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Abstract

CURBOW, JAMES E. Blending Two Automatic Playlist Generation Algorithms. Department of
Computer Science, June 2016.

ADVISOR: Anderson, Matthew

We blend two existing automatic playlist generation algorithms. One algorithm is built to smoothly

transition between a start song and an end song (Start-End). The other infers song similarity based on

adjacent occurrences in expertly authored streams (EAS). First, we seek to establish the effectiveness of the

Start-End algorithm using the EAS algorithm to determine song similarity, then we propose two playlist

generation algorithms of our own: the Unbiased Random Walk (URW) and the Biased Random Walk

(BRW). Like the Start-End algorithm, both the URW algorithm and BRW algorithm transition between a

start song and an end song; however, issues inherent to the Start-End algorithm lead us to believe that our

algorithms may create playlists with smoother transitions between songs.
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1 Introduction

A playlist is a sequence of recorded songs designed to be listened to in order. The importance of the playlist

has become increasingly evident to music streaming services such as Spotify 1 and Pandora 2 [8, 3]. These

services typically encourage user to generate playlists, as well as promote the playlists that the service it-

self has generated, because playlists often escalate service usage [1]. Service-generated playlists are either

expertly curated (i.e., the songs are selected and ordered by an expert), or created automatically by a com-

puter. Some services now have billions of playlists available [2].

Automatic playlist generation’s heightened influence makes the field a particularly relevant and excit-

ing one. Researchers are developing new, exciting concepts for automatic playlist generation algorithms;

for example, Platt developed an algorithm that generates a playlist based on multiple seed songs [6]. How-

ever, while there exist several interesting mechanisms designed to automatically create a playlist, many

listeners still prefer user-made playlists [4]. This prompts the questions: In what way are these automatic

playlist generation algorithms flawed? And, more importantly, how can we improve them?

One specific technique that may be improved upon is proposed by Flexer et al. which we call the Start-

End algorithm [5]. This method selects and orders a set of songs to create a playlist that transitions between

a given start song and end song. This is a relatively novel feature that has not been implemented by most

music streaming services. However, their algorithm appears to have a few major flaws–namely, it does

ensure a smooth transition between songs that are adjacent in the playlist.

Implementing a playlist generation algorithm requires a method to determine song similarity. In their

implementation of the Start-End algorithm, Flexer et al. use a mechanism known as audio fingerprinting

which relies on acoustic content to determine song similarity. Fletcher et al. make the claim that ”different

approaches towards computation of similarity” can be applied in their algorithm [5]. In our implementation

we will use a different technique to determine song similarity.

We define the term ”expertly-determined smoothness”. Unlike Flexer et al.’s interpretation of smooth

transitions, which focus on temporal and acoustic elements of songs, expertly-determined smoothness fo-

cuses on relationships between songs that a user would first notice. The method we use to determine song

1spotify.com
2pandora.com
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similarity is proposed by Ragno et al. Their algorithm infers similarity between songs based on the number

of adjacent occurrences in expertly authored streams (the EAS algorithm) [7]. By taking into account ex-

pertly authored streams, such as a radio DJ’s set-list, or a commercially-produced sequence of songs like a

movie soundtrack, we believe that the EAS algorithm accounts for expertly-determined smoothness. This

is due to the fact that the algorithm is based on a expert’s playlist decisions–this is an element of song

similarity that an audio fingerprinting techniques does not account for.

Implementing the Start-End algorithm using the EAS algorithm to determine song similarity prompted

the questions: Does the Start-End algorithm produce a smooth playlist? How can the Start-End algorithm

be improved so that it does ensure smooth transitions between adjacent songs?

The necessary improvements to the Start-End algorithm led us to two proposed playlist generation

algorithms: the Unbiased Random Walk (URW) and the Biased Random Walk. These algorithms were also

implemented using the EAS algorithm to determine song similarity; this ensured that any difference in

result is a function of the altered playlist generation algorithm (the Start-End algorithm and the algorithms

introduced that improve upon it), and not a difference in the song-similarity algorithm (the EAS algorithm).

This allowed us to compare the Start-End song algorithm to the URW algorithm and the BRW algorithm.

