514 research outputs found

    Design and Evaluation of a Probabilistic Music Projection Interface

    Get PDF
    We describe the design and evaluation of a probabilistic interface for music exploration and casual playlist generation. Predicted subjective features, such as mood and genre, inferred from low-level audio features create a 34- dimensional feature space. We use a nonlinear dimensionality reduction algorithm to create 2D music maps of tracks, and augment these with visualisations of probabilistic mappings of selected features and their uncertainty. We evaluated the system in a longitudinal trial in users’ homes over several weeks. Users said they had fun with the interface and liked the casual nature of the playlist generation. Users preferred to generate playlists from a local neighbourhood of the map, rather than from a trajectory, using neighbourhood selection more than three times more often than path selection. Probabilistic highlighting of subjective features led to more focused exploration in mouse activity logs, and 6 of 8 users said they preferred the probabilistic highlighting mode

    Advances in next-track music recommendation

    Get PDF
    Technological advances in the music industry have dramatically changed how people access and listen to music. Today, online music stores and streaming services offer easy and immediate means to buy or listen to a huge number of songs. One traditional way to find interesting items in such cases when a vast amount of choices are available is to ask others for recommendations. Music providers utilize correspondingly music recommender systems as a software solution to the problem of music overload to provide a better user experience for their customers. At the same time, an enhanced user experience can lead to higher customer retention and higher business value for music providers. Different types of music recommendations can be found on today's music platforms, such as Spotify or Deezer. Providing a list of currently trending music, finding similar tracks to the user's favorite ones, helping users discover new artists, or recommending curated playlists for a certain mood (e.g., romantic) or activity (e.g., driving) are examples of common music recommendation scenarios. "Next-track music recommendation" is a specific form of music recommendation that relies mainly on the user's recently played tracks to create a list of tracks to be played next. Next-track music recommendations are used, for instance, to support users during playlist creation or to provide personalized radio stations. A particular challenge in this context is that the recommended tracks should not only match the general taste of the listener but should also match the characteristics of the most recently played tracks. This thesis by publication focuses on the next-track music recommendation problem and explores some challenges and questions that have not been addressed in previous research. In the first part of this thesis, various next-track music recommendation algorithms as well as approaches to evaluate them from the research literature are reviewed. The recommendation techniques are categorized into the four groups of content-based filtering, collaborative filtering, co-occurrence-based, and sequence-aware algorithms. Moreover, a number of challenges, such as personalizing next-track music recommendations and generating recommendations that are coherent with the user's listening history are discussed. Furthermore, some common approaches in the literature to determine relevant quality criteria for next-track music recommendations and to evaluate the quality of such recommendations are presented. The second part of the thesis contains a selection of the author's publications on next- track music recommendation as follows. 1. The results of comprehensive analyses of the musical characteristics of manually created playlists for music recommendation; 2. the results of a multi-dimensional comparison of different academic and commercial next-track recommending techniques; 3. the results of a multi-faceted comparison of different session-based recommenders, among others, for the next-track music recommendation problem with respect to their accuracy, popularity bias, catalog coverage as well as computational complexity; 4. a two-phase approach to recommend accurate next-track recommendations that also match the characteristics of the most recent listening history; 5. a personalization approach based on multi-dimensional user models that are extracted from the users' long-term preferences; 6. a user study with the aim of determining the quality perception of next-track music recommendations generated by different algorithms

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Blending Two Automatic Playlist Generation Algorithms

    Get PDF
    We blend two existing automatic playlist generation algorithms. One algorithm is built to smoothly transition between a start song and an end song (Start-End). The other infers song similarity based on adjacent occurrences in expertly authored streams (EAS). First, we seek to establish the effectiveness of the Start-End algorithm using the EAS algorithm to determine song similarity, then we propose two playlist generation algorithms of our own: the Unbiased Random Walk (URW) and the Biased Random Walk (BRW). Like the Start-End algorithm, both the URW algorithm and BRW algorithm transition between a start song and an end song; however, issues inherent to the Start-End algorithm lead us to believe that our algorithms may create playlists with smoother transitions between songs

