique for Crohn’s 
Disease Classification in Human Patients 

	
The purpose of this study is to develop an automatic tool for CD affected patients 
classification based on a kernel support vector machine (KSVM) technique. The 
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description of algorithms and mathematical formalisms used are briefly described. 
 

4.2.1 Features Extraction 
	

Parameters extraction has been elaborated on the basis of the typical E-MRI 
features of CD affected patients [43][46][50][51], as shown in Figure	4.2.1 and Table	
4.2.1. 
 
Table 4.2.1 MR Enterorgraphy extracted features. 
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4.2.2 Kernel SVM 
The support vector machines (SVM) can be thought as an alternative technique 

for polynomial classifiers learning, as opposed to classical training methods for 
neural networks. SVMs can represent complex non-linear functions. The 
characteristic parameters of the network are obtained by the solution of a quadratic 
convex programming problem with equality constraints or box type (in which the 
value of the parameter must be maintained within a range), providing a single global 
minimum [66]. One of the most popular and reliable SVMs are the kernel SVMs. 
Kernel SVMs have the following advantages [68]: 
 

 
Figure 4.2.1 E-MRI CD Features: (a) HASTE Thick slab: Bowel cleansing and distension; 
	

(b) Balanced - TrueFISP: Terminal Ileum thickening; length; lumen caliber: 
substenosis; (c) T2 Single-shot FSE fat-sat: Mucosal layer: pseudo-polyps; (d) T2 
Singleshot FSE fat-sat: Fat Wrapping; (e) Post contrast T1 3D spoiled GE: Lymph-
nodes; (f) T2 Single-shot FSE fat-sat: Sinus; (g) Post contrast T1 3D spoiled GE: 
Sinus; (h) T2 Single-shot FSE fat-sat: Fistula; (i) T2 Single-shot FSE fat-sat: Free 
fluid; (j) DWI: Water diffusion restriction. Hyper-intensity; (k) T2 Single-shot FSE 
fat-sat: T2 imaging: Hyper-intensity due to severe edema and Terminal Ileum 
Thickening; (l) Post contrast T1 imaging 3D spoiled GE: Layered pattern contrast 
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enhancement. 
 

• Work very well in practice and have been remarkably successful in such 
diverse fields as natural language categorization, bioinformatics and 
computer vision; 

• Have few tunable parameters; 
• Training often involves convex quadratic optimization. 

 
Four common kernels [67] have been used in this work and they are listed in Table	

4.2.2. For each kernel, there should be at least one adjusting parameter to make the 
kernel flexible and tailor itself to practical data. Table	 4.2.2 depicts also the used 
parameters in each case. 
Our task is a two class classification task, labelled as Positive or Negative. 
 
Table 4.2.2 Four common kernels used in the Support Vector Machine 

 
 

4.2.3 The Proposed Technique 
The goal of the proposed system is the supervised Crohn’s disease affected patient 

classification using a KSVM algorithm. Accordingly to the expert radiologists, each 
E-MRI sequence is codified by a vector composed of 22 qualitative features as 
depicted in Table	4.2.2. KSVM classification performs two class classification task:  
accordingly to the related histological specimen result each pattern is classified as 
Positive or Negative. As pointed out before, our dataset is composed of 300 vectors 
of 22 qualitative features. The whole dataset is divided into two bins: 80% (240 
vectors) of the sampled values are used for the training session, and the remaining 
20% (60 vectors) values are used for the validation session: 

• 240 vectors composed of 22 qualitative features for KSVM training; 
• 60 vectors composed of 22 qualitative features for KSVM validaion. 

A cross-validation strategy has been also integrated into the proposed technique to 
enhance classifier reliability and generalization capabilities, and limit over-fitting 
issues. The proposed training and validation workflow is depicted in Figure	4.2.2. 
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Figure 4.2.2 The proposed training and validation workflow: each E-MRI sequence is codified by a 
vector composed of 22 qualitative features. Accordingly to the related histological specimen result, 
KSVM training vectors have been labelled. Afterwards, a new E-MRI vector is classified by KSVM. 
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CHAPTER 5 

 

5 Image Segmentation in PET  

 
In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high 

quality detailed images and excellent soft-tissue contrast, while Computerized 
Tomography (CT) images provides attenuation maps. In this context, Positron 
Emission Tomography (PET) is a non-invasive imaging technique that has the 
advantage, over morphological imaging techniques, of providing functional and 
metabolic information about the patient’s condition. Inclusion of PET images in 
radiotherapy protocols is desirable because it provides crucial information to 
accurately target the oncological lesion and to escalate the radiation dose without 
increasing normal tissue injury [69]. For this reason, PET may be used for improving 
the Planning Treatment Volume (PTV) [70]. In addition, PET quantitative 
assessment in oncological patients, conveys functional information which is 
predictive of treatment response  [71] and faster changing than the morphological 
response [72]. As such, PET can greatly improve the clinical cancer treatment 
decision making [3]. In particular, the maximum Standardized Uptake Value 
(SUVmax) is the most widely used quantification parameter giving a punctual 
measure of cellular metabolism [73]. To provide further information about the 
cancer, additional quantitative parameters have been introduced, such as biological 
tumor volume (BTV) and tumor lesion glycolysis (TLG) [74][75]. TLG is obtained 
as the product of SUV with BTV and provides both volumetric and metabolic 
information. Therefore, BTV delineation is one of the most important steps towards 
precise radiation therapy treatment planning and quantification accuracy [76].  

In general, PET segmentation methods can be categorized as manual, semi-
automatic and automatic.  Manual contouring is still widely adopted in clinical 
environments because it is easily applicable, and because a large number of operators 
feel that no algorithm would segment “how they would”. However, accuracy of 
manual BTVs may be affected by blurred contours due to the image resolution and 
also depends upon both the operator’s expertise and clinical specialization. 
Additionally, manual segmentation is time consuming. Indeed, the level of 
performance imposed by daily clinical routines, makes properties such as 
repeatability (i.e. the result should be operator independent) and real-time processing 
not only desirable, but mandatory. Thus, automated or semi-automated methods are 
highly desirable in order to reduce inter-operator variation and time. Unfortunately, 
BTV contouring is strongly depend on the segmentation algorithm [77] and suffers 
from the typically low resolution of PET images [76][36]. As a result, the choice of a 
standard BTV segmentation algorithm remains a challenging, unresolved issue. 
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A large number of PET segmentation methods can be found in the literature 
[78][79]. Thresholding and region growing (RG) methods are among the most 
popular, principally because they are easily implemented.  

These approaches however, show a drop in performance on low-contrast 
heterogeneous cancer regions [11] and segmentation of small or non-spherical 
tumors is often unsatisfactory [80]. The adaptive RG algorithm in [81] repeatedly 
applies a confidence connected RG algorithm with an increasing relaxation factor 
automatically identified. This algorithm is robust to parameter settings and region of 
interest selection in the case of a relatively homogeneous background. Additionally, 
the approach seems to be free from dependency on scanner type, imaging protocol, 
or tumor shape. 

Affinity propagation [82] investigates multi-focal radiotracer uptake patterns. 
Unfortunately, its development is still limited to animal studies. 
Stochastic models (e.g. the Gaussian mixture model), founded on the statistical 
analysis of the intensity distribution, can be considered optimal for noisy images. 
Nevertheless, proper noise models must be determined a priori [83]. 

Learning methods [84], such as artificial neural networks, and support vector 
machines are efficient, although the training of such algorithms typically requires 
large and diversified datasets.  
Due to the fuzzy nature of the lesion contours in PET studies, the Fuzzy C-Means 
(FCM) [85] approach has become very popular for delineation. However, while large 
and simple-shaped targets are accurately recovered, complex-shaped lesions remain a 
challenge [86].  

Variational approaches based on gradient differences between healthy and cancer 
tissues are designed for maximum mathematical efficiency, but are sensitive to noise 
and subject to numerical fluctuation [27]. Active contours (AC) belong to this family 
of algorithms. An initial contour, drawn around the object of interest is evolved 
toward the object edges. The evolution is mathematically driven by the gradient of 
what is termed as the “energy function”, a scalar function mathematically defined in 
such a way that its minimum value is attained by the best possible segmentation. 
Some examples are available in literature: Li et al [87] used RG as a pre-processing 
step to strategically initialize the active contour. Unfortunately, the result tended to 
overestimate the tumor volume [81]. Similarly, ACs have been used in combination 
with anisotropic diffusion filtering and multi-resolution contourlet transforms [88]. 
However, the outcome of this approach heavily depends on several user-defined 
parameters. In order to improve accuracy and robustness, Fuzzy C-means (FCM) 
clustering and textural information have been used to improve AC robustness [89]. 
Nevertheless, this strategy suffers in the presence of nearby high physiologic uptake, 
and its result depends on the initial cropping area. 

Graph-based strategies yield efficient segmentation, the underlying rationale being 
to locate different tissues by using foreground and background seeds [90]. However, 
when seed identification is automated, high uptake physiological structures (e.g. 
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brain, heart, bladder, and kidneys) are often mistakenly identified as initial target 
seeds, resulting in misleading guidance to the segmentation algorithm [91].  

Alternative studies exist which tackle the challenge of automatically 
discriminating between normal and pathological tissues in PET. Unfortunately, a full 
comparison of such algorithms is not possible as the relative studies often concern 
different body districts and specific types of abnormality. Studies on the 
discrimination of pathological structures in whole-body PET have been conducted as 
well, and some preliminary results have shown that different anatomical areas pose 
different challenges [92][93]. In addition, numerous PET-based radiometric studies 
have been proposed, and the results of the relative analysis are highly dependent on 
the method used to derive the BTV [94]. 

The combination of PET and CT or MRI in a single scanner is desirable, as it 
offers the advantage of generating complementary information. However, a one-to-
one relationship between anatomical and functional images is not always appropriate 
[91]. Co-segmentation methods, which assume no significant anatomical and 
functional changes between the images acquired by different modalities, generally 
yield a single target volume where the information of each modality is not optimally 
exploited, or at worse, lost. 

When PET/CT or PET/MRI imaging is employed, BTV delineation should be 
obtained, avoiding the use of the anatomical information provided by CT and MRI 
measurements, or alternatively, the latter should be used very carefully [95]. For 
example, Yezzi et al. [96]proposed active contours to simultaneously segment and 
register features from multimodal images.  

Despite this flourishing population of segmentation algorithms, most operators 
still feel more comfortable with manual segmentation. The main reason is because 
contouring algorithms are likely to include portions of the tumor or surrounding 
tissue that the physician would had discarded, or they may overlook portions of 
tissue the physician would otherwise include. In practice, an expert human would 
have segmented differently by virtue of his or her own professional training and 
experience.  

The main subject of the present work is an operator independent segmentation 
strategy to be used in radiotherapy (RTP).   
Such a strategy is implemented in the form of an algorithm with the following key 
features:  
1) preliminary pre-processing which converts PET DICOM data (Digital Imaging 
and Communications in Medicine) [97] into SUV images in order to incorporate 
important metabolic information; 
2) minimal human intervention, limited to a rough contour to highlight an initial ROI 
on just a single PET slice, yielding considerable time reduction; and 
3) two fully automated stages of segmentation. The first segmentation stage consists 
of the preliminary identification of a rough volume of interest from which the 
optimal starting mask is extracted. Such a mask consists of a user-independent 
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contour of the tumor boundary. It is individuated on the slice containing the 
maximum value of SUV for the whole lesion. As such it may actually lie on a PET 
slice which differs from the user drawn ROI. The second stage, which is initiated 
from the optimal mask, yields a high detail segmentation. This latter stage, in 
particular, follows a slice-to-slice walking strategy and implements an innovative 
algorithm obtained by coupling a local active contour (LAC) with tissue 
classification from the classification method [98][99].  

The employed datasets focus on the uptake of 18F-fluoro-2-deoxy-d-glucose 
(FDG) and 11C-labeled Methionine (MET) radio-tracers. On the one hand, FDG (an 
analogue of glucose) accounts for approximately 90% of all PET imaging 
procedures. On the other hand, MET-PET has being recognized as an efficient means 
of highlighting tumor cell invasion in brain metastases, and according to some 
studies [100][101] may even outperform CT or MRI 
 
 

5.1 A smart and operator independent system to delineate tumours in 
Positron Emission Tomography scans 

	

In order to overcome the general limitations of the above mentioned studies, we 
combined and adapted to PET imaging several existing technologies. Doing so, we 
created a new smart system (Figure	 5.1.1) whose main purpose is to deploy a 
segmentation strategy to be used in radio-therapy treatment planning, and outcome 
evaluation. The proposed system is applicable to various types of lesion, different 
anatomical districts and can perform segmentation on PET studies based on different 
radiotracers. Our approach reduces at minimum the intra-observer and inter-observer 
dependencies with respect to manual delineation, without introducing any user-
dependent parameter. The AC segmentation algorithm at the core of the system is 
applied using a slice-by-slice approach, starting from an initial, automatically 
individuated slice. Process is terminated when a suitable stopping condition is met. 
Consequently, the system presents a high level of automation. In the following we 
provide a high level description of our approach.  

Briefly, the region containing the cancer must be localized by the operator to 
avoid healthy tissues having high radio-tracer uptake or critical conditions, i.e. when 
the lesion is located near the heart. The PET Digital Imaging and Communications in 
Medicine (DICOM) dataset is then converted into SUV images to normalize the 
voxel activity, taking into account functional aspects of the disease. Based on this 
minimal input, where the user is required to highlight a region on just a single PET 
slice, the algorithm performs all subsequent operations automatically. The first step 
consists of a pre-segmentation that computes a user independent region of interest 
(ROI). The algorithm automatically finds an optimal starting mask, which may lay 
on a slice different from the one initially highlighted by the operator. Once the 
independent ROI has been obtained, the relative initial mask is feed to the next step 
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of the system, where the segmentation is performed using a Local region-based 
Active Contour (LAC) segmentation algorithm, appropriately modified to support 
metabolic images as explained in the following sections. The obtained LAC 
segmentation is propagated to the adjacent slices using a slice-by-slice marching 
approach. Propagation is performed in parallel both upward and downward within 
the SUV volume to obtain the BTV, until a suitable stopping condition is met. In the 
following, a detailed discussion of the various steps is presented. 
 

 

Figure 5.1.1 The proposed segmentation system. a) to avoid any false positive, the region containing 
the lesion is localized by the operator; b) PET dataset is converted into SUV images to incorporate 
functional information; c) The PET slice containing maximum Standardized Uptake Value is found d) 
RG is used to identify the user independent ROI on the slice; e) initial ROI is sent to the next logical 
block of the system; f) segmentation is performed using the LAC algorithm; g) segmentation mask is 
propagated to the adjacent slices (slice-by-slice marching approach); h) the stop condition is evaluated 
(see following sections); i) segmentation on the next slices is performed until stop condition is false; l) 
an operator independent BTV is finally obtained. 
  

5.1.1 User Independent Pre-Segmentation Step 
	

We defined the proposed system as semi-automatic because in total body FDG-
PET examinations, an initial user input is still required to roughly identify the area 
containing the cancer. The motivation is to avoid false positives when cancer is 
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situated near anatomical structures such as brain, heart, bladder, kidneys, and ureters 
where high FDG uptake is to be considered normal. However, user intervention is 
minimal and limited at drawing a rough contour around the cancer area, on just one 
PET slice (Figure	5.1.1-a). No further intervention is needed. The input technique (e.g. 
use of touch screen, stylus, etc.) depend on user's preference. In the present study 
input was performed by mouse.  

Pre-processing the uptake data in PET examinations is mandatory for inter-patient 
and follow-up comparisons. Among PET metrics, SUV is the most widely used 
quantification parameter giving a measure of cellular metabolism. For this reason, we 
integrated SUV information in our system. The PET dataset is converted into 
weighted SUV unit (g/ml) [102] images (Figure	5.1.1-b), as suggested in [86]. SUV is 
calculated as the ratio of tissue radioactivity concentration (RC) in kBq/ml and 
injected dose (ID) in MBq at the time of injection divided by body weight (M!) in 
kilograms, thereby taking into account essential functional aspects of the patient: 
 

!"!! =  !"!" ∗!!  

RC is calculated as the ratio between the image intensity and the image scale factor. 
ID is the product between actual activity and dose calibration factor [74][90]. 

Based on the region highlighted by the user (ROI0), the first logical block of our 
algorithm consists of an automatic pre-segmentation step which computes a user 
independent ROI. This goal is achieved by first identifying a volume of interest 
(VOI) which is formed by propagating ROI0 to adjacent slices. 

Every time a new slice (index j) is considered, ROI0 is propagated to obtain ROIj, 
and the maximum SUV within ROIj is detected (SUV!"#! ). If this value exceeds 42% 
[95] of SUV!"#!  found within the initial slice, then the new slice is added to the 
volume. A new ROIj is then computed in the slice j using the region growing (RG) 
method [96] to follow the evolution of the lesion along the SUV volume. In 
particular, the SUV!"#!  voxel is used as target seed. Otherwise, the growing is 
stopped. In this way, a cylindroid (i.e. a cylinder with a non-circular base) is 
obtained.  

The next pre-segmentation step is to locate the voxel of maximum SUV within 
this volume of interest, SUV!"#!"#  (Figure	5.1.1-c). Note that this maximum value may 
reside on a different slice than the one selected by the user, but it will belong to the 
same anatomical anomaly. 

The rough segmentation of the newly identified slice using the RG algorithm 
(Figure	 5.1.1-d) represents the output of the pre-segmentation step (Figure	 5.1.1-e) 
which will feed the next logical block of the system (Figure	5.1.1-f).  

Note that in this pre-segmentation process, the region highlighted by the user does 
not need to be carefully drawn. A rough inclusion of the anomalous area is sufficient. 
Further, manual drawing does not need to be repeated on any other slice. As a result, 
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the pre-segmentation process generates an output that is independent to local 
variations in the initial user input, and for that, thereby making the result extremely 
repeatable. Furthermore, the RG algorithm is only used to obtain a rough estimate of 
the contour encircling the highest radio-tracer uptake area within the slice containing 
the SUV!"#!"# . This contour is then feed into the next section of the system, the “Slice 
Marching Segmentation” as shown in Figure	5.1.1, where the delineation is further 
refined through a more sophisticated segmentation algorithm (Figure	 5.1.1f), 
accompanied by an automated data-driven stopping condition (Figure	5.1.1h).  
Consequently, we can expect the final BTV (Figure	5.1.1) to contain the cancer within 
its limits and the segmentation to account for extremely irregular lesion shapes. 
Three examples of ROI bounding regions delineated on PET images by the RG 
method are shown in Figure	5.1.2(a–c).  
 

 

Figure 5.1.2 Operator independent ROI generation on PET images. Figures a, b, and c show the pre-
segmentation output (Figure 5.1.1e) on three different body districts: lung (a), brain (b) and head and 
neck (c), respectively. The white contour with black asterisks represent the input provided by the user, 
while the blue asterisks contour shows the result of the RG algorithm after the slice containing the 
maximum SUV is identified. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
 

5.1.2 Slice Marching Segmentation Step 
	

The LAC algorithm blends benefits of purely local edge based active contours and 
fully global region based active contours. At each point along a prominent intensity 
edge of an object, nearby points inside and outside the object will be modelled well 
by the mean intensities within the local neighbourhoods on either side of the edge. 
This is the motivation behind the model proposed by Lankton et al [83]; where the 
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contour energy to be minimized is defined as:  
 

! =  
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where Rin and Rout represent the regions inside and outside the curve C; where s 
represents the arc-length parameter of C, where !  represents the characteristic 
function of the ball of radius l (local neighbourhood) centred around a given curve 
point C(s), where I represents the intensity function of the image to be segmented, 
and where u! s  and v!(s) denote the local mean image intensities within the portions 
of the local neighbourhood χ!(x, s) inside and outside the curve respectively (within 
Rin and Rout). These neighbourhoods are defined by the function χ, the radius 
parameter l, and the position of the curve C. Note that the function χ!(x, s) evaluates 
to 1 in a local neighbourhood around each contour point C(s) and 0 elsewhere, 
thereby localizing the processing of image information. The shape of the contour C 
then divides each such local region into interior local points and exterior local points 
in accordance with the contour’s role to segment the domain of I. The resulting flow 
is more robust to initial curve placement and image noise like region-based flows 
described on [103]; and yet it also capable of capturing significant local structure and 
partitioning the image without making strong global assumptions about its makeup. 
To be successful, the present segmentation technique relies on the assumption that 
nearby points inside and outside the true edge of an object, will be modelled well by 
the mean intensities within these localized regions. As a result, the energy (2) is more 
global in nature than edge-based flows but with a “tunable” degree of locality 
defined by the neighbourhood radius l. 

Actually, the LAC method for 3D MR datasets was applied by Lankton et al [83] 
via independent segmentation of the 2D slices. A more powerful and coherent 
segmentation procedure could be performed on all slices simultaneously by evolving 
a single surface within the corresponding three-dimensional space. While we are 
currently investigating such 3D shape evolution for future evaluation and 
publication, the present work moves a step toward 3D data segmentation improving 
upon Lankton et al by introducing a system to automatically govern the slice-by-slice 
strategy. Further improvements consist of introducing the SUV measurements 
(functional information), an optimal identification of the starting slice, the production 
of an initial mask for LAC segmentation, and a fully automatic stopping condition. 
The latter, in particular is a key feature in order to achieve automation.  
We now describe these new improvements integrated into the LAC algorithm. 
In step f) (see Figure	5.1.1), an initial mask is obtained from user independent smart 
pre-segmentation (seen previous sections). To incorporate SUV in the LAC 
algorithm, the energy (2) for the PET image segmentation approach is adapted as: 
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where SUV represents the intensity function of the standardized uptake value to be 
segmented, and where u! s  and v!(s) denote the local mean SUV intensities within 
the portions of the local neighbourhood χ!(x, s ) inside and outside the curve 
respectively (within Rin and Rout). These neighbourhoods are defined by the 
function χ, the radius parameter l (in our study l=3 has been determined to provide 
the best performance using trial and error strategy, see appendix), and the position of 
the curve C. Note that the function χ!(!, !) evaluates to 1 in a local neighbourhood 
around each contour point C(s) and 0 elsewhere, thereby localizing the processing of 
SUV image information. The shape of the contour C then divides each such local 
region into interior local points and exterior local points in accordance with the 
contour’s segmentation of the SUV. The local means are specified in terms S!!(s), 
S!!(s), A!! s , and A!! s  which represent the local sums of SUV intensities and the 
areas of their respective portions of the local neighbourhood χ!(x, s) inside and 
outside the curve (within Rin and Rout). More precisely, the local interior region 
may be expressed as R!" ∩ χ!(x, s) and local exterior region as  R!"#  ∩ χ!(x, s). 
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After the segmentation step f) is achieved on the slice containing the SUV!"#!"#  , the 
resulting segmented mask is used to initiate parallel segmentations on the 
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neighbouring slice above and below. Subsequently, for all the other slices in both 
directions, we similarly use the segmentation results of the previous slices as the 
initial mask inputs as shown in step g) Figure	5.1.1. The LAC method is inherently 
capable of locally widening or tightening where necessary when the contour is 
propagated from slice to slice. Since, this behaviour is driven by the image properties 
rather than by an inherent knowledge of whether the cancer is present, a stopping 
criterion is necessary to prevent the LAC algorithm from misbehaving or even 
diverging when it reaches a slice where the cancer is absent (i.e. when there is 
nothing to be segmented). 

Therefore, we devised a fully automatic stopping condition as shown in step h) 
Figure	 5.1.1. For the slice under consideration, at each point on the cancer edge, 
nearby points inside and outside the cancer must have a different local mean SUV. If 
the cancer is present, a positive difference between background and foreground 
intensity must occur, and consequently the algorithm can safely proceed with the 
next neighbouring slice (Figure	5.1.1-i). When the system encounters a slice where the 
local mean v! s  on Rout is greater or equal to the local mean SUV u! s  on Rin , 
which is the opposite of what is expected, the slice is classified as cancer-free and the 
slice-to-slice segmentation propagation is halted (Figure	5.1.1-l) in that direction. The 
approach can be mathematically summarized as: 
 

Stop Condition =
segmentation process is stopped      !ℎ!"   !!  ! ≥ !!  !  !" !!"#;

 
segmentation process is continues                             !"ℎ!"#$%!;         

  

In this way, slice after slice, the BTV is obtained and the segmentation process is 
automatically stopped, thereby avoiding the need for any user intervention. In the 
following section, the criteria to judge the quality of the segmentation results is 
outlined.  
 

5.2 Normal and abnormal tissue classification in positron emission 
tomography oncological studies 

 
The aim of this study is to develop an objective tool for tissue classification using 

a KNN based technique. A dataset of 80 oncological patients is collected, and for 
every patient, lesion (unhealthy tissue) and back- ground (healthy tissue around the 
lesion) are contoured on PET images using fixed 2D ROI of 5 × 6 voxel size. The 
ROI size has been determined by trial-and-error methodology: the 30 voxel size 
provided the best result among those evaluated in tissue classification; the size 
ranged from 9 (ROI of 3 × 3 voxel size) to 49 (ROI of 7 × 7 voxel size) voxels. Then, 
a 30- dimensional vector is obtained by concatenation of the voxels within the ROI. 
Each vector is composed of 30 SUVs characterizing the area under investigation 
(lesion or background). Finally 160 vectors are used to train and validate the KNN. 
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5.2.1 Proposed Method  
	

KNN is used as system to classify normal and abnormal regions in PET 
oncological studies for assisting physicians in radiation treatment planning. No 
parameters are requested from the operator. The main task is learning to classify 
tissues into two classes; the goal is to classify in which class a new tissue must be 
inserted. Starting from a semi-automatic method, 160 vectors characterizing the area 
under investigation are extracted from 80 oncological patients and used for training 
and validation purpose. To automatically label the ROI as abnormal or normal tissue, 
the nuclear medicine physician must place a fixed ROI, consisting of a red and a 
green section of 30 voxel size, along the lesion boundary so as to separate the target 
from the background region, as shown in Figure	5.2.1.  
 

 
Figure 5.2.1 Fixed ROI, consisting of two rectangles, is placed along the lesion boundary so as to 
separate the target from the background. 
 

The red section must be placed in the lesion, the green one in the background 
region. The physician can choose between two fixed ROIs (see the difference 
between fixed ROIs in Figure	5.2.1a, b versus Figure	5.2.1c, d): in this way, ROI can 
be correctly positioned and regions are correctly labeled. Hence the PET image is 
converted into a SUV image to obtain training vector composed of 30 SUVs 
characterizing the area under investigation. The ROI labels (abnormal or normal tis- 
sue) provided by the semi-automatic method are used as Ground-truth. Then the ROI 
set is divided into two bins: 80% (128 vectors) of the sampled values are used for the 
training session, and the remaining 20% (32 vectors) values are used for the 
validation and test purposes.  

The K-Fold cross-validation has been integrated into the proposed technique to 
make reliable the classifier and to generalize the other sets of independent data and to 
limit problems such as over-fitting, with- out increasing the precision of final 
standings. 
The error of the resulting estimate and the calculation time are reduced as K is 
reduced and vice versa [94]. In this work K has been empirically determined as 5 
through the trial-and-error method (k range: 5–15, step size of 5). Finally, the 
optimal K value corre- sponding to the highest classification accuracy has been 
selected.  
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In one case, training vectors are labeled as normal or abnormal tissues using the 
semiautomatic method; in other cases, FCM and k-means are used for label- ling 
vectors in an unsupervised manner [54]. Briefly, the k-means algorithm is applied to 
partition 160 observations, where each observation is a 30-dimensional real vector, 
into two clusters in which every observation belongs to the cluster with the nearest 
mean. The fuzzy c-means is applied in the same way of the k-means algorithm.  
When the training stage is complete, the validation step is started: 32 vectors are 
supplied to the input at KNN trained kernel for classifying tissue vectors as normal 
or abnormal. Finally, the KNN is ready and able to classify each new tissue vector in 
input using a single fixed ROI of 30 voxel size centered in the tissue of interest. The 
proposed system is shown in Figure	5.2.2.  
 

 
Figure 5.2.2 The proposed system: 160 vectors composed of 30 SUVs are labeled using a 
semiautomatic method as abnormal or normal. K-means and FCM are also used to label the vectors in 
an unsupervised manner. KNN and SVM are used to classify the input. 
 

5.3 K-nearest neighbor driving active contours to delineate biological 
tumor volumes 

	
To provide the reader a high level understanding of the proposed system, we can 

conceptually partition our algorithm (Figure	 5.3.1) into four blocks. The first, 
“Sampling, Training and Tissues Classification” consists of the training and 
performance evaluation of the classifier. Since our goal is to combine the tissue 
labeling derived from KNN classification with the image information which locally 
drives the LAC segmentation, a preliminary training phase is required. This step 
provides the KNN with the capability of efficiently classifying a newly-encountered 
scenario (i.e. new tissue) into three tissue classes. However, this task needs to be 
performed only once. Once trained, the classifier is ready to be used in new clinical 
cases. Since this offline operation is carried out beforehand, we will discuss it first 
(subsection 2.1). Blocks 2, 3, and 4 followed in sequence. Block 2 “Initialization”, is 
where the PET data are roughly prepared for processing and is the only block where 
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(minimal) user input is required. Block 3 “User Independent Pre-segmentation”, 
implements a simple strategy to identify the optimal starting point for the next logical 
block of the system.  

Finally, the fourth and last block “Slice Marching Segmentation”, is where the 
true segmentation takes place, by the combined use of the KNN and LAC. 
More detailed explanation of each block and its design is provided within the 
following subsections.  
	