We proceed by providing an overview of the EAS algorithm in Section 2. In Section 3 we detail the

methods we used to prepare edge weights in the graph from the EAS algorithm to be input for the playlist

generation algorithms that are outlined in Section 4. In Section 5 we provide an overview of the data

we collected as well as our implementation. In Section 6 we present the results of the playlist generation

algorithms, and analyze the results in Section 7. We conclude and discuss plans for future work in Section

8.

2 Expertly Authored Stream Algorithm

The EAS algorithm allows us to infer song similarity by exploiting the order of expertly authored streams

(playlists). The idea is intuitive: songs that are adjacent in an expertly curated playlist are similar–an expert

(such as a DJ) probably wouldn not follow up Beethoven’s 5th Symphony with Justin Bieber’s latest single.

The EAS algorithm quantifies these expert decisions and allows us to compute song similarity [7]. The
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algorithm takes a playlist of songs as input and constructs a weighted graph. The nodes in the graph

represent each unique song in the playlist. The edge weight between a pair of songs is equal to the number

of times those songs appear next to each other in the playlist. The Algorithm 1 outlines the algorithm.

Algorithm 1 Converting an EAS to a Weighted Graph

1: Input: A stream of songs S
2: Output: A weighted graph G = (V,w)
3: V = songs in S.
4: wu,v = 0, ∀ u, v ∈ V .
5: for i = 1...(|S| − 1) do
6: wS[i],S[i+1]++.
7: end for

Figure 1 illustrates the EAS algorithm. The playlist on the left is read into the EAS algorithm which

builds the graph depicted on the right. The edge weights between two nodes correspond to the number of

playlist adjacencies between the songs that those nodes represent. When songs are never adjacent they have

weight 0, and that edge is not drawn. We will calculate similarities based on these edge weights. We can

aggregate the information of multiple expert playlists by repeatedly running Algorithm 1 and accumulating

the weights on the same graph G = (V,w).

Figure 1: Building a weighted graph using Algorithm 1.
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3 Converting Edge Weights to Similarities

In this section we explain how we have interpreted similarities from the output of the EAS algorithm. We

calculate two different types of similarities: the one-way similarity, and the two-way similarity. We expect

that the different similarities will impact the smoothness of the playlist in different ways, which should be

reflected in our results.

3.0.1 One-Way Similarity

The first similarity type is what we call the one-way similarity. To calculate the one-way similarity from

node u to node v, we divide the weight between the two nodes by the sum of the weights of all the edges

that land on node 1. This similarity is asymmetric, and it is simply the transitional probability between two

nodes (or two songs). Equation 1 details the calculation.

sim(u, v) =
wu,v∑

x∈V wu,x
. (1)

Figure 2 provides a simple example of how we convert the edge weights from the graph produced by

the EAS algorithm (left) to one-way similarities (right). To calculate the similarity between songs A and B

(transitioning from A to B), we divide the edge weight between the two songs (2) by the sum of all edges

that land on A (3), which leaves us with 2/3.

It is important to note how this calculation will actually affect the playlist. These similarities are the

probabilities of transitioning from one node to another, and they are based solely on the node that we are

transitioning away from. This has an interesting consequence. In Figure 2, node C is connected to every

other node in the graph, and node D is connected only to C. It is safe to assume that a node’s degree

indicates the corresponding song’s popularity in the graph, so we can say C is a popular song, and song D

is not as popular.

But there is something significant to be said about the transition between C and D. D rarely appears,

but when it does, it appears only next to C–perhaps this apparently weak relationship is indicative of a

surprisingly strong similarity. This idea motivates the two-way Similarity described in the next section.
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Figure 2: Calculating the one-way similarities for song A (right) based on the edge weights.

3.0.2 Two-Way Similarity

The second similarity calculation is the two-way similarity. This similarity is symmetric, i.e., the similarity

from node u to node node v is the same as the similarity from node v to node u. To calculate the similarity

between the two nodes, we divide the edge between the two nodes by the sum of all the edges landing on

both nodes. Equation 2 outlines the calculation.

sim(u, v) =
wu,v∑

x∈V wu,x +
∑

y∈V wv,y
. (2)

Figure 3 provides a simple example of how to calculate the similarities (right) from the edge weights (left).

To calculate the similarity between A and B, we divide the edge weight between A and B (2) by the sum

of every edge landing on both A and B: A’s edge weights sum to 3 (1 + 2), and B’s edge weights sum to 4

(2 + 2), so we have 2/7.

