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Abstract

It has been said that "cryptography is about concealing information, and coding
theory is about revealing it." Despite these apparently conflicting goals, the two
fields have common origins and many interesting relationships.

In this thesis, we establish new connections between cryptography and coding theory
in two ways: first, by applying cryptographic tools to solve classical problems from
the theory of error correction; and second, by studying special kinds of codes that are
motivated by cryptographic applications.

In the first part of this thesis, we consider a model of error correction in which the
source of errors is adversarial, but limited to feasible computation. In this model,
we construct appealingly simple, general, and efficient cryptographic coding schemes
which can recover from much larger error rates than schemes for classical models of
adversarial noise.

In the second part, we study collusion-secure fingerprinting codes, which are of funda-
mental importance in cryptographic applications like data watermarking and traitor
tracing. We demonstrate tight lower bounds on the lengths of such codes by devising
and analyzing a general collusive attack that works for any code.

Thesis Supervisor: Silvio Micali
Title: Professor of Computer Science
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Chapter 1

Introduction

Cryptography and coding theory have had rich, intertwined histories. The mathe-
matical foundations of both fields were first established in the 1940s - just one year
apart -- by the same founder, Claude E. Shannon [61, 62]. Even today, the two fields
seem to remain inseparable: the phrases "cryptography" and "coding theory" ap-
pear together in the titles of countless books, conferences, scholarly papers, lectures,
research groups, and computer science courses.

Coding theory is primarily the study of two main problems, called source coding
and channel coding. The former is concerned with representing information from a
data source as compactly as possible. While a fascinating problem, it will not be our
area of interest in this thesis. Instead, we will focus much of our attention on the
latter problem, which is concerned with communicating reliably over an unreliable (or
noisy) channel.

In the theory of cryptography, the two oldest and most essential problems are
encryption and message authentication. The former is concerned with concealing
communication in the presence of an eavesdropper, while the latter deals with con-
firming the provenance of a communication in the presence of a potential imitator.

While all of the above are disparate goals, their basic settings are all quite similar:
in every case, a source of messages, or sender, is attempting to communicate with a
receiver, with some kind of antagonistic entity between them. These similarities are
fundamental, and account for many of the interrelations between cryptography and
coding to date.

1.1 A Brief History of Cryptography and Coding

The road to modern cryptography. Shannon was the first the give cryptography
a formal, mathematical treatment [62], focusing primarily on the task of encryption.
In his model of a cryptosystem (or as he called it, a "secrecy system"), Shannon
defined secrecy in terms of the amount of information a ciphertext (i.e., an encrypted
message) reveals about its underlying message. To obtain perfect secrecy, a cryp-
tosystem would need to reveal zero information about an encrypted message. That
is, the a posteriori probability distribution over the space of possible messages (given
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the ciphertext, but not the key) would have to be equal to the a priori distribu-
tion. A fundamental result is that it is impossible to obtain perfect secrecy unless
both communicating parties share a perfectly uniform, secret (to the eavesdropper)
string having length at least that of the message being communicated. In fact, the
classical Vernam cipher (also known as the one-time pad) meets this requirement
exactly, and hence one might consider the one-time pad an "optimal" solution, and
the problem of encryption "closed." Unfortunately, proper use of a one-time pad is
extremely impractical and inconvenient, due to the large amount of key material that
must be generated, managed, and securely distributed (the most difficult aspect of
implementing the scheme, by far).

The explosion of progress in cryptography in modern times has been achieved
not by finding better ways of fulfilling Shannon's definition (which would be mathe-
matically impossible), but by proposing more realistic notions of eavesdroppers (and
adversaries in general) and more useful definitions of security. Because Shannon's
perfect secrecy is defined in terms of information, there is an implicit assumption
that the eavesdropper can perform an unbounded amount of computation. For ex-
ample, in Shannon's formulation, a cryptosystem must hide messages even from an
eavesdropper that enumerates all messages and, by brute-force, calculates the a pos-
teriori probability of each message given the transmitted ciphertext. Depending on
the method of encryption, such an eavesdropper may be completely infeasible in the
real world, but Shannon's definition requires that it be thwarted.

The growth in the field of computational complexity in the 1970s provided a
catalyst for more realistic notion of a computationally feasible cryptographic adver-
sary, and indeed the entirely new paradigm of public-key cryptography, first proposed
in the open literature by Diffie and Hellman [20]. With the discovery of the RSA
function [58], the basic tools and assumptions of complexity-based, number-theoretic
cryptography were in place. However, the field still lacked a formal definition of se-
cure encryption for a feasible adversary akin to Shannon's perfect secrecy, and without
such a definition it was impossible to objectively analyze the security of a proposed
method of encryption. The work of Goldwasser and Micali [32] filled this gap with
an elegant notion called semantic security, and provided a cryptosystem that was
semantically secure under a plausible complexity assumption. The essence of seman-
tic security is that no feasible eavesdropper, given the encryption of a message, can
guess any property of the message with a probability significantly better than if it
had not seen the ciphertext at all! In other words, semantic security guarantees that
encryption "hides all properties" of the underlying message (almost) perfectly, from
the point of view of a feasible adversary. The similarity to Shannon's perfect secrecy
is easy to see: while perfect security hides all information about an encrypted mes-
sage (even to an unbounded eavesdropper), semantic security hides all properties of
the message from a computationally feasible adversary.

Since the early 1980s, complexity-based cryptography has proliferated, with the
development of formal notions for numerous security-related notions, such as pseu-
dorandomness [10, 71, 29], authentication (including identification schemes [26], mnes-
sage authentication codes, and signatures [34]), commitment [9], zero-knowledge [33],
stronger forms of encryption [53, 22, 5, 18], multiparty computation [31], and more.
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The road to modern coding theory. A central problem of coding theory is
reliable communication over an unreliable channel. All solutions to this problem,
in some form or another, rely on the basic idea of encoding messages with some
redundancy, allowing the receiver to detect and correct whatever errors may arise
during transmission through the channel. The main goal is to minimize the amount
of redundancy while maximizing the quantity of errors that can be corrected. There
are, however, two main approaches to formalizing this basic idea, whose essential
differences are in how the channel is modelled.

The first formal model is due to Shannon [61], who modelled the channel as a
probabilistic (random) process. Specifically, the channel introduces errors according
to a fixed, known probability distribution that is oblivious to the transmitted mes-
sage. In an elegant use of the probabilistic method [3], Shannon showed that there
exist asymptotically good encodings which can correct errors with arbitrarily good
probability -- in fact, a random encoding is almost a good one! However, there are
some drawbacks to Shannon's approach: first, the result is only asymptotic, applying
only for sufficiently long blocks of data. In addition, the result is only existential (not
explicit), so it does not say how to encode or correct errors, only that it is possible to
do so. Furthermore, the basic model of the channel may not be entirely satisfactory:
while it may be reasonable to assume that the noise distribution is fixed and oblivious
to the message, assuming that the distribution is known ahead of time to the code
designer is only reasonable in the most controlled environments.

Two years after Shannon's work, Hamming [41] took a more conservative ap-
proach, modelling the channel as an adversary with a limited allowance of errors.
In Hamming's formulation, not only may the channel's behavior be unknown to the
code designer, but its errors may also depend on the message. Furthermore, the
channel may also draw upon unlimited computational resources. This is certainly a
strong model for a channel, and the error-correcting codes designed for this regime
are unquestionably robust. However, the strength of the channel also incurs some
downsides; for example, it is impossible to unambiguously decode (in the worst case)
when the number of errors exceeds half the length of the data block.

Today, nearly all the work on coding theory in computer science is focused on
two main aspects of Hamming's theory of error-correcting codes: combinatorial prop-
erties, and efficient algorithms. In the first direction, progress has come from using
algebraic and combinatorial techniques to improve the important properties of codes

(e.g., distance, information rate, alphabet size, list-decoding radius). In the algo-
rithmic direction, there has been rapid progress in devising efficient encoding and
(list-)decoding algorithms for many different families of codes [66, 63, 39, 40, 37].
However, the bulk of the attention paid to computational complexity has been fo-
cused on the encoding and decoding algorithms; the complexity of the channel is
rarely (if ever) discussed.

The role of coding in cryptography. Cryptography has frequently been a "con-
sumer" of coding theory's concepts and tools, especially in recent years. As a first ex-
ample, consider secret-sharing schemes, which were first proposed by Shamir [60], and
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which have since become essential to threshold cryptography, secure multiparty com-
putation, and many other essential areas of cryptography. A secret-sharing scheme is
a method of distributing a secret piece of information among several players so that
(1) no small group of players can learn anything about the secret, and (2) the players
can come together and reliably reconstruct the secret, even if some of them are faulty.
This latter property appears suspiciously similar to the goal of coding theory, and
in fact, most secret-sharing schemes are based directly upon error-correcting codes.
Shamir's original scheme, for example, corresponds directly to the Reed-Solomon
family of codes [57, 50].

Another way in which coding theory has contributed to progress in cryptography
is via a notion called list decoding, which was first proposed (as a combinatorial no-
tion) independently by Elias and Wozencraft [25, 70], and which was first shown to
be algorithmically feasible by Sudan [66]. This notion is useful in contexts where the
amount of error in a channel is so large that it is impossible to uniquely identify the
intended message. In such a setting, list decoding provides a small set of all possible
candidate messages. This idea first proved useful in cryptography with Goldreich
and Levin's construction of a universal hard-core predicate for any one-way func-
tion [30]. Specifically, Goldreich and Levin found an efficient list-decoding algorithm
for the Hadamard code, which corresponds naturally to their proposed hard-core pred-
icate. While this "list-decoding perspective" on their work has only become clear in
retrospect [67], it has proven essential in providing a unifying framework for exist-
ing hard-core predicates [10, 2, 43] and demonstrating new hard predicates [1]. List
decoding has also proven useful in many other cryptographic contexts, including zero-
knowledge protocols [24], traitor tracing [64], and quantum hard-core functions [44].

The role of cryptography in coding. While cryptography and coding have ma-
tured concurrently, the relationship between them has historically been very one-
sided: as explained above, cryptography (and complexity theory in general) has often
been a "consumer" of ideas and results from coding. However, it has rarely recip-
rocated as a "provider." That is, the rich set of tools and notions that have been
developed in cryptography have not, to date, been used to solve any problems in
coding. Nor have cryptographic problems provided much motivation for new notions
and goals in coding theory. However, there are a few notable exceptions, two of which
we discuss below.

In 1994, Lipton proposed an intriguing application of the modern cryptographic
methodology to information theory and coding [47]. Noting that Hamming's version
of a channel is adversarial and computationally unbounded, Lipton instead proposed a
more realistic channel which is adversarial, but like most cryptographic adversaries, is
limited to feasible computation. While Lipton articulated this core idea over a decade
ago, it was not known until recently whether a feasible channel could be exploited to
any benefit.

Certain applications in cryptography have also motivated entirely new notions of
error-correcting codes and noisy channels. Specifically, there are many information
systems in which users have access to data that they are not authorized to redis-
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tribute. Examples of such data include: commercial software, classified or confidential
documents, cryptographic keys stored in specialized devices for decoding encrypted
broadcasts (e.g., cable TV decoders, DVD players, satellite receivers, etc.), and copy-
righted audio/video content. Because information is inherently copyable, it is very
difficult to design technical measures that prohibit redistribution of data. Instead,
there have been several proposals to deter redistribution by robustly embedding some
uniquely-identifying information (called "marks") into each user's copy. The rationale
is that a user incriminates himself by exposing his copy widely enough for an author-
ity to acquire it and extract its marks. However, there is an additional complication:
a set users may collude by creating a functionally useful "hybrid" from pieces of their
different copies. Methods for reliably ascertaining at least one of the colluders from
such a hybrid copy go under the general rubric of traitor tracing schemes (16].

There is a natural way of viewing these schemes from the perspective of coding
theory: the sequences of marks embedded in each copy make up the codewords of
some code. The colluders, in piecing together their individual copies, act as a certain
kind of noisy channel whose input is a set of codewords, and whose output is the
hybrid copy (which must resemble the input in some defined way). The authority
then attempts to decode the hybrid back to one of the original codewords. From
this viewpoint, the goal of traitor tracing is to design specialized codes and efficient
decoding algorithms for this unique noise model. Such codes go by several different
names (such as collusion-secure fingerprinting codes [13], frameproof and traceability
codes [65], and IPP- and TA-codes [64], among others) depending on the details of
the model, but their essential goals are the same.

1.2 Our Contributions

In this thesis, we aim to make the relationship between cryptography and coding
theory more symbiotic. We do this in two ways: first, we employ a cryptographic
perspective in modelling and solving a fundamental problem in coding. Second, we
use cryptographic applications as motivation for studying new kinds of codes.

Our first contribution is a cryptographic approach to reliable communication over
a noisy channel. We propose a strong, novel model of a channel that is limited to
feasible computation. For such a channel, we then construct coding schemes that
tolerate significantly more errors than schemes for classical channels; in fact, the
number of errors tolerated is optimal for any reasonable channel model.

In the second part, we turn our attention to collusion-secure fingerprinting codes,
which are motivated by cryptographic applications like watermarking and traitor
tracing. We focus on the lengths of such codes as a function of the number of po-
tential colluders. By devising and analyzing a probabilistic collusion strategy, we
demonstrate a lower bound on the code length. This bound is tight, as it matches

(asymptotically) a subsequent construction by Tardos [68].
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1.2.1 Coding for Feasible Channels

Chapter 3 contains our cryptographic approach to reliable communication over noisy
channels. This portion of the thesis first appeared as a preliminary conference version
in a paper by Micali, Peikert, Sudan, and Wilson [51].

We put forward the first formal model for communication over an adversarial
channel that is limited to feasible computation. Our model precisely specifies the
setup assumptions for a coding scheme, the capabilities and goals of the channel, and
the requirements for robustness.

Our setup and operational assumptions are relatively mild (indeed, they are
weaker than the assumptions in all related work; see Section 3.3): we assume that the
sender generates a pair of keys, one of which it keeps secret from the channel, and the
other which it publishes in some way that allows the receiver to obtain a one-time,
error-free copy. We also assume that the sender can maintain a small amount of local

(non-secret) state, such as a clock or nonce.
Our model for the channel is quite strong: the channel has adaptive control over

all the messages that are encoded by the sender, it has access to all the information
that is available to the receiver, and it can employ arbitrary probabilistic polynomial-

time computation. In addition to a large allowance of noise, it also has the power to
"drop" arbitrary messages (i.e., refuse to deliver them at all), without even alerting
the receiver to the fact that messages have been dropped.

