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Abstract: The development of local energy communities observed in the last years requires the re-
organization of energy consumption and production. In these newly considered energy systems, 
the commercial and technical decision processes should be decentralized in order to reduce their 
maintenance costs. This will be allowed by the progressive spreading of IoT systems capable of 
interacting with distributed energy resources, giving local sources the ability to be optimally coor-
dinated in terms of network and energy management. In this context, this paper presents a decen-
tralized controlling architecture that performs a wide spectrum of power system optimization pro-
cedures oriented to the local market management. The controller framework is based on a decen-
tralized genetic algorithm. The manuscript describes the structure of the tool and its validation, 
considering an automated distributed resource scheduling for local energy markets. The simulation 
platform permits implementing the blockchain-based trading process and the automated distrib-
uted resource scheduling. The effectiveness of the tool proposed is discussed with a hardware-in-
the-loop case study. 

Keywords: energy community; local energy market; real-time simulation; Internet of Things; decen-
tralized optimization; genetic algorithm; blockchain 
 

1. Introduction 
1.1. Motivation 

The increasing amount of flexible loads and installed distributed generation (DG) is 
leading to different management approaches in power systems. The power system is 
based not anymore (or not only) on transmission grid-connected, programmable power 
plants but on a panoply of nonprogrammable renewable energy sources (RESs). These 
include photovoltaic, wind farms, and biomass power plants connected to all voltage lev-
els. These generators are characterized by diverse sizes [1] and are spread throughout the 
territory, often with direct connection to low-voltage networks [2]. Small-scale smart mi-
crogrids, locally managed and capable of operating in islanding mode, can innovate the 
distribution network, adding flexibility and fostering the customers’ engagement [3]. The 
recent attention on local energy communities (LECs) is favored by the implementation of 
decentralized controls. In these setups, energy users and producers agree to manage en-
ergy resources via local energy markets (LEMs) [1,4–6]. LEMs will enable prosumers and 
energy communities to trade energy, thanks to the peer-to-peer (P2P) technology, and to 
participate in external markets, providing energy and flexibility to the local distribution 
system operator (DSO) or even the transmission system operator (TSO). 

Nowadays, the integration of LEMs and LECs within the physical network has still 
a long way from being achieved. Power systems need tools and frameworks for LEMs’ 
automated management, enabling this structural transition. The availability of human–
network interface systems, automating energy trading processes and load control, is key 
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to LEM’s success. In this regard, Internet of Things (IoT) devices are an enabling technol-
ogy for these issues [2,7,8]. Accessibility to intelligent devices able to measure and maneu-
ver the network and user behavior in a distributed fashion will allow the progressive shift 
from human-based operation to machine-based automation. In this context, installed 
smart devices will interact in a collaborative fashion, analyzing, optimizing, and coordi-
nating the operation of DERs in the LEC. 

This paper proposes a decentralized blockchain-based platform for the simulation of 
a network operation that exploits IoT cooperative devices owned by LEC users. A real-
time digital simulator (RTDS)–based hardware-in-the-loop (HIL) testing facility is 
adopted as a real-time simulation tool to appraise the technical and economic benefits of 
the decentralized tool. 

1.2. State of the Art 
The model described in this paper is specifically designed to be applied in an energy 

community. This requires the cooperation of different elements of the smart energy sys-
tem, such as power system equipment, communication protocols, and market models. In 
this view, the proposed methodology is built to introduce new elements in various layers 
of the smart grid architecture model (SGAM) [9]. Several papers have attempted to trans-
fer the overall SGAM concept to deal with the energy community operation and manage-
ment [10–12]. This paper wants to structure the energy community control tool on three 
main layers: physical, communication, and information layers (more details are provided 
in Section 2). 

The physical layer represents the bottom layer of SGAM and simulates the main com-
ponents of the electricity grid, such as the high-voltage transmission lines or the low-/me-
dium-voltage distribution lines. The optimal management of the networks, which em-
ploys power flow and optimal power flow (OPF), is widely used in this layer [12–16]. 
Several algorithms proposed in the literature are developed on this layer. For instance, in 
[16], the authors discuss and review the concept of the microgrid management system 
regarding centralized and distributed control in the primary, secondary, and tertiary lev-
els. Ref. [17] proposed a decentralized secondary voltage control scheme based on a state 
estimation method for autonomous microgrids, and in [18], a droop control for DC net-
works was studied and tested on a software tool. 

Significant efforts have made to develop decentralized and centralized control algo-
rithms, but few have been tested in production environments due to risks associated with 
testing algorithms in current networks [19]. Hardware testbeds are typically small-scale 
prototypes with limited components and a simple system topology; therefore, software 
validations have been widely adopted. However, such an approach implements simpli-
fied models, in which all the features of the component are not accurately represented and 
rely on multiple protocols and time-varying latency, while data exchanges in a pure sim-
ulation environment are usually ideal. To overcome the above-mentioned drawbacks, 
real-time HIL simulations are adopted. 

Concerning the communication layer, it is observable that the SG vision heavily relies 
on this layer. Each entity of this complex and heterogeneous network should communi-
cate with the others. Various frameworks describing the SG architecture have been pro-
posed by both industry and academia. By far, the most accepted model has been the ref-
erence model proposed by the U.S. NIST [20]. The model that conceptualizes SG as a mul-
tilayer ecosystem for devices is suitable to the author’s scope, in which an energy commu-
nity-based ecosystem needs to be implemented. Within this system, each device must be 
connected to gather and share information. Such system configuration is implemented 
through both a human-to-machine and machine-to-machine IoT framework. Various pro-
tocols of communication may exist within the IoT environment, such as the TCP/IP archi-
tecture [21], Bluetooth Low Energy [22], Zigbee [23], 6LoWPAN [24], and IEEE 1901.2 
standard, which allow communication via power lines [25]. 
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Several technologies bring efficient communication protocols, in terms of both in-
teroperability and scalability. However, TCP/IP is the protocol chosen for the paper. This 
is because, in general, the management IoT devices is expected to be installed in highly 
anthropized environments, in which stable internet connections and dedicated LANs are 
available. This facilitates the retrievability of devices of the network, which can be useful 
if the whole platform would be implemented using a private blockchain in which the 
managing devices perform as validating nodes. 