We anticipate that this similarity calculation will have a different effect on the resulting playlists. With

this symmetric two-way similarity, we are taking into account both the node we are transitioning from and

the node we are transitioning to. This levels the playing field for popular songs and less popular songs. Our

example in Figure 3 illustrates this effect. The similarity between D and C is greater than that between A
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Figure 3: Calculating the two-way similarities (right) based on the edge weights.

and C. This similarity does not let A’s popularity overshadow the significance of the relationship between

C and D as described above in 3.1.1.

4 Playlist Generation Algorithms

This section details the Start-End algorithm, and our improved playlist generation algorithms: the Unbiased

Random Walk algorithm and the Biased Random Walk algorithm.

Note that there is one trivial difference between Flexer et al.’s implementation of the Start-End algorithm

and ours: Flexer et al. pick and order songs by divergence–a measure that quantifies how different two

songs are. A high divergence indicates that songs are very different, and a low divergence indicates that

they are alike. In our implementation, however, we pick and order songs by similarity, which is a measure

between two songs that describes how alike they are. Divergence is the inverse of similarity. This means

implementing their algorithm to use similarities instead required minimal changes, and resulted in no

changes in the algorithm’s behavior. We denote the similarity between two songs, Si and Sj by sim(Si, Sj);

the divergence between the same two songs is equal to 1
sim(Si,Sj)

.

Flexer et al. require that similarities satisfy three properties: (i) the larger sim(Si, Sj) is, the more alike

they are; (ii) a song’s similarity to itself must be finite; and (iii) similarities must be symmetric, i.e.,
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sim(Si, Sj) = sim(Sj , Si). The two-way similarity calculated using the techniques from Section 3 meet

all these requirements. The one-way similarity, however, meets all but the last. We set self-similarity to

some number between 0 and 1. While the one-way similarity is not symmetric, we believe asymmetry will

not prevent the algorithm from running as intended. (Figure 4).

Figure 4: Similarity Requirements

In the following discussion of playlist generation algorithms we will refer to a playlist as a sequence

of p songs, excluding the start and end songs, Ss and Se. A playlist is derived from a library of n songs,

(S1, S2, . . . , Sn).

4.1 Start-End Algorithm

Conventional automatic playlist generation tools, such as Spotify Radio and Pandora, are primarily a func-

tion of a start song (and in some cases intermittent user-feedback). These services simply prompt the user

for a start song, and then deliver a playlist based on that song. The Start-End algorithm is different; it is

primarily a function of a start song and and an end song. It is this unconventional feature that motivates

this research. The Start-End algorithm consists of two (supposedly) independent parts:

1. Read in a library of songs, then determine the similarity between each song (again, in their imple-

mentation Flexer et al. compute song similarity based on”spectral similarity” which is a form of audio

fingerprinting; we use the EAS algorithm).

2. Select and order the songs based on their similarities to smoothly transition from a start song to an

end song. This is the part of the algorithm that we classify as a playlist generation algorithm because

7



it actually creates the playlist.

In our research, we replace Step 1 with the EAS algorithm. The Start-End algorithm is detailed below:

Algorithm 2 Creating a playlist using the Start-End algorithm.

1: Input: A database of n songs (S), a start song and an end song (Ss and Se, respectively), a threshold (t),
and a similarity graph (from the EAS algorithm) (simGraph), we will calculate a playlist of length, p.

2: Output: A smooth list of p unique songs with that begins at Ss and ends at Se.
3: Create an ordered list, startSimilarities, of S such that the song with the highest similarity to Ss is at

the head of the list, and the song with the smallest similarity to Ss is at the tail.
4: Create an ordered list, endSimilarities, of S such that the song with the highest similarity from Se is at

the head of the list, and the song with the smallest similarity from Se is at the tail.
5: Use t to calculate Threshold Index: thresholdIndex = bt ∗ nc.
6: Eliminate t% songs from S by removing t% songs that are least similar to both the start song and the

end song. This leaves us with a m songs for further processing.
7: Calculate Playlist Step-Width: step = R(Ss)−R(Se)

p+1 , where R(S) = sim(S,Se)
sim(Ss,S) .

8: Find ideal song position, R̂(j) = R̂(Ss) + j ∗ step.
9: Select p songs, Sj , that best match these ideal positions: Sj = argmin

i=1,...,m
‖R̂(j)−R(i)‖.