	

Figure 5.3.1 The proposed segmentation system. a) eleven different cases (8 patient lesions and 3 
phantom spheres) are jointly processed by three expert operators; b) sampling operation is obtained 
for each tissue kind label; c) training and validation of the KNN classifier; d) the region containing the 
lesion is localized by the operator to avoid any false positive; e) global SUVmax is found after a pre-
segmentation step; f) RG is used to identify the user independent mask; g) once the initial mask is 
obtained, it is sent to the next logical block of the system; h) segmentation is performed using the 
enhanced LAC segmentation algorithm through a new energy based on the KNN classification; i) 
segmentation mask is propagated to the adjacent slices using a slice-by-slice marching approach; j) the 
stop condition is evaluated (see subsequent sections); k) segmentation on the next slices is performed 
until stop condition is false; l) an operator independent BTV is finally obtained. 
	

5.3.1 Block 1: Sampling, Training and Classification using KNN Algorithm 
 

The idea behind the use of a classifier is to incorporate some of the physicians’ 
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knowledge into the segmentation in the form of a trained software component. A 
classifier implementing just three classes, such as “lesion”, “background”, and 
“border-line” tissue constitutes a simple and suitable choice.  
Proper training and validation are essential prerequisites to obtain reliable results. In 
order to generate the training input to the classifier, the clinical staff, consisting of 
the chief nuclear medicine physician, the chief radiotherapy physician and an expert 
radiotherapy physician (M.I., M.S., and G.R. authors, respectively), were required to 
place fixed-shape ROIs in a subset of 11 different cases (three phantom spheres and 
8 patient lesions) from the initial PET dataset (Figure	5.3.1-a) with the purpose of 
identifying three different areas according to the classes being sought. In particular, 
the operators had to place a fixed ROI consisting of three different regions along the 
lesion/sphere boundary. Each region consisted of 7 by 7 voxels. The ROI size was 
empirically determined to provide the best performance on the present dataset with 
the specific choice of classifier. In this way, samples of grey levels from unhealthy 
tissue (red), healthy tissue (green), and the tissue immediately surrounding the lesion 
(yellow) were obtained as shown in Figure	5.3.2. Each sample was then reorganized 
as a 49 element vector. The sampling operation resulted in a total of 462 vectors, 154 
for each type of tissue (Figure	 5.3.1-b), considering fourteen samples for each 
patient\phantom study. Fixed-shape ROIs were located in the whole PET volume 
containing the target (lesion or sphere) for each study; they did not have to be placed 
in the same axial slice. To provide the classifier the capability of labelling the tissues 
in the most general case, the training included various body districts (two brain 
metastases, four HNC, and two lung cancers) and three phantom spheres with 
differing foreground/background radioactivity concentration ratios (3:1, 5:1, and 8:1) 
and differing diameters (28, 22, and 17 mm, respectively). Eighty percent (370 on 
462 vectors) of the samples were used for training, while the remaining twenty 
percent (92 on 462 vectors) were used to check the classifier performance (Figure	
5.3.1-c). 

The rationale for the use of a KNN algorithm [93][20] is founded on the chosen 
sampling approach. We used N-by-N portions of the image taken from the slices as 
samples. The physicians’ expert segmentations provided the labeled training 
samples. In general, a sample residing within an obviously healthy region will 
exhibit low and almost constant uptake across the sample area.  
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Figure 5.3.2 Fixed ROIs consisting of three regions (red, green, and yellow areas) are placed along the 
lesion boundary so as to separate the target (red) from the background (green). The yellow area 
indicates the tissue immediately surrounding the lesion. Three cancer regions are shown: HNC (a), 
brain (b), and lung (c). 
	

The same will happen for the tumor, but with much higher average uptake (this is 
exploited by threshold method). On the one hand, these features strongly encourage 
KNN similarity when a new sample is provided for classification. The “border line” 
class, on the other hand, is the most interesting part. Such samples are found along 
the border drawn by the MD. They typically present fairly inhomogeneous SUV 
uptake values, and tumor and healthy tissue will ideally occupy opposite sides 
(although with a smeared transition). In other words, the three classes have strongly 
distinct features, and a KNN is expected to perform well in such a context.  
The guidance provided by the classifier to the segmentation algorithm is implicitly 
founded on such a “border line” class and this is, in turn, what makes the difference 
between the pure (mathematical) LAC and our approach.  
In practice, the KNN was selected because it provided the simplest and, given our 
sampling approach, the most advantageous alternative. Of course, other classifiers 
might be used as well and comparison with alternative algorithms will be discussed 
in future studies. 

To strengthen the reliability of the results and to avoid common issues such as 
over-fitting, K-Fold cross-validation has been integrated in the KNN [93][94]. When 
the training stage is completed, the validation step is started: 92 vectors are input to 
the trained KNN kernel to verify the rate of success in classifying the new scenarios.  
	

5.3.2 Block 2: Initialization 
	

 As a preliminary action, the PET data intensity values are converted into SUV units 
(g/ml). In the PET context, SUV is perhaps the most widely used quantitative 
measure of the cellular metabolism. SUV is calculated, as suggested in [86], by: 
 

!"#! =  !"!" ∗!! 	
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where RC denotes the tissue radioactivity concentration in (Bq/ml), calculated as the 
ratio between the image intensity and the image scale factor. ID, in (Bq), denotes the 
injected dose calculated as the product between actual activity and the dose 
calibration factor [74][90]. Finally, Wp is the patient weight in kilograms. 
In this block, an initial operator input is required to loosely identify the region 
containing the cancer. The main reason to require such an input is because the FDG 
distribution is, in general, not limited to the cancer alone. Indeed, FDG enters the 
cells according to glucose transport mechanism, so that active healthy tissues can 
show high radio-tracer uptake (e.g. brain, heart, bladder, kidneys, and ureters). 
Thanks to the user’s initial direction, whenever the tumor is situated near these 
anatomical structures, false positives are avoided. However, user intervention is 
limited to the selection of an initial region of interest ROI0 (Figure	5.3.1-d) around the 
cancer region in just one axial slice. As a consequence, proposed method is semi-
automatic, at least for what concerns FDG-PET applications, and no further 
intervention is needed. In more favorable conditions, such as in the case of brain 
metastases, it is possible to take advantage of the greater sensitivity and specificity of 
MET radio-tracers in discriminating between healthy versus abnormal tissues. 
Consequently, in MET-PET studies, a fully automatic method could potentially be 
implemented [84]. 
	

5.3.3 Block 3: User Independent Pre-Segmentation Step 
 
 Based on the user input ROI0, the block performs an automatic pre-segmentation 
step, which computes a user independent ROI. This is achieved by constructing a 3D 
volume of interest (VOI). The first step is to propagate the 2D user ROI0 to adjacent 
slices. Starting from the slice selected by the operator, neighboring PET slices are 
visited both upward and downward. 
Every time a new slice (index j) is considered, ROI(j-1) is propagated to obtain ROIj, 
and the peak SUV value within ROIj is detected (SUV!"#! ). If this exceeds 42% [95] 
of the SUV!"#! within the initial slice, then the new slice is added to the volume and 
the next slice is checked. Otherwise no further slices are visited in the specific 
direction. Of course, when the new jth slice is added to the volume, the propagated 
contour ROI(j-1) is not expected to be optimal. For this reason, the region growing 
(RG) algorithm [104] is used to identify a slice-specific boundary. In particular, the 
SUV!"#!  voxel is used as target seed for a rough 2D segmentation based on the RG 
method. Following this strategy, an initial 3D VOI is obtained which will contain the 
SUV!"#!  for all the slices containing the tumor [105].  

The next logical step is to locate the voxel with the maximum uptake within the 
entire VOI (Figure	5.3.1-e). This maximum value may reside on a different slice than 
the one initially selected by the user, yet it will belong to the same anomaly.  
The rough contour (previously generated by the RG algorithm), residing on the 
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newly identified slice represents the output of the pre-segmentation step (Figure	5.3.1-
g) which will feed the next logical block of the system (Figure	5.3.1-h).  
It is worth mentioning that the RG algorithm is only used to obtain a rough estimate 
of the contour encircling the highest radio-tracer uptake area within SUVmax slice, 
and not for the final segmentation. 

Additionally, it is worth noting that this pre-segmentation process generates an 
output which is independent to inter-operator variations in the initial user input. As 
such, the user input does not need to be carefully drawn. A rough inclusion of the 
anomalous area is sufficient to obtain a- more adaptive, and yet repeatable, initial 
contour. This more adapted contour is then fed into the next step of the system, as 
shown in step h) Fig.1, where the high-detail delineation is achieved. An example 
ROI (delineated on the PET image) by the RG method is shown in Figure	5.3.3.	
	

	

Figure 5.3.3 Operator independent ROI generation on a PET image. The white contour with black 
asterisks represents the starting ROI provided by the user, while the blue asterisk contour shows the 
result of the RG algorithm after the slice containing the SUVmax is identified. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
	

5.3.4 Block 4: Slice Marching Segmentation 
	

This block represents the high detail segmentation obtained through the use of an 
innovative combination of Local Active Contours (LAC) and KNN classifiers. The 
LAC algorithm blends the benefits of purely local edge based active contours and 
fully global region based active contours. At each point along a prominent intensity 
edge of an object, nearby points inside and outside the object will be modelled well 
by the mean intensities within the local neighborhoods on either side of the edge. 
This is the motivation behind the model proposed by Lankton et al [83]; where the 
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contour energy to be minimized is defined as:  

! = !! !, ! ! ! − !! !
!!" + !! !, ! ! ! − !! !

!!"
!!"#!in!

!"	 		

where Rin and Rout represent the regions inside and outside the curve C, s represents 
the arc length parameter of C, χ represents the characteristic function of the ball of 
radius l (local neighborhood) centered around a given curve point C(s), I represents 
the intensity function of the image to be segmented, and u! s  and v! s  denote the 
local mean image intensities within the portions of the local neighborhood χ! x, s  
inside and outside the curve respectively (within Rin and Rout). These 
neighborhoods are defined by the function χ, the radius parameter l, and the position 
of the curve C. Note that the function χ! x, s  evaluates to 1 in a local neighborhood 
around each contour point C(s) and 0 elsewhere, thereby localizing the processing of 
image information. The shape of the contour C then divides each such local region 
into interior and exterior local points in accordance with the contour’s role to 
segment the domain of I. The resulting flow is more robust to initial curve placement 
and image noise like region-based flows described on [97]; and yet it also capable of 
capturing significant local structure and partitioning the image without making 
strong global assumptions about its makeup. To be successful, a segmentation 
technique based on equation 2 relies on the assumption that nearby points inside and 
outside the true edge of an object, will be modelled well by the mean intensities 
within these localized regions. As a result, the energy (2) is more global in nature 
than edge-based flows but with a “tunable” degree of locality defined by the 
neighborhood radius l. Actually, the LAC method for 3D MR datasets was applied 
by Lankton et al [83] via independent segmentation of the 2D slices. A more 
powerful and coherent segmentation procedure could be performed on all slices 
simultaneously by evolving a single surface within the corresponding three-
dimensional space. While we are currently investigating such 3D shape evolution for 
future evaluation and publication, the present work moves a step toward 3D data 
segmentation improving upon Lankton et al [83] by introducing a system to 
automatically govern the slice-by-slice strategy. 

Beyond the optimal identification of the starting slice containing the lesion, and, 
consequently, the identification of an initial operator independent mask for LAC 
segmentation, as described previously, further improvements have been introduced in 
the present algorithm, and in the present block specifically: 
 

• A new energy formulation 
• Incorporation of functional information (through SUV) 
• An automatic stopping criterion.  

These improvements are then integrated into the LAC algorithm, as described below. 

First, a new energy formulation is introduced.  
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In Figure	5.3.1-h, the LAC algorithm receives the optimal mask and the tissue label 
information from the classifier. Tumor and background regions are not easily 
separable into two distinct regions. Consequently, energy (2) has been modified to 
incorporate information from the KNN in form of a new energy term.  KNN provides 
a partition of the PET images into three regions, and this aspect is accommodated as 
follow:  
	

!!"#$%&(!) =
1      !ℎ!"   !"" ! =  !"#$%&;

 
0                        !"ℎ!"#$%!;           

	 	

!!"#$%#!!"#$ (!) =
1       !ℎ!"   !"" ! =  !"#$%# − !"#$ ;

 
0                                   !"ℎ!"#$%!;           

 	

!!"#$%&'()*(!) =
1      !ℎ!"   !"" ! =  !"#$%&'()*;

 
0                                     !"ℎ!"#$%!;           

 	

	

where χ!"#$%&(x) , χ!"#$%#!!"#$ x  and χ!"#$%&'()*(x)  represents the characteristic 
functions of the tissue’s classification respectively for lesion, background, and 
border-line classes. 
The first term of the following formulated energy functional (2) is essentially a prior 
term penalizing the overlap between regions which are classified in opposite ways by 
the contour versus the classifier (no penalty is paid in regions classified as “border-
line”).  
To integrate this new prior term and to incorporate SUV in the LAC algorithm, the 
energy (2) for the PET image segmentation approach is modified to:  
	

! =  
 

!
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!!"#

 

!!"

+	
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!!"#
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!"	

	

where λ ∈ [0,1] is an arbitrary real parameter (λ = 0.01 provided the best result for 
our dataset. Pin! x  and Pout! x  represent the local mean KNN classification within 
the portions of the local neighborhood inside and outside the curve respectively 
(within Ω). SUV represents the intensity function of the standardized uptake value to 
be segmented, u! s  and v! s  denote the local mean SUV intensities within the 
portions of the local neighbourhood χ! x, s inside and outside the curve respectively 
(i.e. within Rin and Rout). These neighborhoods are defined by the function χ, the 
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radius parameter l, and the position of the curve C. Note that the function χ! x, s  
evaluates to 1 in a local neighborhood around each contour point C(s) and 0 
elsewhere, thereby localizing the processing of SUV image information. The shape 
of the contour C then divides each such local region into interior local points and 
exterior local points in accordance with the contour’s segmentation of the SUV. The 
local means are specified as the ratios of S!! s , S!! s , A!! s , and A!! s  which 
represent the local sums of SUV intensities and the areas of their respective portions 
of the local neighborhood χ! x, s  inside and outside the curve (within Rin and Rout). 
More precisely, the local interior region may be expressed as Rin ∩ χ! x, s  and local 
exterior region as R!"# ∩ χ! x, s .  
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After the segmentation is achieved on the slice containing the optimal mask 

(Figure	5.3.1-h), the contour obtained from the LAC (Figure	5.3.1-i) is used to initiate 
parallel segmentations on the neighboring slices above and below. Subsequently, for 
all the following slices (in both directions), we similarly use the segmentation results 
from the previous slice as initial starting contour. The LAC evolution is inherently 
capable of locally widening or tightening the contour where necessary. Since, this 
behavior is driven by the image properties rather than by an inherent knowledge of 
whether the cancer is present, a stopping criterion is necessary to prevent the 
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algorithm from misbehaving when there is nothing to be segmented (i.e. tumor is 
absent in the slice). 

Therefore, we devised a fully automatic stopping condition as shown in Figure	
5.3.1-k. For the slice under consideration, at each point on the cancer edge, nearby 
points inside and outside the cancer must have a different local mean SUV. If the 
cancer is present, a positive difference between background and foreground intensity 
is expected, and consequently the algorithm can safely proceed with the next 
neighboring slice (Figure	5.3.1-j). When the system encounters a slice where the local 
mean vl(S) on Rout is greater or equal to the local mean ul(s) on Rin,	which is the 
opposite of what is expected, the slice is classified as cancer-free and processing of 
further slices in that direction is halted (Figure	 5.3.1-n). The approach can be 
summarized as:		
	

Stop Condition =
segmentation process is stopped      !ℎ!"   !!  ! ≥ !!  !  !" !"#$;

 
segmentation process is continues                             !"ℎ!"#$%!;         

	 	

	
In this way, slice after slice, the BTV is obtained and the segmentation process is 

automatically stopped, thereby avoiding the need for any user intervention. 

5.4 Active contour algorithm with discriminant analysis for delineating 
tumors in positron emission tomography 

	
In this section, a brief overview of the implemented method is presented (Figure	

5.4.1). 
In the following sections, the different aspects of the algorithm and its validation will 
be presented.  

The first prerequisite to the use of the algorithm is to convert each PET voxel into 
SUV to take into account metabolic/functional aspects of the tumor (see following 
sessions). 
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Figure 5.4.1 The flowchart of the proposed segmentation method. a) eight patient lesions, three 
phantom spheres, and three zeolites are processed by three expert operators; b) sampling operation is 
obtained for each tissue kind label (lesion, background, and border line); c) training and validation of 
the DA classifier; d) the lesion area is localized by the operator to avoid any false positive; e) global 
SUVmax is found in the whole lesion volume; f) RG is used to identify the user independent mask; g) 
once the initial mask is obtained, it is sent to the next logical block of the system; h) segmentation is 
performed using the enhanced LAC segmentation algorithm through a new energy based on the DA 
classification; i) segmentation mask is propagated to the adjacent slices using a slice-by-slice 
marching approach; l) the stop condition is evaluated; m) segmentation on the next slices is performed 
until stop condition is false; n) the operator independent BTV is obtained. 
 

To train and validate the DA classifier, tumor, background and border-line regions 
were automatically identified on PET images using a moving window, 3 by 3 voxels 
in size, in six phantom experiments and eight patient studies. For each window, the 
highlighted SUVs were then reorganized in a 9-element vector characterizing the 
area under investigation (i.e. lesion, background, or border-line tissue). As a result, a 
total of 4587520 vectors were built for the training and validation of the classifier. 
The “train and validation” step needs to be performed only once. This one-time 
operation is highlighted by the dotted line in Figure	5.4.1. Once the above mentioned 
step has been performed the classifier is able to label new clinical cases and, 
consequently, to locally drive the segmentation algorithm (Figure	5.4.1c). A thorough 
explanation of this operation will be given in subsequent sections. 
At the beginning of the segmentation process, the region containing the cancer must 
be localized by the operator. This input ensures that healthy tissues having high 
radio-tracer uptake or critical conditions are avoided (e.g. when the lesion is located 
near the heart). Additionally, in case of multiple independent tumors, multiple initial 
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contours may be setup by the operator so to segment each tumor individually.  
The algorithm performs automatically all subsequent operations identifying an 

optimal starting mask on a PET slice, which can be different from the one initially 
highlighted by the operator. A more detailed explanation about this task is reported 
in subsequent sections. 

The identified mask is input to the next step of the system, where the 
segmentation is performed combining a Local region-based Active Contour (LAC) 
segmentation algorithm appropriately modified to support functional images and the 
information derived from DA (i.e. tissue classification labels, Fig. 1c) which locally 
drive the active contour. The obtained segmentation is propagated to the adjacent 
slices using a slice-by-slice marching approach. Propagation is performed in parallel 
both upward and downward within the SUV volume to obtain the BTV, until a 
suitable stopping condition is met. A more detailed explanation about this step is 
reported in subsequent sections. 
	

5.4.1 Pre-processing of PET dataset 
 

Both the PET studies used to train/validate the DA classifier and the PET studies 
used to be automatically segmented have been converted into SUV images, as 
suggested in [86]. To take into account essential functional aspects of the patient, 
SUV is calculated as the ratio of tissue radioactivity concentration (RC) and injected 
dose (ID) at the time of injection divided by body weight (Wp): 
 

!"# = !"
!"/!!

 	

The RC in (Bq/ml) is calculated as the ratio between the image intensity and the 
image scale factor. The ID in (Bq) is calculated as the product between actual 
activity and dose calibration factor [70][90]. Wp is expressed in kilograms.  
 

5.4.2 The discriminant analysis 
 

The DA is used to obtain a tissue labelling to be combined with the image 
information which locally drive the LAC segmentation. We train DA to split PET 
tissues into three categories: background, lesion, and border-line regions. The 
training task needs to be performed only once, and when completed, the DA is ready 
to classify newly-encountered tissue. 

In order to generate the training input to the classifier, three expert operators, with 
high PET imaging insight and different expertise, manually segmented phantom 
inserts and tumors from 14 different studies. Such contours, as reported in 
subsequent sections, were used to obtain the gold standard. To obtain a DA capable 
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of classifying a wide range of clinical cases, the training comprised two brain 
metastases, four HNC, two lung cancers, three phantom spheres at different ratio 
between sphere and background radioactivity concentrations (3:1, 5:1, and 8:1) and 
diameter (28, 22, and 17 mm, respectively), and three different zeolites (#1, #2, and 
#6 zeolites described in [89]). Each PET slice containing the target was investigated 
using a moving window so to extract samples of 3x3 voxels in size. The sample size 
has been empirically determined to provide the best performance on the present 
dataset. For each position of the moving window, the selected image portion was 
compared with the manually produced gold standard. Samples entirely outside the 
gold standard were labelled as “background”. Samples comprising no more than 
three lesion voxels were labeled as “border-line” tissue. In the remaining cases, the 
label “lesion” was assigned. Each sample was then reorganized as a 9-element 
vector. The sampling operation resulted in a total of 4587520 vectors split into 9384 
lesion vectors, 5369 border-line vectors, and 4572767 background vectors. The class 
balancing technique proposed by [91] was performed to assess difference between 
DA classification using balanced and unbalanced training datasets. This technique 
proposes a blends under-sampling approach of the majority class with a special form 
of over-sampling the minority class creating synthetic minority class examples. This 
study shows that a combination of over-sampling the minority class and under-
sampling the majority class can achieve better classifier performance (in Receiver 
Operating Characteristic – ROC - space) than only under-sampling the majority 
class. In both cases (balanced and unbalanced training datasets), eighty percent of the 
samples was used to train the classifier, while the remaining twenty percent was used 
to check the classifier ability to provide a reliable classification.  

The K-Fold cross-validation has been integrated in the classifier to make it 
reliable and to limit problems such as over-fitting [92][93]. When the training stage 
is completed, the validation step is started: 917504 vectors are input to the trained 
DA kernel to verify the performance in classifying new scenarios.  
 

5.4.3 The Initialization Step 
 

We cautiously defined the proposed method as semi-automatic because the user 
must highlight an initial ROI containing the tumor in order to avoid false positives 
(i.e. region with high FDG uptake to be considered normal, such as brain, heart, 
bladder, kidneys, and ureters). Additionally, multiple ROI may need to be defined if 
independent (i.e. distant and isolated) tumors are present in the same PET. However, 
no further intervention is needed. The following describes the procedure adopted for 
the segmentation of one tumor mass.  

Based on the user input selection (ROI0), the first step consists of an automatic 
initialization task which computes a user independent mask. This goal is achieved by 
first identifying a volume of interest (VOI) which is formed by propagating ROI0 to 
adjacent slices. 
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Starting from the slice individuated by the operator, PET slices are visited moving 
both upward and downward. Every time a new slice (index j) is considered, ROI(j-1) 
is propagated to obtain ROIj, and the SUVmax within ROIj is detected (SUV!"#! ).  
If this value exceeds 42% [94] of SUV!"#!  found within the initial slice, then the new 
slice is to be added to the volume of interest, otherwise the visitation of further slices 
in the specific direction is terminated. Of course, when the new (jth) slice is added to 
the volume, the contour ROI(j-1) is not expected to be optimal. For this reason, the 
region growing (RG) algorithm [95] is used to identify a slice-specific boundary for 
each slice. In particular, the SUV!"#!  voxel is used as target seed for the rough 2D 
segmentation based on the RG. A neighborhood is identified around this voxel to 
calculate the mean and standard deviation (σ) across a region of connected voxels. 
The neighborhood is a region with 2r+1 voxels on the side, where r is set to 1. In this 
way, the neighborhood is a region of three connected voxels forming the side of a 
rectangle.  
The confidence interval intensity range for the seed point is defined as: 
 

! !  ∈ [mean − !σ,mean + !σ] 	

where I is the image and X is the position of the particular neighbor voxel being 
considered for inclusion in the region. f is a user provided factor set to 2 [93]. The 
upper and lower bounds for the eq. 2 are calculated after mean and σ are determined. 
Neighbor voxels connected to the seed point whose values fall inside this interval are 
included in the segmented area. The first iteration of the algorithm is completed 
when no more neighbor voxels are found to fall in the range. During iterations, the 
mean and σ are updated to determine the new confidence interval.  

In this way, a VOI is obtained. Note that by construction, the obtained VOI will 
contain the SUVmax for all the slices containing the tumor [94]. The initialization is 
not used for the cancer segmentation, but only to roughly identify the tumor. The 
next logical step is to locate the voxel with the SUVmax within the VOI, (SUV!"#!"#). 
This maximum value may reside on a different slice than the one initially selected by 
the user but it will belong to the same anomaly. The 2D rough region identified by 
the RG on the hottest PET slice represents the output of the initialization step. 
It is worth noting that the initialization does not require the contour input by the user 
to be carefully drawn. A rough inclusion of the anomalous area is sufficient. Further, 
manual drawing does not need to be repeated on any other slice. The benefit of the 
initialization process is that it generates an output which is independent to local 
variations in the initial user input, and for that, thereby making the result extremely 
repeatable. Furthermore, the RG algorithm is used only to obtain a rough estimate of 
the contour encircling the highest radio-tracer uptake area within the slice containing 
the SUV!"#!"# . This contour is then sent to the next step of the system where the 
delineation is actually carried out using the LAC-DA algorithm which combines an 
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enhanced LAC segmentation algorithm with information derived from a DA 
classifier. Further, the LAC-DA is capable to chasing the cancer beyond the VOI 
boundary (i.e. the final result is not affected/limited by the VOI individuated during 
the initialization step). An example of the initial mask obtained by the RG during the 
initialization step is shown in Figure	5.4.2. 
	

	

Figure 5.4.2 The white contour with black asterisks represent the rough region highlighted by the user, 
while the blue asterisk contour shows the result of the initialization step after the slice containing the 
!"#!"#!"#  is identified. The latter contour is by construction operator independent and can lie on a slice 
different from the one initially highlighted by the user. 
 

5.4.4 The LAC-DA algorithm 
 

The LAC algorithm blends the benefits of purely local edge based active contours 
and fully global region based active contours. At each point along a prominent 
intensity edge of an object, nearby points inside and outside the object will be 
modelled well by the mean intensities within the local neighborhoods on either side 
of the edge. This is the motivation behind the model proposed by Lankton et al [83]; 
where the contour energy to be minimized is defined as:  
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where Rin and Rout represent the regions inside and outside the curve C; where s 
represents the arc length parameter of C, where χ  represents the characteristic 
function of the ball of radius l (local neighborhood) centered around a given curve 
point C(s), where I represents the intensity function of the image to be segmented, 
and where u! s  and v!(s) denote the local mean image intensities within the portions 
of the local neighborhood χ!(x, s) inside and outside the curve respectively (within 
Rin and Rout). These neighborhoods are defined by the function χ, the radius 
parameter l, and the position of the curve C. Note that the function χ!(x, s) evaluates 
to 1 in a local neighborhood around each contour point C(s) and 0 elsewhere, thereby 
localizing the processing of image information. The shape of the contour C then 
divides each such local region into interior and exterior local points in accordance 
with the contour’s role to segment the domain of I. The resulting flow is more robust 
to initial curve placement and image noise like region-based flows described on [96]; 
and yet it capable of capturing significant local structure and partitioning the image 
without making strong global assumptions about its makeup. To be successful, the 
present segmentation technique relies on the assumption that nearby points inside 
and outside the true edge of an object, will be modelled well by the mean intensities 
within these localized regions. As a result, the energy (2) is more global in nature 
than edge-based flows but with a “tunable” degree of locality defined by the 
neighborhood radius l. Actually, the LAC method for 3D MR datasets was applied 
by Lankton et al [83] via independent segmentation of the 2D slices. A more 
powerful and coherent segmentation procedure could be performed on all slices 
simultaneously by evolving a single surface within the corresponding three-
dimensional space. While we are currently investigating such 3D shape evolution for 
future evaluation and publication, the present work moves a step toward 3D data 
segmentation improving upon Lankton et al [83] by introducing a system to 
automatically govern the slice-by-slice strategy.  

Beyond the optimal identification of the starting slice containing the lesion, and, 
consequently, the identification of an initial operator independent mask for LAC 
segmentation, as described in the previous section, further	 improvements	have	been	
introduced	in	the	LAC	algorithm:	
	

• A new energy 
• SUV functional information 
• A fully automatic stopping condition.  

 
These improvements are then integrated into the LAC algorithm, as described below. 
First, a new energy is introduced.  

The LAC algorithm receives the initial user independent mask and the tissue label 
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information from the classifier. Considering that tumor and background regions are 
not easily separable into two distinct regions, the energy (2) has been modified to 
include a new energy term to separate the PET image into three regions considering 
DA classification as follow: 
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where χ!"#$%&(x) , χ!"#$%#!!"#$ x  and χ!"#$%&'()*(x)  represent the characteristic 
functions of the tissue’s classification respectively for lesion, background, and 
border-line tissues. 
The first term of the formulated energy functional (2) is essentially a prior term 
penalizing the overlap between regions which are classified in opposite ways by the 
contour versus the classifier (no penalty is paid in regions classified as “border-
line”).  
To integrate this new prior term and to incorporate SUV in the LAC algorithm, the 
energy (2) for the PET image segmentation approach is defined as: 
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where the parameter λ ∈ R+ (range between 0 and 1) is chosen subjectively (in our 
study λ equal to 0.01 provided the best result). Pin! x  and Pout! x  denote the local 
mean DA classification within the portions of the local neighborhood χ! x  inside 
and outside the curve respectively (within Ω). SUV represents the intensity function 
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of the standardized uptake value to be segmented, and u! s  and v! s  denote the 
local mean SUV intensities within the portions of the local neighborhood χ! x, s  
inside and outside the curve respectively (within Rin and Rout). These 
neighborhoods are defined by the function χ, the radius parameter l, and the position 
of the curve C.  