Concerning the information layer, it should be noted that the emerging distributed 
ledger (DL) technology, with the blockchain as its most popular application, is suitable 
for realizing this layer. In this way, independence and information safety are guaranteed 
by adopting a full decentralized market [11,26,27]. However, considerable efforts need to 
be applied for the integration of energy market platforms and a blockchain using users’ 
IoT devices. Recent advancements in this field have proved that the emerging DL tech-
nology managed to develop a P2P platform in which the users have the main role in man-
aging the local network. This is from the system operator’s point of view, which can be 
seen as a controllable load, which has to be optimally coordinated. A large number of 
studies and initiatives about the use of a blockchain in the energy sector are published 
[6,27–33], and the blockchain is seen as particularly promising in the area of P2P trading 
and decentralized energy management since, through the blockchain, a large number of 
self-interested actors can be connected and coordinated. This technology is widely 
adopted as a market layer, which can be divided into two structures: the P2P market, 
where traders may conduct direct energy exchange, and the energy community market, 
where the interest of the group is one of the main goals that each participant would want 
to reach. Full P2P markets in the energy sector have been investigated by recent studies 
[34,35]. A paper [2,35] theorized and experimented with blockchain-based local P2P elec-
tricity markets in which peers settle energy transfers with cryptocurrencies created fit-
tingly, which is useful for the building-up platform. In [35], an appropriate cryptocur-
rency was used to implement an energy management architecture. The availability of this 
technology allows the creation of local markets running entirely on a distributed frame-
work, in which the market settlement has moved towards a fully automated and decen-
tralized approach. As a consequence, various decentralized energy community models 
running entirely on smart contracts are present in the literature [36], paving the path to 
the establishment of autonomous energy communities. Of particular interest for this pa-
per are the works of Chen et al. [6,27,37], which described hybrid on-chain/off-chain mar-
ket optimization models, which show strong attack resistance. Among them, of extreme 
interest is [6], in which the market optimization algorithm was used also as the blockchain 
consensus algorithm by using the proof of solution approach. Nevertheless, the methods 
proposed by the literature still show scalability issues and are highly dependent on cost–
opportunity considerations. These mainly focus on blockchain-based local P2P electricity 
markets, in which peers settle energy transfers with ad hoc created cryptocurrencies, un-
derestimating the potential for a P2P-based network management. To limit these draw-
backs, in this paper, the energy community participants did not trade tokens. The financial 
settlements can be performed a posteriori when the energy community optimal network 
management process has finished. In addition, from an economic point of view, this im-
plementation does not impede participants from adopting different monetary systems, 
guaranteeing a wider participation in the community. 

In the domain of decentralized optimization algorithms, several alternatives may be 
used to solve an OPF problem or ensure market clearance. For this purpose, the most no-
table is the alternating direction method of multipliers (ADMM). ADMM has been used 
extensively in recent studies to decompose OPF problems [38–40]. This method solves 
management and control problems by looking for a consensus between many local opti-
mizations, aiming at reaching an averaged global suboptimum. Despite the great resili-
ence from a cybersecurity point of view, local optimization procedures sometimes fail to 
properly address the complexity of the global phenomena, which intervenes in the grid, 
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possibly leading to unstable solutions [41,42]. In addition, a complex network may lead to 
a complex mathematical problem due to the introduction of dual variables [43]. In this 
paper, a heuristic decentralized method is applied to the optimization tool to overcome 
these drawbacks. 

1.3. Contributions of This Paper 
This paper aims at developing a decentralized controlling architecture for energy 

communities that can optimize energy flows and implementing automatic trading pro-
cesses. The availability of a completely independent trusted third party that does not be-
long to a single entity and the availability of a smart internet connected IoT devices are 
pushing smart systems towards a higher level of autonomous and decentralized machine-
to-machine (M2M) management. In this way, the management burden will be shared 
among cooperating IoT devices, which will perform the necessary optimization and con-
trol operations [7]. Concerning the decentralized M2M, this paper adopts a decentralized 
genetic algorithm (DGA) to perform a wide spectrum of power system optimizations in a 
fully decentralized fashion. The DGA can be run by IoT devices distributed over the dis-
tribution network, which represents the energy community participants. 

By using modern ICT technologies [44] and a blockchain, the proposed tool can 
achieve a completely automated and decentralized execution [2,44,45]. Each energy com-
munity user can perform a global system optimization, sharing its best-obtained results 
with the other ones through a blockchain-based master ledger, making use of P2P notifi-
cations and transactions [44,45]. For this reason, the proposed method allows for perform-
ing a global optimization of a large spectrum of problems, keeping at the same time a 
resilient decentralized architecture. The proposed framework has been tested on a hard-
ware-in-the-loop (HIL) architecture based on an RTDS machine [46] to simulate the near-
real-time work progress of the operations. The IoT equipment is represented by Raspberry 
Pi (RPi) devices, which manage smart sensors and serve as smart controllers. 

The main contributions of this work are as follows: 
• Providing a decentralized energy management tool based on blockchain technology 

that exploits the GA capabilities. 
• Developing a local energy trading blockchain-based platform for selling and buying 

energy in an energy community. The system reduces dependence on the main grid 
and enables the local management of the local community. 

• Testing the tool with an HIL experimental setup. 
The rest of the paper is organized as follows: Section 2 describes the structure of the 

developed tool in terms of architecture, optimization problem, decentralized algorithm, 
and blockchain technology. Section 3 explains how the authors set up the laboratory en-
vironment. Section 4 reports results and discussions about the performance of the tool and 
energy community indicators. Conclusions regarding this research are given in Section 5. 

2. Energy Community Decentralized Controlling Tool 
2.1. Structure and Project Objectives of the Tool 

The main goal of this study is to design and simulate an energy management tool for 
LECs. These new energy sharing schemes allow users to perform direct energy and power 
exchanges on the grid, leaving LEC members with the responsibility of energy procure-
ment from the system/market operator. According to this vision, network users can au-
tonomously operate in the system, with defined roles and responsibilities. All users in-
volved are equipped with smart meters, which permits the decentralized operations. 
These schemes will be of particular interest for locally managed grids, for which the ex-
istence of a human-led control center will be hardly sustainable from an economic point 
of view, providing to LEC operators a high-level network management system able to 
perform LEM and P2P energy trading optimizations. 
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The tool architecture is subdivided into three main layers: physical, communication, 
and blockchain layer, as depicted in Figure 1. Following the SGAM concept, the physical 
layer depicts the component layer, the communication represents the SGAM communica-
tion layer, and finally, the blockchain layer embodies the SGAM information, functional, 
and business layer. Hence, the blockchain layer contains information objects. These infor-
mation objects represent the common semantics for the correct functioning of the DGA 
and allow an interoperable information exchange via communication means. In addition, 
new business models, such as P2P transactions, and business/processes capabilities are 
represented in this layer. 