In the face of such a channel, our definition of a robust coding scheme is one that
allows the receiver to efficiently, correctly, and unambiguously recover every (non-

dropped) message with only a vanishingly small probability of error. We construct
such a coding scheme (actually, a broad class of schemes) via an elegant combination

of two powerful tools: authentication (from cryptography) and list decoding (from

coding theory).
Our scheme yields great benefits in error correction for both binary and large

alphabets. Namely,

1. For binary alphabets, we construct coding schemes having positive information
rate which are uniquely decodable from a 1/2 - y error rate for any constant

y > 0.

2. For large alphabets, we construct coding schemes which are uniquely decodable
from any error rate up to 1 - R for any information rate R > 0.

In both cases, the error rate tolerated by our scheme is optimal.
In addition, we show that every major property of our model is essential for

decoding beyond the classical barriers imposed by a Hamming channel. Thus our
construction can be seen as the "best possible" use of the bounded-channel assumption
for error correction.

1.2.2 Lower Bounds for Fingerprinting Codes

Chapter 4 is concerned with special kind of codes, called collusion-secure fingerprint-
ing codes [13], that are motivated by the traitor-tracing problem. This portion of
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the thesis first appeared as a preliminary conference version in a paper by Peikert,
Shelat, and Smith [55].

One of the most important properties of a fingerprinting code is its length. De-
pending on the application (e.g., data watermarking, broadcast encryption), the
length of the code may dictate the number of marks that must be robustly em-
bedded into a work, or the amount of computation that must be done to decrypt
a ciphertext. Therefore minimizing the length of fingerprinting codes is one of the
highest priorities for a practical implementation.

We investigate bounds on the lengths of fingerprinting codes, as a function of the
number of colluders that they are designed to defeat. Our analysis implies that, in
order to be secure, the codes must have length that is essentially quadratic in the
number of potential colluders.

In order to prove this bound, we devise a general collusive strategy that works
for any fingerprinting code. Our strategy is probabilistic and simple to describe: the
coalition employs independent biased coin flips at each position of the code, where the
bias is given by a carefully-chosen function of the symbols in the colluders' codewords.

The analysis of the strategy is more complicated. First, we define a novel statistical
measure, which we call the min-mass of a set of distributions. We then relate min-
mass to the error probability of any tracing algorithm for the fingerprinting code.
Finally, we analyze the min-mass of our coalition strategies by expressing it in terms
of the statistical distance between binomial distributions, which we compute via their
information divergence. We conclude that when the fingerprinting code is too short,
the min-mass for our collusive strategy is large, and the code is insecure. The lower
bound follows by the contrapositive.
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Chapter 2

Preliminaries

In this chapter we introduce some of the notation that we will use throughout the
thesis, and briefly recall some concepts and definitions from coding theory and cryp-
tography that we will rely upon later.

2.1 Notation

For a positive integer n, we write [n] = {1, ... ,r}.

For a finite set E and a nonnegative integer n, we will refer to an element of E"
as a string or word over the alphabet E. For a word x E En, we write xi to denote
the ith component of x.

Asymptotics. For positive functions f(n), g(n), we write f(n) = O(g(n)) and/or
g(n) = Q(f(n)) if limn-. f(n) C for some absolute constant C > 0. We write

gfn ( n_=
f(n) = o(g(n)) and/or g(n) = w(f(n)) if limn.. = 0.

We say that a function f(n) is negligible in n if, for any positive polynomial p(n),
f(n) = o(l/p(n)).

2.2 Coding Theory Background

Basic concepts. An error-correcting code over an alphabet E is a mapping C
E _ En from strings of length k to strings of length n > k; k is called the message
length and n is called the block length. The (information) rate of the code is . The
set {C(X) : X E Ek} is also called the code, and its elements are called codewords.
We will often overload notation and write C to refer to the set of codewords (as well
as the mapping).

The Hamming distance between two words x, y E E' is the number of positions i
in which xi and y, differ: A(x, y) = {i E [n] : xi 4 yI} . It is easy to verify that the
Hamming distance is a metric. A code C has distance (at least) d if A(C(x), C(y)) d
for every distinct x, y E Ek.
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We say that a code C is (e, L)-list decodable if, for every r E E", there are at most

L codewords within distance e of r: |{x E C and A(x, r) < e} I L.

Asymptotics and complexity. In this work we will be concerned both with the

asymptotics of code parameters, and with the computational complexity of algorithms
associated with codes. As a consequence, we consider infinite families of codes

C={Ck : Z nk T

where T C N is an infinite set (usually, we will have T = N). Some of the families we
employ will use the full generality of the definition, having alphabets Ek depending on
k; others will not, letting Yk be some fixed E for all k. The family has distance d(k)
if for every k E T, Ck has distance d(k). The aim of most error-correcting codes is to
have n(k) grow as slowly as possible, while having d(k) grow as quickly as possible.
The relative rate of the code family is liminfkc_,.0 0 , and the relative distance is

lim infk, .(k)
We say that a family of codes is explicitly constructible if it has a single efficient

(deterministic polynomial-time) algorithm for computing the encoding functions Ck,
and one for their inverses C-ij (for all k E T). All the codes we employ will be

explicitly constructible, so we will freely alternate between x E E, and Ck(x) E k)

We say that a family is efficiently (e(k), L(k))-list decodable if it has a single efficient
algorithm £D which, for all k E T, finds all the (at most) L(k) codewords in Ck

within distance e(k) of any input string r E .

2.3 Cryptography Background

Digital signatures. Digital signatures were conceived of as far back as Diffie and
Hellman's seminal paper [20), but were not fully formalized and constructed until
Goldwasser, Micali, and Rivest [34] introduced the notion of existential unforgeability
under chosen-message attack. This notion states that an adversary should not be
able to generate a valid signature for any message, even after seeing signatures for
any other messages of its choice.

A digital signature scheme SS is a triple of poly-time randomized algorithms
SS = (g, S, V) (respectively, the key generation, signing, and verification algorithms)
having the following properties:

1. On input l (where k is the security parameter), 9 outputs (pk, sk), where pk
is the public (verification) key and sk is the secret (signing) key.

2. On the secret key sk and a message m E {0, 1}*, S outputs a signature a such
that Vk(m,, -) = V(pk, m., o-) = 1 with probability 1 (taken over the randomness

of g. S, and V).

In addition, our applications will require the length of the signature to be fixed
(for a given security parameter). Without loss of generality, we will assume that
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the length jo- of the signature is k.

3. Even with adaptive oracle access to the signer, no efficient forger can produce
a valid (m', a') pair for an unqueried m', except with negligible probability. We
make this formal below.

Let F = {.F}kEN be a family of randomized oracle circuits. Consider the following
chosen-message attack, parameterized by k:

1. On input 1k, g outputs (pk, sk).

2. On input pk, :sk outputs a pair (m', '), where Sk represents an oracle to the
algorithm S(sk, .), which Fk may query adaptively.

3. We say that k succeeds in the attack if Vpk(m', -') = 1 and m' was not one of
the queries issued by Fk in the previous step.

Define

Adv-CMA.S(k) = Pr[Fk succeeds against SS for security parameter k],

where the probability is taken over the random coins of SS and F.
For functions q(k), s(k), define

Adv-CMASS = max {Adv-CMAjS(k)} ,

where the maximum is taken over all F = {Fk} such that Fk issues at most q(k)
queries in any execution of the chosen-message attack (for security parameter k), and
has circuit size at most s(k). We say that a signature scheme is existentially unforge-
able under chosen-message attack if, for every q(k), s(k) E poly(k), Adv-CMASS is a
negligible function in k.

Constructions and signature length. Secure signatures (according to the defi-
nition above) were first constructed by Goldwasser, Micali, and Rivest [34] under the
assumption that there exist claw-free pairs of permutations (which follows from an
assumption on either the hardness of factoring or of computing discrete logs).

In subsequent work, Bellare and Micali [4] demonstrated that trapdoor permuta-
tions were sufficient for obtaining secure signatures. Later, Naor and Yung [52] con-
structed secure signatures from universal one-way hash functions, which were shown
by Rompel [59] to be equivalent to one-way functions.

Depending on the desired level of exact security, different schemes produce signa-
tures of different lengths. For the concrete instantiations of our coding schemes, we
will get better performance by employing signatures which are as short as possible.
Boneh et al [12, 11] have constructed short, secure signatures from some relatively
non-standard assumptions.
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Message authentication codes (MACs). Message authentication codes are the
symmetric-key analog of digital signatures. They are comprised of key generation, au-
thentication, and verification algorithms. The main difference is that the key genera-
tor only outputs a single (secret) key sk, which is an input to both the authentication
and verification algorithms, but which is not known to the forger. In the chosen-
message attack, the forger is given access to oracles that compute the authentication
and verification algorithms (using the secret key), and attempts to produce an au-
thentic pair (m', -') where m' was not a query to the authenticator oracle. Due to the
similarity to digital signatures, and the ancillary uses of MACs in our applications,
we omit a more formal definition.
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Chapter 3

Error Correction for Feasible
Adversarial Channels

The theory of error correction is concerned with sending information reliably over a
"noisy channel" that introduces errors into the transmitted data. The goal of this
theory is to design coding schemes which are capable of detecting and correcting such
errors. The setting is usually modelled as follows: a sender starts with some message,
which is represented as a string of symbols over some alphabet. The sender encodes

the message into a longer string over the same alphabet, and transmits the block of
data over a channel. The channel introduces errors (or noise) by changing some of the
symbols of the transmitted block, then delivers the corrupted block to the receiver.

Finally, the receiver attempts to decodes the block, hopefully to the intended message.
Whenever the sender wants to transmit a new message, the process is repeated.

Two quantities are of special interest in this setting. The first is the information
rate, which is the ratio of the message length to the encoded block length. This is a
measure of how much "actual message data" is carried by each transmitted symbol.
The second is the error rate, which is the ratio of the number of errors to the block
length. This is a measure of how "noisy" the channel is, i.e. how much data it corrupts.

Of course, we desire coding schemes that tolerate high error rates while simulta-
neously having large information rates. In practice, smaller alphabets are desirable
too, as most digital communication devices are, at their lowest levels, capable of
interpreting only binary digits (bits).

3.1 Channels for Communication

There are two historically popular ways to model a noisy channel for communication.
In his 1948 work that pioneered the field of information theory [61], Shannon consid-
ered a randomized channel, which perturbs each transmitted symbol independently
with some fixed probability. Using a beautiful and elegant probabilistic argument,
Shannon demonstrated how information can be encoded to withstand such noise with
probability arbitrarily close to 1. Unfortunately, Shannon's notion of a probabilistic
channel may be too simplistic for modelling actual sources of noise. In the real world,
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data corruption can be the result of complex interactions among many factors both
intrinsic and extrinsic to the communication system, and errors tend to be distributed
neither uniformly nor independently. For example, both radio interference and phys-
ical defects on storage media tend to be "bursty," with periods of very high noise
separated by spans of quiescence.

Partly in response to these issues, in his work two years later on error-correcting
codes [41], Hamming proposed an adversarial channel that perturbs symbols in a
worst-case fashion (subject only to an upper bound on the number of errors per
block of data). This model of a channel is much more "pessimistic" (or, depending
on one's outlook, "safer") than Shannon's, as it encompasses any arbitrarily-complex
source of noise. As such, it gives much stronger guarantees on the robustness of the
resulting coding scheme. Unfortunately, this robustness comes at a price: it imposes
severe limits on the performance of codes. For instance, in order to correctly decode
the intended message under a binary alphabet, the error rate of the channel must not
exceed 1/4 (unless the block lengths grow exponentially with the message lengths,
which is of no practical use).

Under Hamming's notion of a channel, Elias and Wozencraft independently pro-
posed list decoding [25, 70] as a way to recover from higher error rates. The idea is
to relax the task of decoder, allowing it to output a short list of all possible messages
(though saying nothing about which is the correct one). For a worst-case adversarial
channel with a high error rate, list decoding seems to be the best one can hope for -
but under a more "realistic" model of an adversarial channel, is it possible to uniquely
decode under high error rates?

The computational complexity of channels. While Hamming's conception of
a channel is always described as adversarial, it is also - though this is rarely stated
explicitly - computationally unbounded. That is, the channel may not only introduce
errors in the worst possible locations, but it may also employ enormous computational
resources to decide where those locations are.

In 1994, Lipton [47] put forward the notion of a feasible channel, which is essen-
tially a Hamming channel restricted to polynomial-time computation. That is, the
channel still introduces errors adversarially (always subject to a given error rate), but
only by employing a tractable amount of computation.

Remarkably, under standard cryptographic assumptions and assuming that sender
and receiver share secret randomness, Ding, Gopalan, and Lipton [21] proved that for
such a bounded channel, it is possible to decode uniquely from high error rates. Their
scheme requires the communicating parties to share a secret key which is unknown
to the channel.

More significantly, though the bounded-channel model was first envisioned over
a decade ago, nobody has yet shown an essential use of this assumption to yield
any unique benefits over an unbounded channel. That is, previous constructions still
work when the channel is computationally unbounded, as long as the sender and
receiver share sufficient secret randomness. The bounded-channel assumption is used
to reduce the amount of shared randomness that is needed, but not to eliminate
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it altogether. This computational assumption is thus an additional one, and does
not supplant the assumption of secret randomness shared between the sender and
receiver.

3.2 Contributions

Our model and cryptographic setting. We propose the first precise model for
communicating over a feasible adversarial channel. Our model describes precisely and
explicitly the capabilities and goals of the channel, and rigorously defines the notion
of a correct coding scheme for such a channel. Previous works treated these issues
only implicitly, and in fact our channel has significantly stronger capabilities than the
channels that have been considered in related work. Specifically, our channel knows
everything that the receiver knows, and also has the power to "drop" messages at
will, without even alerting the receiver to the fact that messages have been dropped.

The sender (but not the receiver) keeps a small amount of local state information,
which he uses when encoding messages. This state can be realized by, for example,
a local counter or a local clock. We stress that the clock need not be synchronized
with any other clocks in the outside world, but that it only produce monotonically
increasing values.

We work in a very simple cryptographic setting: we assume that one-way functions
exist (the "minimal" cryptographic assumption) and that the sender has a public key
known to the receiver (and, perhaps, known to the channel as well).

Our results. Our setting yields great benefits in error correction for both binary
and large alphabets. Namely,

1. For a binary alphabet, we construct positive-rate coding schemes which are
uniquely decodable under error rate 1/2 - -y, for any constant - > 0.