In our preliminary experiments, the radius parameter l has been determined to 
provide the best performance in our dataset using trial and error strategy. When using 
energies based on local features, the radius defining the local neighborhood defines 
how sensitive to local features the segmentation is meant to be. By tuning this 
parameter, one can choose the degree to which local and global behavior are 
weighted. One aspect that must be considered is the order of magnitude of the tumor 
size and the amount of surrounding noise. When attempting to capture lesions that 
are very small with nearby noise, as is the case in our dataset, a small localization 
radius is advisable. For this reason, radius parameter ranged from 3 (very local, small 
compared to tumor size) to 9 (more global, size large when compared to the features 
of the tumor edge). After testing, the result suggests a small degradation of the result 
as the radius increases (i.e. as the energy becomes more global). On the other hand, 
segmentations were only slightly influenced by the radius. We therefore selected 3 as 
the most suitable value for the data at hand. 

In addition, note that the function χ! x, s  assigns 1 in a local neighborhood 
around each contour point C(s) and 0 elsewhere, thereby localizing the processing of 
SUV image information. The shape of the contour C then divides each such local 
region into interior local points and exterior local points in accordance with the 
contour’s segmentation of the SUV. The local means are specified as the ratios of 
S!! s , S!! s , A!! s , and A!! s  which represent the local sums of SUV intensities 
and the areas of their respective portions of the local neighborhood χ! x, s  inside and 
outside the curve (within Rin and Rout). More precisely, the local interior region 
may be expressed as Rin ∩ χ! x, s  and local exterior region as R!"# ∩ χ! x, s . 
	

Pin! ! =  
!!(!)!!"#$%&(!) !" 

Ω
!!(!) !" 

Ω
 , Pout! ! =  

!!(!)!background(!) !" 
Ω

!!(!) !" 
Ω

	 	

!!  ! =  !!!(!)!!!(!)
 ,  !!  ! =  !!!(!)!!! !

 , 	
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!!! ! = !!(!, !)!"#(!) !"        ,         
 

!!"
!!! ! = !!(!, !)!"#(!)   !"

 

!!"#
	 	

	

!!! ! = !!(!, !)  !"        ,         
 

!!"
!!! ! = !!(!, !)  !"

 

!!"#
	 	

	

!!(!, !) =
1      !ℎ!"   ! ∈ ! − !"## ! ! ;

 
0                          !"ℎ!"#$%!;           

	 	

	

Given the low resolution relative to tumor size and the diffuse nature of PET 
images (as well as the SUV images used in our model), the use of a curvature 
regularizer, which is usually employed to maintain a smooth appearance of the 
contour, actually revealed unnecessary and therefore is not discussed. Nevertheless, 
such regularization may become necessary to handle data at higher resolution. As 
such, the comparative evaluation we performed is based on the two external energies 
only. 

After the segmentation step is achieved on the slice containing SUVmax, the 
resulting segmented mask is used to initiate parallel segmentations on the 
neighboring slices above and below. Subsequently, for all the other slices in both 
directions, we similarly use the segmentation results of the previous slices as the 
initial mask inputs. The LAC method is inherently capable of locally widening or 
tightening where necessary when the contour is propagated from slice to slice. Since, 
this behavior is driven by the image properties rather than by an inherent knowledge 
of whether the cancer is present, a stopping criterion is necessary to prevent the LAC 
algorithm from misbehaving, or even diverging, when it reaches a slice where the 
cancer is absent (i.e. when there is nothing to be segmented). 
Therefore, we devised a fully automatic stopping condition. For the slice under 
consideration, at each point on the cancer edge, nearby points inside and outside the 
cancer must have a different local mean SUV. If the cancer is present, a positive 
difference between background and foreground intensity must occur, and 
consequently the algorithm can safely proceed with the next neighboring slice. When 
the system encounters a slice where the local mean v! s  on Rout is greater or equal 
to the local mean SUV u! s  on Rin, which is the opposite of what is expected, the 
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slice is classified as cancer-free and the slice-to-slice segmentation propagation is 
halted in that direction. The approach can be summarized as:  
	

Stop Condition =
segmentation process is stopped      !ℎ!"   !!  ! ≥ !!  !  !" !"#$;

 
segmentation process continues                                 !"ℎ!"#$%!;         

	 	

In this way, slice after slice, the BTV is obtained and the segmentation process is 
automatically stopped, thereby avoiding the need for any user intervention.  

The energy functional used during the contour evolution process is symmetric 
regarding the "direction of contrast" between the interior and exterior of the evolving 
contour. In short, along each 2D slice, the contour is equally happy to group darker 
regions within its interior as it is to group brighter regions within its interior. In a 3D 
extension of this model, where all slices are segmented simultaneously by a single 
evolving 3D surface, it would become very sensible to break this symmetry by 
favoring brighter regions inside the evolving surface and penalizing scenarios where 
the contrast direction is reversed. In 2D, this ambivalence in the slice-by-slice 
behavior is exploited to determine the automatic stopping condition. In this way, we 
don't impose the asymmetry at the level of the 2D active contour. In addition, the 
direction of contrast established by the initial contour is usually preserved for 
energies that are symmetric to contrast direction during the evolution of active 
contours. In the active contour model proposed by [96], the image force acting on the 
evolving contour along the inward normal direction can be algebraically rewritten as 
2(u - v){I-( u + v)/2} where u and v are the means inside and outside the curve 
respectively. 

If we consider the effect of this force along (in the absence of regularizing forces 
based on curvature) and assume be start out with u > v, then the sign of the spatially 
constant scale factor 2(u - v) is positive, and the evolution direction will therefore 
depend point-wise upon whether the image value I is above or below the half-way 
image intensity threshold of (u + v)/2. Contour points where I is above the threshold 
will move inward, therefore kicking the larger value of I outside the curve while 
contour points where I is below the threshold will move outward, therefore bringing 
the smaller values of I inside the curve. This behavior causes u to increase and v to 
decrease, thereby reinforcing the original direction of contrast. A similar property in 
our modification of the LAC model allows us to exploit the desired (asymmetric) 
direction of contrast during the initialization stage of our algorithm. 
In the following section, the criteria to judge the quality of the segmentation results 
are	outlined.	
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5.5 A Fully Automated Segmentation System of Positron Emission 
Tomography Studies 

	
The main subject of the present study is a fully automatic and operator 

independent system for brain cancer segmentation, to be used in radiotherapy 
treatments. While the following subsections will illustrate different components of 
the system and their validation, in this section we present a brief overview of the 
system design. The data hereby discussed comprise a total of four phantom 
experiments and ten oncological patients (see experimental results section). Data 
from phantoms were used to assess the performances of the delineation algorithm. 
Concerning the practical use of the system on clinical cases, in order to normalize the 
voxel activity and to take into account the functional aspects of the disease, the PET 
images were pre-processed into SUV images (in subsequent sections). The first step 
is the automatic identification of the optimal combination of starting ROI and slice 
containing the tumor. Then, this information is input to the subsequent components 
of the system (in subsequent sections). Once the ROI is identified, the corresponding 
mask is fed into the next step of the system, where the segmentation is performed 
combining a Local region-based Active Contour (LAC) algorithm, appropriately 
adapted to handle PET images. The resulting segmentation is then propagated to the 
adjacent slices using a slice-by-slice marching approach. Each time convergence 
criteria are met for a specific slice, the corresponding optimal contour is propagated 
to the next, where the evolution is continued. Starting from the initial slice, the 
propagation is performed by contemporarily sweeping the data volume both upward 
and downward, until a suitable stopping condition, designed to detect a tumor-free 
slice, is met. Finally, the algorithm outputs a user independent Biological Tumor 
Volume (BTV). Detailed explanation of this task is provided in subsequent sections. 
 

5.5.1 Pre-processing of PET dataset 
	

Pre-processing PET images is mandatory for inter-patient and follow-up 
comparisons. Among PET quantification parameters, body-weight SUV is the most 
widely used in clinical routine. For this reason, it was embedded in our system. SUV 
is the ratio of tissue radioactivity concentration (RC) and injected dose (ID) at the 
time of injection, divided by body weight. The RC is calculated as the ratio between 
the image intensity and the image scale factor. The ID is calculated as the product 
between actual activity and dose calibration factor.  
 

5.5.2 Interesting Uptake Region identification 
	

In order to obtain a fully automatic BTV segmentation, an initial ROI enclosing the 
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tumor must be produced, obviously without any intervention by the operator. 
Therefore, the system identifies the PET slice containing the maximum SUV 
(SUVmax) in the whole PET volume. By taking advantage of the great sensitivity 
and specificity of MET radio-tracers in discriminating between healthy and tumor 
tissues, we can confidently assume that such SUVmax resides inside the main lesion 
[84]. 

While this process takes place, an additional test is performed, in order to 
investigate the presence of isolated local maxima which may indicate metastases 
separated from the main lesion. 
In the case that the presence of multiple (say “n”) independent anomalies are 
recognized, each one is independently processed. A different local maximum 
(SUV!"#! , with j = 1:n) is identified for each lesion and, consequently, n regions are 
automatically identified. By design, the first identified lesion contains the global 
SUVmax (i.e, SUV!"#! ). 

Once the current slice with SUV!"#!  has been identified, an automatic procedure to 
identify the corresponding ROI starts. The SUV!"#!  voxel is used as target seed for a 
rough 2D segmentation based on the region growing (RG) method [106]. For each 
lesion, the obtained ROI represents the output of this preliminary step that is input to 
the next component of the system, where the actual delineation takes place. The latter 
is performed through an enhanced LAC segmentation algorithm. It is worth noting 
that the RG algorithm is used only to obtain a rough estimate of the tumor contour(s).  

The same workflow is used to segment each metastasis independently, and the 
process is designed to carry on automatically. However, in case of multiple lesions 
the user will receive a warning message and if necessary, will be able to override the 
default behavior. In such a case, the algorithm can be paused, while the operator 
inspects the multiple metastases.	
 

5.5.3 The enhanced local active contour method 
	

The model proposed by Lankton et al [83] benefits of purely local edge based 
active contours and fully global region based active contours. At each point along a 
prominent intensity edge of the target, nearby points inside and outside the target will 
be modelled well by the mean intensities within the local neighborhoods on either 
side of the edge. The contour energy to be minimized is defined as:  

E = χ! x, s I x − u! s
!dx+ χ! x, s I x − v! s

!dx
!!"#!in!

ds  

Rin and Rout represent the regions inside and outside the curve C, s represents the 
arc length parameter of C, χ represents the characteristic function of the ball of radius 
l (local neighborhood) centered around a given curve point C(s), I represents the 
intensity function of the image to be segmented, u! s  and v!(s) denote the local 



66	

mean image intensities within the portions of the local neighborhood χ!(x, s) inside 
and outside the curve respectively (within Rin and Rout).  

These neighborhoods are defined by the function χ, the radius parameter l, and the 
position of the curve C. Note that the function χ!(x, s) evaluates to 1 in a local 
neighborhood around each contour point C(s) and 0 elsewhere. The contour C then 
divides each such local region into interior and exterior local pixels in accordance 
with the contour’s rule to segment the domain of I.  

Beyond the optimal identification of the starting slice containing the lesion, and, 
consequently, the identification of an initial operator independent mask for LAC 
segmentation (seen previous sections) further improvements have been introduced in 
the LAC algorithm. In the following we summarize part of the method, described in  
[98] . To incorporate metabolic information, the intensity function I in (1) is replaced 
by the SUV, and u! s  and v! s  denote the local mean SUV intensities within the 
portions of the local neighborhood χ! x, s  inside and outside the curve. The shape of 
the contour C then divides each such local region into interior local points and 
exterior local points in accordance with the contour’s segmentation of the SUV. The 
local means are specified as the ratios of S!! s , S!! s , A!! s , and A!! s  which 
represent the local sums of SUV intensities and the areas of their respective portions 
of the local neighborhood χ! x, s  inside and outside the curve. More precisely, the 
local interior region may be expressed as Rin ∩ χ! x, s  and local exterior region as 
R!"# ∩ χ! x, s . 
 

u! s =  S!! sA!! s
   ,   v! s =  S!! sA!! s

  

 

S!! s = χ!(x, s)SUV(x) dx   ,   
 

!!"

S!! s = χ!(x, s)SUV(x)   dx
 

!!"#

  

 

A!! s = χ!(x, s)  dx   ,   
 

!!"

A!! s = χ!(x, s)  dx
 

!!"#

 

 

χ!(x, s) =
1      when   x ∈ l− Ball C s ;

 
0                          otherwise;           

 

 
Once the ROI encircling the highest radio-tracer uptake area has been automatically 
identified (previous section), the resulting mask is used to initiate parallel 
segmentations on the neighboring slices above and below. Subsequently, for all the 
other slices in both directions, we similarly use the segmentation results of the 
previous slices as the initial mask inputs. The LAC method is inherently capable of 
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locally widening or tightening where necessary when the contour is propagated from 
slice to slice. Since, this behavior is driven by the image properties rather than by an 
inherent knowledge of whether the cancer is present, a stopping criterion is necessary 
to prevent the LAC algorithm from misbehaving, or even diverging, when it reaches 
a slice where the cancer is absent (i.e. when there is nothing to be segmented). 

Therefore, a fully automatic stopping condition is implemented. For the slice 
under consideration, at each point on the cancer edge, nearby points inside and 
outside the cancer must have a different local mean SUV. If the cancer is present, a 
positive difference between background and foreground intensity must occur, and 
consequently the algorithm can safely proceed with the next neighboring slice. When 
the system encounters a slice where the local mean v! s  on Rout is greater or equal 
to the local mean SUV u! s  on Rin, which is the opposite of what is expected, the 
slice is recognized as cancer-free and the slice-to-slice propagation is terminated in 
that direction. In this way, one slice at a time, the BTV is generated. Finally, the 
segmentation process is automatically stopped, thereby avoiding the need for any 
user intervention. 
 

5.6 Tissue Classification to Support Local Active Delineation of Brain 
Tumors 

	
In this section we present a brief overview of the employed segmentation 

algorithm (Figure	5.6.1). Data from seventeen oncological patients were used partly to 
train the classifiers, and partly to assess the performances of the delineation 
algorithm.  

Classifiers are used to classify PET voxels according to three labels: tumor, 
background and border-line. Training and validation were accomplished using a 
moving window, 3 by 3 voxels, in the PET slices of a data subset. Each window was 
then reorganized in a 9-element sample vector. The obtained samples were generated 
and used for training and validation purposes, as detailed in subsequent sections. 
Training and validation steps are required to be performed only once. After, the 
classifier can be reused on any new dataset. Concerning the practical use of the 
system on clinical cases, the first step is the automatic identification of the optimal 
combination of starting ROI and slice containing the tumor to input the subsequent 
logical steps of the system (see following sections).  
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Figure 5.6.1 The segmentation approach [83][101][106]. a) part of the dataset is used to train the 
classifier; b) samples are obtained for each tissue kind label; c) training and validation of the 
classifier; d) the region containing the lesion is automatically localized; e) RG is used to identify the 
user independent mask; f) once the initial mask is obtained, it is sent to the next logical block of the 
system; g) segmentation is performed using the LAC segmentation algorithm through a new energy 
based on the tissue classification; h) segmentation mask is propagated to the adjacent slices using a 
slice-by-slice marching approach; i) a stop condition is evaluated; j) segmentation on the next slices is 
performed until stop condition is false; k) an operator independent BTV is finally obtained. 
	

Once the ROI is identified, the corresponding mask is feed into the next step of 
the system, where the segmentation is performed combining a Local region-based 
Active Contour (LAC) algorithm, appropriately modified to support PET images, 
and the information derived from the classifiers, which locally drive the active 
contour (see following sections). The obtained segmentation is then propagated to 
the adjacent slices using a slice-by-slice marching approach. Each time convergence 
criteria are met for a slice, the obtained optimal contour is propagated to the next 
slice, and evolution is resumed. Starting from the first slice considered, propagation 
is performed in parallel both upward and downward within the data volume and it is 
continued until a suitable stopping condition, designed to detect tumor-free slice, is 
met. Finally, a user independent BTV is obtained. 
 

5.6.1 Sampling, Training and Performance of classifiers 
 

In order to normalize the voxel activity and to take into account the functional 
aspects of the disease, the PET images are pre-processed into SUV images [106]. 
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The classifier (either NB, KNN, or DA) are used to partition PET tissues into three 
labels: “normal”, “abnormal”, and “border-line” regions. The goal is to combine each 
classification with the PET image information which locally drive the LAC 
delineation. Before integrating the classifier in the LAC method, training and 
validation phases are required to provide the capability of efficiently classify a 
newly-encountered tissue into the afore mentioned classes. However, the task 
requires to be performed only once. Once trained, the classifier is ready to be used on 
any new case. In order to generate the training input to the classifier, two brain 
metastases, for a total of 16 PET slices, were used (Figure	5.6.1-a). Each PET image 
containing the lesion is investigated using a moving window of 3x3 voxels in size. 
The ROI size was empirically determined to provide the best performance on the 
present dataset. For each new position of the moving window, the selected portion of 
data was compared with the gold standard. Windows entirely outside or inside the 
gold standard were labelled as normal or abnormal respectively. Windows 
comprising no more than three lesion voxels were labeled as border-line tissue. Each 
window was then reorganized as a 9-element vector (Figure	5.6.1-b). The sampling 
operation produced a total of 834095 samples; 1706 labeled as lesion vectors, 976 
border-line, and 831412 labelled as background. The processing time for single slice 
was: 54.03 sec for NB, 40.48 sec for KNN, and 26.95 sec for DA (iMac computer 
with a 3.5 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 memory, and OS X 
El Capitan.). This task is performed only once. The 80% of samples was used to train 
the three classifiers, while the remaining 20% was used to verify the reliability in 
classifying newly encountered samples (Figure	5.6.1-c). The K-Fold cross-validation 
was integrated in the classifiers to make it reliable and to limit problems such as 
over-fitting. Once the training step was completed, a validation task was performed 
to verify the rate of success in classifying new scenarios. 
	

5.6.2 The fully automatic protocol 
	

By taking advantage of the great sensitivity and specificity of MET in the 
discrimination between healthy and tumor tissues in the brain district, the proposed 
protocol identifies the PET slice containing the maximum SUV (SUVmax) in the 
whole PET volume to identify the ROI enclosing the tumor without any operator 
intervention [84]. Once the current slice with SUV!"#!  has been identified, an 
automatic procedure to identify the corresponding ROI starts. The SUV!"#!  voxel is 
used as target seed for a rough 2D segmentation based on the region growing (RG) 
method  [106] (Figure	 5.6.1-e). For each lesion, the obtained ROI represents the 
output of this preliminary step (Figure	 5.6.1-f) which is feed into the next logical 
block of the segmentation algorithm (Figure	 5.6.1-g) where the actual delineation 
takes place through the LAC approach. It is worth noting that the RG algorithm is 
used only to obtain a rough estimate of the tumor contour(s).  
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5.6.3 The modified local active contour method 
	

In our previous work, the active contour methodology proposed by Lankton et al 
[83] was improved. For sake of completeness, we summarize the mathematical 
development of [96][109] regarding how the tissue classification, which separates the 
PET image into lesion, background, and border-line tissues can be integrated in 
classical LAC in order to further improve the segmentation process. Briefly, the 
contour energy to be minimized is defined as:  

E = χ! x, s I x − u! s
!dx+ χ! x, s I x − v! s

!dx!!"#!in! ds    (1) 

• Rin denotes the regions inside the curve C 
• Rout denotes the regions outside the curve C 
• s denotes the arc length parameter of C 
• ! denotes the characteristic function of the ball of radius l centered around a 

given curve point C(s) 
• I denotes the intensity function of the image to be delineated 

u! s  and v!(s) represent the local mean image intensities within the portions of the 
local neighborhood χ!(x, s) inside and outside the curve. 
Beyond the identification of the initial ROI, as described in the previous section, the 
energy (1) has been modified to include a new energy term to separate the PET 
image into three regions considering tissue classification: χ!"#$%&(x), χ!"#$%#!!"#$ x  
and χ!"#$%&'()*(x) represent the characteristic functions of the tissue’s classification 
(using KNN or NB or DA) respectively for lesion, background, and border-line 
tissues. 

The first term of the formulated energy functional (1) is essentially a prior term 
penalizing the overlap between regions which are classified in opposite ways by the 
contour versus the classifier (no penalty is paid in regions classified as “border-line”, 
for this reason the “χ!"#$%#!!"#$ x ” classification is not included in the energy).  
To integrate this new prior term and to incorporate SUV in the LAC algorithm, the 
energy for the PET image segmentation approach is defined as: 
 

E =  
 

!
λ χ! x, s Pout! x  dx + χ! x, s Pin! x  dx

 

!!"#

 

!!"

 

+ 1− λ χ!(x, s) SUV(x)− u!(s) !dx+ χ!(x, s) SUV(x)− v!(s) !dx
 

!!"#

 

!!"

ds 
 

 
where the parameter λ ∈ R+ (range between 0 and 1) is chosen subjectively (in our 
study λ equal to 0.01 provided the best result). Pin! x  and Pout! x  denote the local 
mean tissue’s classification within the portions of the local neighborhood χ! x  inside 
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and outside the curve respectively (within Ω): 

Pin! x =  
χ!(x)χ!"#$%&(x) dx 

!
χ!(x) dx 

!
 , Pout! x =  

χ!(x)χ!"#$%&'()*(x) dx 
!

χ!(x) dx 
!

 

u! s  and v! s  denote the local mean SUVs within the portions of the local 
neighborhood χ! x, s  inside and outside the curve. These neighborhoods are defined 
by the function χ, the radius parameter l, and the position of the curve C.  
Finally, as explained in [98], the process is automatically stopped avoiding the need 
for any user intervention. 
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CHAPTER 6 

 

6 Experimental Results  

6.1 MR Breast Image Segmentation 
 

6.1.1 Automatic Multi-seed Detection for MR Breast Image Segmentation 
 
The results reported in this section have been used to produce the following research 
papers: 
 

• A.Comelli, A. Bruno, M. L. Di Vittorio, F. Ienzi, R. Lagalla, S. Vitabile, and 
E. Ardizzone. Automatic Multi-Seed Detection For MR Breast Image 
Segmentation. Conference: International Conference on Image Analysis and 
Processing (ICIAP) 2017, At Catania (Italy), Volume: Vol LNCS 10484, pp. 
683-693. DOI: 10.1007/978-3-319-68560-1_63 

 

6.1.1.1 University of Palermo Policlinico Hospital Dataset and Materials 
 

The dataset consists of 18 patients from UPPH. The patient were divided in two 
groups according to their age: group 1 (25/35 years old, glandular/fibroglandular 
tissue) and group 2 (45/55 years old, fibrofatty/fatty tissue). A GE signa excite1.5 T 
HD 23 scanner was used to acquire T1 FSE axial sequences with the following 
technical parameters: 4 channels coil; TR/TE=525; echo train=2; image slices=40; 
slice thickness=5 mm; slice gap=0; FOV=160×320; bandwidth= 41.67 Hz; imaging 
matrix=512×256. 
 

6.1.1.2 Gold Standard 
 

Three medical doctors, one resident and two radiologists, with progressively 
increasing knowledge level of breast imaging, performed the manual segmentation 
by using DICOM viewer Osirix [35] and following these criteria: breast parenchyma 
and cutaneous surface were isolated from external air basing on its lower intensity; 
lower boundary of breast region was delimited by using pectoral muscle as 
landmark; lateral bounds were represented by axillary cavities. The radiologists 
usually do not agree with each other, then the results from several observers are used 
to define a consolidated reference to compare the inter-observer variance, as in [25] 
[36]. 
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6.1.1.3 Results and Discussion 
 

The proposed method has been tested on the dataset described in the materials 
section. The results showed that the proposed method achieves excellent results, as 
depicted in Table	6.1.1. Performance measures are then calculated regarding correct/ 
incorrect segmentation.  
The following measures are computed: Sensitivity, Specificity, Negative Predictive 
Value, Precision, Accuracy, and Error scores: 

• Sensitivity: It is defined as the percentage of effective positives that are 
correctly identified as such: 

Sensitivity =  
!"

!" + !"	 	

 
• Specificity: It is defined as the percentage of effective negatives that are not 

classified as such:  

Specificity =  
!"

!" + !"	 	

 
• Precision: It is defined as, related to reproducibility and repeatability, the 

degree to which repeated segmentations under unchanged conditions show 
the same results: 

Precision =  
!"

!" + !"	 	

  
• Accuracy: It is defined as the degree of closeness of unsupervised 

segmentations of a breast to that manual segmentation:  

Accurancy =  
!" + !"

(!" + !" + !" + !")	 	

 
• Overlap: It is defined as the index to quantify agreement between the 

unsupervised segmentation and manual segmentation:  

Overlap =  
!"

(!" + !" + !")	 	

 
Furthermore, our method has been compared with a state of the art approach [30] to 
evaluate the effectiveness and the accuracy in breast segmentation. The results are 
depicted in Table	6.1.1.The proposed method shows very encouraging results in terms 
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of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; 
Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice). 
 
Table 6.1.1 Experimental results 

 
 

6.2 Machine Learning and Data Analysis in Medical Data 
 
The results reported in this section have been used to produce the following research 
papers: 
 

• A.Comelli, M. C. Terranova, L. Scopelliti, S. Salerno, F. Midiri, G. Lo Re, 
G. Petrucci, and S. Vitabile. A Kernel Support Vector Machine Based 
Technique for Crohn’s Disease Classification in Human Patients. CISIS 
2017: In book: Complex, Intelligent, and Software Intensive Systems, 
pp.262-273. DOI: 10.1007/978-3-319-61566-0_25 

• M.C.Terranova, A.Comelli, L.Scopelliti, F.Vernuccio, D.Picone, A.Di 
Piazza, C.Tudisca, F.Midiri, S.Salerno, R.Lagalla, S.Vitabile and G.Lo Re. A 
New Semi-Automatic Technique for Crohn's Disease Diagnosis Using 
Supervised Machine Learning Algorithm: Kernel Support Vector Machine. 
Radiological Society of North America (RSNA) 2017. 

• L.Licari, G.Salamone, S.Campanella, F.Carfì, T.Fontana, N.Falco, R.Tutino, 
P.De Marco, A.Comelli, D.Cerniglia, G.Petrucci, S.Vitabile and G.Gulotta. 
Use of the KSVM-Based System for the Definition, Validation and 
Identification of the Incisinal Hernia Reccurence Risk Factors.  Journal of 
Surgery 2018. Impact Factor 0.95. 

 

6.2.1 Use of the KSVM-based system for the definition, validation and 
identification of the incisional hernia recurrence risk factors 

	

6.2.1.1 Patients and methods  
	

In the period from July 2007 to July 2017, 154 patients were selected and subjected 
to incisional hernia repair. The patients were subjected to surgical procedure at the 
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Department of Surgical, Oncological and Oral Sciences - General and Emergency 
Surgery of the Policlinico P. Giaccone of Palermo, University of Palermo. The 
surgical operations were conducted under general anaesthesia. Patients received 
antibiotic prophylaxis when indicated, according to the hospital prophylaxis scheme. 
Inclusion criteria of the study were single operator case studies and open laparotomy 
for incisional hernia repair. Kernel Support Vector Machine (KSVM) is the 
intelligent data analysis and data mining proposed to identify and to verify the risk 
more significant factors for recurrence of incisional hernia. e analysis was conducted 
verifying 34 risk factors that are shown in Table	6.2.1.  
 
Table 6.2.1 Risk Factors Verified for Recurrence. 

 

 

6.2.1.2 University of Palermo Policlinico Hospital Dataset and Results 
	

 The dataset is composed of 154 patients, 83 females and 71 males, mean age 60 
y.o. and a mean BMI of 31 kg/m2.  
The preparation for surgical operation evaluated the respiratory function - through 
chest X-ray, spirometry and pneumological examination - the cardiac function - 
through electrocardiography and cardio- logical examination - the metabolic indexes, 
the American Society of Anesthesiologists (ASA) score and the study of parietal 
defect by clinical examination supplemented by CT scan and CT dynamic scan. The 
3D reconstruction of the abdominal defect also allowed a better pre-operative 
evaluation of the most complex cases and made it possible to select the most suitable 
surgical procedure and prosthetic materials. 
The post-operative complications investigated were seroma formation and Surgical 
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Site Infection (SSI). 
In 28 cases there was evidence of diabetes mellitus type 2 and obesity in 80 patients. 
Regarding cardiovascular disease, 70 cases had arterial hypertension associated in 18 
cases also with ischemic heart disease. 
Eighteen patients were smokers and 12 were ex- smokers; 10 patients were affected 
by COPD; 21 were affected by thyroid disorders.  
Among the various gastrointestinal disorders the most frequently diagnosed were: 11 
jatal hernia, 7 GERD, 6 sigmoid diverticulosis and 7 intestinal obstruction.  
Among the previous interventions to which patients have been subjected, the most 
commonly reported were: cholecystectomy in 16 cases, hysterectomy in 11 cases, 
colectomy in 11 cases, sigmoidectomy in 10 cases, appendectomy in 9 cases. 
The localization of the fascial defects was xifopubic in 88 patients, umbilical in 21 
patients, mesogastric in 2 cases, hypogastric in 5 cases, umbilical-pubic in 16 cases, 
pararectal in 2 cases, 4 in trocar, 2 Spigelian hernia and subcostal in 8 cases. Of these 
cases, 44 were urgent and 110 were with no signs of complications. In 14 cases the 
diagnosis was of “swiss cheese incisional hernia”. The average size of wall defects 
was 12 cm.  
In 12 patients it was possible to perform a direct suture of the defect; in the 
remaining cases a mesh was positioned to correct the wall defect. Of these, 87 were 
positioned with IPOM technique, 4 retromuscular (Rives-Stoppa) and 2 
preperitoneal.  
The general anaesthesia was performed in 141 cases and 109 patients had an ASA 
score ≥ 3. The re- maining 13 cases were performed in local anaesthesia.  
Aspiration drains were placed upon the prosthesis and, if a broad dissection of 
subcutaneous tissue occurred, also in the subcutis. The drainage removal was 
performed in 2nd post-operative day or when the drained volume was less than 50 
ml/24h.  
KSVM was performed to verify the effectiveness of the method. The “Ground-
Truth” for incisional hernia is the recurrence. The results showed that the proposed 
method achieves good performance in terms of correct/incorrect classification of 
patients. 
 