 
Figure 1. Illustration of the different layers of the proposed tool. 

The implemented tool aims at optimizing the energy flow in a decentralized manner. 
In order to achieve this objective, the AC-OPF is used in order to solve the problem. To 
solve the AC-OPF problem, this paper exploits the combination of GA with blockchain 
technology [47], which leads to the definition of DGA.  

Employing this tool, energy community users are supposed to have a higher degree 
of independence and transparency by the employment of a blockchain network. Further-
more, the application of the Roth–Erev trading mechanism will guide personal choices 
and improve the freedom of customers. These elements combine to constitute a decentral-
ized LEM for an energy community. 

2.2. Problem Formulation 
2.2.1. Optimization Problem 

The physical structure of the electrical system is subject to technical constraints that 
must be satisfied during system operations. In the developed model, an OPF is applied in 
order to adjust the generator active power outputs while keeping the load bus voltages, 
network power flows, and all other state variables in their operational and secure limits. 
The production cost function of each participant equipped with a generator is defined as 
in Equation (1), where 𝑝  is the production (per MWh) of generator j, and 𝐼 ,  is the coef-
ficient i of the cost function for generator j. We can define the objective function of the 
entire system as the sum of the quadratic cost model at each generator (Equation (2)): 𝐶 𝑝 , 𝐼 , = 𝐼 , + 𝐼 , ∙ 𝑝 + 𝐼 , ∙ 𝑝  (1)
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𝑓(𝑥) = 𝐼 , + 𝐼 , ∙ 𝑝 + 𝐼 , ∙ 𝑝  (2)

where Nagents represents the number of connected generators. In order to satisfy the tech-
nical limits and power flow equation, to the objective function has been added the follow-
ing constraints, which take into account the OPF equality constraints, which reflect the 
power flow equations, and the inequality constraints of the OPF, which reflect the con-
straints on the components of the power system. The constraints to which the function 
will be subjected are the maximum active power of generator k (Equation (3)), the maxi-
mum and minimum voltage at each node k (Equation (4)), the maximum ampacity on the 
line between node k and node j (Equation (5)), and finally, the power flow equations 
(Equation (6)). 𝑃 ≤ 𝑃  (3) 𝑉 ≤ 𝑉 ≤ 𝑉  (4) 𝐼 , ≤ 𝐼  (5) 

𝑃 − 𝑃 = 𝑉 ∙ 𝑉 ∙ 𝐺 , ∙ 𝑐𝑜𝑠 𝜃 , + 𝐵 , ∙ 𝑠𝑖𝑛 𝜃 ,  

𝑄 − 𝑄 = 𝑉 ∙ 𝑉 ∙ 𝐺 , ∙ 𝑠𝑖𝑛 𝜃 , − 𝐵 , ∙ 𝑐𝑜𝑠 𝜃 ,  
(6) 

Therefore, the energy management problem can be formulated as follows (Equation (7)): 𝑆∗ = arg min, , , 𝑓(𝑥)  

subject to constraints (3), (4), (5), and (6) 

(7) 

where the solution 𝑆∗ represents the users’ optimal scheduling. 

2.2.2. Decentralized Energy Flow Algorithm 
In conventional networks, an authorized coordinator collects all the energy manage-

ment information and globally minimizes operational costs in a centralized manner. In 
particular, the authority resolves the OPF problem, taking into account technical limits 
and network constraints. In the paper, the implemented algorithm, called DGA and intro-
duced in [47], provides that each participant performs the optimization needed locally, 
and to converge to the solution, the participants will share the best results with the other 
users. The combination of GAs and blockchain technology allows for obtaining complete 
emancipation from the centralized entities that manage the system while being able to 
optimize the power flow problem. In addition, due to the blockchain structure, the devel-
oped system ensures an overall optimization of the network for a large number of problems, 
while maintaining a decentralized architecture. Figure 2 depicts the iterative algorithm, 
which takes into account both the DGA and the automatic offering process (Appendix C). 
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Figure 2. Scheme of the decentralized algorithm. 

The iterative steps of the algorithm are explained in the following: 
1. Initialize population by generating random genomes. 
2. Initialize propensities by setting them (𝑠 ) to the same random value. 
3. Check on the master ledger if better genomes are available by other participants. 

3.1 If true, execute invasion. The invasion operator takes the best genomes provided 
that they yield better fitness function concerning the local genomes. This ensures 
variability of the population that would otherwise be not accessible and not 
modifiable by external agents. In this way, different genomes are merged from 
different participants. Consequently, each agent verifies whether genomes 
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found on a shared memory satisfy all the constraints and the fitness function. 
Conversely, the nonvalid genomes are tagged. 

3.2 If false, apply random population to the local. 
4. Update propensities. According to the previous state, update the participant’s offer-

ing strategy following the Roth–Erev algorithm. 
5. Place bids. Save on a shared memory the selected offer. 
6. Elitism. Select genomes to be sent for the future generation. 
7. Crossover. Each gene performs a variation of the gene. 
8. Mutation. 
9. Share best results. Share the best result with all participants. This step is executed by 

each participant by calculating the value of the fitness function for all results. The 
chromosome that has obtained the best fitness function value is going to be shared 
throughout the master ledger. 
According to Figure 2, all participants in the network can collaborate to achieve the 

best result that is globally accepted. To reach the globally accepted solution, there is a need 
to adopt a consensus algorithm. To add the consensus in the optimization tool, the con-
sensus is integrated into the iterative steps. In particular, each participant of the platform 
performs a check on the solutions presented on the decentralized master ledger (DML) 
and eventually reports byzantine attacks. In order to implement the checking operation, 
each energy community participant inspects the fitness functions previously published 
on DML before including them in the local population. If solutions are evaluated as unre-
liable, the participant that published them on the DML is tagged as a potential byzantine 
node. If this actor is tagged by several participants, then he will not be able to upload new 
results for a specific time. This, connected with the authentication method described in 
Section 2.3, enables identifying and excluding byzantine nodes from the process. Conse-
quently, the IoT devices are treated as untrustworthy nodes. 