Figure 5 is a number line depicting step 7 of the Start-End algorithm. Each mark on the number line

represents an ideal position, and each position is separated by the step width calculated in in step 6 (in this

example, the step width is .4). The numbers below the number line are the ideal similarity ratios at each

position. The songs are depicted above the number line according to their real similarity ratio (e.g., song D

has a real similarity ratio between ideal similarity ratios .4 and .8).

Figure 5: Ideal Similarity Ratios and Real Similarity Ratios

Figure 6 illustrates the matching process outlined in step 8. This step is responsible for ordering the

playlist. The resulting playlist is ADECFHGIB.
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Figure 6: Selecting Songs Based on Ideal Similarity Ratios and Real Ratios

4.2 Unbiased Random Walk Algorithm

In this section we detail the Unbiased Random Walk algorithm. Like the Start-End algorithm, this algo-

rithm transitions from a start song to an end song. The goal of the URW algorithm was to ensure that each

song in the playlist has at worst a non-zero similarity to the previous song, and at best a high similarity to

the previous song. Recall that the structure of the EAS algorithm’s output is a graph. We can use this to

our advantage to create a playlist generation algorithm. We want to perform a random walk from the start

node to the end node in the given number of steps. The URW algorithm is outlined below:

Algorithm 3 URW Algorithm

Input: A number of attempts, attempts, a greediness parameter, z, a playlist length and range, length
and range, a similarity graph (from the EAS algorithm), simGraph, and a start song and end song, Ss

and Se, respectively.
Output: A smooth sequence of unique songs with a length between length − range and length + range
that transitions from Ss to Se, or, an empty playlist.
runner = startSong
playlist = [startSong]
while len(playlist) <= length+ range do

select z random neighbors of runner; let next be the neighboring node most similar to runner
append next to playlist
runner = next
if (runner == endSong) && (length− range <= len(playlist <= length+ range) then

return playlist
end if

end while
return empty playlist

We can make the URW algorithm greedier by increasing the z parameter. As z increases, the algorithm

gets less random and more greedy because it is picking more of the runner’s neighbors, so the odds are one
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of them has a higher similarity to the runner node. In the limit of large z, the algorithm always picks the

most similar neighbor.

Algorithm 3 is a Monte Carlo Algorithm, that is, it does not guarantee that we find a playlist, so we run

this algorithm until it either finds a playlist or reaches the attempts parameter. It returns an empty list if

attempts is reached.

4.3 Biased Random Walk Algorithm

The Biased Random Walk algorithm is a slight variation on the Unbiased Random Walk algorithm (the

required inputs are the same). The distinguishing feature of this algorithm is that we do not choose the next

song completely at random and as we do in the non-greedy URW algorithm–we pick based on probability

determined similarity. We can do this easily using the one-way similarities because they function exactly

like transitional probabilities. To use this method with the two-way similarities, we have to normalize the

similarities so that all edges leaving a node sum to 1. This allows us to treat them like probabilities. The

BRW algorithm is outlined in Algorithm 4.

An example may clarify the algorithm. In Figure 2, if our start song is A, and our randomly chosen r

value is .9, we would choose C as our next song.

10



Algorithm 4 BRW Algorithm

Input: A number of attempts, attempts, a greediness parameter, z, a playlist length and range, length
and range, a similarity graph (from the EAS algorithm), simGraph, and a start song and end song, Ss

and Se, respectively.
Output: A smooth sequence of unique songs with a length between length − range and length + range
that transitions from Ss to Se, or, an empty playlist.
runner = startSong
playlist = [startSong]
while len(playlist) <= length+ range do
acc = 0
create list of z random numbers, R, such that 0 <= r <= 1∀r ∈ R.
create an ordered list, neighbors, such that neighbors[0] has the highest similarity to runner
for node in neighbors do

if (min(R) <= similarity(node, runner) then
playlist.append(node)
runner = node

else
acc += similarity(node, runner)

end if
end for
if (runner is endSong) && (length− lengthRange <= playlistLength <= length+ lengthRange) then

return playlist
end if

end while
return empty playlist

11



Like in the URW algorithm, we can make the URW algorithm greedier by increasing the z parameter.

As z increases, the algorithm gets less random and more greedy because it is picking z random numbers,

and setting the minimum to r. As the r value decreases, the similarity between the runner and the next node

increases.

