140,040 research outputs found

    Set-membership parity space hybrid system diagnosis

    Get PDF
    In this paper, diagnosis for hybrid systems using a parity space approach that considers model uncertainty is proposed. The hybrid diagnoser is composed of modules which carry out the mode recognition and diagnosis tasks interacting each other, since the diagnosis module adapts accordingly to the current hybrid system mode. Moreover, the methodology takes into account the unknown but bounded uncertainty in parameters and additive errors (including noise and discretisation errors) using a passive robust strategy based on the set-membership approach. An adaptive threshold that bounds the effect of model uncertainty in residuals is generated for residual evaluation using zonotopes, and the parity space approach is used to design a set of residuals for each mode. The proposed fault diagnosis approach for hybrid systems is illustrated on a piece of the Barcelona sewer network.This work has been funded by the Spanish Ministry of Science and Technology through the CICYT project WATMAN [grant number DPI2009-13744]; the Spanish Ministry of Economy and Competitiveness through the CICYT project SHERECS [grant number DPI2011-26243]; EFFINET [grant number FP7-ICT-2012-318556] of the European Commission.Peer Reviewe

    Set membership parity space hybrid system diagnosis

    Get PDF
    In this paper, diagnosis for hybrid systems using a parity space approach that considers model uncertainty is proposed. The hybrid diagnoser is composed of modules which carry out the mode recognition and diagnosis tasks interacting each other, since the diagnosis module adapts accordingly to the current hybrid system mode. Moreover, the methodology takes into account the unknown but bounded uncertainty in parameters and additive errors using a passive robust strategy based on the set-membership approach. An adaptive threshold that bounds the effect of model uncertainty in residuals is generated for residual evaluation using zonotopes, and the parity space approach is used to design a set of residuals for each mode. The proposed fault diagnosis approach for hybrid systems is illustrated on a piece of the Barcelona sewer network.Postprint (author's final draft

    Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Get PDF
    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study

    Discrete and hybrid methods for the diagnosis of distributed systems

    Get PDF
    Many important activities of modern society rely on the proper functioning of complex systems such as electricity networks, telecommunication networks, manufacturing plants and aircrafts. The supervision of such systems must include strong diagnosis capability to be able to effectively detect the occurrence of faults and ensure appropriate corrective measures can be taken in order to recover from the faults or prevent total failure. This thesis addresses issues in the diagnosis of large complex systems. Such systems are usually distributed in nature, i.e. they consist of many interconnected components each having their own local behaviour. These components interact together to produce an emergent global behaviour that is complex. As those systems increase in complexity and size, their diagnosis becomes increasingly challenging. In the first part of this thesis, a method is proposed for diagnosis on distributed systems that avoids a monolithic global computation. The method, based on converting the graph of the system into a junction tree, takes into account the topology of the system in choosing how to merge local diagnoses on the components while still obtaining a globally consistent result. The method is shown to work well for systems with tree or near-tree structures. This method is further extended to handle systems with high clustering by selectively ignoring some connections that would still allow an accurate diagnosis to be obtained. A hybrid system approach is explored in the second part of the thesis, where continuous dynamics information on the system is also retained to help better isolate or identify faults. A hybrid system framework is presented that models both continuous dynamics and discrete evolution in dynamical systems, based on detecting changes in the fundamental governing dynamics of the system rather than on residual estimation. This makes it possible to handle systems that might not be well characterised and where parameter drift is present. The discrete aspect of the hybrid system model is used to derive diagnosability conditions using indicator functions for the detection and isolation of multiple, arbitrary sequential or simultaneous events in hybrid dynamical networks. Issues with diagnosis in the presence of uncertainty in measurements due sensor or actuator noise are addressed. Faults may generate symptoms that are in the same order of magnitude as the latter. The use of statistical techniques,within a hybrid system framework, is proposed to detect these elusive fault symptoms and translate this information into probabilities for the actual operational mode and possibility of transition between modes which makes it possible to apply probabilistic analysis on the system to handle the underlying uncertainty present