Finally, to achieve a fully decentralized structure that achieves maximum social wel-
fare by minimizing both grid import costs and trading costs for participants, to the GA 
AC-OPF optimization has been added an offering process. This automatic offering mech-
anism is implemented by the Roth–Erev learning, described in Appendix C, which allows 
users to define the various coefficients of the objective function in Equation (2). It is worth 
mentioning that in this study, the fitness function is evaluated by Equation (2), which rep-
resents the objective function of the AC-OPF problem. In this way, the fitness function 
mirrors the goals of the agents and, at the same time, employs its role: giving information 
about the quality of the proposed solution. 

2.3. Blockchain Setup 
The adoption of blockchain and smart contracts (SC) technology (Appendix D) al-

lowed the proposal of a decentralized energy management algorithm. The proposed al-
gorithm can be executed in a secure, verifiable manner that ensures the independence of 
the energy community participants. In this framework, the role of the SC is essential; 
hence, various steps of the decentralized algorithm exploit the SC functions. An SC is a 
codified set of instructions that, once deployed on the blockchain, can execute certain 
functions on a decentralized virtual machine [48]. In this paper, the SC performs as a com-
munity and market virtual aggregator. In this role, the SC performs several types of tasks: 
• Distributed cache for genomes; 
• Distributed memory for network data (for instance, network power injections and 

consumptions); 
• Distributed market for the agent’s bids. 

In this work, the SC is written in the Ethereum native Solidity language. The remain-
ing off-chain management codebase is written in Python, making use of the Web3.py 
package [49]. The local network optimization problems are solved using the pandapower 
package [50]. The blockchain network is set up by running a local Ethereum node with 
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Ganache-cli [51]. It should be noted that the underlying blockchain system works on the 
following considerations. First, Ethereum is a mature and well-verified blockchain system 
that has been applied in many areas, with an active community. Second, Ethereum sup-
ports the SC that is needed to implement the decentralized algorithm. It should be men-
tioned that even though the tool is implemented on Ethereum, this framework is block-
chain platform agnostic, as long as the blockchain technology supports SC. The SC that 
enables the algorithm is depicted in Figure 3, by the contract diagram. The contract dia-
gram is a particular adaptation of the UML class diagram which represents the application 
logic in terms of SC and relationships between them. Figure 3 shows the contract and the 
libraries exploited, with data structures and mappings defined within them. 

 
Figure 3. Contract diagram of the implemented SC. 

To build a test network of the blockchain system, we exploit the smart IoT devices to 
be both energy community participants and blockchain nodes (Figure 4). Since the tool 
could be adopted by smart home meters, in which there is a strong likelihood that the 
house owner is equipped with a modem and/or router, the TCP/IP protocol was adopted 
as enabling communication among nodes. Thus, the device sets a proper IP address, being 
able to send packets to other devices. Moreover, each consumer is tagged with a unique 
address, which is recognized by the blockchain platform. This address, the blockchain 
address, enables officially recognizing the customer’s identity. Through the private key, 
which is the identification method of the smart meter, each customer is free to interact 
with the blockchain. 

 
Figure 4. The IoT hardware setup. In the figure, 3 RPi devices used for the simulation are shown. In 
this setup, RPis are physically connected through an Ethernet port, but Wi-Fi connection is possible. 
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Through the blockchain features, the blockchain technology employs the role of the 
DML. This role is crucial in the master–slave optimization and, in this work, is taken by 
blockchain technology. The availability of a shared trusted memory allows for the appli-
cation of the concept of GA invasion. Each round, a specific rate of the local population is 
replaced by the best genomes that are saved in the DML at the start of each optimization 
round before the canonical selection, elitism, crossover, and mutation procedure, simulat-
ing the invasion of a better fit population in the local environment. As a result, participants 
share genomes that are most suited for the specified environment. This approach looks to 
be independent of a central authority and can be utilized to create a cost-effective decen-
tralized management and control of the LEC, because the load of DML optimization is 
shared among the participants, which perform the necessary optimizations off-chain. It is 
worth mentioning that the role of blockchain technology, in this paper, goes beyond the 
three tasks described above. It allows the time synchronization of the decentralized opti-
mization process, through timestamping of the different phases. The need for synchroni-
zation is crucial to eliminate delays that may be introduced by hardware devices and in-
ternet connections. These delays can lead to loss of synchronization of operations. To syn-
chronize multiple devices, which represent participants, it is necessary to have a reference 
time that is shared and universally accepted by the entire community. The blockchain 
timestamp perfectly fits this task. Therefore, in order to synchronize the optimization 
steps, the block timestamp was adopted as a clock. 

2.4. Participant Setup 
More and more smart homes are transitioning to being prosumers as a result of the 

increasing penetration of renewable energies into the power grid. Typically, renewable 
energy sources, such as solar panels and wind turbines, are included in the smart home. 
To meet user needs, it also supports a variety of appliances (such as an air conditioner, a 
washer, and illumination). Additionally, the smart home might be equipped with a bat-
tery energy storage device to store any additional electrical energy. Last but not least, the 
home energy management system, which uses the smart home meter to connect the smart 
home to the local grid, schedules and manages the aforementioned components. To ag-
gregate the distributed energy resources (DER), a cluster of smart houses forms the LEC 
via the existing power line and the IoT devices associated with the smart home meter. The 
smart meter schedules the energy resources based on the needs of the smart house. To 
manage the bid presentation phase of the community participants, an automated trading 
process is implemented. This process is adapted from an agent-based approach, which is 
based upon the Roth–Erev algorithm (Appendix C). This process provides participants 
with greater control over their trading and allows them to choose the best trades according 
to their previous choices and their profit constraints. Finally, the objective function of the 
OPF takes into account the information provided by the physical layer simulated by the 
HIL simulator. 

In this work, the smart home meter is supposed to work in partnership with the IoT 
device, which enables the meter to schedule, optimize, and offer for the house owner. This 
combination led to the definition of energy community participant, who exploits the DER 
to reduce costs and improve self-consumption AND enhance the independence of the LEC 
from the main grid. With this, each user adopts the smart home meter not only for per-
sonal benefits but also for energy community benefits since the meter is able to optimize 
the network state, thus finding the optimal combination of generation. The advantage of 
this approach is to obtain better LEC inner price making, removing the energy brokerage 
arbitrage costs, as schematized in Figure 5. 
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Figure 5. An example of energy buy and sell prices into a LEC, compared with buying and selling 
energy to the main grid. 