6.2.1.3 Discussion 
	

 Currently, in state of the art, there are not SVM applications on medical data 
related to incisional hernia. The principal works on data and images classification 
based on SVM are discussed. We proposed in [127] a new technique for 
classification of patients affected by Crohn’s disease (CD). The proposed technique 
is based on a Kernel Support Vector Machine (KSVM) and it adopts a Stratified K-
Fold Cross- Validation strategy to enhance the KSVM classifier reliability. Son et al. 
[128] applied an SVM method for data classification. The SVM modelling is a 
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promising classification approach for predicting medication adherences in Heart 
Failure (HF) patients. This predictive model helps to stratify the patients so that 
evidence-based decisions can be made and patients can be managed appropriately. 
We presented in [93] a system to normal and abnormal tissue classification, using 
KSVM and k-nearest neighbor (KNN) method, in Positron Emission Tomography 
Oncological Studies. Zhang et al. [129] proposed a novel hybrid system to classify a 
given MR brain image as either normal or abnormal. 
The goal of the proposed system is to apply these methods to the incisional hernia 
features extracted for classifying the patient into Positive for recurrence risk or 
Negative for recurrence risk. The description of algorithms and mathematical 
formalisms that are used in the proposed classification technique were described. The 
SVM presents an efficient algorithm and can represent complex non-linear functions. 
The most popular and most reliable SVMs are the kernel SVMs. Kernel SVMs have 
the following advantages [130]: work very well in practice and have been remark- 
ably successful in such diverse fields as natural language categorization, 
bioinformatics and computer vision; have few tunable parameters; training often 
involves convex quadratic optimization [131]. 
This study attempts to demonstrate, based on the evidence of scientific literature, the 
existence of new possible correlations between risk factors and the development of 
incisional hernia recurrence. 
The association between certain characteristics of the patient such as diabetes, 
chronic lung diseases, smoking, age and increased probability of recurrence was 
already studied in the guidelines for the prevention of the surgical site infection (SSI) 
in 1999. The study showed how the contribution of diabetes to the risk of SSI and 
recurrence is complex. There was a significant relationship between increasing levels 
of HgA1c and SSI. 
In addition, an increase in glucose levels (> 200 mg/dl) in the postoperative period 
(48h) was associated with an increased risk of SSI. The infection is a risk factor for 
recurrence too. The infections in diabetics have a double risk. 
In DM there is also an alteration of lipid metabolism and a decrease in abdominal 
wall tissue resistance for ischemic and hypoxic phenomena responsible for wall 
fragility. The use of nicotine delayed the healing of the wound and may therefore 
increase the risk of SSI and the development of recurrence [132]. 
Murariu et al. [133], in 2007, associated age, sex, obesity, pulmonary diseases and 
diabetes to the development of recurrence. 
This data is related to the reduction of reticulin fibers and hyaline degeneration of 
collagen fibers. There was a recurrence 4 times higher in women (37.3%) especially 
if obese and with multiple pregnancies. Various mechanical factors have been 
associated with the development of recurrence including: prolonged abdominal 
distension in postoperative course (21%), probably because it is responsible for 
increased abdominal pressure and cough (9%) that creates abdominal hyper- tension 
by exercising a strong contraction of the diaphragm and abdominal muscles. 
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Muresan et al. [132] conducted a study in 2016 comparing the various abdominal 
plastic procedures and found an increasing of recurrence in onlay mesh positioning, 
especially if associated with changes in abdominal pressure and high post-surgical 
pain. 
In 2017 Hauters et al. [134] demonstrated a significant recurrence increasing in 
subjects with BMI> 35 (21% ), defect greater than 4 cm (27%), overlap <5 cm 
(32%), and mesh area/defect area <12 (48%). To understand better the 
pathophysiology of incisional hernia recurrence and in accordance with the 
evidences emerged from the previous studies, it was decided to investigate new 
possible criteria involved in the occurrence of the recurrence. 
A sample of 154 patients was enrolled in the study. The correlation with the type of 
surgical technique, the type of prosthesis, its positioning and the post- operative 
complications were also evaluated. 
The data analysis confirmed the known correlations showed in the international 
literature with a greater incidence of comorbidities such as diabetes (37%), 
dyslipidaemia and hypercholesterolemia with a cumulative incidence of 16%; 
tobacco smoke - by combining categories smokers and ex-smokers - reach 46%, 
COPD 16% and hypertension 51%. 
Patients with DM have a higher risk of SSI especially in open interventions. The 
infection is a risk factor independently for the development of this pathology, so the 
simultaneous presence of DM should increase the risk of recurrence. 
However, in our experience, in patients with diabetes mellitus type 2 who developed 
a recurrence only in 11 cases there was evidence of infection. 
The number of smokers with incisional hernia is high as reported by other studies on 
patients with abdominal hernia. Several pathogenic mechanisms seem to be involved. 
Smoking and the hypoxia of peripheral tissues caused by it increase the risk of 
surgical wound infection and its dehiscence, presumably also by reducing the 
oxidative killing of neutrophils, which constitute a critical defence against pathogens. 
In the surgical wounds of smokers there is a de- crease in the deposition of collagen, 
with the reduction in the ratio between collagen I and III, often found in incisional 
hernia. COPD is likely that increase the risk of disease by the presence of persistent 
cough that results in violent abdominal contractions with tension development on 
wounds. The high incidence of benign prostatic hyperplasia may be correlated with 
the advanced age of subjects but it is also configurable with DM and dyslipidaemia 
to the complex metabolic syndrome. The sex is also identified as a risk factor for 
recurrence with major incidence in females. BMI is not very different between the 
sexes, whereas there is a slight prevalence of infection in males possibly associated 
with greater cigarette smoking. The study also revealed a probable role in thyroid 
pathologies, hepatic disease, cirrhosis and steatosis, benign prostatic hyperplasia, and 
the presence of uterine fibroids in the development of pathology in the study. In our 
sample there was a high incidence of hyperthyroidism and nodules, the data could be 
related to the greater presence of women in the study specimen but also to a probable 
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role of the immune system. Cirrhosis and liver disease were often associated, 
especially in advanced stages, with ascites leading to an increase intra-abdominal 
pressure and increased wall tension. 
Benign prostatic hyperplasia seems to play a role because the increased prostate 
volume could increases the pressure in the abdominal cavity; similar mechanism 
could be attributed to uterine fibroids, whose high incidence in the study can be 
attributed to the prevalence of female gender and advanced age. 
The greater incidence of xifopubic incisional hernia (57%) seems to confirm 
previous cases in which a higher frequency of recurrence in longitudinal incisions 
was observed. The greater incidence (34%) of recurrence is shown in defects ranging 
from 5 to 10 cm. The infection is a fearful complication; it is usually secondary to a 
suppurative infection of the surgical wound or to the devascularisation necrosis of 
the wall layers above the prosthesis. 
Sometimes contamination may also occur at the time of mesh positioning by contact 
with skin bacterial flora. In literature, the incidence is 2-10% after laparotomy and 0-
2% after laparoscopy. To prevent this complication it is important to be careful in the 
skin disinfection and minimize the manipulation of the mesh. In the present study we 
have reported this complication in 30 cases, with a greater prevalence in male 
subjects (13-44). 
 
	
Table 6.2.2 Validity for the Relapse’s Classification Methodology. 

 
 
 

6.2.2 A Kernel Support Vector Machine Based Technique for Crohn’s 
Disease Classification in Human Patients 

	

6.2.2.1 University of Palermo Policlinico Hospital Dataset 
	

 The dataset consists of 300 MR Enterography examinations of 300 patients 
coming from University of Palermo Policlinico Hospital, Department of Radiology, 
(156 females, 144 males, mean age 37,8 years). MR imaging studies were performed 
with a 1.5-T magnet and surface coils phased array (Signa, GE Medical system, 
Milwaukee, WI, USA and Achieva, Philips Medical System, Eindhoven, The 
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Netherlands), with the use of paramagnetic contrast media (DOTAREM; Guerbet; 
USA), after the administration of a spasmolytic agent, unless contraindicated.  
In our protocol has been used the following sequences: HASTE thick-slab, Steady 
State Free Precession, Single Shot Fast Spin Echo, 3D Spoiled Gradient Echo - on 
axial and coronal planes - and DWI. Patients underwent specific protocol for MR 
Enterography, that requires 6 hours fasting before the exam, low fiber diet for the 
preceding 5 days, and the intake from the day before the exam of 2000 ml of water 
and polyethylene glycol (PEG). Thus allowing to reduce the fecal matter and to 
provide a better and easier distention of the bowel loops. Upon the arrival to the 
department, patient is invited to ingest other 1500ml of water and PEG 40min before 
the exam.  
The dataset is composed of 300 E-MRI examinations related to 300 patients: 150 are 
histologically CD proved, and 150 are healthy individuals [43][50][51]. Each patient 
has been codified with a vector of 22 qualitative features. The expert radiologist 
extracted features are reported in Table	4.2.1. 
 

6.2.2.2 Evaluation Metrics, Results and Discussion 
 
 The proposed technique has been used on the datasets described in the Materials 
section. Currently, in state of the art, there are not KSVM applications on medical 
data related to CD. For that reason, it was not possible to propose a method of 
comparison in addition to ours. To test the effectiveness of the technique, a direct 
comparison with four SVMs different kernels algorithms (Linear, Polynomial, 
Quadratic, RBF, reported in Table	4.2.2) has been performed. When using the linear 
kernel, the KSVM degrades to original linear SVM. It is important to highlight that 
the Ground-Truth for CD diagnosis is the histological specimen result: it is the 
absolute certainty. The biopsy is performed under endoscopic examination. Two 
biopsies from five sites around the colon, including the rectum, are obtained, and 
then analyzed by expert pathologists of University Hospital Policlinico, for diagnosis 
confirmation according to European Crohn’s and Colitis Organisation’s guide-lines 
[44]. The results showed that the proposed technique obtains excellent results in both 
training and validation as reported in Table	6.2.3 and in 	
Table	 6.2.4. Performance measures are then calculated regarding correct/incorrect 
Patient classification: 
 

• True Positive (TP): a vector is considered Positive for CD e both in 
histological examination and in supervised classification; 

• False Positive (FP): a vector is considered Positive for CD in supervised 
classification and Negative for CD histological examination; 

• True Negative(TN):a vector is considered Negative for CD both in 
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histological examination and in supervised classification; 

• False Negative (FN): a vector is considered Positive for CD in supervised 
classification and Negative for CD histological examination. 

At this point it is possible to calculate the Sensitivity, Specificity, Negative Pre- 
dictive Value, Precision, Accuracy, and Error scores: 

• Sensitivity: It is defined as the percentage of effective positives that are 
correctly identified as such:  

Sensitivity =  !"
!" + !"  

• Specificity: It is defined as the percentage of effective negatives that are not 
classified as such: 

Specificity =  !"
!" + !"  

• Negative Predictive Value: It is defined as the probability that subjects with a 
negative test are truly not diseased: 

Negative Predictive Value =  !"
!" + !"  

• Precision: It is defined as, related to reproducibility and repeatability, the 
degree to which repeated classifications under unchanged conditions show 
the same results:  

Precision =  !"
!" + !!  

• Accuracy: It is defined as the degree of closeness of classifications of a 
desease to that desease’s true histological examination:  

Accurancy =  !" + !"
!" + !" + !" + !"  

• Error: It is defined as the opposite of Accuracy:  
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Error =  !" + !"
!" + !" + !" + !"  

 

The classification result has been compared with three Stratified K-Fold validation, 
with same SVM Linear Kernel. The results are depicted in Table	6.2.3.  

 

Table 6.2.3 Classification comparison of 3 stratified K-Fold validation strategies using the same SVM 
Linear Kernel 

 

 
For 5-Fold Cross Validation, the whole classification accuracy was 97,00%; for 10-
fold Cross Validation, was 96,40%; and for 15-Fold Cross-Validation, was 96,40%. 
Obviously, the 5-Fold Cross Validation outperformed the other two Strati- fied K 
Fold validation. The classification result has been compared with four different 
KSVM, with same 5-Fold Cross Validation. The results are depicted in Table	6.2.4. 
For Linear kernel, the whole classification accuracy was 97,00%; for Polynomial 
kernel, was 96,40%; for the Quadratic kernel, was 96,40%; and for the RBF kernel, 
was 97,40%. Obviously, the RBF kernel SVM outperformed the other three kernel 
SVMs. 
 
 
Table 6.2.4 Classification comparison of 4 different SVM Kernels 
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6.3 Image Segmentation in PET 
  
The results reported in this section have been used to produce the following research 
paper: 
 

• A.Comelli, A. Stefano, V. Benfante, and G. Russo. Normal and Abnormal 
Tissue Classification in PET Oncological Studies.  Pattern Recognition and 
Image Analysis, 2018, Vol. 28, No. 1, pp. 121–128. DOI: 
10.1134/S1054661818010054. Impact Factor: 0.998. 

• A.Comelli, A. Stefano, G. Russo, M.G. Sabini, M. Ippolito, S. Bignardi, G. 
Petrucci, A. Yezzi. A smart and operator independent system to delineate 
tumours in Positron Emission Tomography scans, Computers in Biology and 
Medicine. Accepted 6 September 2018. DOI: 
10.1016/j.compbiomed.2018.09.002. Impact Factor: 2.115. 

• G.Russo, A.Comelli, A. Stefano, M.G.Sabini, M.Ippolito, M.C.Gilardi, 
A.Yezzi. Sviluppo di un metodo per la segmentazione del BTV accurato e 
operatore indipendente. 10°Congresso Nazionale (AIFM) 2018. 

• A.Comelli, A.Stefano, S.Bignardi , G.Russo, M.G.Sabini, M.Ippolito, 
S.Barone and A.Yezzi. Active Contour Algorithm with Discriminant 
Analysis for Delineating Tumors in Positron Emission Tomography. 
Artificial Intelligence in Medicine. Accepted 7 January 2019. DOI: 
10.1016/j.artmed.2019.01.002. Impact Factor: 2.879. 

• G.Russo, A.Comelli, A.Stefano, M.G.Sabini, M.Ippolito, M.C.Gilardi, & 
Yezzi. 253. An accurate and operator independent method for biological 
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tumour volume segmentation. Physica Medica: European Journal of Medical 
Physics, 56, 218. Accepted December 2018. DOI: 
10.1016/j.ejmp.2018.04.264. 

• A.Comelli, A.Stefano, G.Russo, S.Bignardi, M.G.Sabini, G.Petrucci, 
M.Ippolito, and A.Yezzi. K-Nearest Neighbor driving Active Contours to 
Delineate Biological Tumor Volumes. Engineering Applications of Artificial 
Intelligence. Under review 2018. DOI: 10.1016/j.engappai.2019.02.005. 

• A.Comelli, A.Stefano, S.Bignardi, C.Coronnello, G.Russo, M.G.Sabini, 
M.Ippolito, and A.Yezzi. Tissue Classification to Support Local Active 
Delineation of Brain Tumors. In Annual Conference on Medical Image 
Understanding and Analysis. Springer, Cham, 2019. 

• A.Comelli, and A.Stefano. A fully automatic system of Positron Emission 
Tomography Study segmentation. In Annual Conference on Medical Image 
Understanding and Analysis. Springer, Cham, 2019. 

 

6.3.1 A smart and operator independent system to delineate tumours in 
Positron Emission Tomography scans 

 

6.3.1.1 Framework for performance evaluation 
	

 A framework for the evaluation of the proposed segmentation system is presented. 
Overlap-based and spatial distance-based metrics, according to the formulations 
presented in [101][110][100], are considered to determine the accuracy achieved by 
the proposed computer-assisted segmentation system (assessed volume) s!"# against 
the gold-standard (reference volume) s!"#  (in our study, manual segmentations 
performed by three experts are used to define a consolidated reference as described 
in the next Section).  
The overlap and difference between the two contours were measured according to 
true positive (TP), false positive (FP), true negative (TN) and false negative (FN) 
voxels. In particular, we calculated the mean, standard deviation, 95% confidence 
interval (CI) and coefficient of variation (CV) of sensitivity, positive predictive value 
(PPV), dice similarity coefficient (DSC), Hausdorff distance (HD), and Mahalanobis 
distance (MHD).  
Sensitivity, also called the true positive volume fraction (TPVF), is the fraction of the 
total amount of tissue in the proposed segmentation system s!"# which overlaps with 
the reference volume s!"# [101]. A perfect segmentation algorithm would be 100 % 
sensitive (segmenting all voxels from the target voxels) and 100 % specific (not 
segmenting any from the background voxels). In particular, TPVF [99] is a crucial 
measure in radiotherapy in order to obtain optimal RTP avoiding cancer recurrence. 
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Specificity, also called the true negative volume fraction (TNVF), is the fraction of 
tissue defined in the reference volume s!"# that is missed by the segmentation system 
s!"#. Considering that the number of true negatives depends on the space volume I, 
the specificity makes little sense and only the sensitivity conveys useful information. 
The specificity can be replaced with the positive predictive value (PPV) [100]. 
PPV, also called precision, is the fraction of the total amount of tissue in the 
reference volume s!"#  which overlaps with the segmentation system s!"#.  
DSC value [101] measures the spatial overlap between the reference volume s!"# and 
the segmentation system s!"#: a DSC value equal to 100% indicates a perfect match 
between two volumetric segmentations, while a DSC whose value is 0% indicates no 
overlap: 

!"# = 2 !!"# ∩ !ref
!!"# + !ref

=  2×!"
2×!" + !" + !"  × 100%   

Nevertheless, overlap-based metrics are highly dependent on the segmentation size. 
For this reason, distance-based metrics are highly recommended when the boundary 
segmentation is critical, such as in BTV delineation for RTP. In particular, HD is 
used to measure the most mismatched boundary voxels between automatic and 
manual BTV: a small median of HD means an accurate segmentation, while a large 
median of HD means no accuracy.  
The HD [110] [136] between two finite point sets A and B is defined by: 
 

!" = !"# ℎ !,! , ℎ(!,!)    

The two distances h(A, B) and h(B, A) are termed as forward and backward 
Hausdorff distances of A to B. h(A, B) identifies the point a∈A that is farthest from 
any point b∈B and it measures the distance from a to its nearest neighbour in B. h(B, 
A) identifies the point b∈B that is farthest from any point a∈A and it measures the 
distance from b to its nearest neighbour in A.  
Each point of A (or B) must be within distance h(A,B) of some point of B, and there 
is at least one of A  that is exactly distance h(A,B) from the nearest point of B 
considered as the most mismatched point. Symmetric consideration for h(B,A), with 
respect to B instead of A. 
h(a,B) is defined as minb∈B h(a,b) where h(a,b) is the Euclidean distance, and, 
similarly, h(b, A) is defined as mina∈A h(b, a). Consequently, h(A, B) is defined as the 
maxa∈A h(a, B), and h(B, A) is defined as the maxb∈B h(b, A). Then, 

h(A,B) = !"#!∈! !"#!∈! !! −  !! !
!

!!!
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where the Euclidean distance is defined on n-dimensional Euclidean space. Similarly 
for h(B,A). Thus, HD measures the degree of mismatch between A and B by 
measuring the distance of the point of A that is farthest from any point of B, and vice 
versa. 
Since medical images are usually characterized by noise and the HD is generally 
sensitive to outliers, the HD averaged over all points in A and B has been considered 
[110]: 

!" = !"# ! !,! ,!(!,!)    

where ∑
∈ ∈

−=
A B

NBAd
a b

bamin)1(),( . 

A variant of the MHD has been considered to take into account the correlation of all 
points belonging to two different points clouds [110]. The MHD between the sets of 
voxels contained in s!"#e s!"# is given by: 
 

MHD =  (µ!"# −  µ!"#)!!!!(µ!"# −  µ!"#)	

where µSeg and µRef are the means of the two segmentations. S is the common 
covariance of the two sets and is given by  

! =  !!!!"! +  !!!!"#  
!! +  !!

	

where SSeg, SRef are the covariance matrices of the voxel sets and n1, n2 are the 
numbers of voxels in each set. In phantom experiments, shape modifications and 
volume translations are unlikely to be observed. In these studies, sensitivity, PPV, 
DSC and HD measurements can be considered more than sufficient for performance 
assessment, as reported in [101]. For this reason, MHD has been considered in only 
patient studies. 
Finally, to perform statistical test between the proposed system and human 
segmentations, the combination of sensitivity and PPV, as recommended in [78], has 
been used. Further, to facilitate the evaluation and ranking of the results, three new 
accuracy scores have been defined: 
 

• Score = 0.5 × sensitivity + 0.5 × PPV; 
• Score radiotherapy planning (RT) = 0.6 × sensitivity + 0.4 × PPV; 
• Score follow-up (FU)= 0.4 × sensitivity + 0.6 × PPV. 

 
In radiotherapy planning, the aim is to reduce the risk of missing the target, even if it 
means delivering higher dose to the surrounding healthy tissues and organs-at-risk. 
For this reason, sensitivity could be considered more important than PPV. For 
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therapy follow-up the aim is to obtain consistent volume measurements in sequential 
PET scans and to avoid including background/nearby tissues. As a result, PPV could 
be considered more important than sensitivity.  
 The performance of the proposed system is compared to other state of the art PET 
image segmentation methods. In particular, the fixed thresholding (42% of the 
SUVmax) method (T42%) [95], the RG method [96], the FCM clustering method 
[109], the enhanced RW method such as described in [86], and the original LAC 
method [83] have been used for comparison. The software package used to provide 
manual gold-standard and proposed segmentation BTVs and evaluation task has been 
implemented in the Matlab R2016a simulation environment (MathWorks, Natick, 
MA, USA), running on an iMac computer with a 3.5 GHz Intel Core i7 processor, 16 
GB 1600 MHz DDR3 memory, and OS X El Capitan. 
 

6.3.1.2 Phantom Studies 
 
 National Electrical Manufacturers Association International Electrotechnical 
Commission (NEMA IEC) phantom is used for preliminary performance testing 
[86][27][87]. The phantom is composed of an elliptical cylinder (D1=24 cm, D2=30 
cm, h=21 cm) with six different spherical lesions of size 10, 13, 17, 22, 28, and 37 
mm in diameter placed at 5.5 cm from the centre of the phantom. Both body phantom 
and spheres are filled with a known amount of radioactive tracer to simulate 
oncological lesions. It could be argued that cancer is often inhomogeneous and 
irregularly shaped in contrast with spherical targets and that tracer-filled spheres 
suffer from cold-body effects when compared to the real case (the human body)  
[78][88]. However, the aim of this test is to evaluate the efficiency of the system and 
fairly compare its performance with other methods under identical conditions where 
results may be quantitatively and reliably evaluated. For this purpose, using a well-
defined sharp-edged target is preferable because the only uncertainty on the exact 
boundary location is introduced by the point spread function of the measuring 
system. The ratio between sphere concentrations and background radioactivity 
concentrations ranged from 1.5:1 to 8:1 for five independent experiments: 1.5:1 for 
the phantom “I”, 3:1 for the phantom “II”, 5:1 for the phantom “III”, 7:1 for the 
phantom “IV”, and 8:1 for the phantom “V”. Performance results are calculated 
considering small spheres (sphere diameter less than or equal to 17 mm) and large 
spheres (sphere diameter greater than 17mm). This choice was motivated by the fact 
that large biases are introduced [137][77] when the lesion size is smaller than 2–3 
times the Full Width at Half Maximum (FWHM) of the PET point spread function. 
The PET/CT acquisition protocol is described in the Section 5. 
 

6.3.1.3 Clinical studies 
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 In the present study, we retrospectively considered 50 cases acquired at the 
Nuclear Medicine Department of the Cannizzaro Hospital (Catania, Italy). The 
dataset contains 50 PET examinations of patients with lung, head & neck, and brain 
cancers that had been referred for a diagnostic PET/CT scan before radiotherapy 
treatments. Segmentations were performed off-line and the results had no influence 
on the treatment protocol, nor on the patient management. No sensitive patient 
information was accessed. As such, the institutional Hospital Medical Ethics Review 
Board approved this study protocol and all subjects involved were properly informed 
and released their written consent. In FDG PET studies, patients fasted for 12 h 
before the PET examination, and successively were intravenously injected with 
FDG. The PET/CT oncological protocol began 60 min after the injection. Patients 
breathed normally during the PET and CT examinations, and scanning was executed 
from the top of the skull to the middle of the thigh with the arms along the body. In 
MET PET studies, for only brain acquisitions, patients fasted for 4 h before the PET 
examination. The PET/CT protocol began 10 min after the MET injection.  
 

6.3.1.4 PET/CT Acquisition Protocol 
 
 The acquisitions for both phantom experiments and clinical studies were 
performed within the same Nuclear Medicine Department using the same equipment, 
a Discovery 690 PET/CT scanner with time of flight (General Electric Medical 
Systems, Milwaukee, WI, USA). The phantom and patient protocols included a 
SCOUT scan at 40 mA, a CT scan at 140 keV and 150 mA (10 sec), and 3D PET 
scans (2.5 minutes per bed position). PET images were reconstructed using a 3D 
ordered subset expectation maximization (OSEM) algorithm. All imaging data were 
encoded in the 16-bit DICOM format. 
Each PET slice consists of 256×256 voxels with a grid spacing of 2.73 mm3 and 
thickness of 3.27 mm3. Consequently, the size of each voxel is 2.73 × 2.73 × 3.27 
mm3. Thanks to the injected PET radiotracer (FDG or MET), tumours appears as 
hyper-intense regions.  
The non-diagnostic CT scan is performed for attenuation correction and anatomic 
localization of the tumour contextually to PET image acquisition. The CT slice 
consists of 512 × 512 voxels with size 1.36 × 1.36 × 3.75 mm3.  
 

6.3.1.5 Gold Standard 
 
 Phantoms offer the advantage of known target boundaries. Consequently, we used 
the match between segmented CT images and the known position of the spherical 
shapes to quantitatively evaluate the performance of the proposed segmentation 
system.  
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In patient studies, knowledge of the ground truth would require exact knowledge of 
the pathology region. In PET imaging, histopathology analysis provides the only 
valid ground truth for quantitative assessment [100][108]. Since in radiotherapy the 
histopathology analysis is unavailable, the actual gold-standard is impossible to 
retrieve. To assess the clinical effectiveness and feasibility of a proposed 
segmentation method it is therefore standard practice to refer to manual delineations 
performed by expert professionals as a substitute for ground truth [78]. The BTV 
delineation is actually a critical task performed by expert physicians to determine 
which areas to include or exclude in the planned target volume. Yet, manual 
delineation carries a certain amount of subjectivity and is often influenced by the 
clinical specialization of the operator. For example, radio-therapists will, on average, 
draw larger boundaries than oncologists. For this reason, we used as gold-standard 
the segmentations performed by three experts with high clinical and PET imaging 
insight and different expertise (the chief nuclear medicine physician –M.I. author-, 
the chief radiotherapy physician –M.S. author- and an expert radiotherapy physician 
–G.R. author-).  
In order to investigate the inter-observer variance, a simultaneous ground truth 
estimation tool was employed (as suggested by [36][98]), and the results from three 
observers were combined to define a consolidated reference. 
 