Agian, Algorithm 4 also does not guarantee that we find a playlist, so we run this algorithm until it either

finds a playlist or reaches the attempts parameter. It returns an empty list if attempts is reached.

4.4 Deterministic URW & BRW

The URW and BRW algorithms turn deterministic when the greediness parameter reaches infinity (see

Figure 7). In this case both algorithms pick the most similar choice for the next song, and so, in theory, they

will produce the same playlist.

But the most greedy choice is not always the best choice. The algorithms are actually more likely to fail

in this case (i.e., produce an empty playlist). When the greediness parameter reaches infinity, the algorithms

are tasked to find a path between the start song and the end song such that each song is followed by its

most similar neighbor; this path is unlikely to exist. As the greediness parameter increases beyond a certain

point, the algorithms are actually more likely to fail.

Figure 7: As the URW & BRW algorithm’s greediness parameter approach infinity the algorithms converge.
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5 Data & Implementation

In this section we discuss the data used and the implementation of each playlist generation algorithm. The

data consisted of thousands of expertly authored playlists, and the playlist generation algorithms were

implemented in Python.

5.1 Data

One expertly curated playlist will produce a small graph with few connections. But we can expand upon

a graph produced by the EAS algorithm as many times as we would like in order to make it a large (and

hopefully denser) graph by simply iteratively reading in and incorporating more expertly curated playlists

into our graph. We scraped playlists from Spotify using the Spotify Web API.3 We ended up with over

250, 000 songs from more than 2, 600 playlists. We used a Python library to interface with the web API

called SpotiPy.4

Our initial tests were run using a significantly small, manually scraped data set from Spotify. The data

set was comprised of about 200 playlists and 16, 000 songs. The algorithms appeared to be running correctly,

but produced empty playlists. We realized that we were not taking the density of the graph into account.

The Start-End algorithm and our algorithms both depend on the existence of many relationships between

songs. A sparse graph lacks these relationships, and so the algorithms struggle to piece together a playlist.

In an attempt to make our graph more dense, we scraped playlists that we were able to identify as

”country playlists”. We made the identification using simple keyword searches. By only looking at country

playlists, we were more likely to have repeated songs, and therefore more connections in our graph. We

used playlists that were created by Spotify or created by a user that Spotify has acknowledged as an expert.

5.2 Implementation

We compile our SpotiPy scrape into a text file, and read it into the system in RawDataEntry.py, where

we do some reformatting to make it easier to work with. We turn each song into a list of strings (e.g.,

3https://developer.spotify.com/web-api/
4http://spotipy.readthedocs.org/en/latest
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[”ArtistName”,”SongName”, ”AlbumName”, ”ID”]). Once the data is handled in RawDataEntry.py, we

build a song library in SongLibrary.py. This functions just like a dictionary–mapping each song to its

unique ID. This simplifies the expertly authored algorithm so we only have to work with IDs instead of

working with all of the song’s information when building the graphs. We build graphs according to the

Figure 8: Implementation Structure

EAS algorithm (see Section 2) in OneWay EASGraph.py (this graph will contain one-way similarities) and

TwoWay EASGraph.py (this graph will contain two-way similarities). Once we have a graph that tells us

song similarities, we can create a playlist with a playlist generation algorithm.

Once every algorithm was implemented and running, we created a program (RunBatch.py) that allows

us to generate hundreds of playlists at once. We also built a file (Matrices.py) that we used to visualize the

data. Figure 8 depicts a file hierarchy of the implementation.

6 Results

In this section we present the results for the Start-End algorithm, the URW algorithm, and the BRW algo-

rithm. For the URW algorithm and the BRW algorithm, we ran three trials for each algorithm: one trial

with greediness parameter 1, one trial with greediness parameter 4, and one with greediness parameter 7.
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We randomly generated pairs of songs (a start song and an end song) to be used as input for each playlist

generation algorithm in order to produce multiple playlists at once. The adjacent pairs used were different

for each playlist generation algorithm, and different for each trial of the URW and BRW algorithm. The

number pairs used by the algorithms ranged between 200 and 260.

6.1 Start-End Algorithm Results

No results were generated using the Start-End algorithm. This reveals a flaw in the Start-End algorithm.

Every song in the playlist must be connected to both the start song and the end song because the algorithm

picks songs based on similarity ratio (otherwise, the similarity ratio R(i) is either 0 or undefined). This flaw

is discussed in detail in Section 7.