3. Laboratory Environment Implementation 
3.1. Laboratory Setup: Hardware-in-the-Loop 

The described decentralized energy community optimization tool was tested with an 
HIL laboratory setup for simulating a decentralized optimization of energy communities. 
To validate the proposed architecture, the authors adopt an HIL testing simulation. HIL 
simulations are the most comprehensive ways to validate protection and control schemes 
in the laboratory environment, de-risking the integration of both elements and other as-
pects of grid modernization. The implemented setup is shown in Figure 6. Each agent is 
represented by Raspberry Pi 3 (Quad-Core 1.2 GHz CPU and 1 GB RAM), which was 
chosen as the IoT smart equipment. These components are used with an RTDS-simulated 
test network. Due to its ability to replicate distribution networks in real time, the RTDS® 
NovaCor hardware was chosen as the grid-simulating platform. RTDS® NovaCor, pow-
ered by an IBM Power8 CPU, can simulate the real-time evolution of large-scale power 
grids with a 100 μs time step. The RSCAD support software system, which is used to 
model the power system and specify the simulation settings, manages the hardware. Full 
decentralized management of the RTDS-simulated grid, including automatic scheduling 
of controlled resources and placement mechanisms, was made possible by the setup’s 
concept and assembly. 

The DGA platform’s optimization cycle is divided into three stages, which are illus-
trated in Figure 6. The first step is the metering stage, during which each RPi reads the 
network operating parameters from the node’s simulated RTDS meters. The second phase 
is agent updating, during which RPi simulates agent behaviors and updates propensities. 
Additionally, the RPi writes the predicted generation along with the local market bids into 
the DML. The optimization phase is the last step, where the DGA OPF is carried out by 
the RPis utilizing the optimization criteria established in the DML. Each RPi can feedback 
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its optimization result to its managed node once the final optimization result is available 
on the DML by sending a signal to the RTDS through wireless FTP. 

 
Figure 6. Laboratory setup. 

3.2. Network Configuration 
The proposed agent-based framework was tested on a HIL setup. The HIL experi-

ments were conducted across a 1-minute-step, week-long simulation on an RTDS-based 
energy community simulation representative of a 3-phase, 4-wire low-voltage (LV) distri-
bution grid (230/400 V). It is a radially operated rural network with one feeder supplied 
by a 250 kVA (20 kV/400 V) transformer in a secondary substation. A collection of nodes 
N and connecting lines L can be used to represent a network. The point of common cou-
pling (PCC) is identified as Node 0. Every user in N has access to a grid connection. 
Through these connections, power is supplied to and withdrawn from the grid. At the 
PCC, electricity is imported from the power grid. Some nodes in the network might pro-
duce local energy that can be used locally or sold. 

The test case, shown in Figure 7, is a network constituted by 16 nodes, with 6 distrib-
uted generators (active nodes). Tables 1–3 summarize, respectively, data of customers, 
branches, and conductors. For the sake of simplicity and to maintain generality, only res-
idential users are considered inside the simulated network. Figure 8 reports the consump-
tion and profile with values in p.u. Each node with generation is managed by the RPi 
devices that carried out the DGA-agent-based technique in the network simulation cre-
ated by RTDS. The DGA’s responsibility is to determine how to schedule manageable re-
sources within a local market framework, where each participant makes an offer to sell or 
buy energy based on the polynomial cost function in Equation (2). In the market model, 
the loads are allowed to buy the energy supplied by the wholesale market as well, de-
pending on the offer bids. Anyway, users are urged to settle over- and undergeneration 
among the LEC participants because wholesale market costs are higher than the local 
ones. In this case, the possibility of exchanging energy among participants allows for 
matching overgeneration and underproducing nodes, avoiding losing money by asyn-
chronously buying and selling energy with the grid. 
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Figure 7. The RTDS low-voltage network. 

 
Figure 8. Consumption user profile. 

Table 1. Load and generation data. 

Node 
Load Generator 

P (kW) Q (kVAr) P (kW) Q (kVAr) 
1 3 1.45 6 0 
2 4.5 2.18 - - 
3 3 1.45 3 0 
4 4.5 2.18 - - 
5 3 1.45 3 0 
6 4.5 2.18 5 0 
7 6 2.91 - - 
8 3 1.45 - - 
9 4.5 2.18 - - 
10 3 1.45 - - 
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11 3 1.45 - - 
12 4.5 2.18 3 0 
13 3 1.45 - - 
14 3 1.45 - - 
15 4.5 2.18 3 0 
16 4.5 2.18 - - 

Table 2. Network branch data. 

Branch Length (m) Line Code 
1–2 30 1 
2–3 10 1 
3–4 30 1 
4–5 10 1 
5–6 10 1 
6–7 30 2 
7–8 10 2 
6–9 10 2 
9–10 10 2 

10–11 10 2 
11–12 10 3 
12–13 20 3 
11–14 20 2 
14–15 30 2 
15–16 20 3 

Table 3. Conductor data. 

Line Code S (mm2) r (𝛀/𝐤𝐦) x (𝛀/𝐤𝐦) c (𝐧𝐅/𝐤𝐦) Ampacity (A) 
1 150 0.190 0.082 710 150 
2 95 0.250 0.085 640 161 
3 95 0.330 0.085 620 137 

4. Results and Discussion 
4.1. Setup Performance 

In the first simulation, the performances of the hybrid setup, which includes the RPi, 
the RTDS, and the DGA algorithm, were evaluated. The convergence qualities of the 
DGA-based LEM were examined and matched with a centralized market strategy to 
demonstrate its efficacy. The entire OPF procedure was run through multiple iterations in 
order to evaluate DGA convergence. The final optimal outcomes for each run were rec-
orded and examined. Table 4 compares the distribution of expenditures as found in the 
master ledger, compared with the EUR 2.750 solution achieved from the centralized New-
ton–Raphson solution method. As demonstrated, the DGA can uncover suboptimal solu-
tions that are only 1% larger than centralized OPF techniques. 

Table 4. Network branch data. 