Classically, a 1/4 - -y error rate is the best possible for unique decoding (and
positive information rate). We stress that in any reasonable channel model
(even Shannon's probabilistic one), decoding of any kind (even list decoding) is
impossible under an error rate of 1/2. Therefore this result is optimal in a very
strong sense, and matches the best possible error rates in the weaker Shannon
model.

2. For large alphabets, we construct coding schemes which are uniquely decodable
under error rate up to 1 - R for any information rate R > 0.

Under an error rate of 1 - R, an information rate of R is called the Shannon
capacity of the channel, and is again optimal for any alphabet size. This can
be seen by a simple (informal) counting argument: in order to communicate
k = Rn symbols, at least k = Rn symbols meaningful symbols must emerge
through the channel, meaning at most (1 - R)n symbols may be altered.
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We point out one (almost paradoxical) consequence of this particular result: for
small values of R, we can allow the channel to adversarially corrupt almost the
entire codeword, and still recover the unique intended message.

To achieve these results, we actually prove a very general reduction from unique
decoding against a feasible channel to list decoding against an arbitrary channel.
Specifically,

If one-way functions exist, unique decoding from e errors in the feasible-
channel model reduces to poly-time list decoding from e errors in the
Hamming model (using the same alphabet, with no asymptotic loss in
information rate).

We obtain results 1 and 2 above by applying this reduction to the list-decodable
binary codes of Guruswami and Sudan [40], and the Folded Reed-Solomon codes of
Guruswami and Rudra [38], respectively.

Necessity of the model. There are three defining characteristics of our model:
(1) the sender is stateful while the receiver is stateless, (2) the sender keeps a secret
key which is unknown to the channel while the receiver keeps no secrets at all, and
(3) the channel is assumed to be computationally bounded.

We show that every aspect of this model is essential for decoding beyond the classi-
cal barriers of the Hamming model. That is, relaxing any of these three requirements
makes the task of unique decoding under high error rates impossible. Thus our con-
struction can be seen as the "best possible" use of the bounded-channel assumption
for error correction. See Section 3.6 for details.

3.2.1 Overview of the Construction

Starting with any list-decodable code, we define a large (but sparse) subset of authen-
tic codewords, which make up an authentic subcode. Authentic codewords have the
following essential properties: (1) they are easy for the sender to create, (2) they are
hard for an adversary to produce (even after seeing other authentic codewords), and
(3) they are easy for anyone, the receiver in particular, to recognize. We then specify
a cryptographic sieving procedure, which specifies a way to select a unique authentic
word from an arbitrary list of codewords (some authentic, some possibly not).

With the two notions of an authentic subcode and cryptographic sieve, we can
sketch the method of communicating over a feasible channel:

" The sender, when encoding a message, always constructs an authentic codeword
and sends it over the channel.

* The receiver, upon receiving a corrupted word, first list decodes it. Of course,
list decoding only provides a set of candidate codewords. In order to uniquely
decode, the recipient uses the cryptographic sieve to select the appropriate
authentic codeword.
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Provided that the number of errors is suitably limited, the codeword produced
by the sender is guaranteed to appear in the decoded list, and will appear authentic
to the receiver. However, it may not be alone: though the bounded channel cannot
produce any new authentic codewords, it may be able to cause prior ones to appear
in the decoded list. This is where the sender's state comes into play: by including the
current value of the state in each message, the cryptographic sieve is able to identify
the freshest authentic word, resulting (with overwhelming probability) in correct,
unique decoding.

3.3 Comparison with Related Work

We wish to contrast our results with several other models and techniques for commu-
nicating reliably under high error rates.

3.3.1 List Decoding

One of the best-known methods of decoding beyond classical limits is known as list
decoding, proposed independently by Elias [25] and Wozencraft [70]. In list decoding,
a received word is not decoded to a unique codeword, but rather to a short list of
all codewords within a certain radius of the received words, i.e. the encodings of all
possible intended messages. (See Section 2.2 for precise definitions and results about
list decoding.)

By a probabilistic argument, Guruswami et al [36] showed that, for any error
rate e < 1/2, there are families of binary error-correcting codes having the following
desirable properties:

* their information rate (asymptotically) approaches the Shannon capacity 1 -
H(E) of the channel; and

" the list size for error rate e is bounded by a constant (which depends on e, but
not on the length of the codewords).

Unfortunately, no efficient list decoding algorithms are yet known for these codes, and
in fact their construction is existential (not explicit). On the other hand, for many
other well-known codes, there are efficient list-decoding algorithms that can find all
codewords within large error radii.

The obvious drawback of list decoding is that one typically wants to recover the
unique message that was sent, rather than a list of possible messages. The works
presented below, as well as our own cryptographic sieve, use list decoding as a tool to
extend the decoding radius, but also employ additional techniques in order to identify
the correct. unique message in the list.

3.3.2 List Decoding with Side Information

Guruswami [35] designed a coding scheme for binary alphabets that decodes uniquely
under adversarial channels with high error rates. The scheme relies on two strong
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assumptions (see the discussion below for an analysis of these assumptions):

1. The communicating parties must share a noise-free (or low-noise) side channel
that is used every time a message is sent. (This side channel does not trivialize
the solution, because it is only used to send strings that are much shorter than
the messages.)

2. The contents of the side channel must remain secret from the adversarial channel
when it is introducing noise; this imposes either a privacy or timing constraint
on the side-channel communication.

Briefly described, Guruswami's scheme works as follows: the sender encodes a
message m under a list-decodable code and delivers the encoding x over the noisy
channel; simultaneously, the sender selects a random hash function h from a suitable
family and transmits the value y = h(x), along with a description of h, over the
noiseless side channel. The receiver list-decodes the received word and outputs the
codeword z from the decoded list such that y = h(z). For a suitable choice of the
hash family and code parameters, the word z from the list will be unique with high
probability, and will equal x.

This scheme is very general: it treats the list decoding procedure as a black-box,
and decodes uniquely under the same error rate as the list decoding algorithm. The
result is unconditional, i.e. no computational assumptions are necessary.

However, there are two disadvantages to the side-channel approach: first, it re-
quires a noise-free (or low-noise) side channel, which may not be available in most
applications. The second assumption is not stated explicitly, but is actually quite
essential: either the side channel must be private (unreadable by the adversarial
channel), or the side information must be withheld until the adversarial channel de-
livers its noisy word. (Presumably, this second option adds more communication
rounds: the receiver must acknowledge receipt of the message before the side-channel
information is sent.) In fact, an adversarial channel can provably defeat the scheme if
it learns the side-channel information, by choosing its error pattern to be dependent
on the choice of the hash function h and hash value h(x).

3.3.3 Code Scrambling

The code-scrambling method of Ding et al [211 assumes that the sender and receiver
share some random (or pseudorandom) data that is unknown to the channel. This
secret randomness is used to "scramble" codewords so that adversarial (Hamming)
noise in the scrambled words is equivalent to randomly-distributed (Shannon) noise in
the unscrambled words. It therefore suffices to design codes that perform well under
high error rates, but for random noise.

Both code scrambling and our cryptographic sieve assume the existence of one-way
functions.1 But our underlying model compares favorably to that of code scrambling
in a few important ways:

'However, the two techniques employ different cryptographic primitives, both of which are implied
by one-way functions.
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Cryptographic setup. The code-scrambling method requires a random secret key
to be shared between the communicating parties and kept secret from the channel.
Such a setup requires either the parties to meet in advance (which may be unrealistic),
or some interactive protocol to establish the private key (in addition, such a protocol
would have to deal with the noisy channel that separates the two parties!).

In contrast, our cryptographic sieve works in a public key setting: we only require
the sender to have a single public key that is known to the recipient. In fact, our
scheme works even when the channel possesses all the information available to the
receiver, and is potentially even more computationally powerful than the receiver.

Local state and multiple receivers. In reality, two communicating parties usu-
ally send and receive many messages over time. Using a classical error-correcting code,
this presents no problem: each message is simply encoded and decoded independently.
However, when computational assumptions and shared state are introduced, one must
be more careful.

The first observation is that in the code-scrambling method, the shared key (or
portion thereof) must only be used one time. If any part is re-used, the adversary
gains information about how the codewords are scrambled, and may be able to in-
troduce "non-random" errors in the future. Therefore, the code-scrambling method
requires both parties to keep synchronized state. That is, they must always agree
on what fresh portion of their shared (pseudo)random key will be used for scram-
bling and unscrambling the next message. If the parties fall out of sync (say, due to
an unexpected transmission or hardware failure), then future messages will decode
incorrectly.2

Code scrambling also requires a sender to maintain independent secret state for
each of the receivers which which it may want to communicate.

In contrast, our cryptographic sieve only requires the sender to maintain a small
amount of local state, independent of the receiver or receivers (who are stateless). A
sender may keep a single global state variable for use with all receivers. If a message
is dropped or ignored, there is no effect on the correctness of future messages. '

The feasible-adversary assumption. Code-scrambling works against a feasible
channel assuming the existence of a pseudorandom generator (PRG), but this as-
sumption itself is not essential to the solution. The technique works equally well
against an unbounded channel, as long as the sender and receiver share a sufficiently
long random key. The PRG is used only to decrease the amount of shared random-
ness that is needed. The computational assumption is therefore an additional but

2To relax the synchronization requirements, one might imagine sending some "synchronizing
information" along with each message. However, the synchronizing information is also subject to
errors, so it must be protected by some encoding, and also be recoverable separately from the
message. (Using a pseudorandom function for synchronization suffers from a similar problem.)
Eliminating the synchrony requirement seems to be quite difficult.

30f course, we cannot provide such a guarantee if the channel is allowed to arbitrarily delay
messages and swap their order -- however, neither can code scrambling.
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unnecessary one, and does not supplant the assumption of shared secret randomness.

In contrast, our scheme relies on the computational assumption in an essential
way, due to the permissiveness of the model. In Proposition 3.6.6, we prove that for
high error rates, an unbounded channel can always defeat any coding scheme in which
the receiver is stateless and keeps no secrets from the channel. Because our receiver
has exactly these desirable properties, the bounded-channel assumption is necessary.
Fortunately, Propositions 3.6.4 and 3.6.5 demonstrate that our scheme also exploits
the feasible channel to the fullest extent, by working in the weakest possible model.

Universality. Because it relies on the randomness of the errors, the analysis of
the code-scrambling method depends essentially upon the properties of the underly-
ing code.4 The authors also point out that this analysis can be applied to certain
algebraic-geometry codes, and that experimental simulations using expander codes
have shown positive results. However, each application of code scrambling to a new
family of codes requires a new analysis (and yields, potentially, a new set of workable
parameters).

Our construction, instead, is fully general: it uses an efficient list-decoding algo-
rithm as a black-box, and requires no other special properties of the code. It reduces
unique decoding against a bounded adversary to list decoding against an unbounded
adversary, while retaining all the asymptotic parameters of the original code.

We also compare the quantitative parameters of our construction with those of code-
scrambling:

Binary alphabets. For binary alphabets, code-scrambling yields schemes that tol-
erate the optimal error rate of e = 1/2 - -y for any -y > 0. In addition, the information
rate is optimal, because it asymptotically approaches the Shannon limit of 1 - H(e).

Our method also provides unique decoding from a 1/2 - y error rate. We stress
that while our technique yields positive asymptotic information rate, it does not yet
match the Shannon limit, because the information rate is dictated by the underlying
list-decodable code. While list-decodable codes matching the Shannon limit for any
error rate are known to exist [36], it is not known how to efficiently list decode them.
Fortunately, progress in list decoding continues rapidly, and any future improvements
will automatically apply to our construction.

Large alphabets. When implemented with Reed-Solomon codes (which require
large alphabets), code scrambling allows unique decoding from a min(1 - V'R, 1- 2R)
error rate (where R is the information rate), while classical unique decoding of RS
codes only allows a (1 - R)/2 error rate. Therefore, for R > 1/3 the code-scrambling

4 For example, in the analysis of decoding Reed-Solomon codes under random errors, the maximum
distance separability (MDS) property of the code is the key ingredient. The MDS property does not
hold for codes in general; in fact it is quite rare.
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method offers no advantage over classical decoding; for R E (1/4,1/3) there are some
benefits but they are not as pronounced as in the low-rate case.

In contrast, with Reed-Solomon codes our method meets or exceeds the asymptotic
error correction rate of the code-scrambling method, at all information rates. In
particular, it allows unique decoding from a 1 - V7R error rate, for all values of
R > 0. Even better, when implemented with the folded Reed-Solomon construction
of Guruswami and Rudra [38], our method tolerates error rates up to 1 - R, which is
optimal for a given information rate.

3.3.4 Private Codes

In an independent and concurrent work, Langberg [46] describes "private codes" in
which the sender and recipient use a shared secret random key (which is not known
to the channel) to uniquely decode under high error rates.

Langberg assumes a computationally unbounded channel and focuses mainly on
existential (rather than efficiently constructible) codes, and on tight bounds for the
length of the secret key. The construction uses certain combinatorial set systems to
define a "secret subcode" C, of a given error-correcting code C, which depends on the
secret key r. Unique decoding is performed by maximum-likelihood decoding within
C,. The analysis and security proof of the scheme are somewhat complex and difficult
to penetrate.

Compared to our authentic codes, private codes have a few drawbacks. Namely,

1. They require secret randomness to be shared between the sender and receiver and
kept secret from the channel. By contrast, in our model the channel is on "equal
footing" with the receiver: it knows everything that is known to the latter.

2. They require the sender and receiver to keep synchronized state, otherwise they
cannot be used to send multiple messages over time. No such requirement exists
in our model, and our scheme explicitly handles the goal of multiple messages.

Finally, in our view, we contribute a conceptually cleaner framework, a more
general construction, and a modular security proof. In retrospect, it is possible to
cast private codes as one specific instantiation of our technique combining message
authentication and cryptographic sieving. One can interpret private codes as using a
(perfectly secure) symmetric key message authentication code (MAC), rather than a
(computationally secure) digital signature scheme or MAC. In this interpretation, the
"secret subcode" Cr is made up of encodings of pairs (m, a), where m. is an arbitrary
message and a is a valid authentication MAC tag under secret key r. Maximum-
likelihood decoding within C, is accomplished by first list decoding within C, then
sieving out the decoded messages and tags that are authentic relative to r.5

5We thank Adam Smith for pointing out this relationship.
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3.3.5 Multicast Authentication

Lysyanskaya, Tamassia, and Triandopoulos [49] used techniques very similar to ours
in constructing a multicast authentication scheme for fully-adversarial networks. They
considered the problem of authenticating a set of packets (with as little overhead as
possible) in a network that can drop chosen packets, rearrange packets arbitrarily,
and insert new packets into the transmitted stream (up to some thresholds). Their
solution combines list-decoding of Reed-Solomon codes with cryptographic primi-
tives (specifically, collision-resistant hashing and digital signatures). Implicit in their
scheme is a method for uniquely decoding Reed-Solomon codes by encoding authenti-
cation tags together with the data payload, and sieving a list of codewords by checking
authenticity (as is done in our construction of a coding scheme).