6.2 Unbiased Random Walk Algorithm Results

The URW algorithm gave us more interesting results. The results depicted in Figures 10-15 are the average

results of the 239 playlists that we generated. The playlists created ranged between 15 and 25 songs in

length (the length parameter was 20 and the range parameter was 5), the results in the figures depict the

desired length 20.

The greyscale matrices included in this section are what we will refer to as ”Similarity Matrices”. These

matrices indicate the similarities between all songs in the playlist. To clarify, Figure 9 is an example of what

a similarity matrix might look like. Each box is shaded based on similarity; the darker the box, the more

similar the corresponding songs are. Take the box that corresponds to the row Ss and the column S1, for

example. We know that these two songs are more similar than S2 and Se because of the darker box at (Ss,

S1). The light diagonal stripe is the result of the low self-similarity.

We ran the algorithm using greediness parameters 1 (not greedy), 4, and 7. The playlist length param-

eter was 20 for all of the data collected, and the range parameter was 5. This was done for both one-way

similarity and two-way similarity.

Figure 10 depicts the adjacent similarities of the URW algorithm with one-way similarities for greediness

parameters 1, 4, and 7. Adjacent similarities are the similarities between a song and its successor. This
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Figure 9: A Similarity Matrix

graph is intended to show us how smooth the transitions between are–the higher the point, the smoother

the transition.

Figure 11 depicts the average adjacent similarities using one-way similarity. This graph allows us to

visualize the impact that the greediness parameter had on the smoothness of the playlist. Figure 12 and 13

depict the same graph as Figures 10 and 11, respectively, but use the two-way Similarity. Figure 14 and

Figure 14 are the similarity matrices for the same data.
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Figure 10: Average similarity to next song using one-way similarities

Figure 11: Average adjacent similarities using one-way similarities
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Figure 12: Average similarity to next song using two-way similarities

Figure 13: Average adjacent similarities using two-way similarities.
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(a) One-way similarities;
greediness parameter: 1

(b) One-way similarities;
greediness parameter: 4

(c) One-way similarities;
greediness parameter: 7

Figure 14: Similarity Matrices for URW Algorithm for the One-Way Similarities
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(a) Two-way similarities;
greediness parameter: 1
(not greedy)

(b) Two-way similarities;
greediness parameter: 4

(c) Two-way similarities;
greediness parameter: 7

Figure 15: Similarity matrices for the average URW Algorithm for the two-way similarities
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6.3 Biased Random Walk Algorithm Results

We did not collect results for the BRW algorithm due to lack of time. We anticipate the BRW algorithm to

behave in a similar manner to the URW algorithm because of how closely related the algorithms are. For

this reason, we believe there is a bug in our implementation that has prevented us from collected results.

7 Analysis

In the following discussion we analyze the results of the three playlist generation algorithms. Our aim is

examine the data in the results in a way that will expose the strengths and weaknesses of each algorithm in

order to determine whether or not our algorithms out performed the Start-End algorithm.

7.1 Start-End Song Analysis

The major flaw in the Start-End algorithm that prevented us from collecting results is that every song in the

resulting playlist must have a non-zero similarity to both the start song and then end song (this includes

the start song and the end song–they must have a non-zero similarity with each other). This is true because

the similarity ratio (See Section 4.1, step 5) of the start song and the end song is needed for the step-width

calculation. While this limiting factor is not explicitly made clear by Flexer et al. in their paper, it is evident

when running the algorithm. If every song in the playlist is not connected to both the start song and the

end song, we cannot calculate the step with (see Section 4.1, step 6).

This is an incredibly restrictive requirement that must be considered when analyzing the algorithm.

Only songs that have non-zero edge weights to the start song and the end song are to be included in any

playlist produced by the Start-End Algorithm; thus, we are forced to disregard the songs that do not fall

into this category, and we are left with a fraction of the songs in our graph. Building a playlist of length n

is only possible if the start song and the end song have n common neighbors.

Another issue with the Start-End algorithm was that it never ensures adjacent similarity–i.e., high sim-

ilarity between a song and its successor; or, more colloquially, a ”smooth transition”. Figure 16 illustrate

this phenomenon.
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The Start-End algorithm picks and orders songs based on increasing similarity ratio. Because we have a

constant step-width (see Section 4.1, Step 6), we might incorrectly assume that similarities between adjacent

songs will be constant too. Figure 16a illustrates this assumption: the distance between song in the playlist

corresponds to the similarity. In Figure 16b, however, we alter the similarity between S1 and S2, and S2

and S3 without changing the similarity ratio, but still end up with the same playlist. These similarities are

never accounted for, and so the smoothness of the playlist can suffer.

