103 research outputs found

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    Cryptographic error correction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 67-71).It has been said that "cryptography is about concealing information, and coding theory is about revealing it." Despite these apparently conflicting goals, the two fields have common origins and many interesting relationships. In this thesis, we establish new connections between cryptography and coding theory in two ways: first, by applying cryptographic tools to solve classical problems from the theory of error correction; and second, by studying special kinds of codes that are motivated by cryptographic applications. In the first part of this thesis, we consider a model of error correction in which the source of errors is adversarial, but limited to feasible computation. In this model, we construct appealingly simple, general, and efficient cryptographic coding schemes which can recover from much larger error rates than schemes for classical models of adversarial noise. In the second part, we study collusion-secure fingerprinting codes, which are of fundamental importance in cryptographic applications like data watermarking and traitor tracing. We demonstrate tight lower bounds on the lengths of such codes by devising and analyzing a general collusive attack that works for any code.by Christopher Jason Peikert.Ph.D

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    Seeking Anonymity in an Internet Panopticon

    Full text link
    Obtaining and maintaining anonymity on the Internet is challenging. The state of the art in deployed tools, such as Tor, uses onion routing (OR) to relay encrypted connections on a detour passing through randomly chosen relays scattered around the Internet. Unfortunately, OR is known to be vulnerable at least in principle to several classes of attacks for which no solution is known or believed to be forthcoming soon. Current approaches to anonymity also appear unable to offer accurate, principled measurement of the level or quality of anonymity a user might obtain. Toward this end, we offer a high-level view of the Dissent project, the first systematic effort to build a practical anonymity system based purely on foundations that offer measurable and formally provable anonymity properties. Dissent builds on two key pre-existing primitives - verifiable shuffles and dining cryptographers - but for the first time shows how to scale such techniques to offer measurable anonymity guarantees to thousands of participants. Further, Dissent represents the first anonymity system designed from the ground up to incorporate some systematic countermeasure for each of the major classes of known vulnerabilities in existing approaches, including global traffic analysis, active attacks, and intersection attacks. Finally, because no anonymity protocol alone can address risks such as software exploits or accidental self-identification, we introduce WiNon, an experimental operating system architecture to harden the uses of anonymity tools such as Tor and Dissent against such attacks.Comment: 8 pages, 10 figure

    Authentication techniques in smart grid: a systematic review

    Get PDF
    Smart Grid (SG) provides enhancement to existing grids with two-way communication between the utility, sensors, and consumers, by deploying smart sensors to monitor and manage power consumption. However due to the vulnerability of SG, secure component authenticity necessitates robust authentication approaches relative to limited resource availability (i.e. in terms of memory and computational power). SG communication entails optimum efficiency of authentication approaches to avoid any extraneous burden. This systematic review analyses 27 papers on SG authentication techniques and their effectiveness in mitigating certain attacks. This provides a basis for the design and use of optimized SG authentication approaches

    An Efficient Secure Message Transmission in Mobile Ad Hoc Networks using Enhanced Homomorphic Encryption Scheme

    Get PDF
    In MANETs the nodes are capable of roaming independently. The node with inadequate physical protection can be easily captured, compromised and hijacked. Due to this huge dependency's on the nodes, there are more security problems. Therefore the nodes in the network must be prepared to work in a mode that trusts no peer. In this paper we look at the current scheme to transmit the data in MANETs. We then propose a new scheme for secure transmission of message in MANETs as Alternative scheme for DF2019;s new Ph and DF2019;s additive and multiplicative PH. Here we also provide the computational cost of the homomorphic encryption schemes. We also provide the implementation issues of our new scheme in MANETs. For the entire message to be recoverd by the attacker, the attacker needs to compromise atleast g nodes, one node from each group g and know the encryption keys to decrypt the message. The success rate of our proposed new scheme is 100% if there are more number of active paths in each group of the network
    corecore