There are some interesting technical differences between the work of Lysyanskaya
et al and our work: in their multicast scheme, the packets themselves are not encoded
under a Reed-Solomon code - only the hashes of the packets are. This suffices in their
setting because the requirements are weaker: the receiver is not obligated to recover
all the data that was sent (because the network is allowed to drop packets), but only
the packets that were actually delivered to it. The use of list-decoding and sieving
is limited to the authentication information, which is used to check the authenticity
of packets that are actually delivered. Also, in the multicast scheme, the sender
and receivers share a small amount of public state, called the "group identification
tag," which can never be re-used. In contrast, our scheme only requires the sender
to maintain a counter or clock, which has semantics that allow a stateless receiver
to disambiguate among messages without being synchronized with the sender. It
appears that this technique can be applied to the multicast scheme in order to relax
its synchrony requirements.

3.4 Formal Model and the Coding Game

The theory of error-correcting codes is concerned mainly with the combinatorial and
algebraic properties of codes (such as distance, alphabet size, rate, and linearity). In
many cases, the theory is also concerned with the computational complexity of encod-
ing and decoding procedures. However, in the past there has been no need to address
issues such as the complexity of channels, the source of encoded messages, stateful
players, randomization, and cryptographic keys. All of these issues are relevant to our
work, and they require careful and precise modelling for several reasons: first, so that
the assumptions underlying our scheme can be fairly evaluated. Second, so that we
can rigorously analyze and prove correctness of our coding schemes. Third, so that
we know precisely what our schemes can and cannot deliver in different applications
and settings.

In this section, we motivate and precisely define a formal model for a feasible ad-
versarial channel, and give the properties that a correct coding scheme should satisfy.
As is standard in the cryptographic literature, we do this by describing a game or
experiment in which an adversary interacts with a scheme in some prescribed manner,
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then we specify the desired outcome of the experiment. We call this experiment the
coding game, and the desired outcome of the game will define a robust coding scheme.

Motivation and discussion. In formulating our model and requirements for a ro-
bust coding scheme, there are several considerations we must take into account. Below
we discuss some of these considerations, and the motivations behind our decisions.

We prefer a coding scheme that has the weakest possible cryptographic setup
requirements. In practice, a public-key setup is easier and more flexible, and arguably
less risky than one in which parties share a common secret key.6 Also, it is natural
that the entity that will be sending data should also be the one whose key is published
openly. Therefore in our model will have the sender generate a public and secret key,
with the secret key kept to himself (or at least kept secret from the channel), and the
public key known (without errors) to the receiver and the channel.

In many applications of a coding scheme, we cannot predict the source of messages
to be encoded. In a real application, it may be that the adversary has partial or even
total influence over the messages. Furthermore, it may be that it is easier for a channel
to cause confusion by corrupting certain messages, or by seeing the encodings of
certain messages.7 Therefore in order to make the coding scheme as widely applicable
as possible, we make the safest possible assumption: that the channel has complete,
adaptive control over the choice of messages that are encoded.

We would also like our scheme not to impose any synchrony requirements on the
sender and receiver, which are independent entities that may be separated by a large
distance. In real applications, a receiver may want to (or need to) ignore certain mes-
sages while "offline," for example due to maintenance, loss of power, or disconnection
from the communication medium. The receiver should not be required, nor may it
be possible, to keep track of what messages (or even how many messages) have been
transmitted while offline. We also cannot anticipate what may cause a receiver to go
offline. Hence, we will again make the most conservative choice, and leave it to the
adversarial channel to decide when the receiver will be "online," i.e. which (noisy)
encoded messages it will receive. An equivalent way of describing this choice is to
let the channel arbitrarily decide to drop messages whenever it wants to, leaving the
receiver unaware that those messages were encoded at all. Of course, it is too much to
require the receiver to correctly decode a message that it has not even received, there-
fore our definition will not impose any requirements on the receiver when a message
is dropped. However, the receiver will be required to gracefully recover from dropped
messages, by correctly decoding all delivered messages thenceforth (even though it is
unaware that messages have been dropped in the meantime).

Definition 3.4.1 (Coding scheme and channel). A coding scheme CS with block
lengths n(k) and alphabets Ek (for k E T, an infinite subset of N) is a triple of

6However, two may keep a secret, if one of them is dead (with apologies to Benjamin Franklin).
7Many similar considerations apply in the motivation for chosen-message security in authenti-

cation and chosen-ciphertext security in encryption. Indeed, our definition most closely resembles
the definition of existential unforgeability under a chosen-message attack for digital signatures or
messaoe authentication codes.
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probabilistic, polynomial-time interactive Turing machines CS = (G, S, R) having
the properties below.

For ease of notation, we write n = n(k) and E = Ek when the choice of k E T is clear
by context. Then:

" On input 1 k, G outputs a pair (pk, sk), where by convention pk = (1k, pk') and
sk = (pk, sk')."

" Given (pk, sk) and on input m E Ek, S outputs some x E En

" Given pk and on input r E E", R outputs an element of Ek.

The information rate of such a scheme is defined to be lim infk.. k

An (adversarial) channel C introducing e(k) (absolute) errors for a coding scheme CS
is a family of randomized, interactive circuits {Ck}keT.

The coding game. A channel interacts with a coding scheme in the coding game,
which proceeds as formally described in Figure 3-1, and as depicted pictorially in
Figure 3-2. The game works roughly as follows: in an initial set-up phase, the key
generation algorithm G produces public and secret keys, which are delivered (without
errors) to the appropriate algorithms. The channel C then adaptively queries the
sender S to encode messages of the channel's choice. For each encoded message, the
channel (at its option) either introduces noise and delivers the noisy version to the
receiver R, or "drops" the message entirely (without the receiver even knowing that
a message was encoded). If the channel elects to deliver a noisy block, the receiver
is obligated to decode the message, and outputs its best guess (which the channel
can see). The channel succeeds if it is able to cause the receiver to output a message
different from the intended one in any of the iterations in which the channel did not
drop the message.

Channel advantage and robust coding schemes. The following definitions cap-
ture the notion that a robust coding scheme should always behave correctly in the
presence of a feasible channel, except with some small probability of failure.

Definition 3.4.2 (Advantage in the coding game). Let C = {Ck} be a channel for
coding scheme CS in the coding game. Define

Adv-CGCS(k) = Pr[Ck succeeds against CS for message length k],

where the probability is taken over the random coins of CS and C.

For functions q(k), s(k), e(k), define

AdvCG e(k) = max {Adv-CGCS(k)},

8 The string 1k is interpreted to mean the symbol 1, repeated k times (not 1 raised to the kth
power).
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Let CS = (G, S, R) be a coding scheme with block lengths n(k) and alphabets Ek

for k E T, and let C ={C}kCT be a channel introducing e(k) absolute errors. For

convenience of notation, write n = n(k), E = Ek, and e = e(k) when k is clear

from context.

The coding game (for message length k C T) between the channel and the coding

scheme proceeds as follows:

1. On input 1k, G produces (pk, sk). S receives sk as input, while Ck and R

receive pk as input.

2. The following process is iterated until Ck terminates:

(a) On the jth iteration, Ck chooses a message mj E Ek and gives it to S.

(b) S outputs xj E E n and gives it to Ck.

(c) Ck chooses one of the following two options:

i. Ck computes rj E En such that A(xj, rj) < e, and gives it to R.

ii. Ck provides no input to R.

(d) In case 2(c)i, R outputs some m E Ek

In case 2(c)ii, we define m = mj.

The channel succeeds in the game against CS if m = mj for any iteration j.

Figure 3-1: Formal definition of a channel interacting with a coding scheme in the

coding game, and the notion of a successful channel.

E) pk
sk

SM2 R
X2 r2 >m'

A (X2 ,r 2) e m w

Figure 3-2: Pictorial representation of the coding game. Time flows downward.
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where the maximum is taken over all C = {Ck I} such that Ck:

1. queries the sender to encode at most q(k) messages in any execution of the
coding game (for message length k), and

2. has circuit size at most s(k), and

3. introduces at most e(k) absolute errors.

Definition 3.4.3 (Robust coding scheme). A coding scheme CS is called robust under
e(k) errors if, for every q(k), s(k) E poly(k), Adv-CGCe(k) is negligible in k.

Technical remarks on the definitions. Definition 3.4.1 of a coding scheme re-
quires the scheme to be explicitly polynomial-time "constructible," in a sense anal-
ogous to that for a family of error-correcting codes. In particular, the sender S is a
uniform poly-time algorithm that can encode messages of any length k E T, and the
receiver R is a uniform poly-time algorithm that can decode messages of any block
length n(k).

On the other hand, in Definition 3.4.1 we allow the channel to be a non-uniform
algorithm, by modelling it as a family of circuits. In the definition of a channel itself,
we do not impose any constraints on the circuit complexity or query complexity of
the channel. Instead, we parameterize the success of a channel by these complexities

(as explicit functions in k) in Definition 3.4.2.

In the definition of the coding game, the channel does not explicitly see the output
of the receiver R in Step 2d. This does not weaken the adversary, for the following
reason: either R produces an incorrect output m' # mi, in which case the channel is
immediately successful (and will remain so until the end of the game), or R produces
the correct output m = mj, which the channel already knows (because it generated
mj itself). We find it easier to analyze our security reductions without having to
account for this extra input to the channel.

As we have defined a coding scheme and channel advantage, the parameter k
serves a dual purpose: it acts as both the message length and as the cryptographic
notion of "security parameter" for the coding scheme (i.e., the parameter relative
to which an adversary should have negligible advantage). This is a natural choice,
because our constructions must take asymptotics into account on both the coding
theory side and the cryptography side, and these asymptotics are dependent on each
other. Our constructions will require families of error correcting codes that are poly-
time constructible; this notion is defined relative to the message length. At the
same time, our cryptographic reductions require an explicit link between the security
parameter of the underlying cryptographic primitive and the message length of the
coding scheme.

For formal definitions of interaction among algorithms/circuits, we refer the reader
to the standard notion of interactive Turing machines [33, 15, 14].

36



3.5 Constructing Robust Coding Schemes

3.5.1 Intuition

One first attempt at constructing a coding scheme is to encode each message, sign the
encoding, and send the signature along with it. At the receiver, the noisy encoding
can be list-decoded, and the signature verification can serve as a cryptographic sieve
to select the correct message from the list. Unfortunately, this simple scheme does
not work, because the signature can be destroyed by errors. The natural fix is to
protect the signature as well by encoding it under a suitable code. Unfortunately, a
careful analysis (even using list decodable codes for both the message and signature)
shows that this approach yields no improvement in overall rate.

The key insight is that the message and signature should be encoded together,
rather than separately. To communicate a message m, the sender can first sign m,
yielding a signature o, then encode the pair (M, a) as a unit. To decode a received
word r, the recipient can list decode r, yielding a list of potential pairs (mi, 0j). If the
number of errors is suitably bounded, then the original pair (m, -) will appear in the
list, and will be declared authentic by the signature verifier. By the unforgeability
of the signature scheme, the other pairs should be declared inauthentic and can be
thrown out, leaving only the original message as the unique output.

There is one hidden difficulty in the above description: the list may actually
include several authentic (mi, oi) pairs, which correspond to messages sent in the
past. This event cannot be used to break the signature scheme, because a valid
forgery must involve a new, previously-unsigned message. Fortunately, it suffices to
find a way to correctly disambiguate among several valid pairs in the list.

The solution is for the sender to maintain some local state in the form of a short
counter or clock t. With each message, the current value of t is appended to the
message (and signed along with it), then incremented (or is incremented automatically
over time, as in the case of a clock). Then at the receiving end, among all valid pairs
in the decoded list, the recipient chooses the one with the largest value of t. In other
words, the receiver always decodes to the "freshest" authentic message in the list. We
note that the this receiver is stateless, while the sender needs only to maintain the
current value of the counter t.

There are only two essential requirements for the counter values: each value must
be used at most once (a "nonce"), and the values must be ordered so that the receiver
is able to recognize the largest value in a list. Any monotonically increasing sequence
of integers satisfies these requirements; in particular, a timestamp is sufficient. We
stress that the sender's clock need not be synchronized with any other clock in the
world, nor is clock "drift" a problem.

Looking at the entire construction from an informal (and perhaps amusing) level,
it may be viewed as an affirmation of a basic rule of etiquette: one should always
date and sign one's correspondence!
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3.5.2 Formal Construction

In this section we formally construct a coding scheme according to the intuition given
above.

Required primitives. Let C = {CK ['F -+ c N denote a family of error-

correcting codes' having the following properties (see Section 2.2 for the relevant
coding theory background):

" C is an explicit poly-time constructible family with encoding algorithm E;

* C is ( (), L(r,))-list decodable via a polynomial-time algorithm LD.

Therefore C has information rate R, where

R = lim inf

Let SS = (!, S, V) be a digital signature scheme (see Section 2.3 for definitions).
As a convention of notation, we will invoke S and V on inputs encoded over an
appropriate alphabet Ek; likewise, the output of SAi will be interpreted as a string
over Ek. Without loss of generality, we will invoke the key generator g with a security
parameter of the form k' = f - [lg 1EkJ, so that the signatures produced by S can be
interpreted as elements of Ek..

The coding scheme. We now define the coding scheme CS = (G, S, R). The
scheme is actually parameterized by an integer function f(k), which relates the lengths
of the signature and counter (written over appropriate alphabet Ek) that are appended
to a message of length k in our scheme; thus f(k) determines the loss of information
rate of our coding scheme relative to the underlying code.

For messages of length k, our scheme will employ the code C, for r = k + 2f(k).
That is, our scheme will use alphabet Ek = IF, = Fk+2(k) and block length n(k) =
r7(r) = 'r(k+2e(k)). As we will show, it will be robust under e(k) = ((,) = (k+2f(k))
errors. The scheme is formally specified below, and also represented pictorially (with
some loss in precision) in Figure 3-3. We write f = f(k), E = Ek, n = n(k), and
K = k + 2f where k is clear from context.