    Agent-based hybrid framework for decision making on complex problems

    Full text link
    Electronic commerce and the Internet have created demand for automated systems that can make complex decisions utilizing information from multiple sources. Because the information is uncertain, dynamic, distributed, and heterogeneous in nature, these systems require a great diversity of intelligent techniques including expert systems, fuzzy logic, neural networks, and genetic algorithms. However, in complex decision making, many different components or sub-tasks are involved, each of which requires different types of processing. Thus multiple such techniques are required resulting in systems called hybrid intelligent systems. That is, hybrid solutions are crucial for complex problem solving and decision making. There is a growing demand for these systems in many areas including financial investment planning, engineering design, medical diagnosis, and cognitive simulation. However, the design and development of these systems is difficult because they have a large number of parts or components that have many interactions. From a multi-agent perspective, agents in multi-agent systems (MAS) are autonomous and can engage in flexible, high-level interactions. MASs are good at complex, dynamic interactions. Thus a multi-agent perspective is suitable for modeling, design, and construction of hybrid intelligent systems. The aim of this thesis is to develop an agent-based framework for constructing hybrid intelligent systems which are mainly used for complex problem solving and decision making. Existing software development techniques (typically, object-oriented) are inadequate for modeling agent-based hybrid intelligent systems. There is a fundamental mismatch between the concepts used by object-oriented developers and the agent-oriented view. Although there are some agent-oriented methodologies such as the Gaia methodology, there is still no specifically tailored methodology available for analyzing and designing agent-based hybrid intelligent systems. To this end, a methodology is proposed, which is specifically tailored to the analysis and design of agent-based hybrid intelligent systems. The methodology consists of six models - role model, interaction model, agent model, skill model, knowledge model, and organizational model. This methodology differs from other agent-oriented methodologies in its skill and knowledge models. As good decisions and problem solutions are mainly based on adequate information, rich knowledge, and appropriate skills to use knowledge and information, these two models are of paramount importance in modeling complex problem solving and decision making. Follow the methodology, an agent-based framework for hybrid intelligent system construction used in complex problem solving and decision making was developed. The framework has several crucial characteristics that differentiate this research from others. Four important issues relating to the framework are also investigated. These cover the building of an ontology for financial investment, matchmaking in middle agents, reasoning in problem solving and decision making, and decision aggregation in MASs. The thesis demonstrates how to build a domain-specific ontology and how to access it in a MAS by building a financial ontology. It is argued that the practical performance of service provider agents has a significant impact on the matchmaking outcomes of middle agents. It is proposed to consider service provider agents\u27 track records in matchmaking. A way to provide initial values for the track records of service provider agents is also suggested. The concept of ‘reasoning with multimedia information’ is introduced, and reasoning with still image information using symbolic projection theory is proposed. How to choose suitable aggregation operations is demonstrated through financial investment application and three approaches are proposed - the stationary agent approach, the token-passing approach, and the mobile agent approach to implementing decision aggregation in MASs. Based on the framework, a prototype was built and applied to financial investment planning. This prototype consists of one serving agent, one interface agent, one decision aggregation agent, one planning agent, four decision making agents, and five service provider agents. Experiments were conducted on the prototype. The experimental results show the framework is flexible, robust, and fully workable. All agents derived from the methodology exhibit their behaviors correctly as specified

    Diagnosis methodology based on deep feature learning for fault identification in metallic, hybrid and ceramic bearings

    Get PDF
    Scientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings. Although the mechanical principles remain as the basis to analyze the characteristic patterns and effects related to the fault appearance, the quantitative response of the vibration pattern considering different bearing technology varies. In this regard, in this work a novel data-driven diagnosis methodology is proposed based on deep feature learning applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology consists of three main stages: first, a deep learning-based model, supported by stacked autoencoder structures, is designed with the ability of self-adapting to the extraction of characteristic fault-related features from different signals that are processed in different domains. Second, in a feature fusion stage, information from different domains is integrated to increase the posterior discrimination capabilities during the condition assessment. Third, the bearing assessment is achieved by a simple softmax layer to compute the final classification results. The achieved results show that the proposed diagnosis methodology based on deep feature learning can be effectively applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology is validated in front of two different electromechanical systems and the obtained results validate the adaptability and performance of the proposed approach to be considered as a part of the condition-monitoring strategies where different bearing technologies are involved.Peer ReviewedPostprint (published version