DGA Results (EUR) Deviation from Centralized Solution (%) 
2.775 0.909 
2.770 0.727 
2.769 0.691 
2.767 0.618 
2.756 0.218 
2.758 0.291 
2.759 0.327 
2.763 0.473 
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These optimization results, not equal but approximately similar to the centralized 
one, are common in heuristic approaches, such as GA. Although the results obtained with 
the decentralized approach are slightly worse than the centralized one, the DGA can be 
executed and find an optimal solution without a central authority, allowing the manage-
ment of a decentralized LEM. According to this view, every user of the community can 
participate in the optimization by sharing its computational resources. Additionally, the 
optimization’s running length has been evaluated given the specific objective of the opti-
mization process. The average runtime for the whole optimization and system adaptation 
process has been 34.17 s. This would significantly speed up the system’s response time 
and boost its local flexibility by enabling the network to adjust continuously and autono-
mously with a time step of about 1 minute. A graphical representation of results is given 
in Figure 9 to confirm the hybrid setup’s proper operation. After the DGA optimization is 
completed and the RPis provide feedback on its outcome to the RTDS grid, the resulting 
nodes’ frequency fluctuations are exported from RTDS® NovaCor. The frequency adjust-
ments, as seen, only take place once per minute, when the market operation closes and 
the production and consumption of LEC users are updated. As shown, these oscillations 
are controlled and never go over the system’s thresholds. 

 
Figure 9. Network node’s frequency and power generator outputs. 

4.2. Energy Community Indicators 
To evaluate the performance of the proposed tool, the tool was tested in the HIL setup 

for an extended period of time by adopting a noisy energy profile starting from the one 
given in Figure 8. An example of this is given in Figure 10, where the profile of the third 
user is shown. Moreover, for executing an auction between the various users of the net-
work, each node with generation was characterized by a cost function, whose initial pa-
rameters of the market are presented in Table 5. In Table 5, the row titled “Node 0” rep-
resents the PCC, 𝐼 ,  represents the term of the fixed initial cost for each unit of produc-
tion, while 𝐼 ,  and 𝐼 ,  represent, respectively, the linear and quadratic term of the pol-
ynomial cost function. To be able to insert the electricity grid as an element that partici-
pates in the market, this was characterized by a cost function. 
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Figure 10. User 3 randomized profile. 

Table 5. Nodes base price parameters. 

Node 𝑰𝒌,𝟎 (EUR) 𝑰𝒌,𝟏 (EUR/MW) 𝑰𝒌,𝟐 (EUR/MW2) 
1 0 30 0.2 
3 0 25 0.4 
5 0 35 0 
6 0 10 0.2 

12 0 45 0 
15 0 15 0.2 
0 0 100 0.5 

Two scenarios were studied to assess the validity of the method. The first scenario 
describes the management of the network without the DGA algorithm. In this case study, 
the various network users can only purchase energy from the electricity grid at the price 
set by the market authority. At the same time, any user provided with a generator is ena-
bled to sell his energy surplus to the network. According to the Italian authority [45], the 
market prices are as follows: the energy purchasing price is equal to 16.2 cEUR/kWh, while 
the energy selling price to 5 cEUR/kWh. As reported, there is an asymmetry in the price 
between purchase and sale of energy, which would lead users to reduce the amount of 
energy purchased from the network. 

In the second scenario, users can participate in an LEM, hence reducing the energy 
purchasing costs. Concerning price values implemented in this scenario, they were fixed 
differently to the previous one. In particular, since no transportation costs are included 
using the energy community vision, the price values do not include this term. In both 
scenarios, three users were employed among the various participants in the energy com-
munity. In particular, the three actors are represented by the users connected to nodes 1, 
3, and 5. In Figures 11–13, the optimal energy trading profiles of the three typical users 
over 1 day are depicted. According to the presented results, it is possible to see that the 
energy trading profiles of the three users tend to follow the user profile during the day, 
except for user 1. User 5 often needs to buy energy in the daytime but sells extra energy 
in the morning. User 1 exhibits opposite energy-trading patterns. User 1 has a lot of extra 
energy to sell over the day due to the nominal power of the generator, which allows the 
user to sell overproduction. The developed blockchain-based energy management tool 
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provides opportunities for users to interact with each other to exploit their diverse gener-
ation and load profiles and, thus, gain benefits, such as reduce their costs. 

 
Figure 11. Trading profile of user 1. 

 
Figure 12. Trading profile of user 3. 

Table 6 compares the total costs for the two scenarios and shows them against one 
another. In the first scenario, all users separately exchange their excess energy production 
without engaging in energy trading, driving up total costs for the system. Users can inter-
act with one another to swap energy in the second scenario. As a result, their expenses are 
decreased, and the reduced grid competition results in a net system gain. The cost reduc-
tions for users 1, 3, and 5 attributable to the distributed energy management algorithm are 
shown in Table 6, showing a 40% decrease in the total cost of the single users. 
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Figure 13. Trading profile of user 5. 

Table 6. Comparison of the three users in the two scenarios. 

User Total Cost (EUR) 
 First Scenario Second Scenario 

1 −2.245 −5.078 
3 2.957 1.592 
5 4.172 2.501 

Total cost for users 1, 3, and 5 4.884 −0.985 

5. Conclusions 
This work is focused on the development of a decentralized optimization system for 

maximizing the benefit of local energy community participants. The procedure makes use 
of a decentralized master ledger based on a blockchain for ensuring certified communica-
tion among peers, overcoming the need for a central market authority in LEM and LEC 
management. The implementation of the DML in the proposed framework makes it pos-
sible to use any distributed ledger technology, provided that it has smart contract capa-
bility. For this reason, no DL cost analysis was performed since they may vary consistently 
between DL providers, with some being potentially cost-free in private implementations. 
Moreover, the recent advancements in the field will possibly allow for seamlessly inte-
grating the optimization model into the DML consensus algorithm. The developed frame-
work was tested through a hybrid setup obtained, exploiting the RTDS® NovaCor hard-
ware and the RPi smart devices, which run the proposed optimization procedure. The 
results show how the energy community optimization tool can optimize the distributed 
resources of the energy community, enabling global social welfare, which reduces the fi-
nal costs, as long as the users participate in a local energy market. In particular, the imple-
mentation of a local market allows for the automated economic management of a local 
energy community, providing up to 40% cost savings to the system. Moreover, very good 
convergence properties allow for reducing the overall management time frame from the 
current 15 minutes, used in Italy in the wholesale market, to 1 minute. The HIL experi-
mental setup allowed for testing the model in a close-to-reality application, which allowed 
for running the simulated network without observed failures and moving the application 
one step further towards the on-site testing. 