(a) (b)

Figure 16: The Start-End algorithm allows similarity to change without a change in similarity ratio.

7.2 Unbiased Random Walk Algorithm Analysis

The data collected from the URW algorithm provided insights into the algorithm. Specifically, the data

pointed to three interesting trends.

7.2.1 Greediness ”Sweet-Spot” For Adjacent Similarity

We predicted that there would be a positive direct relationship between the greediness parameter and

playlist smoothness–when the URW algorithm is non-greedy, it picks the next song completely randomly,

and so the transitions may not be particularly smooth; as it gets greedier, however, it picks based on sim-

ilarity, making the transitions smoother. This predicted relationship holds true to a degree. See Figure 11

and Figure 13. The average adjacent similarity between songs is significantly higher with a greediness

parameter of 4 than it is with a greediness parameter of 1 or 7.

It appears as though the the greediness parameter has a ”sweet-spot” that maximizes adjacent similarity.
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As the algorithm gets greedier, it approaches a deterministic version of itself in which it would always add

the most similar song (see Figure 7), which can lead to a dead end, and thus, no playlist. Figure 17 illustrates

this concept: Transitioning from song A to song F is very unlikely even in the non-greedy algorithm. If we

increase the greediness parameter, we will never arrive at song F. It is clear that the overly greedy URW

algorithm has a dangerous side effect.

Figure 17: Being too greedy can lead to a dead end.

7.2.2 Greediness Does Not Indicate Playlist Cohesion

See Figure 14 and Figure 15 The dark bands running diagonally across the matrix indicate adjacent smooth-

ness. Darkly shaded boxes that are not on this diagonal band indicate that songs that are not adjacent to one

another are similar–we can get a general understanding of how cohesive our playlist is. A cohesive playlist

is one in which there exist high similarities between songs that are adjacent, and also between songs that

are not adjacent. In Figure 14a, we see few of these high non-adjacent similarities throughout our playlist.

While the playlist does have adjacent similarity (indicated by the dark diagonal band), the playlist is not

very cohesive. However, as the greediness parameter increases (see Figure 14c), we see more dark boxes

surrounding the diagonal band. This indicates that songs that are a few songs away from each other are

also fairly similar. The playlist is slightly more cohesive.
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In Figure 14b the increase in playlist cohesion is less evident, and in Figure 15 we do not see cohesion

increase as greediness increases. The figures clearly indicate that playlist cohesion is not predicated on

greediness.

However, this behavior can be expected. Our algorithms do nothing to ensure playlist cohesion. Had

that been a goal of the algorithm, we would have to construct the algorithm differently. One method we

might use to ensure playlist cohesion is to select songs based on similarity to not only the previous song,

but the songs that come before it.

7.2.3 Spikes Indicate Forced Bad Decisions

In Figure 10, the lines graphs each songs similarity to its successor song. The dashed line corresponds to the

data collected using a greediness parameter of 4. The steep increase in similarity between Song 5 and Song 6

reflect a good decision–while the similarity between Song 5 and Song 6 is below .011, the similarity between

Song 6 and Song 7 is almost .014. However, instead of increasing again, or plateauing, the similarities dip

back down, forming a spike. In both Figure 10 and Figure 12, we see these spikes appear throughout the

data.

From these spikes we can infer that a pair of adjacent songs with a high similarity is often followed by

a pair of adjacent songs with a relatively low similarity.

Recall that the URW algorithm does not guarantee a playlist on the first attempt (See Section 4.2), and

that we run the algorithm hundreds of times until we find a playlist. While it may sound obvious, this

data represents cases where the algorithm actually succeeded: the spikes in the graphs tell us why these

attempts succeeded. The spikes show us that in order to reach the end song, you may be forced into some

bad decisions.

7.2.4 Flaws of the URW Algorithm

The URW algorithm has some flaws of its own. While tweaking our implementation of the URW algorithm

may enhance performance slightly, there is no avoiding the trial-and-error-nature of the algorithm, which

slows performance significantly.
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Another issue with our algorithm is that it works best (and when the start and end song have at least

one neighbor in common). This was a restrictive requirement of the Start-End algorithm that hoped to do

away with in the URW algorithm. While the URW algorithm does not require that start song and the end

song have a neighbor in common, it appears to function best when they do.