G: On input 1 k for k E N, let k' = f - [lg EJJ, and let (pks, sks) <- g(1 k')

Output public key pk = (1k, 1', pks) and secret key sk = (pk, sks).

S: Let t E Et be a local variable that is initialized to zero and maintained across
invocations of S.

Given secret key sk = (pk, sks) and on an input message rn E Ek.

9 We use dummy variable n, alphabet symbol I, and block length function r(n) in order to reserve
k, E, and n(k) for our coding scheme.
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1. Let - +- SkS(m, t), where a C >1
2. Let w = (m,at,) E E.

3. Increment t in a canonical way, e.g. according to lexicographic ordering on
its representation as an element of EV.

4. Output x = C.(w) = E(w) E E".

R: Given public key pk = (1k, 1', pks) and on an input block r E E":

1. List-decode r, interpreting each item in the list as the encoding of a triple
(rn~, t(), -w) E E. More precisely, let

{(MW, tN, 7U o-)}ELr) LD(r),

where m E Ek and t), (i E E' for all i E [L(r,)].

2. Find all authentic triples

V = {(mMi, o(i) ) Vpksm((M , t)), o.(i)=1}.

3. Find the largest authentic value of t:

tmax = max{t() : (m('), 0) o()) E V}

4. Find all authentic messages having the largest authentic value of t:

M = {m() : (m(), tmaxI U(0) E V} .

5. If M = {m}, a singleton set, output m. N.B.: there may be many authentic
triples of the form (m(i), tmax, cT(i)); if all such m( are the same (even if
their a' differ), M is a singleton set.

Otherwise - i.e., there are two or more different authentic messages m(
having counter value tmax - output I.

3.5.3 Proof of Robustness

Theorem 3.5.1. Let C, SS, and CS be as described above, where CS is parameterized
by a function f(k). Let q(k), s(k) be arbitrary functions. Then for any k such that
q(k) < IEk|1(k ), we have:

Adv-CG- (k) < Adv-CMA ,,,(k')

where

k = (k) - Llg ||kIi , e(k) = (k + 2e(k)), q'(k') = q(k)

s'(k') = s(k) + q(k) - (times(k') + timecD(k) + L(k + 2f(k)) - timev(k'))

+ O(q(k) - (k + 2f(k)) log |EkI)
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Sender 0:

(M, t) (mn, t, a) C E K,

Receiver :

"ar ~ : -+maxti -- + mi / _

Figure 3-3: Pictorial representation of the sender and receiver in the coding scheme.

Proof. Let C = {Ck}kEN be any channel for coding scheme CS that queries the sender
to encode at most q(k) messages, has circuit size at most s(k), and introduces at most
e(k) absolute errors. Let k be such that q(k) < IEkI1(k).

We will use C to build a forger F = {Fk, } whose advantage in generating a forgery
(via a chosen-message attack) against SS is at least as large as C's advantage in the
coding game against CS.

Recall that in a chosen-message attack, keys (pks, sks) are generated by g(1k')

Then Fk, is given pks as input, and has oracle access to Sk,. Our forger Fk, will run

Ck internally, emulating a view of the coding game to Ck.

Fk, is formally defined in Figure 3-4 (note that the structure mirrors that of the
coding game from Figure 3-1).

Complexity of the forger. It is clear that the number of signature queries is at
most q(k). Furthermore, a direct analysis shows that the size of Fk, is as claimed in
the theorem statement: Fk, incorporates one copy of Ck, q(k) copies of the signature
algorithm S and list-decoding algorithm CD, and q(k) - L(k + 2f(k)) copies of the
signature verification algorithm V, plus incidental "glue" circuitry to connect those
components.

The output of the forger. It is easy to see that whenever F outputs some

((m(2), t()), 0 (i)), it is a valid forgery for an unqueried message (m(), t()): indeed,
Vpks ((m(), t(0)), a(')) = 1, and (m('), t(0)) was not a query to Sksk because (1) if 0) > t,
no query's second component is as large as t(0), and (2) if 0) = t, the unique query
whose second component was t had a first component m # m('). (Here we have used
the fact that q(k) < JEkI1(k), so t never exhausts its domain of possible values during
the execution of F.)

The advantage of the forger. First we observe at any point prior to F producing
a forgery and halting, the view it provides to its internal copy of C is distributed
identically to the view seen by C in the coding game against CS. Indeed, the public
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Assume that the appropriate values of k and f = f(k) are "hard-coded" into the
circuit Fk,. Let E = Ek, C = Ck, and n = n(k). Let t E Vl be a local variable that
is initialized to zero.

1. On input pks, create pk = (1k, 1, pks) and give pk to C. (The values k and
f(k) can simply be "hard-coded" into the circuit Fk,.)

2. Iterate until C terminates (as in the coding game):

(a) On the jth iteration, C outputs a message mj E Ek for the sender S.

(b) Emulate the sender S in the following way:

Let tj = t.

Query the signing oracle Ss, letting aj <- Ssks (mi, ti).
Let xj = Cr(mj, tj, oj) = (mn, tj, a-).

Increment t, and give xj to C.

(c) C chooses one of two options:

i. C outputs (for R) an rj E E" such that A(xj, rj) < e(k).

ii. C provides no output for R.

(d) In case 2(c)i, emulate the receiver R (to a point) in the following way:

" List-decode rj: { (m(), t(i,(i)} +- LD(rj).

* Find authentic triples

V = { (MMi, t(i), o (i)) : Vpks ((rni, t(i)), oI)) = 1j

* If there exists (m(i), t(, 0 m)

- t(0) > tj, or

- t(0) = ti and m( f mj,
output ((m('), t(0)), ()) as a

* Otherwise, continue.

In case 2(c)ii, just continue.

E V such that either:

forgery and halt.

3. Halt with no output.

Figure 3-4: Definition of the forger algorithm Fk,.
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key pk and every encoding xj are produced in exactly the same way as in the coding
game, and these are the only components of the channel's view. In particular, it
follows that in any iteration of the coding game, the set V constructed by R is
distributed identically to the set V constructed in the corresponding iteration when
F emulates R. Therefore in the following, we will simply refer to V in some iteration,
referring to both the coding game and the forger's emulation.

We now argue that any event in which R's output in iteration j of the coding
game is not m3 corresponds exactly to an event in which the forger halts with a
(valid) forgery. This will establish the claimed inequality on the advantages.

Consider iteration j: first note that in the emulation (and hence in the coding
game), (mj, tj, oj) E V, because the channel C introduces at most e(k) errors, and by
the correctness of LD. By implication, R calculates tm" > tj. Now suppose that R
does not output mj in iteration j of the coding game. There are two cases:

1. R outputs 7n' E E' with m' = mi: this can happen only when tm" > tj, so
there is some (m, t, o) C V with t > tj. But this causes F to halt with a forgery
in the emulation.

2. R outputs 1: this implies that there are (m(a), tm , o,()), (m(b)m, trax, ,(b)) E V
with m(a) # "(b).

Then either tmax > tj, in which case F halts with a forgery in the emulation,
or tmax = tj, in which case either .(a) or m(b) differs from mj, so F also halts
with a forgery.

This completes the proof.

Corollary 3.5.2. Let C, SS, and CS be as above (where C has information rate R).
Let t(k) = o(k) be such that there exists a constant 6 > 0 with f(k) - [lg| EkJ > k
for all sufficiently large k.

If SS is an existentially unforgeable signature scheme (under chosen-message
attack), then CS is a coding scheme with information rate R that is robust under
e(k) = (k + 2f (k)) absolute errors.

Proof. First we analyze the information rate of the scheme, which is:

lim inf k li inf k = lim inf Rk = lim inf Rk R.
k-oo n(k) k-+oo q(k + 2f(k)) k-*o k + 2f(k) k-*o k + o(k)

Now for any polynomially-bounded q(k), s(k), we need to show that

Adv-CG (k)

is negligible in k. First, note that for all sufficiently large k,

q(k) < 2k 0 'k)11k - i_ ef(k).

Then Theorem 3.5.1 applies, implying that Adv-CG is at most Adv-CMAS,%(k'),
where k', q'(k'), s'(k') are as in the Theorem. Clearly q'(k') and s'(k') are bounded
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by polynomials in k', because S, V, and 1D are poly-time algorithms. Then be-
cause SS is existentially unforgeable, Adv-CMAR,(k') is negligible in k'. Because
k' = t(k) - [lg IEkIJ = Q(k), that advantage is also negligible in k, as desired. E

3.5.4 Concrete Instantiations

Here we instantiate our construction with concrete choices of list-decodable codes,
yielding robust coding schemes for a variety of good parameter sets.

One issue in common with all the instantiations is how to choose the signature
length f(k) as a function of the message length k. There is a tradeoff between the
information rate of the resulting scheme and its exact security. If security is of the
utmost importance, then one can choose f(k) = 6 -k for some small 6 > 0. This yields
a linearly-preserving security reduction (in the terminology of Goldreich [28]), but an
information rate R - 4 (where R is the rate of the underlying code). Alternately,
one can choose t(k) = k' for some 6 e (0, 1), which yields a polynomially-preserving
reduction (in the terminology of Goldreich [28] and Levin, as presented by Luby [48]),
but with an asymptotic information rate of R.

Binary coding schemes. To construct coding schemes over the binary alphabets
Ek = {0, 1} (for all k), we can use the poly-time constructible and efficiently list-
decodable (concatenated) codes of Guruswami and Sudan [40]. By concatenating
Reed-Solomon codes with inner codes of sufficiently large distance, they construct
codes that are efficiently list decodable under e = (i - 7) -n errors (for any constant
y > 0) that have block length q = O(K/-y8), i.e. the information rate R = Q(y 8).
A more complicated construction that concatenates algebraic-geometry codes with
the Hadamard code yields information rate R = Q(-y6 log }). Further work by Gu-
ruswami et al [36] gave codes of rate Q(-y4 ) having list size Q(-y- 2 ).

Coding schemes for larger alphabets. With the use of larger alphabets (whose
sizes grow with K), we can list-decode under much larger numbers of errors.

The popular family of Reed-Solomon codes [57] was shown by Sudan [66], and
later Guruswami and Sudan [39], to be efficiently list decodable under high error
rates. Specifically, there is a polynomial-time algorithm that can find all codewords
within distance q - /lq= (1 - v7R),q of any word. The number of words in the list
is at most q72, and the alphabet size is IEI 77.

The recent construction by Guruswami and Rudra [38] of Folded Reed-Solomon
codes admits list-decoding algorithms with even better performance, correcting from
(1 - R - -1)7 errors for any -y > 0. These codes are called "capacity-achieving,"
because the relationship between their list-decoding radius and information rate is
(nearly) optimal.

Other considerations. There are a variety of other efficiently list-decodable codes
in the literature having other interesting properties. For example, the codes of Gu-
ruswami and Indyk [37] have encoding and list-decoding algorithms that run in time
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linear in the block length, and recover from up to (1- 1/q-y) errors with a positive
information rate and list size depending only on -y (here q is the alphabet size).

3.5.5 Optimism and Optimizations

In the scheme described in Section 3.5.2, the receiver's algorithm is not as efficient
as it could be. The main practical bottlenecks are that the receiver must do (poten-
tially expensive) list decoding, then must perform as many signature verifications as
there are codewords in the decoded list. In this section we show how the computa-
tional burden on the receiver can sometimes be reduced, via (1) optimism about the
channel's behavior and (2) certain optimizations to the receiver algorithm.

Optimistic decoding. In cryptography, optimism is a principle that allows pro-
tocols to be more efficient when the adversary does not use its full powers, without
compromising security in cases in which the adversary does use all its powers. Such
protocols are called "optimistic" because their normal mode of operation tends to
be simple (and hence efficient), with the "hope" that the adversary will not interfere
maliciously. If the adversary does interfere, however, the protocol is designed to de-
tect such interference, and reverts to a more "pessimistic" (and inefficient) mode to
complete its task securely.

In our coding scheme, the receiver can employ very efficient optimistic decod-
ing, which avoids the less-efficient list-decoding and signature verification algorithms
entirely. The central idea is to first run an unambiguous decoding algorithm for the
underlying error-correcting code, to test whether the channel has added much noise to
the transmitted codeword. If the received word is very close to the decoded codeword

(and far from all other codewords), then one can be sure that the channel introduced
very little noise, and that the decoded codeword is the intended one.

Our construction CS from Section 3.5.2 uses an underlying error-correcting code
C. In addition to its parameters and list-decoding properties as described above, we
will require some further properties:

" C, has (Hamming) distance at least d(r,).

" C has a polynomial-time unambiguous decoding algorithm D, which, given r E
K , computes c C C such that A(r, c) < d(i')/2 if such a c exists.

Our optimistic decoding algorithm R' now works as follows (we use the same
notation as in our formal description of CS above):

R': Given public key pk = (1k, 1, pks) and on input block r E E":

1. Attempt to unambiguously decode r: let c <- D(r). If D produces no
output, run the "pessimistic" algorithm R from above.

2. If A(r, c) < d(K) - e(K), interpret c as the encoding of a triple (m, t, o),
and output m. Otherwise, run the pessimistic algorithm R from above.

Note that R' completely elides verification of the signature in the triple (m, t, o-).
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Proposition 3.5.3. Let CS' = (G, S, R') be an optimistic version of the coding
scheme CS from above. Then Theorem. 3.5.1 applies with CS' replacing CS.

Proof. It suffices to show that when R' outputs some m without reverting to the
pessimistic R, the intended message was m.

Suppose that in an iteration of the coding game, S outputs a codeword x E C, the
channel delivers a word r, and R' computes a c E C, such that A(r, c) < d() - e(K).
By assumption on the channel, A(x, r) < e(r), so by the triangle inequality we have:

A(x, c) < A(x, r) + A(r, c) < d(,).