Further developments of the research will be focused on extending the time frame of 
the simulation to larger periods (for instance, 1 week, 1 month, and 1 year). In addition, 
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the integration of other energy resources will be taken into account. In the future, further 
distributed energy resources such as electric vehicles, storage systems, and controllable 
loads for the provision of demand response and flexibility service will be included in the 
simulation. 
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Glossary 
Abbreviation Meaning 
DG distributed generation 
RES renewable energy sources 
DER distributed energy resources 
LEC local energy community 
LEM local energy market 
P2P peer-to-peer 
DSO distribution system operator 
TSO transmission system operator 
IoT Internet of Things 
RTDS real-time digital simulator 
SGAM smart grid architecture model 
OPF optimal power flow 
AC-OPF alternating current-OPF 
SG smart grid 
DL distributed ledger 
ADMM alternating direction method of multipliers 
M2M machine-to-machine 
GA genetic algorithm 
DGA decentralized genetic algorithm 
HIL hardware-in-the-loop 
DML decentralized master ledger 
SC Smart Contract 
PCC point of common coupling 

Appendix A. Genetic Algorithms 
Genetic algorithms (GA) are algorithms able to solve a wide spectrum of optimiza-

tion problems [52]. GA represents the variables of a problem with finite-length strings that 
are referred as chromosomes. Rather than working with direct parameters from an opti-
mization problem, GA often works with parameter encoding. In order to progress to the 
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optimal solutions, GA begins its search from a randomly generated population of designs 
that evolve over successive iterations. To perform its optimization-like process, GA em-
ploys different operators to propagate its population from one iteration to another. Sev-
eral operators are proposed in the literature; however, in this study, four are considered 
and described in the following: 
• Parent selection: This procedure is going to select the best genomes (values contained 

within chromosomes). In order to understand which values are the best, the selection 
process takes into account the fitness function. This function represents the quality 
measure, which defines which results are better than others. For instance, the fitness 
function could be represented by a cost function; nonetheless, the quality measure 
depends on the physical system which must be optimized. 

• Crossover: Within this process, new genes are developed. According to the parent 
selection results, the current chromosomes are combined in order to obtain better 
values, which in average are characterized by a better fitness function value. 

• Mutation: This process promotes diversity in population characteristics. The muta-
tion operator allows for global search of the design space and prevents the algorithm 
from getting trapped in local minima. 

• Selection: Throughout this procedure, new genomes are introduced into the popula-
tion to create new generation (or iteration). Despite that different methods are imple-
mented in the literature, one is of interest, the elitism. With traditional techniques, 
there is no guarantee that the best member of the population will survive the “gen-
erational change”. The elitism keeps track of this individual and copies it directly into 
the next generation. If this member is selected to be replaced and none of the children 
have a better fitness function, one of the children is going to be eliminated, and the 
parent chromosome will be maintained. 

Appendix B. Optimal Power Flow 
The widespread application of optimal power flow (OPF) allows for the efficient, se-

cure operation and planning of power systems. OPF is used to control the active power 
outputs and voltages of generators and shunt capacitors and reactors, transformer tap 
settings, and other controllable variables that can reduce fuel costs. Additionally, it effec-
tively controls the network active power loss while maintaining operational and secure 
restrictions for all other state variables, including load bus voltages, generator power out-
puts, network power flows, and other variables. A typical formulation of an OPF problem 
is as follows (Equation (A1)): min 𝑓(𝑥) 

subject to: 𝑔 (𝑥) = 0         𝑖 = 1, … , 𝑛 ℎ (𝑥) ≤ 0       𝑗 = 1, … , 𝑚 
(A1) 

In most cases, the objective function for the OPF reflects the costs associated with 
generating power in the system due to the fact that the power injection of generators is 
more easily accessible and controllable. In Equation (A2) is represented the quadratic cost 
model for generation: 𝐶 𝑝 , 𝐼 , = 𝐼 , + 𝐼 , ∙ 𝑝 + 𝐼 , ∙ 𝑝  (A2) 

where 𝑝  is the production (per MWh) of generator k, and 𝐼 ,  is the coefficient of the cost 
function. The objective function for the entire system can then be written as the sum of the 
quadratic cost model at each generator (Equation (A3)): 𝑓(𝑥) = 𝐼 , + 𝐼 , ∙ 𝑝 + 𝐼 , ∙ 𝑝  (A3) 
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The OPF equality constraints reflect the power flow equations. Therefore, g(x) (Equa-
tion (A1)) is as follows (Equation (A4)): 𝑃 − 𝑃 = 𝑉 ∙ 𝑉 ∙ 𝐺 , ∙ 𝑐𝑜𝑠 𝜃 , + 𝐵 , ∙ 𝑠𝑖𝑛 𝜃 ,  

𝑄 − 𝑄 = 𝑉 ∙ 𝑉 ∙ 𝐺 , ∙ 𝑠𝑖𝑛 𝜃 , − 𝐵 , ∙ 𝑐𝑜𝑠 𝜃 ,  
(A4) 

where 𝑃 , 𝑄  are the real and reactive power generations at bus i; 𝑃 , 𝑄  the real and 
reactive power demands at bus i; 𝑉  is the voltage magnitude at bus i; 𝑉  is the voltage 
magnitude at bus j; 𝜃 , , is the voltage angle difference between buses i and j; and finally, 
G and B are the real and imaginary parts of the admittance matrix. The inequality con-
straints of the OPF (h(x) of Equation (A1)) reflect the limits on components in the power 
system. In a general framework, components that require enforcement of limits include 
not only generators and tap-changing transformers but also phase shifting transformers. 
On account of the above description, when GA and OPF are merged, two main issues 
must be addressed: 
• Variable representation; 
• Fitness function formation. 

For the sake of simplicity, in this study, the variable representation was considered 
in the natural form of the control variables analyzed in the OPF problem. In particular, 
considered 𝑃  and 𝑄  as control variables, these variables are estimated as real numbers 
in floating-point representation. There are several benefits to using floating-point num-
bers in the GA representation. As there is no need to convert the type of the solution var-
iables, GA is more efficient. By discretizing to binary values, less memory is needed, and 
precision is not lost. With this representation, a typical OPF chromosome appears as fol-
lows (Figure A1): 

 
Figure A1. GA chromosome example. 

