150 research outputs found

    An Architecture for Distributed Energies Trading in Byzantine-Based Blockchain

    Full text link
    With the development of smart cities, not only are all corners of the city connected to each other, but also connected from city to city. They form a large distributed network together, which can facilitate the integration of distributed energy station (DES) and corresponding smart aggregators. Nevertheless, because of potential security and privacy protection arisen from trustless energies trading, how to make such energies trading goes smoothly is a tricky challenge. In this paper, we propose a blockchain-based multiple energies trading (B-MET) system for secure and efficient energies trading by executing a smart contract we design. Because energies trading requires the blockchain in B-MET system to have high throughput and low latency, we design a new byzantine-based consensus mechanism (BCM) based on node's credit to improve efficiency for the consortium blockchain under the B-MET system. Then, we take combined heat and power (CHP) system as a typical example that provides distributed energies. We quantify their utilities, and model the interactions between aggregators and DESs in a smart city by a novel multi-leader multi-follower Stackelberg game. It is analyzed and solved by reaching Nash equilibrium between aggregators, which reflects the competition between aggregators to purchase energies from DESs. In the end, we conduct plenty of numerical simulations to evaluate and verify our proposed model and algorithms, which demonstrate their correctness and efficiency completely

    Blockchain and internet of things for electrical energy decentralization: A review and system architecture

    Get PDF
    Decentralization in electrical power grids has gained increasing importance, especially in the last two decades, since transmission system operators (TSO), distribution system operators (DSO) and consumers are more aware of energy efficiency and energy sustainability issues. Therefore, globally, due to the introduction of energy production technologies near the consumers, in residential and industrial sectors, new scenarios of decentralized energy production (DEP) are emerging. To guarantee an adequate power management in the electrical power grids, incorporating producers, consumers, and producers-consumers, commonly designated as prosumers together, it is important to adopt intelligent systems and platforms that allow the provision of information on energy consumption and production in real time, as well as for obtaining the price for the sale and purchase of energy. In this research the literature is analysed to identify the appropriate solutions to implement a decentralized electrical power grid based on sensors, blockchain and smart contracts, evaluating the current state of the art and pilot projects already in place. A conceptual model for a power grid model is presented, with renewable energy production, combining Internet of Things (IoT), blockchain and smart contracts.A descentralização nas redes elétricas ganhou importância crescente, especialmente nas últimas duas décadas, uma vez que os operadores da rede de transporte (ORT), operadores da rede de distribuição (ORD) e consumidores estão mais conscientes das questões de eficiência energética e sustentabilidade energética. Globalmente, devido à introdução de tecnologias de produção de energia junto dos consumidores, nos setores residencial e industrial, estão a surgir novos cenários de produção de energia descentralizada. Para garantir uma adequada gestão de energia nas redes elétricas, integrando produtores, consumidores e produtores-consumidores, vulgarmente designados por prosumers, é importante adotar sistemas e plataformas inteligentes que permitam fornecer informações sobre consumo e produção de energia em tempo real, bem como para obter o preço de compra e venda de energia. Nesta pesquisa, a literatura é analisada para identificar as soluções adequadas para implementar uma rede elétrica descentralizada baseada em sensores, blockchain e contratos inteligentes, avaliando o estado da arte atual e projetos piloto já em curso. É apresentado um modelo conceptual para um modelo de rede elétrica, com produção de energia renovável, combinando Internet das Coisas (IoT), blockchain e contratos inteligentes

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities

    Get PDF
    The development of local energy communities observed in the last years requires the reorganization of energy consumption and production. In these newly considered energy systems, the commercial and technical decision processes should be decentralized in order to reduce their maintenance costs. This will be allowed by the progressive spreading of IoT systems capable of interacting with distributed energy resources, giving local sources the ability to be optimally coordinated in terms of network and energy management. In this context, this paper presents a decentralized controlling architecture that performs a wide spectrum of power system optimization procedures oriented to the local market management. The controller framework is based on a decentralized genetic algorithm. The manuscript describes the structure of the tool and its validation, considering an automated distributed resource scheduling for local energy markets. The simulation platform permits implementing the blockchain-based trading process and the automated distributed resource scheduling. The effectiveness of the tool proposed is discussed with a hardware-in-the-loop case study

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Consensus Algorithms and Deep Reinforcement Learning in Energy Market: A Review

    Get PDF
    Blockchain (BC) and artificial intelligence (AI) are often utilised separately in energy trading systems (ETS). However, these technologies can complement each other and reinforce their capabilities when integrated. This paper provides a comprehensive review of consensus algorithms (CA) of BC and deep reinforcement learning (DRL) in ETS. While the distributed consensus underpins the immutability of transaction records of prosumers, the deluge of data generated paves the way to use AI algorithms for forecasting and address other data analytic related issues. Hence, the motivation to combine BC with AI to realise secure and intelligent ETS. This study explores the principles, potentials, models, active research efforts and unresolved challenges in the CA and DRL. The review shows that despite the current interest in each of these technologies, little effort has been made at jointly exploiting them in ETS due to some open issues. Therefore, new insights are actively required to harness the full potentials of CA and DRL in ETS. We propose a framework and offer some perspectives on effective BC-AI integration in ETS

    Enhancement of security and handling the inconspicuousness in IoT using a simple size extensible blockchain

    Get PDF
    Blockchain technology is increasingly used worldwide to enhance the performance and profit of any environment through its defining characteristics, such as security, auditability, immutability, and inconspicuousness. Owing to these characteristics, the blockchain can be used in various non-financial operations of some domains, such as the Internet of Things (IoT) and distributed computing. However, implementing blockchain technology in IoT is not always a feasible solution because blockchain deployment is costly, it has limited extensibility and provides irregular bandwidth and latency. In this regard, a simple size extensible (SSE) blockchain has been proposed to provide an optimal solution for IoT environments by satisfying the needs of the IoT environment as well as ensuring end-to-end security. The implementation of the proposed blockchain develops an overlay network to obtain a distributed environment where the blockchain is handled by the resources present therein. Two novel algorithms were introduced into the proposed system to minimize the irregularity and latency on one hand, and to maximize the throughput of the system on the other. The shared-time depending agreement algorithm (STD) minimizes the irregularity in the extraction operation and latency. The other, the shared throughput administration algorithm (STA) justifies the overall collection of the transmission load in the network and maintains the performance of the blockchain. The proposed system was applied to smart home IoT appliances to test the performance of the proposed system. The experimental results show that the proposed blockchain system minimizes nearly 70% of the data irregularity, latency, and furthermore, 30% of the blockchain extensibility is maximized as compared to the existing systems
    corecore