Because both x, c E C, we must have c = x. Therefore R' outputs the intended
message. El

To get an idea of the error rates for which optimistic decoding can be useful, we
briefly analyze the coding scheme when instantiated with Reed-Solomon codes. These
codes have distance d(r,) = (K) - ,+ 1 n(1 - R(K)), where r, is the message length,
rj(r,) is the block length, and R(K) = is the information rate. The Berlekamp-
Massey algorithm [6] can be used for unambiguous decoding to distance d(K)/2, and
the algorithm of Guruswami and Sudan [39] can be used to list-decode to distance
e(K) = r(K) - Vr/(K)- / = n(1 - VR(i)). Therefore our coding scheme can recover
from e(s) errors, and the optimistic decoding algorithm works when the channel
introduces at most

d(r,) - e(r,) - I =rls - r, = n(VR(r) - R(r,))

errors. For a rate R(K) = -, optimistic decoding applies when the channel introduces
at most -n errors, whereas pessimistic decoding always recovers from up to n
errors. More generally, optimistic decoding works whenever the channel introduces
at most a factor of VR(i) as many errors as it is allowed.

We remark that optimistic decoding is most useful when d(K) and e(s) are well-
separated. The Singleton bound says that d(r,) <; n(1 - R(r,)) + 1, so when e() is
large (say, close to the Shannon capacity 1 - R(K)), optimism provides little to no
benefit.

Decoding optimizations. The original receiver algorithm R can also be rewritten
to be more efficient in practice, by eliminating unnecessary signature verifications.
The main observation is that it is unnecessary to verify those triples (m, t, a) whose
value of t is smaller than tmax. Of course, the reasoning here is slightly circular,
because tmax can only be calculated by checking signatures. However, the receiver
can do the following: given the output { (m(), t(i), 0(i) } of the list decoding algorithm,
sort the triples by decreasing value of 0). Then verify the triples in this sorted order,
and output the first valid m(. "

10This description is not entirely equivalent to the previous algorithm, because it does not account
for ambiguity (two different but valid messages with the same counter). However, it is easy to see
that this new algorithm outputs an incorrect message only when the old algorithm would also do so.
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Alternate security reductions. Our proof of Theorem 3.5.1 attains a large forger
advantage at the cost of a large circuit to create the forgery. In fact, other reductions
are possible which trade forger advantage for circuit size. For example, at the opposite
end of this extreme, we can design a reduction that emulates the receiver in only one
randomly-chosen iteration out of q(k) total; this would reduce the forger's advantage
by a factor of q(k), but also decrease the additive term in the circuit size by a factor
of q(k).

We can similarly reduce the number of signature verifications done by the reduc-
tion at the cost of decreased forger advantage. In fact, we (by necessity) will take
this approach in Section 3.7, where we construct coding schemes in a symmetric-key
model using message authentication codes.

3.6 Optimality and Necessity of the Model

In our cryptographic construction of a coding scheme, the sender keeps a secret key,
maintains some local state between each encoding, and the channel is assumed to
be computationally bounded In this section, we show that these features of our con-
struction are actually essential for unique decoding under high error rates. Our main
tool is an upper bound on the distance of error-correcting codes (which shows that
plain codes cannot unambiguously decode from high error rates in the worst case).
Of course, this on its own is not enough to rule out coding schemes that may rely on
randomness, state, and secrecy - but we are able to exploit the bound in construct-
ing adversarial channels that defeat coding schemes that are constrained in certain
ways.

To prove all the results of this section, we will be using a generalized form of the
Plotkin bound [56] shown by Berlekamp [7]. Let Aq(n, d) denote the maximum size
(i.e., number of codewords) of any code over a q-ary alphabet having block length n
and minimum distance at least d. Then we have:

Proposition 3.6.1. For q, n, d E N, q > 2:

dq
Aq(n,d) d ,q if dq > n(q - 1)dq - n(q - 1)'

From this we easily get the following:

Corollary 3.6.2. Let C be a code over a q-ary alphabet having block length n and
distance d. If |C > n(q - 1) + 2, then d < n 1 .

In order to exploit Corollary 3.6.2, our proofs will rely on the fact that any coding
scheme has sufficiently many distinct messages:

Lemma 3.6.3. For any coding scheme CS, let q(k) = kI. Then there are at least
n(k) - (q(k) - 1) + 2 distinct messages of length k, for all sufficiently large k.

Proof. There are q(k)k messages of length k, and q(k) 2 for all k. Therefore it
suffices to show that q(k)k- 1 > n(k) + 1 for sufficiently large k. But because CS is a
coding scheme, n(k) = poly(k), while q(k)k~1 is exponential in k.
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3.6.1 Necessity of Local State

Proposition 3.6.4. Let CS be any coding scheme in which both the sender and

receiver are stateless. Write q = q(k) = |Ek|, E = Ek, n = n(k), e = e(k) where k is
clear from context.

Then for any e > n - q,2q'

dv-G2C0(7),ek) (n(q - 1) + 2)2

for infinitely many k. In particular, if q(k) = poly(k), CS is not robust under e errors.

In addition, for any q(k) and for any e > g, CS is not robust under e errors.

These claims hold even if the sender and receiver are randomized and have shared
secret or public keys.

Proof For any x, x' E E", if A(x, x') < n - 2, define M(x, x') to be some canonical
"midpoint" r E En such that

A(x, r) n - and A(r, ') n
I 2q 2q

Note that M is computable in O(n) time. We now describe a channel C whose
advantage in the coding game is non-negligible:

1. Choose two distinct messages m, m' E Ek at random.

2. Query the sender on m, yielding x E E", and pass x to the receiver without
error.

3. Query the sender on m', yielding x' C En.

4. If A(x, x') n- 1:1, send r to the receiver, where r is either M(x, x') or M(x', x),

each with probability 1/2 (in either case, A(r, x') < n - <e).

It is clear that this channel makes exactly 2 queries and runs in time 0(n).
Now consider an alternate experiment in which a channel queries m' first (yielding

x') and m second (yielding x), but Step 4 is syntactically identical. In the following,
we condition on the "good" event that A(x, x') < n - 1. We first observe that the
second received value r is distributed identically in both experiments - this is because,
by the statelessness of the sender, x (likewise x') is distributed identically in both
experiments. Then, because the receiver is also stateless, the receiver's output given
r is distributed identically in both experiments. The receiver's output is supposed
to be different in the two experiments, so in one of the experiments the channel has
advantage at least } (conditioned on the good event).

It remains to bound Pr[A(x, x') < n - ] Consider a thought experiment inq
which C additionally queries n(q - 1) additional random messages (all distinct) before
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querying rri and m.' (sufficiently many unique messages exist by the bound on qk). The
set of all the encodings forms a code of size n(q - 1) + 2, so by Corollary 3.6.2, some
pair of encodings will have Hamming distance at most n - 1. Because encodings

q
of messages are independent of their order (the sender is stateless), and the set of
encoded messages is random, by symmetry we have

q - 1 n(q - 1) + 2
Pr [A(x, x') :< n .- I ;>

q 2

which establishes the bound on the channel's advantage.
Now if q(k) = poly(k), the advantage of the channel is non-negligible in k, so CS

is not robust. Furthermore, for e > E (and an alphabet of any size), an argument
similar to the one above suffices; we only need that A(x, x') n, which happens with
certainty. E

3.6.2 Necessity of Sender Secrecy

Proposition 3.6.5. Let CS be any coding scheme in which the sender has no secret
key (i.e., all its inputs are known to the channel), and use the same notation as in
Proposition 3.6.4.

Then for any e > n - q-1

Adv-CG ,s (k) >,s,e ~n(q - 1) + 2

for infinitely many k, where s(k) = O(n-q -times(k)). In particular, if q(k) = poly(k),
CS is not robust under e errors.

In addition, for any q(k) and for e > 1, CS is not robust under e errors.

These claims hold even if the sender and receiver are randomized and stateful and the
receiver has secret inputs.

Proof. Because the sender is a polynomial-time algorithm with only public inputs, it
can be simulated by the channel. That is, the channel C can invoke S as a subroutine.
Thus, instead of making actual queries, C can encode messages itself without invoking
the sender. This is a crucial difference: because S is not actually encoding messages,
its internal state remains unchanged. The channel can thus simulate the execution
of S on a variety of inputs with the same internal state.

Define the midpoint function M(x, x') as in the proof of Proposition 3.6.4. We
now describe a, channel C which has good advantage in the coding game:

1. Choose distinct, uniformly-random messages m 1 , . . , mn(q-1)+2 E Zk. Query
the sender on m 1 , yielding x1 .

2. Internally simulate querying S on messages M2... , mn(q-1)+2, yielding encod-
ings x 2 , ... , xn(q-1)+2, respectively. (If S is stateful, simulate each encoding with
the state of S as it was when m 1 was queried.)

48



3. If there exists a j 1 such that A(x1, xj) < n - q, send r to the receiver,
where r is either M(xi, xj) or M(xj, x1 ), each with probability 1 (in either

case, A(r, x 1 ) < I q - e).

It is clear that this channel makes exactly 1 query and runs in time s(k).
In the following, we condition on the "good" event that there exists a j / 1 such

that A(x 1 . xj) K n - !z-. In such a case, the value r is identically distributed to one
in an alternate experiment in which mj was the real query, and the encoding of m1
was simulated -- this relies on the fact that all encodings (both real and simulated)
use the same state of S. The receiver's output is supposed to be different in the two
experiments, but its view is identical in both. Therefore the channel has advantage
at least 1 (conditioned on the good event).

It remains to bound the probability of the good event. The set of all encodings
X1, . .. , Xn(q-1)+2 forms a code, so by Corollary 3.6.2, there must exist i = j such that
A(x2 . xj) n - 21. Because the messages are uniform, by symmetry the good eventq
occurs with probability at least _2 which yields the bound on the channel's
advantage.

For the additional claims, the reasoning from the proof of Proposition 3.6.4 applies
directly.

3.6.3 Necessity of a Bounded Channel

Proposition 3.6.6. Let CS be any coding scheme in which the receiver is stateless
and has only public inputs (i.e., all its inputs are known to the channel), and use the
same notation as in Proposition 3.6.4.

Then for any e > n - q,2q

1
Adv-CGio--)+ 2,s,e(k)> -

for infinitely many k, where s(k) = exp(n log q + timeR(k)).

In addition, for any q(k) and for e > 1, CS is not robust under e errors.

These claims hold even if the sender and receiver are randomized and stateful and the
receiver has secret inputs.

Proof. Note that because the receiver is stateless, its output distribution on a given
word r is always the same, regardless of what transmissions have preceded r. There-
fore a channel can simulate the behavior of R on many different inputs. We now
describe a channel (having large circuit size) which has good advantage in the coding
game:

1. Choose arbitrary distinct messages m 1,... , mn(q-1)+2 E Ek.

2. For j = 1, ... , n(q - 1) + 2, do the following:
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(a) Query the sender on m, yielding an encoding xj c- E".

(b) Consider all r such that A(xj, r) < n q 1, and compute the output dis-
tribution R(r) (this distribution is computable because R is stateless and
all its inputs are known to the channel).

If there exists an r such that Pr[R(r) # m] > 1, corrupt xj as r, send r
to the receiver, and halt. Otherwise, send xj uncorrupted and loop.

Computing each distribution R(r) can be done in time exp(timeR(k)) by enumerating
over all of R's possible random coins, and there are (very roughly) at most qfl possible
choices for r in each iteration. Therefore C has circuit size exp(n log q + timeR(k)).

We now need only argue that a suitable r is eventually found for some query. The
encodings x1, ... , Xn(ql)±2 form a code, so by Corollary 3.6.2, for some j there exists
i < j such that A(xi, xj) 5 n - ., so there exists r such that

q

A(Xi, r) 5 n -q 1 and A(r, xj) < n.
I 2q 2q

If the channel did halt on query i (by finding a suitable corrupted word), then
Pr[R(r) = mi] ., which means that Pr[R(r) $i mi] > 1, as desired.

For the additional claims, the reasoning from the proof of Proposition 3.6.4 applies
directly.

3.7 Symmetric-Key Model and Construction

Our construction from the previous section relied on digital signatures for its cryp-
tographic sieve. In this section, we show that signatures provide just one possible
instantiation of our broader framework, and that authenticity is the central notion
that allows us to correct from high error rates. We will show how a stronger setup
assumption (specifically, that the sender and receiver share a secret key) and a differ-
ent cryptographic primitive (namely, message authentication codes) can be used to
construct similar coding schemes. Although the qualitative nature of these schemes is
the same (even though the setup assumption is stronger), these results are interesting
for several reasons:

1. Message authentication codes (MACs) are typically much more efficient than
digital signatures in practice (both in terms of algorithmic efficiency and the
length of the authenticator tag).

2. MACs can be constructed to be secure against computationally unbounded
adversaries (though requiring the receiver to keep state);

3. The alternate constructions illuminate the generality of our decoding frame-
work.
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3.7.1 Model and Coding Game

The model of a symmetric-key coding scheme and its interaction with a channel
in a coding game is exceedingly similar to the public-key case. Because of these
similarities, we do not give an entire formal definition. Instead, we highlight the
essential similarities and differences here:

* The key generator algorithm G outputs a single secret key sk (not a pair (pk, sk)
of keys).

" Both the sender algorithm S and receiver algorithm R get sk, but the channel
C does not.

* In the coding game, the channel still mounts an adaptive chosen-message attack
and tries to make the receiver output an incorrect decoding.

3.7.2 Construction and Security Reduction

Our construction of a symmetric-key coding scheme is also very similar to the con-
struction in the public-key model. Essentially, we use a MAC (message authentication
code) as a "drop-in" replacement for digital signatures. All the other main aspects
of the scheme remain the same:

" The sender keeps a local counter or clock t, and uses it to indicate "message
freshness" in the same way.

" Although the receiver now has a secret key input, it remains stateless. 1 To
decode, the receiver list decodes the received word and chooses the freshest
authentic message in the decoded list.

" The channel still does not see the output of the receiver at each iteration. Even
in the symmetric-key model, this is without loss of generality and does not
weaken the model, for the same reasons described in Section 3.4.

The most significant change is in the resulting security reduction, which constructs
a MAC forger out of an adversarial channel. The reason is that, because the channel
does not know the secret key sk, it cannot detect which decoded triples (m('), t(), o0w)
are authentic. Instead, the reduction follows this alternate strategy:

1. Choose a random iteration j E [q(k)], where q(k) is the maximum number of
queries made by the channel in the coding game.

2. On iterations j' # j, do nothing with C's output word rj'. On iteration j, get
C's output word rj, and list-decode it: {(m(i), t(), 0w)} <- LD(rj). Choose a

random triple (m, t, o-) from this list, and output ((*, t), o-) as an attempted
forgery.