7.3 Biased Random Walk Algorithm

The BRW algorithm should behave similarly to the URW algorithm in that it should guarantee adjacent

song similarity to some degree. Like the URW algorithm, each song that is added to the playlist must have

a non-zero edge weight to the song before it.

However, we found that the BRW algorithm struggles to produce playlists. This may be because it is

fundamentally greedier way than the URW algorithm. This is due to the normalization of the similarities.

We expect that normalizing the similarities makes the many of the similarities very small. When we make

the ordered list of runner node’s neighbors in in Algorithm 4, the end of the list is likely to be cluttered by

these neighboring nodes that have a low similarity to the runner node. In turn, the algorithm will be less

likely to choose these songs and add them to the playlist.

8 Conclusion

We sought to determine the effectiveness of the Start-End algorithm and attempted to improve it. Our re-

sults and analysis indicate that the Start-End algorithm functions as the authors intended (the algorithm’s

flaw is not a result of faulty implementation) but behaves in a way that may not be ideal for the user, i.e., it

does not produce a smooth playlist because in an EAS, many similarities are 0. The lack of adjacent similar-

ity translate to a lack of smooth transitions. We conclude that the Start-End algorithm was that it requires

an unrealistic data set in order to work when using the EAS algorithm to determine song similarity. In

order for the Start-End algorithm to work alongside the EAS algorithm would require collecting even more

data, or extending the existing data. There are several ways data can be extended–all relate to calculating

similarity.
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Ideally, we would be capable of determining the similarity between every pair of songs in the data set.

To do that, we would need non-zero edge weights between every node in the EAS graph (i.e., a complete

graph). As noted, however, the EAS produces a graph with many similarities of 0, and so the graph is far

from complete. However, if we create a similarity matrix the containing every song our existing data set,

we can raise the matrix to a power large enough to make all the zero similarities non-zero. Unfortunately,

this method can get computationally expensive, and it would be better if we did not have to manipulate

our data. So, with the URW algorithm BRW algorithm we attempted to address the issues apparent in the

Start-End algorithm without having to extend the data.

The results reveal that the URW algorithm is more effective than the Start-End algorithm. By not calling

for similarity ratios, the URW algorithm does not require that each song in the playlist have a non-zero

similarity to both the start song and the end song. This allowed our algorithm to work with our data set.

Furthermore, the URW algorithm created a smoother playlist. This claim is supported by our data–every

song in the playlist has a non-zero similarity to the following song which results in a smooth transition

from start song to end song.

26



References

[1] Playlists. https://www.youtube.com/yt/playbook/en-GB/playlists.html/. Accessed: June 2nd, 2015.

[2] The spotify playlist system. https://developer.spotify.com/web-api/ working-with-playlists/. Ac-

cessed: June 2nd, 2015.

[3] Streaming is now the mainstream. http://advertising.pandora.com/2015/04/ 30/streaming-is-now-

the-mainstream-how-young-listeners-are-driving-online-radio-usage/. Accessed: June 2nd, 2015.

[4] Why mighty google still needs songza’s human-made mixtapes.

http://www.bloomberg.com/bw/articles/2014-07-02/ google-buys-songza-and-its-human-made-

mixtapes/.

[5] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and Gerhard Widmer. Playlist generation using start

and end songs. In ISMIR, pages 173–178, 2008.

[6] J.C. Platt. Auto playlist generation with multiple seed songs, January 17 2006. US Patent 6,987,221.

[7] Robert Ragno, Christopher JC Burges, and Cormac Herley. Inferring similarity between music objects

with application to playlist generation. In Proceedings of the 7th ACM SIGMM international workshop on

Multimedia information retrieval, pages 73–80. ACM, 2005.

[8] Chareen Snelson. Youtube and beyond: Integrating web-based video into online education. In Society

for Information Technology & Teacher Education International Conference, volume 2008, pages 732–737, 2008.

27


	Union College
	Union | Digital Works
	6-2016

	Blending Two Automatic Playlist Generation Algorithms
	James Curbow
	Recommended Citation


	tmp.1515765967.pdf.nCpeX