Since GA searches for the optimal solution by maximizing (or minimizing) a given 
fitness function, an evaluation function that provides a measure of the quality of the prob-
lem solution must be provided. Several fitness functions are proposed in the literature, 
such as fitness function, which measure the execution time, the quality, or even the secu-
rity of the solution. Although various studies have proposed fitness function different 
from the objective function, choosing the objective function may lead to good perfor-
mance. Indeed, this choice is not complex and expresses a quality measure correlated with 
the system, instead of an unfathomable fitness function that is difficult to calculate and 
associate with the system physic. 

Appendix C. Reinforcement Learning 
Along with supervised learning and unsupervised learning, RL is one of the three 

fundamental machine learning paradigms. Reinforcement learning is a branch of machine 
learning that focuses on how an agent should behave in a given environment to maximize 
reward (RL). Each agent can have a distinct behavior that is tailored to a specific objective, 
thanks to the RL outcomes. The Roth–Erev method has been used in this study to model 
the platform users’ behavior. The Roth–Erev algorithm [53] has been widely used in the 
area of trading mechanisms. Every user is represented by a model called an agent, and 
the algorithm acts as a trading mechanism to direct the agent’s decisions. 

In order to exploit the Roth–Erev algorithm, the approach introduced in [54] is im-
plemented. Proposed in [55] and used in [56,57] for the simulation of the Italian electricity 
market, the Roth–Erev algorithm builds this method on the assumption that it is more 
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likely to repeat an action if it had to for a positive outcome. Applying this concept to the 
study, each user adapts its behavior accordingly to its success (or failure) in the market. 
As a result, the platform agents acquire the ability to place bids through competitive auc-
tions. By self-consistently adjusting the offer propensities of agents with the aim of max-
imizing individual profits, Roth–Erev algorithms model this learning process by simulat-
ing how participants learn about the market during the simulation and adjust their deci-
sions accordingly. The agents must indicate how much they will inject into the system and 
at what price they will offer this excess production when placing offers. In this way, the 
agents develop a strategy to make offers, and in this article, the agent propensities concept 
was used to describe each agent’s desire to make a market bid at a specific price. Each 
participant’s propensities are expressed in terms of a discrete set of probabilities, where 𝑄  stands for potential bidding strategies ((𝐼 , , 𝐼 , , 𝐼 , ); (𝑠 )). The index h, (0 < ℎ < 𝑁), 
labels the strategy, N represents the number of possible strategies, and 𝑠  is the jth oper-
ator’s propensity to make an offer at a given value (𝐼 , , 𝐼 , , 𝐼 , ). The amount of strategies 
is equal to the number of intervals that have been used to split the range of 𝐼 , . The authors 
of this work chose N = 50, requiring that one assign 50 propensities to values of 𝐼 , . Ac-
cording to Equation (A2), the terms determine the generating price by denoting the coef-
ficients of each generator’s cost function 𝐼 , . 

As a result, the behavior of the operators is stochastically represented. The normal-

ized propensity gives the likelihood of submitting a bid at a specific price 𝑞 =  𝑠 ∑ (𝑠 ) 

with h = 1, ..., N and j = 1, ..., Nagent, where Nagent represents the number of agents. Each 
offering step is composed by three main phases. Having set all propensities 𝑠  to the 
same value, the three steps are as follows: 
1. Bid presentation. Every agent presents a bid (𝐼 , , 𝐼 , , 𝐼 , ). 
2. Retrieving step. The best genomes are going to be retrieved from DL and used to 

update agent propensities. 
3. Agent update. Each agent k updates his propensities in relation to the profit, which 

he made in the previous step. The agents’ propensities are updated as follows (Equa-
tion (A5)): 𝑠 (𝑡) = (1 − 𝑟) ∙ 𝑠 (𝑡 − 1) + 𝐸 (𝑡) (A5) 

where r ∈ [0, 1] is a memory parameter, and 𝐸 (𝑡) is evaluated by Equation (A6). 

𝐸 (𝑡) = 𝑅(𝑡 − 1) ∙ 1 − 𝑒 ,       if the bid is accepted𝑅(𝑡 − 1) ∙ 𝑒𝑁 − 1 ,                          otherwise (A6) 

where e ∈ [0, 1] is an experimental parameter that assigns a different weight to played and 
nonplayed actions, and 𝑅(𝑡 − 1) is the profit at the time 𝑡 − 1. 

Therefore, on the basis of the profit 𝑅(𝑡 − 1), the update function 𝐸 (𝑡) will change 
accordingly. 

Appendix D. Blockchain 
The blockchain is a collection of blocks that is created using the principles of cryp-

tography. The blockchain, in essence, is a distributed ledger that effectively records trans-
actions between two parties in a verifiable and permanent manner, without the need for 
a middleman service from third parties. Figure A2 displays the chain of blocks and, sub-
sequently, the architecture of the blockchain. A header and a body make up each block. 
The prior block’s hash can be seen in the block header. The previous block header’s hash 
is used to produce this value. The blockchain is made up of blocks that are hashed together 
in order. The block body, on the other hand, keeps a record of every transaction’s details 
from the preceding time frame. Each transaction produces a hash value, and the hash al-
gorithm is then continued by two adjacent hash values to produce a distinct Merkle root. 
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The binary tree that is produced by the aforementioned procedure is known as the Merkle 
root, or Merkle tree. This data structure is helpful for determining the immutability of the 
information. Each transaction is inserted as a leaf to the Merkle tree [58]. 

The Merkle root links the block body and header together. The Merkle root value will 
change if the block’s transactional data are altered. This ensures decentralization, transac-
tion nontampering, traceability, and transparency as the four main characteristics of the 
blockchain: 
• Decentralization: The blockchain network is based on the P2P framework. Nodes can 

conduct direct transactions with each other without the involvement of a central 
party. The blockchain network’s nodes all have equal positions and have the ability 
to verify data in blocks. 

• Transaction nontampering: Unless 51% of nodes’ computational power can be con-
trolled by the same entity at the same time, a single- or multiple-node database up-
date in the blockchain system does not influence the database of other nodes. 

• Traceability: As previously mentioned, each transaction in the blockchain is linked to 
two adjacent blocks via a cryptographic technique, making every transaction traceable. 

• Transparency: The system’s whole set of operating rules for the blockchain is trans-
parent and open; the blockchain keeps track of information regarding multiple-node 
redundancy backups and updates it with information regarding multiple-node mu-
tual authentication. Thus, all the certification process is open and verifiable by the 
public. 

 
Figure A2. Blockchain architecture. 
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