6.3.1.6 Clinical testing and Results on Phantoms 
 
 Performance results have been divided in two tables considering small spheres 
(sphere diameters: 10, 13, and 17 mm) and large spheres (sphere diameters: 22, 28, 
and 37 mm) as explained in section 5.  
Table	 6.3.1 and Table	 6.3.2 show sensitivity, PPV, DSC and HD values in five 
independent phantom experiments carried with different ratios between sphere 
concentration and background radioactivity concentration: 1.5:1 for the phantom “I”, 
3:1 for the phantom “II”, 5:1 for the phantom “III”, 7:1 for the phantom “IV”, and 
8:1 for the phantom “V”.  
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Table 6.3.1 Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (II–V). Phantoms 
have the following signal contrast: (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different spherical 
lesions of size 10, 13, and 17 mm in diameter are considered to assess the performance of the 
proposed segmentation system. Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
	

NEMA IEC 
Phantom 

Sphere 
Diameter 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

II  
 

10 mm 

66.71% 76.22% 71.15% 1.00 
III 67.62% 76.71% 71.96% 1.47 
IV 75.81% 73.50% 74.63% 1.00 
V 71.10% 82.16% 76.22% 1.11 
II  

 
13 mm 

66.73% 92.31% 77.40% 1.00 
III 75.04% 81.81% 78.38% 1.08 
IV 66.01% 97.17% 78.60% 1.00 
V 70.03% 91.30% 79.20% 1.00 
II  

 
17 mm 

66.00% 97.16% 78.61% 1.21 
III 69.95% 96.33% 81.06% 1.28 
IV 73.43% 92.00% 81.60% 1.20 
V 71.61% 94.07% 81.35% 1.07 

Mean   70.00% 87.56% 77.51% 1.12 
± std  ±3.49% ±8.87% ±3.46% ±0.15 
± CI  ±1.97% ±5.02% ±1.95% ±0.08 
± CV  ±4.98% ±10.13% ±4.46% ±0.13 

 

Table 6.3.2 Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (I–V). Phantoms 
have the following signal contrast: (I) 1.5:1, (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different 
spherical lesions of size 22, 26, and 37 mm in diameter are considered to assess the performance of 
the proposed segmentation system. Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
	

NEMA IEC 
Phantom 

Sphere 
Diameter 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

I  
 

22 mm 

72.03% 72.51% 80.52% 1.77 
II 91.20% 88.05% 89.60% 1.17 
III 92.01% 85.81% 88.82% 1.06 
IV 90.52% 86.42% 88.41% 1.07 
V 96.33% 87.90% 91.90% 1.00 
I  

 
26 mm 

89.22% 81.32% 84.87% 1.71 
II 92.91% 90.90% 91.90% 1.18 
III 91.87% 88.98% 90.31% 1.05 
IV 94.40% 90.20% 92.20% 1.00 
V 99.80% 85.21% 91.91% 1.05 
I  

 
37 mm 

89.04% 90.90% 89.90% 1.60 
II 99.90% 88.22% 93.72% 1.19 
III 99.90% 88.63% 93.90% 1.05 
IV 99.41% 91.50% 95.35% 0.97 
V 99.82% 93.81% 96.70% 0.89 

Mean   93.22%	 87.36% 90.67% 1.18 
± std  ±7.18%	 ±5.09%	 ±4.07%	 ±0.28	

± CI (95%)  ±3.64%	 ±2.58%	 ±2.06%	 ±0.14	
± CV  ±7.71% ±5.83% ±4.49% ±0.23 
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Table	6.3.1 shows the volumetric accuracy results for the smaller spheres, while Table	
6.3.2 shows the volumetric accuracy results for the larger spheres. In Table 1, the 
results for the phantom “I” are missing because the ratio between sphere and 
background concentrations is too low (the target radioactivity concentration is only 
more than one-and-a-half times the background radioactivity concentration), and no 
PET region with high uptake concentration is visible for spheres with diameter < 22 
mm. No significant difference between background and target is observed. For the 
same reason, the accuracy improved for all spheres, regardless of their volume, when 
the ratio between sphere concentration and background radioactivity concentration 
was increased. Phantom images with different signal contrast (1.5:1 and 8:1, 
respectively) are shown in Figure	6.3.1. 
In general, due to the PVE, the separation of small targets from the background 
region is very challenging, and the difficulty increases in critical conditions (i.e. low 
signal contrast). The volumes of smaller spheres are underestimated (mean difference 
between segmented and actual volumes = -19.12±10.69%) with more false negatives 
than false positives. As expected, large errors occur in lesions less than 2 cm in 
diameter [77]. 
Table	6.3.2 shows the results for all spheres with a diameter greater than 17 mm. In all 
conditions, excluding the phantom ‘I’ for the aforementioned reason, a DSC rate 
above 90% and a sensitivity rate greater than 90% are observed. These performances 
are generally accepted as excellent. A slight oversizing is observed (mean difference 
between segmented and actual volumes = 6.69±5.23%), nevertheless, larger margins 
can help to prevent the extension of tumour infiltration in radiotherapy treatments 
[111]. 
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Figure 6.3.1 PET/CT images of I and V phantoms. Phantoms have the following signal contrasts: (a) 

1.5:1, (c) 8:1. PET volume rendering of phantom I (b), and V (d). 

 

 In addition, high sensitivity, PPV and DSC, and low HD confirm the accuracy of 
the proposed segmentation system even when compared against the most common 
segmentation algorithms used in BTV extraction (RW, original LAC, RG, FCM, and 
T42%). Figure	6.3.2 reports the quantitative comparison between the semi-automatic 
segmentation and the gold-standard considering all phantom experiments. Despite 
limitations due to the use of phantoms, results show that the proposed segmentation 
system out-performs the other algorithms tested for comparison.  
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Figure 6.3.2 Sensitivity, PPV, DSC, and HD comparisons (mean and range) of the proposed system to 
the ones commonly used in the literature in delineation of PET images.  
 

6.3.1.7 Clinical testing and Results on Patients 
 
 The evaluation of the segmentation system presented in this study was performed 
retrospectively (i.e. data were acquired before beginning of the radio-therapy and 
only at later time employed for the purposes of this study), on 50 tumours: in detail, 
10 patients with lung cancer (FDG PET), 25 patients with head & neck cancers (FDG 
PET), and 15 patients with brain metastases (MET PET).  
Performance was evaluated against a “ground truth” manual delineation provided by 
three expert operators [62] [36]. Automatically segmented BTVs showed high 
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agreement with the ground truth delineations (the determination coefficient R2 = 
0.98, see figure 5 Figure	6.3.3).  

 

Figure 6.3.3 Linear regression of manually and automatically segmented tumour volumes. The 
determination coefficient R2=0.98 demonstrates high correlation between them. The first-order 
coefficient 1.10 indicates that segmentation slightly overestimates tumour volume. The constant offset 
of −2.5 indicates that automatic segmentation may not identify small lesions (<2.5 ml). 
 

To assess the performance level represented by automatically and manual 
segmentations provided by three expert operators, we used STAPLE algorithm [36]. 
Results are provided in Table	6.3.3 as “mean ±standard deviation (±CI) [±CV] of the 
combination of sensitivity and PPV (see previous section). 
 

Table 6.3.3 Performance level of the three manual segmentations and of the proposed automatic 
segmentation. 

 Score Score RT Score FU 
Expert 

1 
95.76%±0.23(±0.27)[±0.25] 95.17%±0.31(±0.35)[±0.33] 96.36%±0.41(±0.46)[±0.42] 

Expert 
2 

87.41%±0.88(±1.00)[±1.01] 84.89%±0.95(±1.07)[±1.12] 89.92%±0.82(±0.93)[±0.91] 

Expert 
3 

89.84%±1.85(±2.09)[±2.06] 87.94%±2.42(±2.74)[±2.71] 91.73%±1.28(±1.45)[±1.40] 

Our 
System 

90.68%±1.34(±1.52)[±1.48] 90.80%±1.35(±1.53)[±1.49] 90.57%±1.34(±1.51)[±1.47] 
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Table	6.3.4, Table	6.3.5 and Table	6.3.6 show sensitivity, PPV, DSC, HD, and MHD 
results for the three lesion datasets (lung, head & neck, and brain). Since in the 
Cannizzaro Hospital dataset the segmented BTVs are greater than 2.5 ml (lesions 
with a sphere-equivalent diameter greater than 17 mm), no distinction between lesion 
volumes is reported as for phantom sphere results in the previous section. In addition, 
most segmented BTV (~90%) are homogenous (one single peak is visually detected 
on the histogram of lesion voxel values). Figure	 6.3.4 reports the quantitative 
comparison between the operator independent segmentation and the gold-standard.  
 
Table 6.3.4 Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 10 lung cancer studies using FDG-
PET examinations are reported. Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
	

Lung 
Cancer 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

MHD 
[voxels] 

#1 91.60% 81.70% 86.40% 2.49 1.60 
#2 97.60% 82.80% 89.60% 1.98 1.39 
#3 98.50% 71.60% 82.90% 2.59 2.09 
#4 85.00% 85.00% 85.00% 1.08 0.83 
#5 98.90% 83.20% 90.40% 1.48 0.72 
#6 88.80% 77.20% 82.60% 1.69 0.84 
#7 91.00% 73.60% 81.40% 1.14 0.48 
#8 96.70% 78.40% 86.60% 1.25 0.91 
#9 94.70% 76.30% 84.50% 2.60 0.67 

#10 93.50% 76.60% 84.20% 2.38 0.60 
Mean  93.63%  78.64% 85.36%  1.87  1.01 
± std ±4.55% ±4.41% ±2.94% ±0.62 ±0.51 

± CI (95%) ±2.82% ±2.73% ±1.82% ±0.38 ±0.32 
± CV ±4.86% ±5.60% ±3.44% ±0.33 ±0.51 
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Table 6.3.5 Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 25 head & neck cancer studies 
using FDG-PET examinations are reported.  Mean value, standard deviation (std), 95% confidence 
interval (CI) and coefficient of variation (CV) are reported in the last rows. 
	

Neck & head 
Cancer  

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

MHD 
[voxels] 

#1 98.70% 81.30% 89.10% 1.46 0.43 
#2 83.30% 89.70% 86.40% 1.00 0.69 
#3 89.80% 76.20% 82.40% 1.07 0.74 
#4 85.50% 94.60% 89.80% 0.85 0.59 
#5 93.20% 74.80% 83.00% 1.17 0.36 
#6 96.20% 81.30% 88.10% 1.42 1.41 
#7 93.90% 89.90% 91.80% 1.19 1.18 
#8 99.50% 71.80% 83.40% 2.79 0.60 
#9 96.90% 78.80% 86.90% 2.46 1.37 

#10 97.50% 77.10% 86.10% 2.59 0.72 
#11 73.10% 90.50% 80.90% 1.00 0.71 
#12 99.60% 73.70% 84.70% 1.40 0.69 
#13 93.80% 73.80% 82.60% 1.03 0.94 
#14 91.40% 86.50% 88.90% 1.00 0.78 
#15 88.80% 74.60% 81.10% 2.78 2.28 
#16 77.60% 84.90% 81.10% 1.07 1.01 
#17 89.80% 86.30% 88.00% 1.14 0.75 
#18 91.90% 87.00% 89.40% 0.90 0.81 
#19 91.40% 80.00% 85.30% 1.37 1.27 
#20 96.30% 83.90% 89.70% 0.90 1.16 
#21 97.30% 80.70% 88.20% 1.88 1.98 
#22 80.80% 95.10% 87.40% 0.94 1.07 
#23 78.70% 92.50% 85.10% 0.93 1.00 
#24 93.30% 70.00% 80.00% 1.33 1.52 
#25 96.60% 84.30% 90.00% 0.99 0.58 

Mean  91.00%  82.37% 85.98  1.39  0.99 
± std ±7.33% ±7.30% ±3.40% ±0.61 ±0.46 

± CI (95%) ±2.87% ±2.86% ±1.33% ±0.24 ±0.18 
± CV ±8.05% ±8.86% ±3.95% ±0.44 ±0.47 

 

Table 6.3.6 Mean Sensitivities, PPVs, DSCs, HDs, and MHDs for 15 brain cancer studies using MET-
PET examinations are reported. Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
 

Brain 
Cancer 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

MHD 
[voxels] 

#1 93.50% 89.90% 91.70% 0.62 1.06 
#2 90.10% 78.60% 83.90% 1.33 1.14 
#3 88.40% 82.80% 85.50% 1.54 0.97 
#4 76.75% 99.18% 86.33% 0.58 0.61 
#5 86.47% 95.89% 90.83% 0.58 0.56 
#6 96.20% 75.60% 84.70% 1.91 1.18 
#7 91.80% 79.50% 85.20% 2.37 1.22 
#8 94.50% 84.70% 89.40% 0.79 0.85 
#9 86.80% 83.30% 85.00% 1.24 1.05 

#10 91.20% 88.70% 90.00% 1.40 0.93 
#11 91.80% 82.90% 87.10% 1.54 0.71 
#12 85.20% 97.00% 90.70% 1.38 0.59 
#13 93.20% 90.30% 91.70% 1.54 1.07 
#14 93.00% 84.70% 88.70% 1.81 1.72 
#15 93.60% 85.80% 89.50% 0.65 0.57 

Mean  90.17  86.60% 88.02  1.28  0.95 
± std ±4.89% ±6.89% ±2.75% ±0.54 ±0.32 

± CI (95%) ±2.47% ±3.49% ±1.39% ±0.28 ±0.16 
± CV ±5.42% ±7.95% ±3.12% ±0.42 ±0.33 
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Figure 6.3.4 Three results achieved by the proposed segmentation method on PET images (lung 
cancer #2, head and neck cancer #25, and brain cancer #13) are reported in figure (a, c, e), 
respectively. At the bottom right or left, the lesion regions are zoomed. The proposed segmentations 
(red contours) and the gold standards (black contours) are superimposed. The three-dimensional 
reconstructions of the tumours are shown in figure (b, d, e): manual (yellow) and proposed (red) BTVs 
are rendered with transparent surfaces to emphasize volume intersections. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
 

In addition, in Table	6.3.7 the proposed segmentation system is compared with the 
original LAC and RW methods (both methods obtained similar results and 
outperformed T42%, RG and FCM methods in phantom experiments, for this reason, 
T42%, RG and FCM methods were not considered in patient studies). The proposed 
segmentation yielded better performance in minimizing the difference between 
manual and automated BTVs than the other two reference methods. As a final test, in 
order to confirm that the system is indeed user-independent, a sub-dataset of 15 
lesions (5 lung cancers, 5 head & neck cancers, and 5 brain metastases) was 
independently segmented using the proposed system by five different operators (the 
three experts mentioned above and two non-specialists). The result consisted of five 
identical BTVs. Without the RG pre-segmentation descripted in the Section 5, BTVs 
changed less than 6% among users using manual ROIs drawn in the slice with the 
SUV!"#!"#   by the five users in the above mentioned sub-dataset. Changing more 
significant (up to 50%) occurred if the users chose different PET slices among them 
to contour the lesion.  
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Table 6.3.7 Sensitivities, PPVs, DSCs and HDs for cancer studies using the proposed system, original 
LAC and RW methods. 
 

Cancer Sensitivity  
[Mean ± std] 

PPV 
[Mean ± std] 

DSC  
[Mean ± std] 

HD 
[Mean ± std] 

 Our System 
Lung 93.63 ± 4.55% 78.64 ± 4.41% 85.36 ± 2.94% 1.87 ± 0.62 
Head & Neck 91.00 ± 7.33% 82.37 ± 7.30% 85.98 ± 3.40% 1.39 ± 0.61 
Brain 90.17 ± 4.89% 86.60 ± 6.89% 88.02 ± 2.75% 1.28 ± 0.54 
 Original LAC 
Lung 92.68 ± 5.67% 71.92 ± 12.36% 80.33 ± 9.51% 3.29 ± 0.74 
Head & Neck 80.32 ± 10.82% 83.88 ± 12.06% 78.73 ± 6.68% 2.81 ± 0.49 
Brain 91.16 ± 6.16% 77.38 ± 13.89% 83.55 ± 9.03% 2.88 ± 0.54 
 RW 
Lung 92.55 ± 5.66% 74.72 ± 7.44% 82.03 ± 6.52% 2.29 ± 0.77 
Head & Neck 79.03 ± 7.29% 84.58 ± 9.57% 82.59 ± 4.95% 1.41 ± 0.40 
Brain 88.12 ± 8.36% 86.68 ± 3.43% 86.75 ± 5.14% 1.31 ± 0.64 

 

6.3.1.8 Discussion 
 
 PET quantification and segmentation are crucial for the accurate interpretation of 
clinical PET images and are of foremost importance to obtain operator-independent 
evaluations and results. The repeatability of the BTV delineation may be ensured 
only by using computer-assisted methods. For this reason, lesion delineation must be 
obtained using algorithms able to yield an accurate segmentation with consequent 
accurate calculation of parameters such as SUV, BTV, and TLG, minimizing 
operator-dependence and increasing result repeatability. 
The key novelty of the proposed approach is the integration of different 
methodologies that have been appropriately combined and adapted to the PET 
imaging to obtain a new, smart system for the delineation of an operator independent 
BTV to be used for RTP or therapy evaluation purposes. The system achieves a high 
degree of automation without the need for any user-defined parameter. 
First, we integrate the body-weighted SUV [102] in our system to pre-process the 
uptake data of PET images. The SUV normalizes the voxel activity considering 
acquisition time, administered activity, and patient’s weight. Others PET parameters 
(i.e., SUVlbm or SULpeak [3]) could be used rather than body-weighted SUV as 
well with minor changes to the system that would still lead a convergent, fully 
repeatable, and user independent segmentation. We use the body-weighted SUV 
because it is the most common parameter used in our nuclear medicine department. 
 Second, while the system still exploits an initial ROI provided by the user to avoid 
false positive or critical conditions, an automatic pre-segmentation process is used to 
compute a robust user independent ROI in the vicinity of the user input. This is then 
automatically fed as input into the detailed segmentation algorithm. Third, 
segmentation is performed using a slice-by-slice marching approach based on the 
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LAC method appropriately modified to support PET images. And as final feature a 
fully automatic stop condition is provided. Due to the high level of automation for 
the whole process, the final results become completely independent of variation in 
the initial user input, as confirmed by the inter operator segmentation test in Section 
5.  
The main reason to require the user to provide an initial ROI is because the 
distribution of FDG is not limited to malignant tissue. FDG enters the cells according 
to glucose transport mechanism. For this reason, in order to avoid healthy but active 
structures where a high radiotracer uptake is to be considered normal, the target 
lesions must be highlighted by the operator. The region growing is used to “expand” 
the initial user-provided manual segmentation (performed on one slice) to a three-
dimensional volume enclosing the anomalies of interest.  We chose region growing 
because it is able to identify a contour encircling the tumour area starting from a 
single seed point (the voxel with SUV!"#! ) always obtaining the same starting contour 
(Figure	6.3.1 e). The use of alternative segmentation methods for the computation of 
the user independent ROI would lead to a slight BTV variation. However, the 
identification of the hottest slice (the slice with SUV!"#!"#) in which to compute the 
user independent ROI is mandatory to avoid a great variability of the final 
segmentations (see Section 5). The proposed pre-segmentation process used to 
identify the hottest slice and, consequently, to compute the user independent ROI is 
crucial to obtain repeatable results. 
Further, in the case of brain lesions, as reported in [84], a fully automatic method can 
be implemented by taking advantage of the great sensitivity and specificity of MET 
radiotracers in the discrimination between healthy versus cancer. Hence initial user 
input, which we require in FDG-PET studies, could be completely avoided in brain 
studies. 
Performance measurements of the proposed segmentation system have been obtained 
by phantom experiments consisting of hot spheres in a warm background. While 
such phantoms don’t replicate all the properties of real tissue, they nevertheless 
represent a useful tool to assess common reference performances across different 
algorithms. One of the main drawbacks of this validation is the plastic wall which 
separates the spheres from the background. Indeed, PET image quantification should 
be carried out in phantoms with inactive background to reduce the cold wall effect 
[88]. Nevertheless, this condition is too different from actual clinical conditions; the 
model proposed by [88] may not be useful to test segmentation algorithms [138]. To 
ease the problem, we insert hot spheres in a warm background. Another drawback of 
the body phantom validation comes from the use of homogeneous spheres. However, 
in our patient studies, almost all the tumours are characterized by a fairly 
homogeneous distribution of uptake. A single peak is generally detected on the 
histogram of segmented lesions (see Section 5). In this context, therefore, 
segmentation performance using phantom experiments can be considered a suitable 
tool to judge the reliability of the method. 
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In particular, the proposed segmentation system showed high degree of similarity 
(DSC and sensitivity greater than 90% for the spheres with a diameter greater than 
17 mm) and provided better results in minimizing the difference between actual and 
automated BTVs than the other state-of-the-art methods. 
Nevertheless, when lesion sizes are smaller than 2–3 times the FWHM of the point 
spread function of the PET image resolution reconstructed by the PET imaging 
system, the under-estimation of metabolic activity due to PVE cannot be assumed to 
be negligible. The separation of small oncological lesions from the background 
region is still very challenging [112]. 
Concerning patient studies, knowledge of the ground truth is impossible to obtain 
while patients are still undergoing radiotherapy, and unfortunately, the only valid 
ground truth for quantitative segmentation evaluation is obtained by histological 
investigations, in general performed after that long radio-therapic cycles altered the 
cancer mass morphology. Although histological specimen is used in some studies 
[120][121], the approach may be problematic because irregular contractions can 
occur during tissue fixation. Consequently, manual delineation of three experts was 
used as a gold-standard. Nevertheless, the manual BTV delineation is a challenging 
task even for expert physicians in deciding which regions to include or exclude in the 
RTP. It is different between operators (for example, radiotherapy planning experts 
tend to draw larger contours than nuclear medicine physicians and that obviously has 
a strong impact on the resulting surrogate of truth). For this reason, to assess the 
applicability of the proposed algorithms in a clinical environment and variable 
conditions (radiotracers and body districts), manual segmentations were used to 
produce a consolidated reference (as suggested in [36]).  
Fifty patients that had been referred for a diagnostic PET/CT scan before 
radiotherapy treatments have been considered. Patients underwent PET examinations 
with FDG or MET radiotracers because different body districts have been considered 
(10 lung cancers, 25 head & neck cancers and 15 brain metastases). Results show 
that the proposed segmentation approach can be considered clinically feasible, since 
it has been integrated in the current clinical practice. In addition, automatically 
segmented tumour volumes showed high agreement with the manual segmentations 
(R2 = 0.98). Considering that the proposed system has been implemented in the 
Matlab R2016a environment and comfortably runs on a standard iMac machine, a 
qualified IT staff could integrate the system in the PET workstations, as a built-in 
PET tool for use in medical environment, with a minimum effort. This solution could 
significantly improve imaging workflow allowing clinicians to include BTV 
information into the RTP, so obtaining a therapy customized on the patient. In 
addition, while in our study the user initial input was provided by mouse, user input 
experience could be easily enhanced using alternative input methods (e.g. stylus, 
touch-screen, etc.), without affecting the result. 
Finally, the proposed approach is different with respect to joint segmentation 
approaches (PET-CT-MR). The assumption of a “ground truth” joint volume, 
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defined on fused multimodal imaging data is sometimes misleading. The assumption 
that a one-to-one correspondence between metabolic and anatomical regions exists is 
unrealistic [86]. Lesions may present smaller uptake regions compared to anatomical 
region. In the same way, the PET lesion may show additional area compared to 
lesion boundaries in CT or MR images. Since different imaging modalities could 
convey different information, multimodal segmentation may actually compromise 
the quality of segmentation producing disagreement between anatomical and 
metabolic boundaries. As a result, the tumour volumes defined on PET and on CT or 
MRI could be highly different [135]. For this reason, multimodal studies must be 
combined in a smart fashion with a customization/adaptation of the segmentation 
method according to the specific clinical scenario. For example, in the clinical case 
shown in [114], semi-automatic BTV radically changed the RTP because uptake is 
found outside the anatomical volume in an involved lymph node which is not visible 
in CT images. However, the extraction of anatomical structures by CT examination 
can still convey useful information to locate health tissues (i.e. brain, heart, bladder, 
and kidneys) so to avoid ambiguities and false positives and removing the 
confounding contribution of FDG-avid normal tissues from the analysis. In addition, 
further investigations will be carried out to assess the prognostic usefulness and long-
term clinical impact of the prosed system, comparing the extracted BTV with clinical 
outcomes, progression-free survival and overall survival. 
 

6.3.2 Normal and abnormal tissue classification in positron emission 
tomography oncological studies 

	
 In the current section, firstly PET imaging data concerning the patients are 
reported, and then our classification system is described.  
 

6.3.2.1 Patient Study  
	

 Eighty oncological patients (30 females, 50 males, mean age 56.5 years) have 
been retrospectively evaluated. In particular, 25 lung tumors, 20 HNC, 15 bone 
tumors, 15 lymph node metastasis, and 5 bladder tumors have been considered in 
order to investigate many types of abnormalities.  
FDG PET/CT scans are performed in accordance with the standard whole-body 
oncological protocol in use in our institution, following international guide- lines 
published on behalf of the European Association of Nuclear Medicine (EANM) [17] 
[139]. Written informed consent is obtained by each patient before the examination 
and the study is performed in compliance with the Declaration of Helsinki. FDG 
PET/CT is per- formed in the fasting state for at least 6 h and the glucose level is 
always lower than 160 mg/dL. Images are acquired on a PET/CT Discovery scanner 
(GE Healthcare, Haifa, Israel) from the vertex to the mid- thigh, with inclusion of the 
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upper extremities. Acquisition is started 60 min after the intravenous administration 
of 3.7 MBq/Kg FDG (6–8 beds, 2–4 min per bed position). A low-dose CT (90–120 
mA, 140 kV, 0.8 s per tube rotation) is also acquired to perform non-uniform 
attenuation correction. FDG PET/CT images are reconstructed to a 256 × 256 matrix 
and qualitatively evaluated by an experienced nuclear medicine physician: abnormal 
tissue is identified if the metabolic activity in the area is moderately or markedly 
increased relative to normal surrounding tissues. In addition, abnormal and normal 
tissues are selected on PET images by the physician using the semi-automatic 
method described in the next section.  
 

6.3.2.2 Results  
	

 To test the effectiveness of the proposed system, a direct comparison among six 
different methods has been performed. In one case, vectors are labeled as normal or 
abnormal tissues using the semi-automatic method; in other cases, FCM and k-means 
are used for labelling vectors in an unsupervised manner. The Linear KSVM and 
KNN classification techniques are applied for each of the data set. The performance 
of the methods is also evaluated after PCA-based dimensionality reduction.  
Performance measures are calculated regarding correct/incorrect classification:  

• True Positive (TP): a vector is considered Abnormal both in medical 
classification and in classification method;  

• False Positive (FP): a vector is considered Abnormal in classification method 
and Normal for medical classification;  

• True Negative (TN): a vector is considered Nor- mal both in medical 
classification and in classification method;  

• False Negative (FN): a vector is considered Abnormal in classification 
method and Normal for medical classification.  

 
At this point it is possible to calculate the Sensitivity, Specificity, Negative 
Predictive Value, Precision, Accuracy, and Error scores:  

• Sensitivity: It is defined as the percentage of effective abnormal tissues that 
are correctly identified as such:  

Sensitivity =  
!"

!" + !"	 	

• Specificity: It is defined as the percentage of effective normal tissues that are 
correctly identified as such: 
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Specificity =  
!"

!" + !"	 	

• Negative Predictive Value: It is defined as the probability that vector with a 
normal test are truly not abnormal: 

Negative Predictive Value =  
!"

!" + !"	 	

• Precision: It is defined as, related to reproducibility and repeatability, the 
degree to which repeated classifications under unchanged conditions show 
the same results:  

Precision =  
!"

!" + !"	 	

• Accuracy: It is defined as the degree of closeness of classifications of a 
abnormal to that abnormal’s true medical classification:  

Accurancy =  
!" + !"

!" + !" + !" + !"	 	

• Error: It is defined as the inverse of accuracy:  

Error =  
!" + !"

!" + !" + !" + !"	 	

 
The implementation of the proposed method has been running on a general purpose 
PC with a 2.3 GHz Intel Core i5 processor, 8 GB 1333 MHz DDR3 memory, and 
Mac OS × 10.8.5 version. An analysis of the time performance show that algorithms 
are real time: the training and validation time for all methods is less than 1.2 s. The 
results show that KNN classification obtains excellent results, as depicted in Table	
6.3.8.		
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Table 6.3.8 Classification comparison of the 6 different methods: KSVM and KNN classification 
techniques are applied for each of the three labeling techniques; the 5-fold cross-validation has been 
integrated to make reliable the classifier. 

  
 
In particular, for KSVM with semi-automatic Labeling, the whole classification 
accuracy is 85.26%; for KSVM with Fuzzy C-Means Labeling, is 82.73%; for 
KSVM with K-Means Labeling, is 79.36%; for KNN with semi-automatic Labeling, 
the whole classification accuracy is 88.12%; for KNN with Fuzzy C-Means 
Labeling, is 81.91%; and for KNN with K-Means Labeling, is 79.05%. After PCA-
based dimensionality reduction to 23-dimensional vector in order to pre- serve over 
95% of total data variance, the performance is poor for all methods (see Table	6.3.9) 
except for the semi-automatic KNN method where sensitivity, specificity, negative 
predictive value, precision, accuracy, and error scores are comparable to those 
without dimensionality reduction. In addition, 5 different training and validation 
datasets of 130 vectors with unequally distributed classes have been randomly 
created from the original dataset. In a context without human supervision it is 
difficult to obtain input data-sets with evenly distributed classes (in our study, 80 
lesion and 80 background vectors). The new training datasets have been labeled 
using k-means and FCM methods. In all cases, both KSVM and KNN performances 
decrease using these datasets: the sensitivity is greater than 99% (range: 99–100%) 
and the specificity is less than 53% (range: 38–53%).  
 