    Automatic Personalized Playlist Generation

    Get PDF
    Käesolevas magistritöös on esitatud automaatse personaliseeritud pleilisti tekitaja probleemi lähenemisviiside uuring. Lisaks teoreetilise tausta lühiülevaatele me dokumenteerisime oma lähenemist: meie poolt tehtud katsed ning nende tulemused. Meie algoritm koosneb kahest põhiosast: pleilisti hindamisfunktsiooni konstrueerimine ning pleilisti genereerimisstrateegia valik. Esimese ülesande lahendamiseks on valitud Naive Bayes klassifitseerija ning 5-elemendiline MIRtoolbox tööristakasti poolt kavandatud audio sisupõhiste attribuutide vektor, mis klassiitseerivad pleilisti heaks või halvaks 82% täpsusega - palju parem kui juhuslik klassifitseerija (50%). Teise probleemi lahendamiseks proovisime kolm genereerimisalgoritmi: lohistus (Shuffle), randomiseeritud otsing (Randomized Search) ning geneetiline algoritm (Genetic Algorithm). Vastavalt katsete tulemustele kõige paremini ja kiiremini töötab randomiseeritud otsingu algoritm. Kõik katsed on tehtud 5 ning 10 elemendilistel pleilistidel. Kokkuvõttes, oleme arendanud automatiseeritud personaliseeritud pleilisti tekitaja algoritmi, mis vastavalt meie hinnangutele vastab ka kasutaja ootustele rohkem, kui juhuslikud lohistajad. Algoritmi võib kasutada keerulisema pleilistide konstrueerimiseks

    Graph-RAT: Combining data sources in music recommendation systems

    Get PDF
    The complexity of music recommendation systems has increased rapidly in recent years, drawing upon different sources of information: content analysis, web-mining, social tagging, etc. Unfortunately, the tools to scientifically evaluate such integrated systems are not readily available; nor are the base algorithms available. This article describes Graph-RAT (Graph-based Relational Analysis Toolkit), an open source toolkit that provides a framework for developing and evaluating novel hybrid systems. While this toolkit is designed for music recommendation, it has applications outside its discipline as well. An experiment—indicative of the sort of procedure that can be configured using the toolkit—is provided to illustrate its usefulness

    Concepts and Techniques for Flexible and Effective Music Data Management

    Get PDF

    A hybrid approach for item collection recommendations : an application to automatic playlist continuation