    An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems

    Get PDF
    In this dissertation an integrated framework of process performance monitoring and fault diagnosis was developed for nuclear power systems using robust data driven model based methods, which comprises thermal hydraulic simulation, data driven modeling, identification of model uncertainty, and robust residual generator design for fault detection and isolation. In the applications to nuclear power systems, on the one hand, historical data are often not able to characterize the relationships among process variables because operating setpoints may change and thermal fluid components such as steam generators and heat exchangers may experience degradation. On the other hand, first-principle models always have uncertainty and are often too complicated in terms of model structure to design residual generators for fault diagnosis. Therefore, a realistic fault diagnosis method needs to combine the strength of first principle models in modeling a wide range of anticipated operation conditions and the strength of data driven modeling in feature extraction. In the developed robust data driven model-based approach, the changes in operation conditions are simulated using the first principle models and the model uncertainty is extracted from plant operation data such that the fault effects on process variables can be decoupled from model uncertainty and normal operation changes. It was found that the developed robust fault diagnosis method was able to eliminate false alarms due to model uncertainty and deal with changes in operating conditions throughout the lifetime of nuclear power systems. Multiple methods of robust data driven model based fault diagnosis were developed in this dissertation. A complete procedure based on causal graph theory and data reconciliation method was developed to investigate the causal relationships and the quantitative sensitivities among variables so that sensor placement could be optimized for fault diagnosis in the design phase. Reconstruction based Principal Component Analysis (PCA) approach was applied to deal with both simple faults and complex faults for steady state diagnosis in the context of operation scheduling and maintenance management. A robust PCA model-based method was developed to distinguish the differences between fault effects and model uncertainties. In order to improve the sensitivity of fault detection, a hybrid PCA model based approach was developed to incorporate system knowledge into data driven modeling. Subspace identification was proposed to extract state space models from thermal hydraulic simulations and a robust dynamic residual generator design algorithm was developed for fault diagnosis for the purpose of fault tolerant control and extension to reactor startup and load following operation conditions. The developed robust dynamic residual generator design algorithm is unique in that explicit identification of model uncertainty is not necessary. Finally, it was demonstrated that the developed new methods for the IRIS Helical Coil Steam Generator (HCSG) system. A simulation model was first developed for this system. It was revealed through steady state simulation that the primary coolant temperature profile could be used to indicate the water inventory inside the HCSG tubes. The performance monitoring and fault diagnosis module was then developed to monitor sensor faults, flow distribution abnormality, and heat performance degradation for both steady state and dynamic operation conditions. This dissertation bridges the gap between the theoretical research on computational intelligence and the engineering design in performance monitoring and fault diagnosis for nuclear power systems. The new algorithms have the potential of being integrated into the Generation III and Generation IV nuclear reactor I&C design after they are tested on current nuclear power plants or Generation IV prototype reactors

    A Fuzzy-GA Approach for Parameter Optimization of A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children

    Get PDF
    Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution as a learning and optimization technique has been vastly concentrated for improving fuzzy expert systems. In this paper, the GA capabilities have been applied for optimization of the membership function parameters in a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children. The fuzzy expert system utilizes the high interpretability of the Mamdani reasoning model to explain system results to experts in a high level and combines it with the GA optimization capability to improve its performance. The hybrid proposed Fuzzy-GA approach was implemented in Matlab software and evaluated on the real patients’ dataset. High accuracy of this system was achieved after GA tuning process with an accuracy about 98%. The results reveal the hybrid fuzzy-GA approach capability to assist computer-based diagnosis of medical experts, and consequently early diagnosis of the disease which is promising for providing suitable treatment for patients and saving more children’s lives

    Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation

    Full text link
    [EN] Since it is not efficient to physically study many machine failures, models of faulty induction machines (IMs) have attracted a rising interest. These models must be accurate enough to include fault effects and must be computed with relatively low resources to reproduce different fault scenarios. Moreover, they should run in real time to develop online condition-monitoring (CM) systems. Hybrid finite element method (FEM)-analytical models have been recently proposed for fault diagnosis purposes since they keep good accuracy, which is widely accepted, and they can run in real-time simulators. However, these models still require the full simulation of the FEM model to compute the parameters of the analytical model for each faulty scenario with its corresponding computing needs. To address these drawbacks (large computing power and memory resources requirements) this paper proposes sparse identification techniques in combination with the trigonometric interpolation polynomial for the computation of IM model parameters. The proposed model keeps accuracy similar to a FEM model at a much lower computational effort, which could contribute to the development and to the testing of condition-monitoring systems. This approach has been applied to develop an IM model under static eccentricity conditions, but this may extend to other fault types.This work was supported by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agencia Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I+D+i -Retos Investigacion 2018", project reference RTI2018-102175-B-I00 (MCIU/AEI/FEDER, UE).Terrón-Santiago, C.; Martinez-Roman, J.; Puche-Panadero, R.; Sapena-Bano, A. (2021). Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation. Sensors. 21(21):6963-6987. https://doi.org/10.3390/s21216963S69636987212

    A New Hybrid Approach for Fault Detection and Diagnosis

    Get PDF
    Fault detection and isolation based on hybrid approaches have been an active eld of research over the last few years. From a practical point of view, the development of generic and uni ed approaches for industrial supervision systems design is a key challenge. The main methodological contribution of the present work is to develop a hybrid approach properly tailored for such challenge. The proposed approach uses the Bond Graph formalism to systematically develop computational models and algorithms for robust fault detection and isolation. The resulting outcomes are extended to a proposed data-driven approach which consists of transforming historical process data into a meaningful alphabetical model incorporated within a Bayesian network. This new hybrid methodology bene ts from all the knowledge available on the system and provides a more comprehensive solution in order to increase the overall con dence in the diagnosis and the performances. The e ectiveness of the developed hybrid approach is validated by the well-known Tennessee Eastman Benchmark process
    • …
    corecore