Table 6.3.9 Classification comparison of the 6 different methods after PCA-based dimensionality 
reduction: KSVM and KNN classification techniques are applied for each of the three labeling 
techniques; the PCA has been used to reduce the vectors dimensionality; the 5-fold cross-validation 
has been integrated to make reliable the classifier. 
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6.3.2.3 Discussion  
	

 In this work, we introduced a computerized system for automatic classification of 
PET tissues using an ad- hoc training set to obtain optimal target and back- ground 
region identifications. In PET examinations, the automatic identification of lesion 
boundaries is not a trivial problem. For this reason, the nuclear medicine physician 
must place fixed ROIs along the lesion boundary so as to separate abnormal from 
back- ground regions. This approach allows a better classification of lesion tissues by 
excluding false positives (normal structures like the brain, heart, bladder, and 
kidneys that normally have high FDG uptake). In our training set, the uptake 
intensity difference between the lesion and its surrounding is used as key feature to 
differentiate PET tissues. This is a fundamental, but at the same time, simple and 
rapid task to obtain an optimal tissue classification. We believe that the combination 
of clinical knowledge about the lesion boundary localizations with image analysis 
techniques is extremely useful for the correct classification of PET regions.  
Moreover, the output provided by tissue classification can be used as stop/control 
condition in new or existing segmentation methods to obtain more accurate 
metabolic volume-based PET parameters (i.e.: SUV mean, TLG, MTV) or more 
accurate biological target volumes for radio-therapy treatment. The pro- posed 
system shows real-time and good performance; for this reason the provided output 
can be used to enhance existing delineation methods in order to obtain most 
performing results. In particulary, KNN with semi-automatic labeling outperforms 
the other proposed methods. This is to be expected because the tissue labeling is 
supervised. However, unsupervised labeling methods achieve good classification 
results with the benefit of requiring a lower user interaction effort and lower levels of 
the user’s specialist knowledge than the supervised method. Nevertheless, the 
proposed semi-automatic method is user-friendly and it is not time-consuming. PCA-
based dimensionality reduction affects the performance of all methods except for the 
semi-automatic KNN method. Nevertheless, the reduction of computational load can 
be advantageous in the clinical environment if the classification output is used as 
stop/control condition in new or existing segmentation methods although the 
proposed system without dimensionality reduction shows real-time performance. 
Finally, 5 different input datasets have been randomly created and labeled by using 
unsupervised methods to avoid lesion and background evenly distributed classes. In 
all cases, classification performances decrease: lesion tissues are correctly identified; 
many background tissues are erroneously identified as lesions. At this moment, 
supervised tissue labeling is mandatory in PET imaging to obtain good classification 
scores.  
Collection of a large sample of clinical examinations will better determine the 
adoption of the system in clinical environment; the system can be readily applicable 
for images produced from different manufacturers, since it worked on standard 
Digital Imaging and Communications in Medicine (DICOM) format. However, 
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different PET scanners or different scanning protocols may affect the measured 
SUVs and, consequently, the final results. In these cases, a parameter normalization 
would be mandatory. A limitation of this study is the classification of small tissues: 
partial volume effect (PVE) is the most important factor impacting the quality and 
the quantitative accuracy in PET studies [77]. The images are blurred due to the 
limited spatial resolution of PET scanner and small lesions appear larger. Several 
corrective methods have been developed and the technique described in [140] could 
be included in order to limit the PVE in our PET studies.  
 

6.3.3 K-nearest neighbor driving active contours to delineate biological 
tumor volumes 

	

6.3.3.1 Criteria for results evaluation 
	

 A framework for the assessment of performance of both the KNN classifier and 
the proposed segmentation algorithm is presented. The effectiveness of the KNN 
classification is calculated regarding correct/incorrect classification using sensitivity, 
specificity, precision, accuracy, and error scores. 

The sensitivity is the number of correctly classified positive samples divided by the 
number of true positive samples:  

	

!"#$%&%'%&( = !"
!" + !"  × 100% 	 	

where TP and FN are the number of true positives and false negatives, respectively. 
The specificity is the number of correctly classified negative samples divided by the 
number of true negative samples: 

!"#$%&%$%'( = !"
!" + !"  × 100% 	 	

where TN and FP are the number of true negatives and false positives, respectively. 

The precision is related to reproducibility and repeatability and it is defined as the 
degree to which repeated classifications under unchanged conditions show the same 
results: 
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!!" = !"
!" + !"  × 100% 	 	

The accuracy is defined as the number of correctly classified samples divided by the 
number of classified samples: 

	

!""#$%"& = !" + !"
!" + !" + !! + !"  × 100% 	 	

Finally, the error is defined as the inverse of the accuracy: 

	

!""#" = !" + !"
!!" + !" + !" + !"# + !"  × 100% 	 	

Concerning the segmentation algorithm performance, according to the formulations 
presented in [36][100][102], overlap-based and spatial distance-based metrics are 
considered to determine the accuracy achieved by the proposed method (assessed 
volume) against the reference volumes (i.e. the gold standard, previous section).  

TP, FP, TN, and FN voxels were used to measure the overlap and difference between 
the two volumes. In particular, mean, and standard deviation of sensitivity, PPV, dice 
similarity coefficient (DSC), and Hausdorff distance (HD) were calculated. 
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The true positive volume fraction (TPVF), also called sensitivity (see eq. 13), is the 
fraction of the total amount of tissue in the proposed segmentation method which 
overlaps with the reference volume. The ideal segmentation algorithm would be 100 
% sensitive (segmenting all voxels from the target voxels) and 100 % specific (not 
segmenting any from the background voxels). In particular, TPVF [101] is a crucial 
measure in radiotherapy in order to obtain optimal RTP avoiding cancer recurrence. 
The true negative volume fraction (TNVF), also called specificity (see eq. 14), is the 
fraction of tissue defined in the reference volume that is missed by the segmentation 
system Sseg. Considering that the number of true negatives depends on the space 
volume I, the specificity has limited use, and only the sensitivity conveys useful 
information. The specificity can be replaced with the PPV [108], otherwise called 
precision (eq. 15), which corresponds to the fraction of tissue from the reference 
volume Sref  which overlaps with the segmentation system Sseg. DSC value [100] 
measures the spatial overlap between the reference volume  and the segmentation 
system:  

	

!"# = 2 !!"# ∩ !!"#
!!"# + !!"#

=  2×!"
2×!" + !" + !"  × 100% 	 	

A DSC = 100% indicates a perfect match between two segmentations, while a DSC 
= 0% indicates no overlap. Nevertheless, overlap-based metrics are highly dependent 
on the segmentation size. For this reason, distance-based metrics are preferable when 
the boundary segmentation is critical, such as in BTV delineation for RTP. In 
particular, HD [36] is used to measure the most mismatched boundary voxels 
between automatic and manual BTV: a small median of HD means an accurate 
segmentation, while a large median of HD means no accuracy. The performance of 
the proposed method is compared to other state of the art BTV segmentation 
methods. In detail: the fixed thresholding (42% of the SUVmax) (T42%) [95], the 
RG [110], the FCM clustering [109], the enhanced RW [86], and the original LAC 
[83]. The proposed segmentation BTVs and evaluation tools were implemented in 
Matlab® R2016a (MathWorks, Natick, MA, USA), running on an iMac computer 
with a 3.5 GHz Intel Core i7 CPU, 16 GB 1600 MHz DDR3 memory, and OS X El 
Capitan. 
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6.3.3.2 Results KNN validation 
	

 As reported in the “Materials and methods” section, the capability of the 
classifier in discerning different kinds of tissues must be assessed prior of its use in 
combination with the LAC. Therefore, the K-Fold cross-validation has been 
integrated in the KNN classifier. The optimal K value has been determined as 5 
through the trial-and-error method (k range: 5–15, step size of 5) corresponding to 
the highest classification accuracy. The validation results show that the KNN 
classification achieves excellent result with a sensitivity of 97.26%, a specificity of 
81.75%, a precision if 98.89%, an accuracy of 95.42%, and an error of 4.58%. 

 

6.3.3.3 Results on Phantoms 
	

 As previously introduced, performance of the discussed algorithm in segmenting 
localized, well defined anomalies is evaluated considering small spheres with 
diameters of 10, 13, and 17 mm and large spheres with diameters of 22, 28, and 37 
mm. Evaluation parameters, such as sensitivity, PPV, DSC, and HD for the two sets 
of spheres, are summarized in Table	 6.3.10 and Table	 6.3.11 respectively. Roman 
numbers are used to label five independent phantom experiments carried out with 
different signal ratios between sphere and background regions: 1.5:1 for the phantom 
“I”, 3:1 for the phantom “II”, 5:1 for the phantom “III”, 7:1 for the phantom “IV”, 
and 8:1 for the phantom “V”. 
 
Table 6.3.10 Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (II–V). Phantoms 
have the following signal contrast: (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different spherical 
lesions of size 10, 13, and 17 mm in diameter are considered to assess the performance of the 
proposed segmentation method. Mean value and standard deviation (std) are reported in the last rows. 
 

NEMA IEC 
Phantom 

Sphere 
Diameter 

Sensitivity 
[%] 

PPV [%] DSC [%] HD 
[voxels] 

II  
 

10 mm 

66,70% 76,20% 71,10% 1,00 
III 72,70% 94,10% 82,10% 1,21 
IV 84,00% 61,80% 71,20% 0,90 
V 78,30% 60,00% 67,90% 1,14 
II  

 
13 mm 

66,70% 100,00% 80,00% 1,28 
III 80,40% 84,10% 82,20% 1,00 
IV 73,80% 91,20% 81,60% 0,68 
V 70,00% 91,30% 79,20% 1,00 
II  

 
17 mm 

81,70% 97,10% 88,70% 0,93 
III 69,90% 96,30% 81,00% 1,28 
IV 74,30% 92,00% 82,20% 1,20 

Mean ± std   74,41±5,98% 85,83±13,94% 78,84±6,18% 1,06±0,19 
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Table 6.3.11 Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (I–V). Phantoms 
have the following signal contrast: (I) 1.5:1, (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different 
spherical lesions of size 22, 26, and 37 mm in diameter are considered to assess the performance of 
the proposed segmentation method. Mean value, and standard deviation (std) are reported in the last 
rows. 
 

NEMA IEC 
Phantom 

Sphere 
Diameter 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

I  
 

22 mm 

91,60% 75,53% 82,68% 1,66 
II 91,60% 87,50% 89,50% 1,17 
IV 94,80% 84,70% 89,50% 1,06 
V 96,30% 87,90% 91,90% 1,00 
I  

 
26 mm 

86,03% 89,67% 87,58% 1,44 
III 91,80% 88,80% 90,30% 1,10 
IV 94,70% 90,20% 92,40% 1,00 
V 93,50% 88,10% 90,80% 1,18 
I  

 
37 mm 

92,38% 90,01% 90,82% 1,41 
II 91,00% 93,00% 92,00% 1,25 
III 93,80% 90,20% 92,00% 1,23 
IV 93,40% 92,50% 93,00% 1,00 
V 92,60% 91,80% 92,20% 1,13 

Mean ± std  92,58±2,49% 88,45±4,48% 90,36±2,75% 1,20±0,20 
 

Table	6.3.10 shows the volumetric accuracy for the smaller spheres, while Table	6.3.11 
shows the volumetric accuracy for the larger spheres. In Table	6.3.10, the results for 
the phantom “I” are not reported because the ratio between sphere and background 
concentrations is too low (the target radioactivity concentration is only more than 
one-and-a-half times the background radioactivity concentration), and no PET region 
with high uptake concentration is visible for spheres with diameter < 22 mm. No 
significant difference between background and target is observed. For the same 
reason, the accuracy improved for all spheres, regardless of their volume, when the 
ratio between sphere concentration and background radioactivity concentration was 
increased. In addition, three phantom spheres, with ratio between sphere and 
background radioactivity concentrations of 3:1 (diameter = 28 mm), 5:1 (diameter = 
22 mm), and 8:1 (diameter =17 mm) are not reported because they were used to train 
the KNN classifier  
In general, due to the partial volume effect, the separation of small lesions from the 
background region is very challenging, and the difficulty increases in critical 
conditions, such as cases of low signal contrast. The volumes of smaller spheres are 
underestimated (mean difference between segmented and actual volumes = -
18.83±9.64%) with a prevalence of false negatives when compared to false positives. 
As expected, large errors occur in lesions less than 2 cm in diameter [77]. 
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Table	6.3.11 shows the results for all spheres with a diameter greater than 17 mm. In 
all conditions, excluding the phantom ‘I’ for the aforementioned reason, a DSC rate 
above 90% and a sensitivity rate greater than 90% are observed. These performances 
are generally accepted as excellent. A slight oversizing is observed (mean difference 
between segmented and actual volumes = 6.76±5.77%) nevertheless, larger margins 
can help to prevent the extension of cancer infiltration in radiotherapy treatments  
[99]. 

In addition, despite the limitations posed by the use of phantoms, our results show 
that the proposed segmentation method outperforms the algorithms used for 
comparison (RW, original LAC, RG, FCM, and T42%). Figure	 6.3.5 reports the 
quantitative comparison between the semi-automatic segmentation and the gold-
standard considering all phantom experiments. 

 

 

Figure 6.3.5 HD, sensitivity, PPV, and DSC comparisons of the proposed algorithm to the ones 
commonly used in the literature in delineation of BTVs. 
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6.3.3.4 Clinical testing and Results on Patients 
	

From the initial set of 58 tumors, eight cases were used to train the KNN. 
Consequently, the evaluation of the algorithm’s performance, obtained by comparing 
the produced segmentations against the gold standard, involved 50 tumors. In detail, 
15 patients with brain metastases (MET PET), 25 patients with HNC (FDG PET), 
and 10 patients with lung cancer (FDG PET). Table	 6.3.12, Table	 6.3.13 and Table	
6.3.14 show sensitivity, PPV, DSC and HD results for brain metastases, HNC, and 
lung cancers. Differently from the phantom study, no discussion of the lesion 
volumes is provided, because all considered BTVs are greater than 2.5 ml (lesions 
with a sphere-equivalent diameter > 17 mm). In addition, most segmented BTV 
(~90%) are homogenous (one single peek is visually detected on the histogram of 
lesion voxel values). Figure	 6.3.6 reports the comparison between the operator 
independent segmentation and the gold-standard. Automatically segmented BTVs 
showed high	agreement with the manually segmented BTVs (the determination coefficient 
R2 = 0.98). 
 
Table 6.3.12 Mean sensitivities, PPVs, DSCs and HDs for 15 brain cancer studies using MET-PET 
examinations are reported. Mean value, and standard deviation (std), are reported in the last rows. 
	

Brain 
Cancer 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

#1 93,67% 91,85% 92,60% 0,60 
#2 93,00% 81,50% 86,90% 1,06 
#3 90,10% 85,40% 87,70% 1,03 
#4 95,30% 84,30% 89,28% 0,47 
#5 92,71% 88,80% 90,50% 0,53 
#6 92,80% 83,70% 88,00% 1,17 
#7 91,00% 80,80% 85,60% 2,40 
#8 93,80% 88,60% 91,10% 0,50 
#9 92,00% 80,00% 85,60% 1,19 

#10 93,40% 87,30% 90,30% 1,14 
#11 90,10% 86,80% 88,40% 1,51 
#12 93,30% 88,50% 90,80% 1,31 
#13 93,40% 90,80% 92,10% 1,63 
#14 90,40% 87,30% 88,80% 1,08 
#15 90,00% 90,80% 90,40% 0,55 

Mean± std  92,33%±1,64% 86,43%±3,72% 89,21%±2,17% 1,08±0,52 
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Table 6.3.13 Mean sensitivities, PPVs, DSCs and HDs for 25 HNC studies using FDG-PET 
examinations are reported.  Mean value, and standard deviation (std) are reported in the last rows. 
	

HNC  Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

#1 94,10% 88,30% 91,10% 1,29 
#2 76,20% 91,40% 83,10% 1,00 
#3 89,80% 81,60% 85,50% 1,07 
#4 85,50% 94,60% 89,80% 0,85 
#5 91,50% 83,70% 87,40% 1,00 
#6 94,70% 83,30% 88,60% 1,33 
#7 88,60% 94,40% 91,40% 1,17 
#8 96,60% 81,20% 88,20% 1,54 
#9 95,20% 83,30% 88,80% 1,70 

#10 88,50% 88,40% 88,40% 1,48 
#11 73,10% 90,50% 80,90% 1,00 
#12 95,20% 84,00% 89,20% 1,24 
#13 91,40% 75,50% 82,70% 1,28 
#14 91,40% 86,50% 88,90% 1,00 
#15 93,50% 75,90% 83,80% 1,61 
#16 77,60% 84,90% 81,10% 1,07 
#17 89,80% 86,30% 88,00% 1,14 
#18 91,90% 87,00% 89,40% 0,90 
#19 82,70% 89,50% 86,00% 1,18 
#20 92,60% 89,30% 90,90% 0,57 
#21 90,50% 89,20% 89,80% 1,84 
#22 89,00% 87,30% 88,10% 0,91 
#23 78,70% 92,50% 85,10% 0,93 
#24 86,70% 76,50% 81,30% 1,00 
#25 89,70% 92,40% 91,00% 0,99 

Mean± std 88,58%±6,33% 86,30%±5,37% 87,14%±3,31% 1,16±0,29 
	

Table 6.3.14 Mean Sensitivities, PPVs, DSCs and HDs for 10 lung cancer studies using FDG-PET 
examinations are reported. Mean value, and standard deviation (std), are reported in the last rows. 
	

Lung 
Cancer 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

#1 85,70% 94,10% 89,70% 2,61 
#2 90,60% 91,10% 90,80% 2,58 
#3 89,90% 89,50% 89,70% 1,34 
#4 85,00% 85,00% 85,00% 1,08 
#5 95,90% 90,40% 93,10% 1,10 
#6 80,80% 82,70% 81,70% 1,54 
#7 87,60% 77,20% 82,10% 1,07 
#8 91,10% 92,00% 91,50% 0,94 
#9 85,30% 90,90% 88,00% 2,16 

#10 89,00% 85,50% 87,20% 2,83 
Mean ± std 88,09±4,18% 87,84±5,15% 87,88±3,89% 1,73±0,74 
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Figure 6.3.6 Three selected segmentation results obtained with the proposed method on PET images 
(brain cancer #13, head and neck cancer #25, and lung cancer #2) are reported in figure (a, c, e), 
respectively. For clarity purposes, the lesion region is magnified. The proposed segmentations (red 
contours) and the gold standards (yellow contours) are superimposed. Blue and green contours 
concern the KNN tissue classification. The region outside the blue boundary represent the 
“background”, while the region inside the green boundaries, and between the curves, represent the 
“lesion”, and the “border-line” region, respectively. The corresponding three-dimensional 
reconstructions of the tumors are shown in figures (b, d, e). The manual (yellow), and the proposed 
BTV (red), are rendered with transparent surfaces in order to emphasize volume intersections. 
 
Table	6.3.15 shows the comparison between the proposed segmentation method and 
the original LAC and RW methods. Since LAC and RW outperformed T42%, RG, 
and FCM methods on the phantoms, we decided not to consider the latter group of 
algorithms in our patient studies. The proposed segmentation method performed 
better than LAC and RW methods minimizing the difference between manual and 
automated BTVs. Finally, in order to confirm that the proposed method is operator-
independent, a sub-dataset of 5 brain metastases, 5 HNC, and 5 lung cancers was 
segmented by five different operators (the three experts mentioned above and two 
non-specialists). Each initial independent manual segmentation led identical BTVs. 
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Table 6.3.15 Sensitivities, PPVs, DSCs and HDs for cancer studies using the proposed method, 
original LAC and RW methods. 

Cancer Sensitivity  
[Mean ± std] 

PPV 
[Mean ± std] 

DSC  
[Mean ± std] 

HD 
[Mean ± std] 

 The proposed method 
Lung 88.09 ± 4.18% 87.84 ± 5.15% 87.88 ± 3.89% 1.73 ± 0.74 
Head & Neck 88.58 ± 6.33 % 86.30 ± 5.37% 87.14 ± 3.31 % 1.16 ± 0.29 
Brain 92.33 ± 1.64% 86.43 ± 3.72% 89.21 ± 2.17% 1.08 ± 0.52 
 Original LAC 
Lung 92.68 ± 5.67% 71.92 ± 12.36% 80.33 ± 9.51% 3.29 ± 0.74 
Head & Neck 80.32 ± 10.82 % 83.88 ± 12.06 % 78.73 ± 6.68 % 2.81 ± 0.49 
Brain 91.16 ± 6.16% 77.38 ± 13.89% 83.55 ± 9.03% 2.88 ± 0.54 
 RW 
Lung 92.55 ± 5.66% 74.72 ± 7.44% 82.03 ± 6.52% 2.29 ± 0.77 
Head & Neck 79.03 ± 7.29% 84.58 ± 9.57 % 82.59 ± 4.95% 1.41 ± 0.40 
Brain 88.12 ± 8.36% 86.68 ± 3.43% 86.75 ± 5.14% 1.31 ± 0.64 

	

6.3.4 Active contour algorithm with discriminant analysis for delineating 
tumors in positron emission tomography 

	

The dataset used to assess the proposed method comprised a total of six phantom 
experiments and fifty-eight oncological patients. Some data were used to train the 
DA classifier, the remaining data to assess the performances of the segmentation 
algorithm. 
 

6.3.4.1 Phantom Studies 
	

 National Electrical Manufacturers Association International Electrotechnical 
Commission (NEMA IEC) phantom is used for preliminary performance assessment 
[86][27][87]. The phantom is composed of an elliptical cylinder (D1 = 24 cm, D2 = 
30 cm, h = 21 cm) with six different spherical lesions of size 10, 13, 17, 22, 28, and 
37 mm in diameter placed at 5.5 cm from the center of the phantom. Both body 
phantom and spheres are filled with a known amount of radioactive tracer to simulate 
oncological lesions. The ratio between sphere radioactivity concentrations and 
background radioactivity concentrations ranged from 1.5:1 to 8:1 for five 
independent experiments: 1.5:1 for the phantom “I”, 3:1 for the phantom “II”, 5:1 for 
the phantom “III”, 7:1 for the phantom “IV”, and 8:1 for the phantom “V”. 
Performance results are calculated considering small spheres (sphere diameter less 
than or equal to 17 mm) and large spheres (sphere diameter greater than 17mm). This 
choice was motivated by the fact that large biases are introduced [77] when the 
lesion size is smaller than 2–3 times the Full Width at Half Maximum (FWHM) of 
the PET point spread function. 
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It could be argued that cancer is often heterogeneous and irregularly shaped in 
contrast with spherical targets and that tracer-filled spheres suffer from cold-body 
effects when compared to the patient study [78][88]. For this reason, PET phantom 
acquisition performed by Soffientini et al [89] was included in our experiments. This 
acquisition has been obtained using eight zeolites (microporous, aluminum-silicate 
minerals commonly used as commercial adsorbents, which can absorb PET radio-
tracer) that allow to generate tumor-like objects with any desired shape, size, and 
contrast levels without cold walls. 
The PET/CT acquisition protocols are described in the in subsequent sections. 
	

6.3.4.2 Clinical studies 
	

 In the present study, fifty-eight patients acquired at the Nuclear Medicine 
Department of the Cannizzaro Hospital (Catania, Italy) have been retrospectively 
considered. The dataset contains PET scans of seventeen patients with brain 
metastases, twenty-nine patients with head and neck cancer (HNC), and twelve 
patients with lung cancers that had been referred to a diagnostic PET/CT scan before 
radiotherapy treatments. 
The institutional Hospital medical ethics review board approved this study protocol 
and all subjects involved were properly informed and released their written consent. 
However, segmentations were performed off-line and the results had no influence on 
the treatment protocol, nor on the patient management. No sensitive patient 
information was accessed. In FDG PET studies, patients fasted for 12 h before the 
PET examination, and successively were intravenously injected with FDG. The 
PET/CT oncological protocol began 60 min after the injection. Patients breathed 
normally during the PET and CT examinations, and scanning was executed from the 
top of the skull to the middle of the thigh with the arms along the body. In MET PET 
studies, for only brain acquisitions, patients fasted for 4 h before the PET 
examination. The PET/CT protocol began 10 min after the MET injection. The 
PET/CT acquisition protocol is described in the following section. 
	

6.3.4.3 PET/CT Acquisition Protocol 
	

 The acquisitions for both phantom experiments with spheres and clinical studies 
were performed within the same Nuclear Medicine Department using the same 
equipment, a Discovery 690 PET/CT scanner with time-of-flight (General Electric 
Medical Systems, Milwaukee, WI, USA). Time-of-flight imaging method is an 
innovative and crucial feature in PET scanners to provide a gain in the signal to noise 
ratio, improving both lesion detectability and uptake measurement. The phantom and 
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patient protocols included a SCOUT scan at 40 mA, a CT scan at 140 keV and 150 
mA (10 sec), and 3D PET scans (2.5 minutes per bed position). PET images were 
reconstructed using a 3D ordered subset expectation maximization (OSEM) 
algorithm. All imaging data were encoded in the 16-bit DICOM format. Each PET 
slice consists of 256×256 voxels with a grid spacing of 2.73 mm3 and thickness of 
3.27 mm3. Consequently, the size of each voxel is 2.73 × 2.73 × 3.27 mm3. Thanks 
to the injected PET radiotracer (FDG or MET), tumors appears as hyper-intense 
regions. The non-diagnostic CT scan is performed for attenuation correction and 
anatomic localization of the tumor contextually to PET image acquisition. The CT 
slice consists of 512 × 512 voxels with size 1.36 × 1.36 × 3.75 mm3. 
Zeolite phantom experiment [89] was acquired with Biograph TruePoint 64 PET/CT 
scanner (Siemens). Attenuation-Weighted-OSEM (AWOSEM) was performed for 
PET image reconstruction. Four iterations, eight projection subsets, and a 3D 
Gaussian post-reconstruction filter with 4-mm FWHM were used. Each PET slice 
consists of 336×336 voxels with size 2.04 x 2.04 x 2.00 mm3. 
 

6.3.4.4 Framework for performance evaluation 
	

 A framework for the assessment both in terms of the DA classification and the 
proposed segmentation algorithm is presented. The performance of the DA is 
calculated with respect to ratio between successful vs total classifications using 
sensitivity, specificity, precision, accuracy, and error scores. The sensitivity is the 
number of correctly classified positive samples divided by the number of true 
positive while the specificity is the number of correctly classified negative samples 
divided by the number of true negative samples. The precision is related to 
reproducibility and repeatability and it is defined as the degree to which repeated 
classifications under unchanged conditions show the same results: 
	

!!" = !"
!" + !"  × 100% 	 	

where TP and FP are the number of true positives and false positives, respectively.  
The accuracy is defined as the number of correctly classified samples divided by the 
number of classified samples: 

!""#$%"& = !" + !"
!" + !" + !" + !"  × 100% 	 	

where TN and FN are the number of true negatives and false negatives, respectively. 
Finally, the error is defined as: 
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!""#" = !" + !"
!!" + !" + !" + !"# + !"  × 100% 	 	

About segmentation algorithm performance, according to the formulations presented 
in [88][89][90], overlap-based and spatial distance-based metrics are considered to 
determine the accuracy achieved by the proposed method (assessed volume) against 
the reference volumes (see the next section).  
TP, FP, TN, and FN voxels were used to measure the overlap and difference between 
the two volumes. In particular, mean, standard deviation, 95% confidence interval 
(CI) and coefficient of variation (CV) of sensitivity, positive predictive value (PPV), 
dice similarity coefficient (DSC), and Hausdorff distance (HD) were calculated. 
The true positive volume fraction (TPVF), also called sensitivity, is the fraction of 
the total amount of segmented tissue which overlaps with the reference volume s!"#. 
A perfect segmentation algorithm would be 100% sensitive (segmenting all voxels 
from the target voxels) and 100% specific (not segmenting any from the background 
voxels). In particular, TPVF [97] is a crucial measure in radiotherapy in order to 
obtain optimal RTP avoiding cancer recurrence. 
The true negative volume fraction (TNVF), also called specificity, is the fraction of 
tissue defined in the reference volume that is missed by the segmentation system 
s!"#. 
Considering that the number of true negatives depends on the space volume I, the 
specificity makes little sense and only the sensitivity conveys useful information. 
The specificity can be replaced with the positive predictive value (PPV)  [98]. 
PPV, also called precision (see eq. 13), is the fraction of the total amount of tissue in 
the reference volume s!"#  which overlaps with the segmentation system s!"#. 
DSC value [99] measures the spatial overlap between the reference volume s!"# and 
the segmentation system s!"#: a DSC value equal to 100% indicates a perfect match 
between two volumetric segmentations, while a DSC whose value is 0% indicates no 
overlap: 

!"# = 2 !!"# ∩ !ref
!!"# + !ref

=  2×!"
2×!" + !" + !"  × 100% 	 	

Nevertheless, overlap-based metrics are highly dependent on the segmentation size. 
For this reason, distance-based metrics are highly recommended when the boundary 
segmentation is critical, such as in BTV delineation for RTP. In particular, HD is 
used to measure the most mismatched boundary voxels between automatic and 
manual BTV: a small median of HD means an accurate segmentation, while a large 
median of HD means no accuracy [100]. 
The performance of the proposed method is compared to other state of the art BTV 
segmentation methods. In particular, the fixed thresholding (42% of the SUVmax) 
(T42%) [94], the RG [95], the FCM clustering [101], the enhanced RW [86], and the 
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original LAC [83] methods have been used for comparison. The tool used to provide 
proposed segmentation BTVs and evaluation task has been implemented in the 
Matlab R2016a simulation environment (MathWorks, Natick, MA, USA), running 
on an iMac computer with a 3.5 GHz Intel Core i7 processor, 16 GB 1600 MHz 
DDR3 memory, and OS X El Capitan. 
	 	