"Unless the underlying MAC requires state, as is the case for information-theoretically secure

MACs. In any case, the coding scheme imposes no additional state on the receiver.
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By reasoning similar to the public-key case, succeeding in the coding game requires
the decoded list in some iteration to contain a forged triple. By choosing the iteration
and triple at random, the advantage of the forger is (at least) a factor of q(k) - L(K)
smaller than the advantage of the channel (where L(K) is the size of the decoded list).
However, the circuit size of the forger is more reasonable, because it only needs one
copy of the LD algorithm. In effect, this reduction is at the opposite extreme of the
size/advantage trade-off discussed in Section 3.5.5.
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Chapter 4

Lower Bounds for Fingerprinting
Codes

Unlike physical objects, information is easy to duplicate and distribute - especially

in the modern age of the Internet.' For those in the business of selling information

for profit, or those who want to their information to have limited distribution, this is

a troubling state of affairs.

In order to prevent buyers from redistributing copies of information products

(such as computer games, audio, and video), there have been varied attempts to

build technical "copy control" systems. These systems have the goal of making any

duplication infeasible or very inconvenient. Historically, most such systems have failed

in the face of attacks, while simultaneously hindering legitimate uses of the products

(such as making personal backup copies, using excerpts, or transferring copies to new

hardware).

An alternate approach to restricting all copying is to instead reduce the scope

of the problem to deal only with unauthorized redistribution. In addition to being a

potentially easier problem to solve, this has the benefit of allowing legitimate copies.

In this chapter, we investigate a particular method for deterring redistribution, called

fingerprinting.

4.1 Fingerprinting and Watermarking

The central idea behind fingerprinting is that every purchased copy of a work is

embedded with extra hidden information via slight differences in the work, and this

information is associated to the buyer of that copy by the distributing authority. If one

of these copies is later redistributed or resold, it reveals the identity of the user who

purchased the copy. This can be used for a variety of purposes, i.e. to subject the user

to suspicion and further investigation, or possibly to revoke the user's subscription or

access to further services.

'In what has become an online mantra, "information wants to be free" (originally attributed

to Stewart Brand). Here the word "free" is ambiguous, and can refer either to its price, or to its

freedom from secrecy or encumbrance. Usually the latter meaning is the intended one.
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The method of embedding hidden information (known as stegotext) into another
piece of data (known as covertext) depends crucially upon the type of the covertext,
e.g. computer code, audio, video, written text, etc. The whole class of techniques
usually goes under the rubric of watermarking (alluding to the "watermark" patterns
embedded in official documents like currency, which are only visible under certain
lighting conditions), though it is more accurately referred to as information hiding
or steganography. Watermarking has many other applications, such as proving au-
thorship of a work, or preventing devices from using data from unapproved sources.
In this work, we will focus only on watermarking as it applies to fingerprinting and
deterring redistribution.

In order to be useful for our application, a watermarking scheme needs to have a
few essential properties:

1. The marks should not be detectable to the user; in particular, the marks should
not alter the functionality or perceived qualities of the covertext.

2. The marks should be detectable to the distributing authority.

3. The marks should be robust to transformations (such as cropping, compressing,
etc.) that do not significantly degrade the functionality or perceived qualities
of the covertext.

4.1.1 Introducing Coalitions

In our fingerprinting application, there is an additional wrinkle in the use of water-
marks: different users may purchase copies of the same work and collude by comparing
their copies and looking for differences, which reveals the embedded marks. To make
matters worse, the colluding users can potentially mix-and-match different parts of
their copies, forming a "hybrid" copy whose embedded fingerprint is not directly
associated with any of the users.

These issues force us to re-evaluate both our requirements for the watermarking
scheme, as well as our hopes for the entire enterprise of fingerprinting. We cannot
hope to prevent colluding users from noticing the differences in their copies, nor from
producing hybrids that are just as useful as the original copies. Instead, we can relax
the requirements on the marking scheme in the following way:

1. Colluding users should not be able to detect marks in positions in which all the
colluders have the same mark; any hybrid copy produced by the coalition must
retain that mark in that position.

2. At a position in which colluders have different marks, a hybrid copy produced
by the coalition may include any one of the colluders' marks.2

2This is a relatively strong restriction on the coalition's behavior, but our negative results will

work within this model, making them stronger. More relaxed assumptions are also possible, de-

pending on the type of application and strength of the marking scheme: one may allow the colluders

to produce a copy with no mark at all at a position in which their marks differ. Relaxing even

more, one may allow the colluders to produce any valid mark (even one not possessed by any of the

colluders), or none at all.
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These requirements are the essence of the marking assumption, which is formalized
below in Definition 4.2.1.

Under these assumptions, we would like the distributing authority to still be able
to trace a hybrid copy to at least one guilty user in the coalition, at least with high
probability. (We cannot hope to always identify more than one user, because other
users in the coalition may not contribute at all to the final hybrid copy.)

4.1.2 Our Contributions

Most methods of information hiding require a large volume of covertext in order to
embed each bit of stegotext robustly. Therefore the number of marks in a fingerprint
is a critical measure of the complexity of a fingerprinting scheme. In this chapter, we
investigate lower bounds on the lengths of fingerprints as a function of the number of
colluders the scheme is designed to resist, and the probability of tracing error.

We investigate this problem in a probabilistic model of fingerprinting with binary
marks proposed by Boneh and Shaw [13]. By devising and analyzing a probabilistic
collusive strategy, we show that the number of marks must be essentially quadratic
in the number of colluders, times a factor that is linear in the log of the inverse
probability of error. This lower bound is actually tight, as it matches a subsequent
construction of secure fingerprinting codes by Tardos [68].

4.1.3 Prior Work

Fingerprinting was first described in the literature by Wagner [69]. Coalitions in the
context of fingerprinting were first considered by Blakley, Meadows, and Purdy [8].
Boneh and Shaw [13] provided a model for collusion, a probabilistic fingerprinting
scheme, and a weak lower bound on code length. An alternate approach to deterring
redistribution was envisioned by Dwork, Lotspeich, and Naor [23] in the technique
of digital signets, which embed some private user data in an encryption key that is
used to decrypt content. The embedded data is intended to deter users from exposing
their keys, because it would compromise their privacy.

Alternate models of marking (using larger alphabets) and collusive attacks (re-
stricting the output to contain only marks from the colluders' copies) are studied
under the names of IPP- and TA-codes [16, 65, 64], which admit deterministic con-
structions and tracing algorithms (but not always efficient ones).

A preliminary version of the work in this chapter appeared in a conference paper
by Peikert, Shelat, and Smith [55]. Following its publication, Tardos [68] designed a
fingerprinting scheme having optimal length, and an provided an alternate proof of
the main result of this chapter.

Notation. For a random variable P and value x, we sometimes use the abbreviation
Px = Pr[P = x]. The support of P is defined as sup(P) = {x : P > 0}. All
logarithms will be base-2, denoted by 1g. The binary entropy function H(.) is defined
to be H(x) =xlg + (1 - x) lg for all x E (0, 1).
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For any s x t matrix M and any subset S C [s], let Mis be the |SI x t matrix
which is the restriction of M to rows i E S.

4.2 The Boneh-Shaw Model

Our results apply in the model proposed by Boneh and Shaw [13]. In this model,
a fingerprint is a string of symbols over the binary alphabet E = {0, 1}, and the

goal is to design a fingerprinting code (i.e., a set of fingerprints) for which hybrid

copies produced by a coalition are traceable to at least one guilty user (assuming the

coalition is not too large). It is relatively easy to see that even for three users, two of

which may collude, no deterministic construction can achieve this goal perfectly (see

"Basic Results," below). Boneh and Shaw get around this problem by allowing the

code to incorporate secret randomness, and permitting the tracing algorithm to have

a small probability of tracing error.

This model is formalized in the following definition:

Definition 4.2.1 (Fingerprinting scheme, coalitions, strategies). A fingerprinting

scheme of length m over the alphabet E for n users is a distribution F over pairs

(X, o), where:

* X is an n x m matrix over the alphabet E,

* - : Em -+ P([n]) is an algorithm which takes a word w E E"m and outputs a

subset u(w) C [n] of accused users.

For an integer c > 1, a c-coalition is a set C C [n], C 5 0, with IC < c. A C-strategy

is a (possibly randomized) algorithm p that takes the restriction XIc and outputs a

string y E E' subject to the marking assumption: for all j E [m], there must exist an

i C C such that y3 = Xij. For convenience, we will write p(X) when it is understood

that the input is really XIc.

A fingerprinting scheme is called (c, e)-secure if for any c-coalition C C [n] and any

C-strategy p, the probability of tracing error

Pr [o-(p(X)) = 0 or u(p(X)) g C] E.
X1,7p

Technical remarks on the definition. We do not require the distribution F or

the algorithms p and u- to fall within any particular complexity class. However, all

coalition strategies that we specify will be efficient. This strengthens the lower bound,
because it demonstrates efficient coalitions that can defeat even unbounded tracing

algorithms. In addition we can assume that the tracing algorithm a- is deterministic,
because its random coins (which are independent of p's coins) can be selected in

advance by the distribution F.

Without loss of generality we will also assume that o- always accuses exactly one

user, i.e. outputs a singleton set. This is because the empty set is always considered
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a failure, and accusing more than one user cannot decrease the failure probability.
With this simplification, we can write the event of a tracing error more compactly as

u-(p(X)) 9 C.

Basic results. First we recall the argument (from [13]) that no deterministic code
(for at least three users) can be secure (even under coalitions of size 2): consider three
fingerprints w, w', w" E {0, 1}' from the code, and let x E {0, 1} m be defined so that

xi is the majority symbol of wi, w , w'. Then according to the marking assumption, x
can be produced by any coalition of size 2 among {w, w', w"}. Therefore, the tracing
algorithm cannot accuse any single user, because it is possible that the other two
users colluded to produce x.

While this reasoning initially appears to hold even for randomized codes, it elides
the fact that a coalition may be very unlikely to produce such a "majority" word

(as long as the code incorporates some secret randomness). In fact, it is exactly this
observation that allowed Boneh and Shaw to construct secure fingerprinting codes.
They first designed codes of length 0(n3 log(n/E)) for n users that are (n - 1, e)-
secure. By concatenation with the codes of [16], Boneh and Shaw also constructed
codes for n users having length O(c4 log(1/e) log(n/c)), which are (c, e)-secure. They
also provided a simple argument demonstrating a lower bound of Q(clog(1/ce)) on
the length of any (c, e)-secure code.

4.3 Our Lower Bound

We demonstrate a lower bound on code length that is quadratic in the number of
colluders:

Theorem 4.3.1. For any c > 2, and for all sufficiently small E > 0, any (c, E)-secure
fingerprinting code for > c + 1 users has length m > C -c2 lg( 1 ), where C > 0 is

an absolute constant (independent of c and E).

What the bound means. A few remarks on the meaning of our lower bound
are in order, mostly concerning the relationship between parameters c and E. First,
we stress that the qualifier "for all sufficiently small e > 0" is necessary for any
meaningful bound. Indeed, for f > ', a trivial tracing algorithm that just accuses
a random user (out of a total of c + 1) will have an (acceptable) error rate < e, no
matter how short (or badly-designed) the code is. Furthermore, any lower bound
that is demonstrated by analyzing coalitions of size c (out of a total of c + 1 users)
can only apply for e < -- , because the trivial tracing algorithm (applied to those
coalitions) is correct with probability c.

Still, one may want to optimize the value of the "sufficiently small" e for which

the bound "kicks in." In this respect, the analysis we provide here is not the best
possible - it only applies for very small values of e (essentially, for c < 2-2c). Despite

this caveat, we believe that the result is still quite meaningful, for several reasons:

57



1. Most importantly, it implies that no secure fingerprinting code can have length

o(c2 ) - lg i, which is an important asymptotic barrier.

2. It seems to us that any "natural" construction of a fingerprinting code should

be oblivious to the relationship between c and e, and therefore its length should

be given by a single asymptotic expression in the two parameters. Our bound

implies that any such "natural" construction will have length Q(c 2 lg

3. Without additional context, there seems to be no a priori "correct" connection

between c and e - they may be completely independent parameters. In certain

applications, it may be that only a small number of users (say, 4) can collude,
but that we need a very small probability of tracing error (say, 2-80) to overcome

"reasonable doubt." For any such application, the analysis we give has very real

implications.

We stress that our coalition strategies in the proof of Theorem 4.3.1 are, in fact,
essentially the best ones possible. A later work by Tardos [68] gave an improved

analysis of our coalition strategies using an esoteric statistical notion called Rinyi

divergence, and proved that Theorem 4.3.1 actually "kicks in" for, say, any E < 1/c 2 .

Additionally, Tardos constructed a fingerprinting code having length O(c2 lg I), which

demonstrates that our lower bound is, in fact, tight. This essentially closes the issue

of code length for probabilistic binary fingerprinting codes.

4.3.1 Overview of the Argument

In this section we give an overview of the approach we take in proving Theorem 4.3.1.

The argument follows this basic skeleton:

1. Choose a collection of coalitions {Cj} having no common user: n C = 0.

2. Define Cj-strategies whose output distributions are guaranteed to be "close" in

a certain "global" way, whenever the code is shorter than the bound claimed in

Theorem 4.3.1.

3. Prove that "close" distributions cannot be traced reliably when they are gener-

ated by coalitions that have no common user.

4. Conclude that any secure code must be at least as long as the claimed bound.

We elaborate on each of these point below.

For Step 1, we choose an arbitrary set of c+ 1 users, say {1,... , c + 1}, and define

the c-sized coalitions Cj = [c + 1]\ {j}.
For Step 2, the coalition strategies we consider are quite simple: for each (de-

tectable) position in the code, the coalition chooses its output symbol by flipping an

independent biased coin. The bias is determined by a carefully-chosen function that

depends only on the ratio of is seen by the coalition at that position of the code. At

any position of the code, the coalitions C all see almost the same number of 1s: if
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users 1,... , c+ 1 have a total of i is in that position, then coalition Cj = [c + 1]\ {j}
sees either i Is (if user j has a 0) or i - 1 is (if user j has a 1). Therefore for each posi-
tion of the code, the coalitions use approximately the same bias. As long as the code
is short, the distributions on output words all remain close. (As we will explain later,
the actual notion of closeness, which we call "min-mass," is somewhat non-standard,
but is related to the statistical distance.) Lemmas 4.3.4 and 4.3.7 demonstrate that
our coalition strategies do indeed produce close distributions.

For Step 3, suppose (as a thought experiment) that coalitions C (having no user
in common) generate identical output distributions. Because these coalitions have no
single user in common, the tracing algorithm cannot reliably accuse any individual
user with reasonable confidence. Every user j is equally likely to be innocent, because
the coalition C (of which user j is not a member) is as likely as any other coalition
Ci to have created the pirate word. While our strategies do not produce identical
distributions, similar reasoning still applies when the distributions are close in terms
of min-mass; this is shown in Lemma 4.3.3.