    Get PDF
    Current recommender systems aim mainly to generate accurate item recommendations, without properly evaluating the multiple dimensions of the recommendation problem. However, in many domains, like in music, where items are rarely consumed in isolation, users would rather need a set of items, designed to work well together, while having some cognitive properties as a whole, related to their perception of quality and satisfaction. In this thesis, a hybrid case-based recommendation approach for item collections is proposed. In particular, an application to automatic playlist continuation, addressing similar cognitive concepts, rather than similar users, is presented. Playlists, that are sets of music items designed to be consumed as a sequence, with a specific purpose and within a specific context, are treated as cases. The proposed recommender system is based on a meta-level hybridization. First, Latent Dirichlet Allocation is applied to the set of past playlists, described as distributions over music styles, to identify their underlying concepts. Then, for a started playlist, its semantic characteristics, like its latent concept and the styles of the included items, are inferred, and Case-Based Reasoning is applied to the set of past playlists addressing the same concept, to construct and recommend a relevant playlist continuation. A graph-based item model is used to overcome the semantic gap between songs’ signal-based descriptions and users’ high-level preferences, efficiently capture the playlists’ structures and the similarity of the music items in those. As the proposed method bases its reasoning on previous playlists, it does not require the construction of complex user profiles to generate accurate recommendations. Furthermore, apart from relevance, support to parameters beyond accuracy, like increased coherence or support to diverse items is provided to deliver a more complete user experience. Experiments on real music datasets have revealed improved results, compared to other state of the art techniques, while achieving a “good trade-off” between recommendations’ relevance, diversity and coherence. Finally, although actually focusing on playlist continuations, the designed approach could be easily adapted to serve other recommendation domains with similar characteristics.Los sistemas de recomendación actuales tienen como objetivo principal generar recomendaciones precisas de artículos, sin evaluar propiamente las múltiples dimensiones del problema de recomendación. Sin embargo, en dominios como la música, donde los artículos rara vez se consumen en forma aislada, los usuarios más bien necesitarían recibir recomendaciones de conjuntos de elementos, diseñados para que se complementaran bien juntos, mientras se cubran algunas propiedades cognitivas, relacionadas con su percepción de calidad y satisfacción. En esta tesis, se propone un sistema híbrido de recomendación meta-nivel, que genera recomendaciones de colecciones de artículos. En particular, el sistema se centra en la generación automática de continuaciones de listas de música, tratando conceptos cognitivos similares, en lugar de usuarios similares. Las listas de reproducción son conjuntos de elementos musicales diseñados para ser consumidos en secuencia, con un propósito específico y dentro de un contexto específico. El sistema propuesto primero aplica el método de Latent Dirichlet Allocation a las listas de reproducción, que se describen como distribuciones sobre estilos musicales, para identificar sus conceptos. Cuando se ha iniciado una nueva lista, se deducen sus características semánticas, como su concepto y los estilos de los elementos incluidos en ella. A continuación, el sistema aplica razonamiento basado en casos, utilizando las listas del mismo concepto, para construir y recomendar una continuación relevante. Se utiliza un grafo que modeliza las relaciones de los elementos, para superar el ?salto semántico? existente entre las descripciones de las canciones, normalmente basadas en características sonoras, y las preferencias de los usuarios, expresadas en características de alto nivel. También se utiliza para calcular la similitud de los elementos musicales y para capturar la estructura de las listas de dichos elementos. Como el método propuesto basa su razonamiento en las listas de reproducción y no en usuarios que las construyeron, no se requiere la construcción de perfiles de usuarios complejos para poder generar recomendaciones precisas. Aparte de la relevancia de las recomendaciones, el sistema tiene en cuenta parámetros más allá de la precisión, como mayor coherencia o soporte a la diversidad de los elementos para enriquecer la experiencia del usuario. Los experimentos realizados en bases de datos reales, han revelado mejores resultados, en comparación con las técnicas utilizadas normalmente. Al mismo tiempo, el algoritmo propuesto logra un "buen equilibrio" entre la relevancia, la diversidad y la coherencia de las recomendaciones generadas. Finalmente, aunque la metodología presentada se centra en la recomendación de continuaciones de listas de reproducción musical, el sistema se puede adaptar fácilmente a otros dominios con características similares.Postprint (published version

    Talk the Walk: Synthetic Data Generation for Conversational Music Recommendation

    Full text link
    Recommendation systems are ubiquitous yet often difficult for users to control and adjust when recommendation quality is poor. This has motivated the development of conversational recommendation systems (CRSs), with control over recommendations provided through natural language feedback. However, building conversational recommendation systems requires conversational training data involving user utterances paired with items that cover a diverse range of preferences. Such data has proved challenging to collect scalably using conventional methods like crowdsourcing. We address it in the context of item-set recommendation, noting the increasing attention to this task motivated by use cases like music, news and recipe recommendation. We present a new technique, TalkTheWalk, that synthesizes realistic high-quality conversational data by leveraging domain expertise encoded in widely available curated item collections, showing how these can be transformed into corresponding item set curation conversations. Specifically, TalkTheWalk generates a sequence of hypothetical yet plausible item sets returned by a system, then uses a language model to produce corresponding user utterances. Applying TalkTheWalk to music recommendation, we generate over one million diverse playlist curation conversations. A human evaluation shows that the conversations contain consistent utterances with relevant item sets, nearly matching the quality of small human-collected conversational data for this task. At the same time, when the synthetic corpus is used to train a CRS, it improves Hits@100 by 10.5 points on a benchmark dataset over standard baselines and is preferred over the top-performing baseline in an online evaluation

    Word2vec embeddings for playlist recommendation

    Get PDF
    Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Santi Seguí Mesquida i Guillem Pascual i Guinovart[en] We present an ML approach to musical playlist recommendation. Using the algorithm Word2Vec, a shallow two-layer neural network trained to reconstruct linguistic context of words, we have created several embeddings using tracks and playlist titles as words of an artificial vocabulary. Some experiments with different trade-offs between the diversity and the popularity of songs in playlists are analyzed and discussed. By means of combining a tracks embedding and a titles embedding our recommender has reached 19 percent of accuracy. Our model has been created and trained using the MPD (million playlists dataset) given by Spotify as part of the RecSys Challenge 2018
    corecore