6.3.4.5 Gold Standard 
	

 The match between PET and CT images has been used to evaluate the 
performance of the proposed method. In patient studies, the histopathology analysis 
provides the only valid PET ground truth for quantitative assessment [98]. 
Unfortunately, such information is unavailable after radiotherapy because the 
treatment destroys the initial geometry. Consequently, the actual gold-standard is 
impossible to retrieve. For this reason, manual delineation is a commonly accepted 
substitute for ground truth [78] although it is a critical task. It carries a certain 
amount of subjectivity, and is often influenced by the clinical specialization of the 
operator. For example, oncologists will, on average, draw smaller boundaries than 
radio-therapists. In our study, the chief nuclear medicine physician (M.I. author), the 
chief radiotherapy physician (M.S. author) and an expert radiotherapy physician 
(G.R. author) performed manual segmentations in the whole PET dataset. A 
simultaneous ground truth estimation tool was employed [36], and the segmentations 
from the three experts were combined to define our “ground truths”. From the initial 
fifty-eight tumor segmentations, eight segmentations were used in the DA 
training/validation task and fifty ones were used as the “ground truth” for the 
performance evaluation task of the proposed method. In the same way, three 
phantom spheres and three zeolites were used in the classifier training/validation 
task, the remaining ones were used to assess the performance of the present method. 
In zeolite phantom experiments, gold standards were provided by the authors of the 
acquisition [89]. 
	

6.3.4.6 Results Discriminant analysis validation 
 
 The optimal K value of the K-Fold cross-validation integrated in the classifier has 
been determined through the trial-and-error method as 5 (k range: 5–15, step size of 
5). It corresponds to the highest classification accuracy. The results show that the DA 
classification with both unbalanced and balanced training patient datasets obtains 
excellent results. The classification results are comparable because the P-value (P-
value = 0.99 > Alpha=0.05) leads us to accept the null hypothesis, according to 
which the averages are equal, as shown in the Table	6.3.16. 
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Table 6.3.16 Sensitivity, specificity, precision, and accuracy values obtained for the DA validation 
using both balanced and unbalanced training patient datasets. 
	

Datasets Sensitivity Specificity Precision Accuracy 

Balanced 90.75% 86.70% 99.44% 89.44% 

Unbalanced 90.18% 85.94% 99.08% 88.49% 

 

Figure	 6.3.7 Shows the ROC analysis performed to measure the DA classification 
performance after the training step with unbalanced datasets.  

 

Figure 6.3.7 The classification performance of the DA classifier has been assessed using ROC 
analysis by calculating the area under the ROC curve (AUC). 
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6.3.4.7 Clinical testing and Results on Phantoms 
	
 Phantom performance results have been divided considering small spheres with 
diameters less than 22 mm and large spheres with diameter greater than 17 mm (see 
previous sections). Five independent phantom experiments have been carried out 
with different signal ratios between sphere and background regions: 1.5:1 for the 
phantom “I”, 3:1 for the phantom “II”, 5:1 for the phantom “III”, 7:1 for the phantom 
“IV”, and 8:1 for the phantom “V”. Table	 6.3.17 shows the volumetric accuracy 
results for the smaller spheres.  
 
Table 6.3.17 Sensitivity, PPV, DSC, HD values obtained over phantom experiments (II–V). Phantoms 
have the following signal contrast: (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different spherical 
lesions of size 10, 13, and 17 mm in diameter are considered to assess the performance of the 
proposed segmentation method. Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
 

NEMA IEC 

Phantom 

Sphere 

Diameter 

Sensitivity [%] PPV [%] DSC [%] HD 

[voxels] 

II  

 

10 mm 

70.80% 77.30% 73.90% 1.00 

III 77.30% 94.40% 85.00% 1.00 

IV 75.80% 73.50% 74.60% 1.00 

V 78.30% 60.00% 67.90% 1.14 

II  

 

13 mm 

76.77% 98.48% 86.28% 1.08 

III 80.40% 84.10% 82.20% 1.00 

IV 73.80% 91.20% 81.60% 0.68 

V 70.00% 91.30% 79.20% 1.00 

II  

 

17 mm 

81.70% 97.10% 88.70% 0.93 

III 69.90% 96.30% 81.00% 1.28 

IV 75.20% 92.10% 82.80% 1.20 

Mean   75.45%	 86.89% 80.29% 1.03 

± std  ±4.02%	 ±12.04%	 ±6.07%	 ±0.16	

± CI (95%)  ±2.38%	 ±7.12%	 ±3.59%	 ±0.09	

± CV  ±5.33% ±13.86% ±7.56% ±0.15 
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The results for the phantom “I” are missing because the contrast between sphere and 
background is too low (the target radioactivity concentration is only more than one-
and-a-half times the background radioactivity concentration). Consequently, no PET 
regions with high uptake concentration are visible for the smaller spheres. For the 
same reason, the performance improved for all spheres, regardless of their volume, 
when the ratio between sphere concentration and background radioactivity 
concentration was increased. Further three phantom spheres are missing because they 
have been used to train the DA classifier (see section 5). For this reason, the spheres 
with ratio between sphere and background radioactivity concentrations of 3:1 
(diameter = 28 mm), 5:1 (diameter = 22 mm), and 8:1 (diameter =17 mm) have been 
excluded. 
In general, due to the partial volume effect (PVE), the separation of small lesions 
from the background region is very challenging, and the difficulty increases in 
critical conditions (i.e. low signal contrast). The mean difference between segmented 
and actual volumes is -17.66±7.84%. Volumes of smaller spheres are underestimated 
with more false negatives than false positives. As expected, large errors occur in the 
smaller spheres [77]. 
Table	6.3.18 shows the results for the larger spheres. In all conditions, excluding the 
phantom ‘I’ for the aforementioned reason, a DSC rate above 90% and a sensitivity 
rate greater than 90% are observed. These results are generally accepted as excellent.  
 
Table 6.3.18 Sensitivity, PPV, DSC, HD values obtained over phantom experiments (I–V). Phantoms 
have the following signal contrast: (I) 1.5:1, (II) 3:1, (III) 5:1, (IV) 7:1, and (V) 8:1. Three different 
spherical lesions of size 22, 26, and 37 mm in diameter are considered to assess the performance of 
the proposed segmentation method. Mean value, standard deviation (std), 95% confidence interval 
(CI) and coefficient of variation (CV) are reported in the last rows. 
	

NEMA IEC 
Phantom 

Sphere 
Diameter 

Sensitivity [%] PPV [%] DSC [%] HD 
[voxels] 

I  
 

22 mm 

88.63% 75.70% 81.65% 1.83 
II 91.20% 88.00% 89.60% 1.17 
IV 94.80% 84.70% 89.50% 1.06 
V 96.30% 87.90% 91.90% 1.00 
I  

 
26 mm 

88.90% 81.75% 85.18% 1.83 
III 91.80% 88.80% 90.30% 1.10 
IV 94.70% 90.20% 92.40% 1.00 
V 93.50% 88.10% 90.80% 1.18 
I  

 
37 mm 

89.01% 90.96% 89.97% 1.60 
II 90.90% 93.10% 92.00% 1.25 
III 93.80% 90.20% 92.00% 1.23 
IV 93.40% 92.50% 93.00% 1.00 
V 92.60% 91.80% 92.20% 1.13 

Mean   92.27%	 87.98% 90.04% 1.26 
± std  ±2.45%	 ±4.84%	 ±3.23%	 ±0.30	

± CI (95%)  ±1.33%	 ±2.63%	 ±1.76%	 ±0.16	
± CV  ±2.66% ±5.50% ±3.59% ±0.24 
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Figure 6.3.8 Sensitivity, PPV, DSC, and HD comparisons (mean and range) of the proposed algorithm 
to the ones commonly used in the literature in delineation of BTVs.  
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The mean difference between segmented and actual volumes is 6.34±5.21%. 
Nevertheless, a slight oversizing can help to prevent the extension of tumor 
infiltration [110]. 
In addition, results show that the proposed algorithm outperforms the other ones 
tested for comparison (RW, original LAC, RG, FCM, and T42%), despite the 
limitations due to the use of phantoms. Figure	 6.3.8 reports the quantitative 
comparison between semi-automatic segmentations and gold-standards considering all 
phantom experiments. 
In addition, the zeolite phantom acquisition performed by [89] was used to validate 
our method using heterogeneous and irregularly shaped inserts. Three zeolites have 
been used to train the DA classifier (a heterogeneous zeolite -#2- and two 
homogeneous zeolites -#1 and #6 [89]). Results for the remaining five cases are 
shown in the Table	6.3.19.  
 
Table 6.3.19 Sensitivity, PPV, DSC, HD values obtained over zeolite phantom experiment. Five 
different zeolites are considered to assess the performance of the proposed segmentation method: #4 
and #5 heterogeneous zeolites and #3, #7, and #8 homogeneous zeolites [89]. Mean value, standard 
deviation (std), 95% confidence interval (CI) and coefficient of variation (CV) are reported in the last 
rows. 
 

Zeolite	ID	[25]	 Sensitivity	[%]	 PPV	[%]	 DSC	[%]	 HD	[voxels]	

#3	 66.28%	 97.98%	 79.07%	 0.35	

#4	 85.66%	 73.67%	 79.21%	 0.57	

#5	 82.35%	 66.40%	 73.52%	 0.22	

#7	 85.32%	 79.83%	 82.48%	 0.17	

#8	 67.91%	 96.75%	 79.80%	 0.26	

Mean		 77.50%	 82.93%	 78.82%	 0.31	

±	std 9.61%	 14.02%	 3.27%	 0.16	

±	CI	(95%) 8.42%	 12.29%	 2.86%	 0.14	

±	CV 12.40%	 16.90%	 4.14%	 0.50	

 

6.3.4.8 Clinical testing and Results on Patients  
	
 From the initial fifty-eight tumors of our dataset, eight tumors have been used in 
the classification training set while fifteen patients with brain metastases (MET 
PET), twenty-five patients with HNC (FDG PET), and ten patients with lung cancer 
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(FDG PET) have been considered to assess the differences between our 
segmentations and the “ground truth” provided by three expert operators [36].  
Table	6.3.20, Table	6.3.21 and Table	6.3.22 show sensitivity, PPV, DSC and HD results 
for brain metastases, HNC, and lung cancers.  
 
Table 6.3.20 Mean sensitivities, PPVs, DSCs and HDs for 15 brain cancer studies using MET-PET 
examinations are reported. Mean value, standard deviation (std), 95% confidence interval (CI) and 
coefficient of variation (CV) are reported in the last rows. 
 

Brain Cancer Sensitivity [%] PPV [%] DSC [%] HD [voxels] 
#1 94.20% 91.70% 92.90% 0.53 
#2 92.30% 87.40% 89.80% 0.59 
#3 81.90% 90.30% 85.90% 2.28 
#4 87.68% 92.55% 89.70% 0.44 
#5 92.73% 91.29% 91.77% 0.50 
#6 83.40% 92.80% 87.90% 1.01 
#7 91.10% 88.30% 89.70% 1.14 
#8 91.90% 91.00% 91.40% 0.46 
#9 89.80% 80.60% 85.00% 1.28 

#10 92.00% 90.50% 91.20% 1.10 
#11 88.50% 88.80% 88.70% 0.98 
#12 88.90% 88.10% 88.50% 2.23 
#13 90.80% 93.40% 92.10% 1.63 
#14 87.60% 86.70% 87.20% 1.39 
#15 90.90% 92.90% 91.90% 0.55 

Mean  89.58% 89.76% 89.58% 1.07 
± std ±3.40% ±3.31% ±2.37% ±0.61 

± CI (95%) ±1.72% ±1.67% ±1.20% ±0.31 
± CV ±3.80% ±3.69% ±2.64% ±0.57 

 

No distinction between lesion volumes is reported as for phantom sphere results 
because all considered tumors are greater than 2.5 ml (lesions with a sphere-
equivalent diameter greater than 17 mm). In addition, most segmented tumors 
(~90%) are homogenous (one single peek is visually detected on the histogram of 
lesion voxel values). 
Figure	6.3.9 reports the quantitative comparison between the proposed segmentations 
and the gold-standards. Automatically segmented BTVs showed high agreement with 
the manually segmented BTVs (determination coefficient R2 = 0.98). 
 

 

	  



126	

Table 6.3.21 Mean sensitivities, PPVs, DSCs and HDs for 25 head & neck cancer studies using FDG-
PET examinations are reported.  Mean value, standard deviation (std), 95% confidence interval (CI) 
and coefficient of variation (CV) are reported in the last rows. 
 

Neck & head Cancer  Sensitivity [%] PPV [%] DSC [%] HD [voxels] 

#1 93.30% 88.70% 91.00% 1.25 

#2 83.30% 87.50% 85.40% 1.00 

#3 89.80% 81.60% 85.50% 1.07 

#4 85.50% 91.40% 88.30% 0.93 

#5 92.40% 83.80% 87.90% 1.00 

#6 94.40% 83.40% 88.50% 1.33 

#7 87.70% 95.00% 91.20% 1.18 

#8 96.80% 82.20% 88.90% 1.72 

#9 95.30% 82.80% 88.60% 1.77 

#10 91.10% 85.70% 88.30% 1.31 

#11 73.10% 90.50% 80.90% 1.00 

#12 95.10% 83.10% 88.70% 1.24 

#13 91.40% 74.00% 81.80% 1.28 

#14 91.40% 84.20% 87.70% 1.00 

#15 93.50% 75.90% 83.80% 1.08 

#16 77.60% 84.90% 81.10% 1.07 

#17 89.80% 86.30% 88.00% 1.14 

#18 91.90% 87.00% 89.40% 0.90 

#19 82.70% 89.50% 86.00% 1.18 

#20 92.60% 89.30% 90.90% 0.57 

#21 92.20% 88.60% 90.40% 2.64 

#22 90.30% 83.80% 87.00% 0.94 

#23 83.00% 90.70% 86.70% 1.00 

#24 86.70% 76.50% 81.30% 1.00 

#25 91.20% 91.80% 91.50% 0.92 

Mean  89.28% 85.53% 87.15% 1.18 
± std ±5.70% ±5.13% ±3.23% ±0.39 

± CI (95%) ±2.24% ±2.01% ±1.27% ±0.15 
± CV ±6.39% ±5.99% ±3.71% ±0.33 
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Table 6.3.22 Mean Sensitivities, PPVs, DSCs and HDs for 10 lung cancer studies using FDG-PET 
examinations are reported. Mean value, standard deviation (std), 95% confidence interval (CI) and 
coefficient of variation (CV) are reported in the last rows. 
 

Lung Cancer Sensitivity [%] PPV [%] DSC [%] HD [voxels] 

#1 94.30% 87.40% 90.70% 2.59 

#2 90.60% 92.10% 91.40% 1.34 

#3 85.70% 91.40% 88.50% 1.82 

#4 85.90% 83.80% 84.80% 1.08 

#5 89.90% 96.30% 93.00% 1.07 

#6 81.70% 80.30% 81.00% 1.66 

#7 77.00% 86.50% 81.50% 1.07 

#8 91.20% 92.10% 91.60% 0.94 

#9 90.70% 85.60% 88.10% 2.14 

#10 93.00% 86.40% 89.50% 1.59 

Mean  88.00% 88.19% 88.01% 1.53 
± std ±5.41% ±4.73% ±4.23% ±0.54 

± CI (95%) ±3.35% ±2.93% ±2.62% ±0.33 
± CV ±6.14% ±5.37% ±4.80% ±0.35 

 

Table	6.3.23 shows the comparison between the proposed segmentation with respect 
to the original LAC and RW methods. For sake of simplicity, T42%, RG and FCM 
methods were not considered in patient studies because they were found to perform 
consistently worse, in phantom experiments, than the LAC and RW methods.  
Analysis of variance (ANOVA) on the DSC were used to test for statistical 
differences between methods considering all patient lesions (n=50). The proposed 
method showed a mean DSC of 88.05±3.33%, the RW of 83.73±5.57%, and LAC of 
80.40±6.86%. Table	 6.3.24 compares the results of ANOVA for the segmentation 
methods indicating significant differences (p<0.05) between methods and, 
consequently, the proposed segmentation yielded better performance in minimizing 
the difference between manual and automated BTVs than the other two reference 
methods. Finally, in order to confirm that the proposed method is operator-
independent, a sub-dataset of 5 brain metastases, 5 HNC, and 5 lung cancers was 
segmented by five different operators (the three experts mentioned above and two 
non-specialists). The result consisted of five identical BTVs. 
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Figure 6.3.9 Three results achieved by the proposed segmentation method on PET images are reported 
in figure (a, c, e), respectively. The proposed segmentations (red contours) and the gold standards 
(yellow contours) are superimposed. Blue and green contours concern the DA tissue classification. 
The region outside the blue boundaries is labelled as background, the region inside the green 
boundaries is labelled as lesion, and the region between blue and green contours is labelled as 
undefined. The tridimensional reconstructions of the tumors are shown in figure (b, d, e): manual 
(yellow) and proposed (red) BTVs are rendered with transparent surfaces to emphasize volume 
intersections. 
 

Table 6.3.23 Sensitivities, PPVs, DSCs and HDs for BTV segmentation using the proposed, original 
LAC and RW methods. 
 

Cancer Sensitivity  
[Mean ± std] 

PPV 
[Mean ± std] 

DSC  
[Mean ± std] 

HD 
[Mean ± std] 

 The proposed method 
Lung 88.00 ± 5.41% 88.19 ± 4.73% 88.01 ± 4.23% 1.53 ± 0.54 
Head & Neck 89.28 ± 5.70 % 85.53 ± 5.13% 87.15 ± 3.23 % 1.18 ± 0.39 
Brain 89.58 ± 3.40% 89.76 ± 3.31% 89.58 ± 2.37% 1.07 ± 0.61 
 Original LAC 
Lung 92.68 ± 5.67% 71.92 ± 12.36% 80.33 ± 9.51% 3.29 ± 0.74 
Head & Neck 80.32 ± 10.82 % 83.88 ± 12.06 % 78.73 ± 6.68 % 2.81 ± 0.49 
Brain 91.16 ± 6.16% 77.38 ± 13.89% 83.55 ± 9.03% 2.88 ± 0.54 
 RW 
Lung 92.55 ± 5.66% 74.72 ± 7.44% 82.03 ± 6.52% 2.29 ± 0.77 
Head & Neck 79.03 ± 7.29% 84.58 ± 9.57 % 82.59 ± 4.95% 1.41 ± 0.40 
Brain 88.12 ± 8.36% 86.68 ± 3.43% 86.75 ± 5.14% 1.31 ± 0.64 
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Table 6.3.24 ANOVA on the DSC showed statistical differences between segmentation methods. 
 

ANOVA F value           F critic value               P-value 

Proposed Method vs RW 22.1389602 3.93811108 8.3285E-06 

Proposed Method vs LAC 50.2234164 3.93811108 2.1246E-10 

RW vs LAC 7.06494187 3.93811108 0.00918045 

 

6.3.4.9 Discussion 
	
 In this study, an enhanced LAC algorithm has been adapted to the PET imaging 
field and combined with a DA classifier to obtain operator independent 
segmentations for RTP purposes and for therapy response assessment. 
In order to combine the LAC, which is a gradient descent based minimization 
method with information derived from learning (i.e. the DA classifier), an innovative 
energy function is proposed.  
The classifier has been purposely trained to label PET tissues into three categories: 
normal, abnormal, and border-line tissues. The training procedure is based on the 
PET “ground truth” obtained from manual segmentations provided by an expert 
clinical staff and processed using proper tools [36]. After this preparation step, the 
DA classifier is able to label tissues never encountered before. Such useful 
information is integrated into the LAC algorithm in order to enhance the 
segmentation performance.  
By algorithm construction the BTV delineation is independent of variation in the 
initial user input. This input is required to avoid any false positive or critical 
conditions because the FDG distribution is, in general, not limited to cancer area. 
FDG enters the cells according to glucose transport mechanism. For this reason, 
active healthy tissues can show high radio-tracer uptake and, consequently, an initial 
yet limited supervision by the operator is preferred. However, in the case of brain 
metastases, it is possible to take advantage of the great sensitivity and specificity of 
MET radio-tracers which is able to discriminate between healthy versus abnormal 
tissues. Consequently, in MET-PET studies, user input is not necessary and the 
process can be fully automatic [84]. As a final remark, since an operator-independent 
mask is created during the initialization step and because a fully automatic stop 
condition is included, the proposed method produces extremely repeatable results (as 
confirmed by the inter operator segmentation test in the previous sections). An 
observation that is worth of note is that the proposed model is not asymmetric in 
order to preserve the desired contrast direction of the user initialization step. The 
stopping criterion terminates the algorithm as soon as this established contrast 
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direction is violated. In short, the algorithm is deliberately designed to capture 
brighter, rather than darker, regions as explained in the previous sections.   
Performance measurements of the proposed method have been obtained by phantom 
experiments. We are aware that they cannot replicate all the aspects of a real clinical 
case. Nevertheless, they represent a useful tool to assess common reference 
performances across different segmentation algorithms. The aim of this test is to 
evaluate the efficiency of the method and fairly compare its performance with other 
methods under identical conditions where results may be quantitatively and reliably 
evaluated. For this purpose, using a well-defined sharp-edged target is preferable 
because the only uncertainty on the exact boundary location is introduced by the 
point spread function of the measuring system.  
 In the case of phantom experiments using plastic spheres, PET image experiments 
should be carried out in phantoms with inactive background [88] to reduce the cold 
wall effect caused by the plastic wall that separates the spheres from the background. 
This model may not be useful to test delineation algorithms because this condition is 
different from patient studies. For this reason, we insert hot spheres in a warm 
background. Nevertheless, these spheres are homogeneous targets. In our patient 
dataset a single peak representing homogeneity is generally detected on the 
histogram of segmented BTVs. This further motivated the use of phantom with 
spheres. However, in order to perform an even more robust validation, we included 
in our workflow the PET acquisition by Soffientini et al [89]. In the latter, they 
employed zeolites to generate tumor-like inserts that do not suffer from the cold wall 
effect and possessing any desired shape, size, and contrast levels. Further, zeolites 
generate PET images with heterogeneous appearance (multiple peaks are detected on 
their histogram).    
We believe that the combined use of these two different class of phantoms can be 
considered a suitable tool to judge the reliability of our segmentation algorithm. The 
LAC-DA method showed DSC and sensitivity greater than 90% for the spheres with 
a diameter greater than 17 mm providing better results than the other state-of-the-art 
methods. The segmentation of small lesions remains challenging [109]. The PVE 
cannot be assumed to be negligible when lesion sizes are smaller than 2–3 times the 
FWHM of the point spread function of the PET image resolution reconstructed by 
the PET imaging system [77]. Zeolite phantom experiment confirmed optimal 
results, even in case of irregular and heterogeneous targets, if compared to those 
presented in Table 3 of the recent study of Berthon et al [111]. 
In clinical cases, the only valid ground truth for quantitative segmentation evaluation 
is impossible to obtain because the radio-treatment alters the tumor morphology. 
Consequently, manual contouring of three experts has been used as a gold-standard 
although it is a challenging task in deciding which regions to include or exclude in 
the BTV (i.e., radiotherapy planning experts tend to draw larger contours than 
nuclear medicine physicians). The tool proposed in [36] allows overcoming such 
limitations producing a consolidated reference to be used to assess the applicability 
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of the proposed algorithms in the clinical environment under different conditions 
(radio-tracers and body districts). Our algorithm has been engineered to be optimal in 
the clinical practice where the radiotherapist contours a target volume containing the 
segmented BTV plus a surrounding volume with some significant probability of 
containing microscopic disease invisible to the PET investigation. Segmentation is 
optimal for isolated targets, whether requiring single or multiple independent 
segmentations. Studies on heterogeneous zeolites showed that the algorithm can 
accommodate the segmentation of multiple small target coexisting in the same VOI. 
For what concerns the search for post-treatment residual tumor, the same 
considerations hold. However, in the latter case, the major role is played by the 
resolution of the PET as compared with the dimension of tumor residues, rather than 
by the capabilities of the segmentation algorithm itself.  
Fifty patients underwent radiotherapy treatment have been considered. Depending on 
the body district involved, patients underwent FDG or MET PET examinations. 
Results showed that the proposed method can be considered clinically feasible, since 
it has been integrated in the current clinical practice. In addition, automatically 
delineated BTVs showed high agreement with the ground truth (R2 = 0.98).  
Finally, the proposed method is different from joint PET/CT or PET/MRI 
segmentation approaches. One-to-one correspondence between functional and 
anatomical regions is often unrealistic [86] because different imaging techniques 
convey different information. For example, the BTV can radically change the RTP, 
as reported in [112], because radio-tracer uptake was identified in a lymph node 
which was invisible in the CT images. For this reason, multimodal imaging must be 
properly evaluated according to the specific clinical scenario [113]. However, CT or 
MRI studies can be used to identify healthy tissues (i.e. heart, brain, bladder, etc…) 
and, consequently, to remove false positives from PET analysis.  
 

6.3.5 A Fully Automated Segmentation System of Positron Emission 
Tomography Studies 

	

6.3.5.1 Phantom Studies 
	

 Four phantom experiments were used for preliminary assessment of the 
performance. The phantom is composed of an elliptical cylinder (minor axis = 24 cm, 
major axis = 30 cm, h = 21 cm) containing six different spheres (diameters: 10, 13, 
17, 22, 28, and 37 mm) placed at 5.5 cm from the center of the phantom. The ratio 
between sphere and background radioactivity concentration ranged from 3:1 to 8:1. 
Performances were evaluated by grouping the results with respect to sphere 
diameters: small spheres, i.e. diameter smaller than 22 mm, and large spheres, with a 
diameter greater than 17 mm. This choice was motivated by the fact that large biases 
are introduced by the partial volume effect [77] in PET imaging. 
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6.3.5.2 Clinical studies 
	

 Ten patients with brain metastases were retrospectively considered. These patients 
were referred to diagnostic PET/CT scan before Gamma Knife (Elekta, Stockholm, 
Sweden) treatment. Tumor segmentation was performed off-line without actually 
influencing the treatment protocol or the patient management. No sensitive patient 
data were accessed. As such, after all patients were properly informed and released 
their written consent, the institutional hospital medical ethics review board approved 
the present study protocol. Patients fasted 4 h before the PET examination, and 
successively were intravenously injected with MET. The PET/CT oncological 
protocol started 10 min after the injection.  
	

6.3.5.3 PET/CT Acquisition Protocol 
	

 All acquisitions in this study were performed within the same hospital department 
and using the same equipment, a Discovery 690 PET/CT scanner (General Electric 
Medical Systems, Milwaukee, WI, USA). The PET protocol included a SCOUT scan 
at 40 mA, a CT scan at 140 keV and 150 mA (10 sec), and 3D PET scans. The 3D 
ordered subset expectation maximization algorithm was used for the PET imaging. 
Each PET image consists of 256×256 voxels with a grid spacing of 1.17 mm3 and 
thickness of 3.27 mm3. Consequently, the size of each voxel is 1.17 × 1.17 × 3.27 
mm3. Thanks to the injected PET radio-tracer, tumor appears as hyper-intense 
region. The CT scan was performed contextually to the PET imaging and used for 
attenuation correction. Each CT image consists of 512 × 512 voxels with size 1.36 × 
1.36 × 3.75 mm3. 
 

6.3.5.4 Framework for performance evaluation 
	
 Overlap-based and spatial distance-based metrics are considered to determine the 
accuracy achieved by the automatic segmentation system against the gold-standard [ 
[101]. In particular, the formulations of dice similarity coefficient (DSC), and 
Hausdorff distance (HD) are used.  
DSC measures the spatial overlap between the reference volume and the 
segmentation system: a DSC value equal to 100% indicates a perfect match between 
two volumetric segmentations, while DSC = 0% indicates no overlap. Nevertheless, 
overlap-based metrics are not well suited for small anomalies. For this reason, 
distance-based metrics are preferable, especially when the boundary segmentation is 
critical, such as in BTV delineation for RTP. In particular, HD is used to measure the 
most mismatched boundary voxels between automatic and manual BTV: small HD 
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means an accurate segmentation, while a large HD is synonymous of poor accuracy.  
Finally, the performance of the proposed method is compared to other state of the art 
BTV segmentation methods: the original LAC method [84], the RG method [96], the 
enhanced RW method such as described in [86], and the FCM clustering method 
[109]. 

6.3.5.5 Phantom Studies 
	
 Performance results from phantom experiments were divided considering small 
and large spheres, in four independent cases, each carried out with different signal 
ratios. The accuracy improved for all spheres, regardless of their volume, when the 
signal ratio increased. In general, due to the partial volume effect, the separation of 
small targets from the background is very challenging, and the difficulty increases in 
condition of low signal contrast. The sphere volumes are underestimated with more 
false negatives than false positives. The dice similarity coefficient (DSC) rate is 
77.51±3.46% and the Hausdorff distance (HD) is 1.12±0.15 voxels. For the spheres 
with a diameter greater than 17 mm, excellent performances are obtained with a DSC 
rate greater than 92% (HD = 1.06±0.09). The mean difference between segmented 
and actual volumes is positive (the sphere volumes are overestimated); larger 
margins can help to prevent the extension of tumor infiltration.  
The performance of the system was compared to other state of the art PET image 
segmentation methods. In particular, the original LAC [83], the RG [96], the RW 
[86], and the FCM [109] methods have been used for comparison. Table	 6.3.25 
summarizes the results and shows that this automatic segmentation outperforms the 
methods tested for comparison for all the considered cases.		
	
Table 6.3.25 DSC and HD values for the proposed method and other state of the art PET image 
segmentation methods. 