4.3.2 Min-Mass of Distributions

Definition 4.3.2. For discrete distributions P1,..., Pt defined over a set S, define
the min-mass mm(P 1 , ... ,Pt) to be:

mm(Pi,. .. ,Pt) = min {Pr[Pi = x]}.
XES Et

It is apparent that the min-mass of any distributions lies in [0, 1]: distributions
with disjoint support have min-mass 0, while identical distributions have min-mass
1. The larger the min-mass, the closer we consider the distributions to be.

Min-mass is related to the more standard notion of statistical distance between
two distributions. In fact, the notions are equivalent for pairs of distributions:
mm(Pi, P2) = 1-SD(P1, P2). However, for more than two distributions the min-mass
is a better notion of "global" closeness. For example, it is easy to construct three
distributions which are pairwise close (i.e., the statistical distance between any pair
is small) but which have zero min-mass.

4.3.3 Relating Min-Mass to Tracing Error

We now connect the min-mass of coalition distributions with the error probability of
a fingerprinting scheme. The error probability is essentially at least as large as the
min-mass of any distributions generated by coalitions having no user in common.

Lemma 4.3.3. Let {C}JE[t] be a collection of c-coalitions with no common user (i.e.,

njEg C = 0) for a fingerprinting scheme F, and let pj be a C3 -strategy for j E [t].
If F is an (r, c)-secure fingerprinting scheme, then:

t - E ;> Ex, [mm (p1 (X), 7... , pt (X))].
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Proof. We will first bound the quantity inside the expectation for any fixed X, a. The
lemma follows by a standard averaging argument.

Consider any fixed X, o- from F. Let Ex,, be an upper bound on the failure
probability of the tracing algorithm for all c-coalitions C and C-strategies p:

exO, > Pr[o-(p(X)) g C].
p

We will write E' = Ex,, when X, o- are clear from context.
Now for every j E [t} we have

e' > Pr[-(pj(X)) g CJ = ( Pr[o-(w) g Cj] - Pr[pj(X) = w],

where a(w) g C is actually a deterministic event (because o- is deterministic), and

is independent from the event pj(X) = w (which depends only on the coins of pj).
By summing over all j E [t], we have

t-e' - E > Pr[a(w) g Cj] -Pr[pj(X)=w]
jEt WEE-

1: wE Pr[u(w)V=C) .minPr[pi(X)=w]

> 1 -mm(p1(X),..., pt(X))

where we have used the fact that there exists some j E [t] such that a(w) g C: for

if not, a(w) C n C = 0, but a always outputs a singleton set.
We complete the proof by averaging over X, a, observing that e > Ex,,[ex,O]. E

4.3.4 The Coalitions and Their Strategies

Here we formally specify the coalition strategies that will be close in terms of min-
mass. The choice of coalitions is somewhat arbitrary. For simplicity, we let C =

[c + 1] and define C = C\ {j} for each j E [c + 1]. We remark that, as required by
Lemma 4.3.3, the C, are disjoint: njE[C+1j C, = 0.

The strategy pj for C, is as follows: for each position i of the code, the coalition
counts the ratio ri of is it sees at position i, i.e. the number of is divided by c. The
coalition then outputs at position i the result of a biased coin flip, i.e. a sample drawn

independently from a distribution P where Pr[P = 1] = b(ri), and b is a bias function
described below.

The bias function b is defined over the interval [0,1] as

b(r) = 3r 2 - 2r .

A graph of the bias function is shown in Figure 4-1. It is easily verified that

1. b([0, 1]) = [0, 1],7
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Figure 4-1: Graph of the bias function b(-)

2. b(O) = 0 and b(1) = 1, and

3. 1 - b(r) = b(1 - r), i.e. b is symmetric.

Property 1 of the bias function guarantees that the coalition strategies use well-
defined probabilities. Property 2 ensures that the coalitions obey the Marking As-
sumption: if a coalition sees only symbol s at some position, then it outputs s at
that position with certainty. Property 3 means that the coalitions are not sensitive
to the representations of the symbols 0 and 1 as embedded in a document. That is,
the behavior of a coalition is the same, whether it regards a particular kind of mark
as a 0 or as a 1. The only relevant quantity is the ratio of occurrences of one mark
to the other at each position.

As for the specific the function b(.), it is chosen so that the function grows slowly
(i.e., as a parabola) near the endpoints of [0, 1], but more quickly (i.e., linearly)
through the middle. This is because biases near 0 and 1 are easier to distinguish than
biases around 1. (See Section 4.3.5 below for a more precise explanation of the choice
of our bias function.)

In order to analyze these coalition strategies, we will need to calculate the min-
mass of their induced distributions. We now show how this min-mass can be simplified
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into an expression involving only the differences between pairs of Bernoulli processes.

First we define some notation: for i E [c] and an integer n > 0, let B,, be the

(Bernoulli) distribution over E" induced by n independent trials X 1 ,..., Xn where

Pr[Xk = 1] = b(i). (Abusing notation slightly, we will also write Bj,c, to denote a

random variable having that distribution.)

Lemma 4.3.4. Let X be any fixed code of length m with at least c + 1 rows, and let

X' be the restriction of X to its first c + 1 rows. For each "column type" t E Ec+',

let Mt be the set of indices i for which the ith column of X' is t, and let mt = IMt.
Then for the coalition strategies p3 described above,

mm(p1(X), ... -, pc+1(X)) r j mm(Bwt(t),c,m,, Bwt(t)-1,c,mt)-
tEEc+l
wt(t)Elc]

Proof. First, we observe that for the all-Os (respectively, all-1s) columns of X', every

coalition outputs 0 (resp., 1) with certainty. Therefore the min-mass only depends

on the behavior of the coalitions on the remaining columns, i.e. those having type t

with wt(t) E [c].

For any word x E Em and column type t E Ec+l, define x(t) E Emt to be the

restriction of x to those indices in Mt. Then we have:

mm(pi(X),... , pc+1(X))

min *i Pr[pj(X(t) =w ]
wEEm tEEc+1

wt(t)E[c]

5 min {Pr[pj(X)(t ) = wM)]}
wEE m ti

= 1 min {Pr[Bwt(t),c,m w(t)] Pr[Bwt(t)-l,c,mt = w(t)] (4.1)

wEEm t

= E min {Pr[Bwt(t),c,mt = w], Pr[Bwt(t>- 1 ,c,mt = wI} (4.2)
t WEEmt

= mm(Bwt(t),c,mt, Bwt(t) - ,c,mt)-
t

Equation (4.1) follows from the fact that the number of is a coalition sees is the same

on all columns of Mt, and is either wt(t) - I or wt(t). Hence every coalition's output

distribution on those columns is either Bwt(t),c,mt or Bwt(t>1,c,mt. Equation (4.2)

follows by decomposing w into the independent parts w), and rearranging the sum

and product.
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4.3.5 Min-Mass of Binomial Distributions

Intuition. It remains to analyze the quantities mm(Bj,c,n, Byi,c,n), that is, the

similarity between a coin having bias b(l) and one having bias b(J-f), measured by

flipping the coins n times. As we have explained above, for pairs of distributions the

function mm equals (twice) the error probability of an optimal distinguisher between

the two distributions. One way of measuring the ability to distinguish between sam-

ples from two distributions is by the (Kullback-Leibler) divergence [45] between the

distributions (defined below). A result known as Stein's Lemma [17, Section 12.8]

says that the error rate of an optimal distinguisher decreases exponentially with the

divergence multiplied by the number of trials. That is, if two coins have divergence

d, then the optimal distinguisher between n trials of one coin or the other has error

rate exp(-e(dn)).
For coins having bias bounded away from 0 and 1, the divergence is approximately

the square of the difference between the biases. That is, the divergence between bias

and 2+ e is e(e 2). Therefore one needs about E(c- 2) trials to distinguish between

these coins. For coins having bias near 0 or 1, however, the situation is different: the

divergence between bias 0 and bias e is only E(e), therefore only O(E1) trials are

needed.
These facts motivate the "shape" of our bias function, which grows slowly at

the endpoints but more quickly through the center. The shape is such that the

divergence between adjacent biases b(2.1) and b(j) is O(9) for all j. Intuitively, this
is the source of our c2 lower bound: each position of the code contributes only O(})

to the overall divergence, so to discriminate with an c probability of error, at least

Q(c 2 log 1) positions should be required.

Unfortunately, this intuition does not immediately translate into a rigorous proof.

One reason is that Stein's Lemma is only a loose asymptotic result, as it depends on

the Law of Large Numbers. The bound on the error rate only applies for a sufficiently

large (and unspecified) number of trials, and in our setting we have no guarantee

that the number of columns of each type will be sufficiently large. Additionally, the

asymptotics in the statement of Stein's Lemma leave out lower-order terms that we

cannot ignore in our analysis. Therefore we must perform a more precise accounting

of the min-mass between binomial distributions.

Precise analysis. While we will not make use of Stein's Lemma, the Kullback-

Leibler divergence will still emerge in our analysis. We define it and state a few of its

properties here:

Definition 4.3.5 (Kullback-Leibler divergence [45]). For discrete random variables

P, Q, the Kullback-Leibler divergence (also known as relative entropy) is defined as:

KL(PIIQ) = E P lg .

The divergence is defined only if sup(P) 9 sup(Q). For binary variables P, Q for

which Pi = p and Q, = q, we write KLpq= KL(PIIQ).
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Fact 4.3.6. For p, q E (0, 1),

KLp,q < q)
- n2 q(1 - q)

Proof. We use the fact that lg(1 + x) x for any x > -1. The result follows by
basic manipulations:

KLq = p lg + (1 -p)lgq 1-q

< p p-q i 1-p p-q
- 1n2 q In 2 1 - q

1 (p - q) 2

In 2 q(1 - q)

Lemma 4.3.7. For any integer c > 2, any j E [c], and any integer n > 0,

mm(Bj,c,n, 7B_,c,n) 2 -Kn/c 2 4(1 1)2'4(n + 1

where K > 0 is an absolute constant (independent of n and c).

Proof. First we dispense with the "endpoint" values of j = 1 and j = c. If j = 1,
then the biases of the two coins are p = 0 and q = b(l) = 1 - - < .. The support
of the first coin is simply the word w = 0", which occurs with probability 1. So the
min-mass is Pr[Bj,c,n = o"] = (1 - q)"l, and

lg(l - q)n =-nlg 1+ ) > -n 2q > -K - -
1 - q - In 2 - C2

for some constant K. A symmetric analysis applies for the case j = c.
Now suppose j E {2, . . ,c - 1}. For the remainder of the proof, let p = b(l)

and q = b(j) > p, the biases of the two coins we are considering, and let 6 = q-p <; 1
We divide the analysis into two separate cases: n < 1/6 ("small" n) and n > 1/6
("large" n).

First we consider the case n < 1/6. To bound the min-mass, we bound the
probability of each w E {0, 1} under both Bj,c,n and Bj_1,c,n by taking the product
of the least likelihoods for each of the coordinates of w:

n

mm(Bj,c,,, Bj =,c,n) > piq(1 -)

(p+ 1-q)

(1 - 6)"

> (1 - 6)1/6.

Now because 6 E (0, 1] and (1 - 6)1/3 is strictly decreasing, the min-mass is > 12 - 4.
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Now we consider the case n > 1/6. Then the interval [np, nq] has length > 1, so
it must contain an integer s = rn for some r C [p, q]. To bound the min-mass, we
bound the probability that Bj_1,c,n takes a value w having weight exactly s = rn.
Observe that for any such w,

Pr[Bj_1,c,n= w] = prn(1 - p)(1--)f.

Therefore

Pr[wt(Bji_,c,n) = rn] = prn( - -r)"
rn)

> (n + 1) 2 2 nH(r)prn(i p)(1-r)n

by the absolute lower bound on binomial coefficients ( n ) (n + 1)-2 2nH() [19],
where H(.) is the binary entropy function. Taking logarithms and rearranging, we
have:

lg Pr[wt(B_,c,n) = rn]+ 21g(n + 1) n (H(r)+ r lgp+ (1 - r)lg(1 - p))

= n(rlgp+(1-r)lglp

-n -KLrp

Now by Fact 4.3.6,

1 (r - p)2  (q_ p)2K Lr <<
- In 2 p(1 - p) In 2 p(1 - p)'

By definition of the function b(.), one can easily verify that (q-p)2 < K' - for some
constant K' > 0. It follows that

lg Pr[wt(B_1,c,n) = rrn] > -Kn/c 2 - 21g(n + 1)

for some constant K > 0. A virtually identical analysis applies for the distribution
Bjc., as well. Because every w having weight rn is equally likely under Bj_1,c,n (and
Bj,c,,) the bound on the min-mass follows.

4.3.6 Proof of Theorem

We now have all the tools needed to demonstrate the lower bound stated in Theo-
rem 4.3.1.

Our first step is to bound from below the expectation (over X, -) of the min-mass
of the coalition strategies. In fact, we will bound the min-mass of the strategies
for an arbitrary fixed X, which provides a bound on the expectation as well. By
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Lemma 4.3.4,

mm(P1(X), ... , Pc+,(X)) > R mm(Bwvt(t),c,m , Bwt(t)-1,c,mt)
tE c~+1

wt(t)E[c]

J7 2-Kt /c2 -(2mt ± 2)-2

S 2 -Km/c 2 Jj(2rmt + 2-2
t

> 2 -Km/c 2  -2c+2

where the last inequality comes from the fact that m = Emt, and the expression is
minimized when all the (2c+1 - 2) values of mt are equal (and hence, m < m/2c).

Now by assumption, the fingerprinting code is (c, c)-secure, so by Lemma 4.3.3,

(c+ 1)e > 2 -Km/c
2  + 2c+2

This implies that either

V/(c + 1)E > 2 -Km/c 2
or c + 1)E 2 + -2

(or both). In the first case, a few easy manipulations yield:

11
m > - c 2 g 1

2K (c + 1)f

In the second case, we have:

m >2 
1  j\ I ) 1/2c+3

( C +1)E)
-2

However, for all sufficiently small E > 0, this bound exceeds the previous one. 3 There-
fore, we have that for sufficiently small e, m> C- c2 lg( 1), as desired.

3Specifically, for g ( ;> 2c+3 - 6c, the second bound is worse than the first.
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