	 DSC	 HD	(voxels)	

Our	System	 84.79 ± 8.00% 1.09 ± 0.12 

Original	LAC	
82.55 ± 7.56% 1.44 ± 0.55 

RW	
82.12 ± 8.78% 1.22 ± 0.43 

RG	
79.01 ± 9.34% 1.67 ± 0.57 

FCM	 77.13	±	8.79%	 1.68	±	0.49	

	

	

6.3.5.6 Clinical Studies 
	

 The performance of the presented system is investigated considering ten 
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metastases against the ground truth provided by three expert operators. In clinical 
cases, the histopathology analysis is unavailable after the gamma knife treatment. For 
this reason, the manual delineation performed by expert clinicians is a commonly 
accepted substitute for ground truth to assess the clinical effectiveness and feasibility 
of PET delineation methods. Consequently, manual segmentations performed by 
three experts are used to define a consolidated reference using STAPLE algorithm 
[36]. This simultaneous ground truth estimation tool combines a collection of 
segmentations into a single and consolidated ground truth segmentation. It computes 
a probabilistic estimate of the true segmentation estimating an optimal combination 
of the segmentations. This algorithm is formulated as an instance of the expectation 
maximization (EM). 
Differently from the phantom studies, no discussion of the tumor volumes is 
provided here, mostly because all considered BTVs are greater than 2.5 ml (lesions 
with a sphere-equivalent diameter greater than 17 mm). In particular, tumor volumes 
ranged from 2.69 ml to 20.49 ml (mean ± std = 7.08 ± 5.81 ml). The ratio between 
lesion and background radioactivity concentration ranged from 2.76:1 to 7.40:1 
(mean ± std = 3.88:1 ± 1.45:1). These values are included in the range of the 
phantom experiments used for preliminary performance testing. For this reason, 
although phantom studies don't replicate all the properties of real lesions, they 
represent a useful tool to assess performances across different segmentation methods. 
Table	6.3.26 summarizes the comparison between this automatic segmentation and the 
original LAC and RW approaches. Since LAC and RW outperformed RG, and FCM 
methods on the phantom experiments, the latter algorithms were not considered in 
patient studies. The automatic algorithm performed better than LAC and RW 
methods minimizing the difference between references and automated BTVs.  
Figure 6.3.10 reports the comparison between the proposed segmentations and the 
gold-standards.  
	
Table 6.3.26 DSCs and HDs using the proposed system, original LAC and RW methods. 

	 DSC	 HD	

Our	System	 88.35 ± 2.60% 1.42 ± 0.57 

Original	LAC	
83.77 ± 8.53% 2.97 ± 0.68 

RW	 87.01	±	5.16%	 1.38	±	0.74	
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Figure	6.3.10 Examples of automatic segmentations. The retrieved segmentations and 
the gold standards are shown in red and yellow, respectively. 

 

6.3.6 Tissue Classification to Support Local Active Delineation of Brain 
Tumors 

	

6.3.6.1 Dataset 
	

 Seventeen patients with brain metastases referred to diagnostic MET PET/CT 
scan have been retrospectively considered. The scan only interested the brain region.  
Patients fasted 4 h before the PET examination, and successively were intravenously 
injected with MET. The PET/CT oncological protocol started 10 min after the 
injection. Tumor segmentation was performed off-line without influencing the 
treatment protocol or the patient management. The institutional hospital medical 
ethics review board approved the study protocol and all patients involved were 
properly informed released their written consent. 
	

6.3.6.2 PET/CT Acquisition Protocol 
	

 PET/CT scans were performed using the Discovery 690 PET/CT scanner (General 
Electric Medical Systems, Milwaukee, WI, USA). The PET protocol includes a 
SCOUT scan at 40 mA, a CT scan at 140 keV and 150 mA (10 sec), and 3D PET 
scans. The 3D ordered subset expectation maximization algorithm was used to for 
the PET imaging. Each PET image obtained consists of 256×256 voxels with a grid 
spacing of 1.17 mm3 and thickness of 3.27 mm3. Consequently, the size of each 
voxel is 1.17 × 1.17 × 3.27 mm3. Thanks to the injected PET radiotracer, tumor 



136	

appears as hyper-intense region. The CT scan was performed contextually to the PET 
imaging and used for attenuation correction. Each CT image consists of 512 × 512 
voxels with size 1.36 × 1.36 × 3.75 mm3. 
 

6.3.6.3 Framework for performance evaluation 
	

 A framework for the evaluation of the proposed protocol is presented. The 
effectiveness of the tissue classification is calculated regarding correct/incorrect 
classification using sensitivity, specificity, precision, and accuracy scores. Overlap-
based and spatial distance-based metrics are considered to determine the accuracy 
achieved by the proposed computer-assisted segmentation system against the gold-
standard (i.e., the manual segmentations performed by three experts are used to 
define a consolidated reference as described in the next section).  
The sensitivity is the number of correctly classified positive samples divided by the 
number of true positive samples, while the specificity is the number of correctly 
classified negative samples divided by the number of true negative samples. The 
precision is related to reproducibility and repeatability and it is defined as the degree 
to which repeated classifications under unchanged conditions show the same results. 
The accuracy is defined as the number of correctly classified samples divided by the 
number of classified samples. Concerning segmentation algorithm performance, the 
formulations proposed in [110] are used. In particular, mean, and standard deviation 
of sensitivity, positive predictive value (PPV), dice similarity coefficient (DSC), and 
Hausdorff distance (HD) were calculated. 
	 	

6.3.6.4 Gold Standard 
	

 The ground truth requires exact knowledge of the tumor and the histopathology 
analysis provides the only valid ground truth for the PET quantitative assessment. 
Nevertheless, the histopathology analysis is unavailable after the treatment. For this 
reason, the manual delineations performed by expert clinicians are a commonly 
accepted substitute for ground truth to assess the clinical effectiveness and feasibility 
of PET delineation methods [78]. Nevertheless, manual delineation is often 
influenced by the clinical specialization of the operator. For example, oncologists 
will, on average, draw smaller BTVs than radio-therapists. For this reason, the 
segmentations performed by three experts with different expertise (the chief nuclear 
medicine physician –M.I. author-, the chief radiotherapy physician –M.S. author- and 
an expert radiotherapy physician –G.R. author) were used as “ground truths”. A 
simultaneous ground truth estimation tool [36] was employed, and the three 
segmentations were combined to define a single and consolidated ground truth for 
each study. 
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6.3.6.5 Classifier validation 
	
The optimal K value of the K-Fold cross-validation integrated in the classifier has 
been determined as 5 through the trial-and-error method (k range: 5–15, step size of 
5) [56][65]. It corresponds to the highest classification accuracy. The validation 
results are shown in Table	6.3.27.   
 
Table 6.3.27 Sensitivity, specificity, precision, and accuracy values for KNN, NB, and DA classifier 
validations. 

	 Sensitivity	 Specificity	 Precision	 Accuracy	

KNN	 97.13%	 81.54%	 98.88%	 95.25%	

NB	 87.09%	 94.94%	 99.68%	 86.73%	

DA	 90.00%	 85.12%	 99.02%	 88.31%	

	

6.3.6.6 Clinical testing and Results on Dataset  
	
 Seventeen brain lesions were considered. From the initial dataset, two tumors 
were used in the classifier training. Consequently, the performance of the presented 
algorithm is investigated in the remaining cases against the ground truth provided by 
three expert operators are depicted in Table	6.3.28. 
 
Table 6.3.28 Mean sensitivities, PPVs, DSCs and HDs for 15 lesions are reported to assess the 
differences between the segmentations obtained using the LAC method with KNN, NB and DA 
classifiers and the “ground truth” provided by the three operators.  

	 Sensitivity	(%)	 PPV	(%)	 DSC	(%)	 HD	(voxels)	

KNN	 91.54±1.35	 85.36±3.72	 88.27±1.91	 1.18±0.52	

NB	 89.58±3.40	 89.76±3.31	 89.58±2.37	 1.07±0.61	

DA	 91.21±1.93	 90.78±2.03	 90.92±1.35	 0.79±0.40	

	

In addition, regardless of the classifier used, automatically segmented BTVs show 
high agreement with the manually segmented BTVs (determination coefficient R2 = 
0.98). Figure	6.3.11 reports the comparison between the proposed segmentations and 
the gold-standards for two patients. 
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Figure 6.3.11 Two example of brain tumor segmentation for each row using the LAC method coupled 
with KNN (first column), NB (second column), and DA (third column) classifiers. The proposed 
segmentations (red contours) and the gold standards (yellow contours) are superimposed. Blue and 
green contours concern the tissue classification. The region outside the blue boundary represent the 
“background”, while the region inside the green boundaries, and between the curves, represent the 
“lesion”, and the “border-line” region, respectively. In the last column, all retrieved segmentations are 
superimposed (gold standard in yellow, KNN in magenta, NB in cyan, and DA in light blue). 
	

6.3.6.7 Discussion 
	

 In this study, we described a segmentation protocol which leverages on the 
properties of MET PET to achieve the fully automatic segmentation of brain cancer. 
In this context, we used a segmentation algorithm LAC which features an energy 
function specifically adapted to the PET imaging and which combines the 
information from the PET data, and feedback from a classifier. The aim of such a 
protocol is for radiotherapy treatment purpose and for therapy response assessment. 
Each classifier was purposely and independently trained to label PET tissues into 
normal, abnormal, and border-line tissues. The training procedure is based on the 
ground truth obtained using a proper tool [36] starting from the manual 
segmentations provided by three expert operators. In addition, a smart sampling 
operation based on a moving window of 3x3 voxels has been implemented. After this 
preparation step, each classifier was able to label tissues never encountered before 
and to convey this useful information into the LAC algorithm. As a final remark, a 
fully automatic stop condition was provided. In this way and by taking advantage of 
the great sensitivity and specificity of MET PET studies to identify tumors in brain 
area, the proposed system produces segmentation results which are completely 
independent by the user. 
Performance of the proposed method were obtained by patient studies, for which the 
ground is impossible to obtain because the treatment alters the tissue morphology. 
Consequently, although manual delineation may largely differ between different 
human operators (for example, radiotherapy experts tend to draw larger boundaries 
than nuclear medicine physicians), with obvious impact on the resulting surrogate of 
ground truth, the delineation from experts is the only alternative. Here, for 
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performance evaluation purposes, the manual segmentations from three experts was 
used as a gold-standard. Such manual delineations were used to produce a 
consolidated reference [36] which was then used to assess the feasibility of the 
proposed method in the clinical environment. Seventeen patients undergo a PET/CT 
scan have been considered. Results show that the proposed protocol can be 
considered clinically feasible using any of the tested classifier, although the DA 
delivered slightly better results. Automatically segmented BTVs showed high 
agreement with the gold-standard (R2 = 0.98). Considering the relevance of our 
study in oncological patient management we will add PET studies to expand our 
database and, consequently, to improve and further assess the proposed method. 
 

6.3.7 Comparison of results 
	

Table	6.3.29 shows a comparison of the volumetric accuracy results for the smaller 
and larger spheres using the proposed segmentation systems 6.3.1, 6.3.3 and 6.3.4. 
for smaller and larger spheres. The best segmentation systems are respectively 6.3.4 
with Sensitivity 75.45±4.02%, PPV 86.89±12.04%, DSC 80.29±6.07%, HD 
1.03±0.16 and 6.3.1 with Sensitivity 93.22±7.18%, PPV 87.36±5.09%, DSC 
90.67±4.07%, HD 1.18±0.28. 

Table 6.3.29 Sensitivity, PPV, DSC, HD rates obtained over NEMA IEC phantoms (10-17mm and 22-
73mm) using the proposed system 6.3.1, 6.3.3 and 6.3.4 has been compared. 

Sphere 
Diameter 

System NEMA 
IEC 

Phantom 

Sensitivity 
[%] 

PPV [%] DSC [%] HD 
[voxels] 

10-17mm 

6.3.1 Mean± std  70.00±3.49% 87.56±8.87% 77.51±3.46% 1.12±0.15 
6.3.3 Mean± std 74,41±5,98% 85,83±13,94% 78,84±6,18% 1,06±0,19 
6.3.4 Mean± std 75.45±4.02% 86.89±12.04% 80.29±6.07% 1.03±0.16 

22-37mm 

6.3.1 Mean± std 93.22±7.18% 87.36±5.09% 90.67±4.07% 1.18±0.28 
6.3.3 Mean± std 92,58±2,49% 88,45±4,48% 90,36±2,75% 1,20±0,20 
6.3.4 Mean± std 92.27±2.45% 87.98±4.84% 90.04±3.23% 1.26±0.30 

 

Table	6.3.30 shows the comparison between the proposed segmentation systems 6.3.1, 
6.3.3 and 6.3.4 with respect to the original LAC and RW methods. In clinical cases 
the best segmentation system is 6.3.4 with DSC 85.36 ± 2.94%, 85.98 ± 3.40%, 
88.02 ± 2.75% respectively for lung, Head & Neck and Brain. 
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Table 6.3.30 Sensitivities, PPVs, DSCs and HDs for cancer studies using the proposed system 6.3.1, 
6.3.3, 6.3.4, original LAC and RW methods has been compared. 

Cancer Sensitivity  
[Mean ± std] 

PPV 
[Mean ± std] 

DSC  
[Mean ± std] 

HD 
[Mean ± std] 

 6.3.1 System 
Lung 93.63 ± 4.55% 78.64 ± 4.41% 85.36 ± 2.94% 1.87 ± 0.62 
Head & Neck 91.00 ± 7.33% 82.37 ± 7.30% 85.98 ± 3.40% 1.39 ± 0.61 
Brain 90.17 ± 4.89% 86.60 ± 6.89% 88.02 ± 2.75% 1.28 ± 0.54 
 6.3.3 System 
Lung 88.09 ± 4.18% 87.84 ± 5.15% 87.88 ± 3.89% 1.73 ± 0.74 
Head & Neck 88.58 ± 6.33 % 86.30 ± 5.37% 87.14 ± 3.31 % 1.16 ± 0.29 
Brain 92.33 ± 1.64% 86.43 ± 3.72% 89.21 ± 2.17% 1.08 ± 0.52 
 6.3.4 System 
Lung 88.00 ± 5.41% 88.19 ± 4.73% 88.01 ± 4.23% 1.53 ± 0.54 
Head & Neck 89.28 ± 5.70 % 85.53 ± 5.13% 87.15 ± 3.23 % 1.18 ± 0.39 
Brain 89.58 ± 3.40% 89.76 ± 3.31% 89.58 ± 2.37% 1.07 ± 0.61 
 Original LAC 
Lung 92.68 ± 5.67% 71.92 ± 12.36% 80.33 ± 9.51% 3.29 ± 0.74 
Head & Neck 80.32 ± 10.82% 83.88 ± 12.06% 78.73 ± 6.68% 2.81 ± 0.49 
Brain 91.16 ± 6.16% 77.38 ± 13.89% 83.55 ± 9.03% 2.88 ± 0.54 
 RW 
Lung 92.55 ± 5.66% 74.72 ± 7.44% 82.03 ± 6.52% 2.29 ± 0.77 
Head & Neck 79.03 ± 7.29% 84.58 ± 9.57% 82.59 ± 4.95% 1.41 ± 0.40 
Brain 88.12 ± 8.36% 86.68 ± 3.43% 86.75 ± 5.14% 1.31 ± 0.64 
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CHAPTER 7 

 

7 Discussions and Conclusions  

 
PET segmentation in radiotherapy is a critical task due to the lack of consistency 

in tumor contour, low image resolution, and relatively high level of noise and 
heterogeneity of FDG uptake within a lesion. Nevertheless, accurate lesion 
segmentation in PET imaging is essential for an accurate quantification of prognosis 
assessment and therapy response. Qualitative visual interpretation is the most 
commonly used method. The manual segmentation method is dependent on the 
experience of the nuclear physician limiting the measurement accuracy. In addition, 
it is time-consuming and impaired by inter- and intra-observer variability that is due 
to subjectivity and sensitivity to the display window level settings. To reduce these 
issues, several automatic methods have been presented but few clinical studies are 
available and there is no consensus for proper BTV determination. To date, CT and 
MR imaging are considered to be the standard for target volume delineation in 
radiotherapy. On the other hand, CT and MR imaging does not show the biological 
features of tumors. For this reason, PET has been introduced in the radiotherapy field 
to assist radiation oncologists in clinical routine. Despite the fact that many studies 
use the information of co-registered PET and CT images to identify features for 
distinguishing a lesion from the background and, consequently, for PET image 
segmentation, I believe that BTV extraction is independent from anatomical 
segmentation being inappropriate to consider a matching between anatomical and 
metabolic regions, with special reference in HNC district. I believe that a correct 
delineation of BTV must be obtained without incorporating anatomical information 
or incorporating them with great attention. For example, MRI is crucial for the 
illustration of the anatomy of brain tumors: for this reason, a study to determine 
simultaneously tumor contours on PET and RM images is a topic of this thesis. In 
addition, to identify oncological lesions in whole-body PET scans, a completely 
automatic detection method cannot be implemented since healthy organs such as 
brain, heart, bladder, and kidneys normally have a high FDG uptake, and, 
consequently, user interaction is mandatory. Vice versa, this is feasible in brain 
MET-PET studies. 

In this ph.D. Thesis a series of contributions concerning medical image processing 
and segmentation, and data analysis to classify and delineate tumor 3D volume to 
support medical decision have been presented. 

An automatic multi-seed detection method for magnetic resonance (MR) breast 
image segmentation is presented. The multi-seed detection has been focused because 
of its importance in regional segmentation technique as the region growing. The 
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maximum concavity points have been proposed as the seed points for the breast MR 
image segmentation. The detection of these points is based on the identification of 
three ROI of the breast MR image: the axillary regions and the sternal region. The 
Gold Standard, described in experimental results section, is used to compute the 
effectiveness and the performance of the proposed method. The preliminary results 
are very encouraging in terms of statistical metrics and execution time. In future 
works we are interested to extend the number of cases study and to develop a CAD 
(computer aided diagnostic) to detect suspicious regions on breast MRI: the first step 
is to detect the region of interest by using our proposed method (segmentation 
phase), than a further analysis and investigation should be conducted to detect 
suspicious regions by analysing several features such as texture descriptors, 
statistical descriptors, histogram of gradients and others state of the art techniques. 

A KSVM based technique for CD affected human patients classification has been 
presented. The classification results on the UPPH dataset composed of 300 patients, 
each of one codified by 22 qualitative features, have been calculated and compared 
against the histological specimen results. Histological specimen results are the 
clinical Ground-Truth for CD diagnosis and have been used for demonstrating the 
validity of proposed technique.  
Sensitivity, Specificity, Negative Predictive Value, Precision, Accuracy, and Error 
scores obtained using the proposed technique highlight the improvement in accuracy 
and quality compared to the manual results presented in [7]. 
The proposed technique has a significant advantage in integrating the cross- 
validation strategy. In addiction, the cross-validation strategy gives its contribution to 
the classifier generalization capability without showing either over-fitting or 
sensibility to the selected test dataset. However, classifier usability does not require 
any parameter setting and deep knowledge about the used learning machine 
technique. So, its degree of acceptance in medical practices is very high.  
 It was developed a KSVM-based system to classify incisional hernia recurrence. 
The classification results on a UPPH Dataset of 154 vectors composed of 34 
qualitative characteristics extracted from expert surgeons were compared with the 
results of the data extrapolated from the clinical records. Sensitivity (86,25%), 
Specificity (87,14%), Negative Predictive Value (84,72%), Precision (88,46%), 
Accuracy (86,67%), and Error (13,33%) scores obtained using the proposed 
technique highlight the validity for the relapse’s classification methodology Table	
6.2.2. 
 The intelligent data analysis therefore confirmed the already obvious correlations 
showed in the international literature, it also revealed possible associations with other 
comorbidities such as thyroid, liver, genitourinary and other interventions with the 
development of incisional hernia recurrence. The type of prosthesis and the site of its 
implant also play a significant role in the development of the recurrence. 
For the little number of patients considered, the low data collection and the high 
number of factors considered in the study despite the discreet sensitivity and 
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specificity achieved, new studies are required to further investigate new correlations 
proposals.	

Several methodologies have been combined to obtain a system for the smart 
segmentation of PET volumes. The key advantages of the presented system are that: 

• segmentation is performed after converting the PET data in SUVs, which 
convey patient-specific functional information;  

• based on minimal user input (i.e. a rough manual delineation on just one PET 
slice), a pre-segmentation step identifies the most relevant PET slice and 
provides an initial properly localized contouring to be used for a subsequent 
segmentation using LAC; 

• a more detailed segmentation process based on LAC and performed 
following a slice-by-slice based approach provides the flexibility necessary to 
segment cancer with very irregular shapes; 

• an automatic stopping condition is implemented. 
 

As a result, the presented algorithm produces cancer segmentations that are 
completely independent from variations in the input provided by the user. Such an 
input is minimal and, since subsequent processing steps are fully automatized, no 
further interaction is required. Inter-operator variations in the initial input still result 
in identical segmentations.  
Phantom studies were used to verify the effectiveness of the algorithm on well-
known, sharp-edged targets. Comparison of the results with the output of multiple 
alternative algorithms was performed. A large dataset of clinical cases was used to 
investigate the performance of the system as compared with selected, state of the art 
alternatives. Such comparison was performed on a statistical basis commonly used 
and considered as a reference practice in the field. The overall and final conclusion is 
that this system could easily comply with the demands of everyday clinical activity 
and could be used to extract in-vivo biomarkers of cancer in treatment response 
evaluation or to enhance the dose delivery in radiotherapy treatment, in order to 
avoid cancer recurrence.  
 A supervised system for normal and abnormal region classification in PET 
oncological images is presented. Classification results on the data- set composed of 
80 patients are calculated and compared against the physician classification.  
Sensitivity, specificity, precision, accuracy, and overlap scores obtained using the 
proposed method highlight the improvement in accuracy and quality compared to the 
others five methods.  
 The proposed real-time system could be applied to the field of PET image 
classification to assist physicians in radiation treatment planning in order to dis- 
criminate between normal and abnormal tissues.  
 It was proposed a segmentation system specifically engineered to reach the 
maximum level of automation and capable of obtaining an operator independent 
BTV. The segmentation algorithm at the core of the system is a local active contour 
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method adapted to PET imaging and whose design is based on the minimization of 
an innovative energy function which incorporates the information from a KNN 
classifier. The classifier, trained by examples provided by expert human operators, is 
capable of labelling the tissues into three categories: lesion, background and border-
line; potentially incorporating some of the trainer’s wisdom in the segmentation 
process. Considering the strategy adopted to generate the samples for training the 
classifier, we expected well separated classes. Therefore, the KNN represented the 
simplest and, to our opinion, the most advantageous choice. Of course, a different 
classifier might be used as well, and comparison with alternative algorithms will be 
discussed in future studies. The key features that make our approach original can be 
summarized as follows: 1) leverage on patient-specific metabolic information 
through the conversion of PET data into SUV; 2) reduction of the user intervention 
to minimum and limited to the selection of an initial region of interest on just one 
PET slice; 3) integration of the tissue classification in the energy functional which 
drives the local active contour method; 4) a slice-by-slice marching approach, which 
provides the flexibility necessary to segment cancer with very irregular shapes; 5) an 
automatic termination condition; 6) a smart automatic process that produces BTVs 
independent from the initial input. Phantom experiments demonstrated the 
effectiveness of the method on well-known, sharp-edged targets. The proposed 
segmentation method showed DSC and sensitivity greater than 90% for the 
experiments regarding spheres with a diameter greater than 17 mm, and provided 
better results in minimizing the difference between actual and automated BTVs than 
the other state-of-the-art methods. Nevertheless, the under-estimation of uptake 
concentration due to partial volume effect cannot be assumed to be negligible when 
the lesion size is smaller than 2–3 times the FWHM of the point spread function 
associated to the PET imaging system. Because of this inherent limitation of PET 
imaging, the segmentation of small lesions still remains very challenging [55] [96] 
no matter of the segmentation approach being used. Concerning the clinical 
application, cases from fifty patients and involving different body districts were 
considered for performance evaluation and results show that the proposed approach 
can be considered clinically feasible. Further, produced BTVs showed high 
agreement with the gold-standard (R2 = 0.98). In addition, comparison of the results 
with the output of state-of-the-art algorithms was performed. Such evaluation was 
performed on a statistical basis commonly considered to be a reference practice in 
the bio-imaging field. The overall and final conclusion is that our enhanced LAC 
method could be used in clinical environment to extract PET biomarkers in therapy 
response evaluation or to enhance the dose delivery in PTV to avoid cancer 
recurrence. 
 The LAC-DA method for the segmentation of biological tumor volumes has been 
proposed. The key features of the method are: 

• The integration of patient-specific functional information obtained by 
converting PET images to SUV images; 
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• The inclusion of an initialization step to translate the region highlighted by 
the user (on just one slice) to an operator independent mask to be used as 
starting point of the segmentation; 

• The integration of the DA classification in the LAC method trough a novel 
formulation of the energy functional to be minimized; 

• The implementation of an automatic termination condition; 
• The implementation of a smart automatic process able to segment 

independently of the user input variations. 
• The whole process is nearly full automatized. 

 
Phantom studies were used to verify the performance of the method on well-known, 
sharp-edged targets. Comparison of the results with the output of state-of-the-art 
methods was performed. Fifty clinical cases were used to assess the clinical 
feasibility of the proposed method. Such evaluation was performed on a statistical 
basis commonly considered as a reference practice in the PET image segmentation.  
In conclusion, the proposed LAC-DA method could be used in the clinical 
environment to extract PET parameters for therapy response evaluation purpose or to 
enhance the dose delivery in PTV avoiding tumor recurrence. 
 A complex, semi-automatic system featuring an enhanced LAC algorithm 
purposely adapted to the PET imaging was further adapted to achieve the fully 
automatic BTV segmentations of brain cancers. The fully automatic approach 
leverages on the fact that MET-PET is capable of selectively highlight the ill regions 
of the brain, so avoiding false positives commonly encountered in other anatomic 
regions (e.g. as in FDG-PET studies). An automatic and operator-independent ROI is 
generated around the tumor(s) and used as input to an enhanced LAC algorithm. 
Then, the LAC performs the BTV delineation. The BTV is built by a slice-by-slice 
marching approach where the segmentation is performed on subsequent slices. In 
principle, segmentation through the evolution of a full 3D surface would be 
preferable. Indeed, while on the one hand we are currently investigating such a 3D 
approach, on the other hand, the present work moves an important step toward 3D 
data segmentation improving upon the model proposed by Lankton et al [14] [83] 
considering the issue of the PET slices thickness (3.27 mm3) far greater than planar 
resolution (1.17 mm3) which partially justifies the 2D approach. As a final remark, a 
fully automatic stop condition is provided. In this way, the proposed system produces 
segmentation results that are completely independent by the user. 
Performance of the automatic system has been obtained by phantom studies 
consisting of hot spheres in a warm background. Nevertheless, phantom experiments 
cannot replicate all the aspects of a real clinical case but they represent a useful way 
to assess common performances across different algorithms. DSC greater than 92% 
for the larger spheres confirm better results in minimizing the difference between 
reference and automated BTVs than the other state-of-the-art algorithms. We would 
like to emphasize that original algorithms for both enhanced RW and original LAC 
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methods [17, 19] [83][86] were optimized for MET-PET brain metastases [10, 12] 
[84][98]. Concerning RG and FCM methods, we used the source codes available on 
the web, and we adapted it to our PET dataset. 
In patient studies, since radiotherapy treatment alters the cancer morphology over 
time, histopathology cannot provide a reliable ground truth. Consequently, manual 
delineation by experts, although it may differ between operators (for example, 
radiotherapy experts tend to draw larger boundaries than nuclear medicine 
physicians), is often used as surrogate gold-standard. In this study, we used manual 
delineations from three experts. To overcome the issue of differences in the manual 
delineations, a consolidated reference was built [16] [36] and then used to assess the 
feasibility of the automatic segmentation. PET/CT data from ten patients before 
Gamma Knife treatment were considered. Results show that the proposed approach 
can be considered clinically feasible and could be used to extract PET parameters for 
therapy response evaluation purpose and to assist the BTV delineation during 
stereotactic radiosurgery treatment planning avoiding cancer recurrence. Finally, 
further investigations will be carried out to assess the usefulness to introduce in the 
segmentation a PET tissue classifier capable of influencing the local active contour 
toward what would be the segmentation performed by a human operator [21–24] 
[65][93][127][143]. 
 At last, we demonstrated how a semi-automatic algorithm we proposed in 
previous work may be integrated into a protocol which becomes fully automatic for 
the detection brain metastases. Such a protocol combines 11C-labeled Methionine 
PET acquisition with our previous segmentation approach. The key features of the 
protocol include the use of MET radio tracer, the integration of patient-specific 
functional information obtained by converting PET images to SUV images; a 
preliminary task to identify an initial, properly localized, operator-independent ROI 
to be used for the LAC segmentation; the integration of tissue classification (either 
using KNN, NB, or DA) in the LAC method directly in the formulation of the energy 
functional to be minimized to enhance the accuracy of the BTV contouring; and a 
slice-by-slice marching approach with an automatic termination condition. This 
features make the whole process fully automatic in the context of brain cancer. 
Brain metastases were used to assess the performance of the proposed protocol on a 
statistical basis commonly considered as a reference practice in the PET imaging 
field. Results showed that this protocol can be used to extract PET parameters for 
therapy response evaluation purpose and to provide automatic the BTV delineation 
during radiosurgery treatment planning in the special context of brain cancer. 
 In conclusion, the proposed methods are very powerful in terms of PET image and 
PET/MRI image segmentation, and may be used daily as a Medical Decision Support 
Systems to enhance the current methodology performed by healthcare operators in 
radiotherapy treatments. Future directions will aim to investigate smart techniques 
for the medical imaging problematics, but also for the managing and elaboration of 
Big Data coming from a wide kind of heterogeneous sources, bringing the computer 
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science field increasingly closer and transversal to the medicine science. 
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