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ABSTRACT

Quick and robust fault diagnosis is critical to ensuring safe
operation of complex engineering systems. A large number
of techniques are available to provide fault diagnosis in sys-
tems with continuous dynamics. However, many systems in
aerospace and industrial environments are best represented
as hybrid systems that consist of discrete behavioral modes,
each with its own continuous dynamics. These hybrid dy-
namics make the on-line fault diagnosis task computationally
more complex due to the large number of possible system
modes and the existence of autonomous mode transitions.
This paper presents a qualitative fault isolation framework
for hybrid systems based on structural model decomposition.
The fault isolation is performed by analyzing the qualitative
information of the residual deviations. However, in hybrid
systems this process becomes complex due to possible exis-
tence of observation delays, which can cause observed devi-
ations to be inconsistent with the expected deviations for the
current mode in the system. The great advantage of structural
model decomposition is that (i) it allows to design residuals
that respond to only a subset of the faults, and (ii) every time
a mode change occurs, only a subset of the residuals will need
to be reconfigured, thus reducing the complexity of the rea-
soning process for isolation purposes. To demonstrate and
test the validity of our approach, we use an electric circuit
simulation as the case study.

1. INTRODUCTION

The development of robust and efficient fault diagnosis tech-
niques plays an important role in complex engineering sys-
Anibal Bregon et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tems. A large number of fault diagnosis techniques have
been developed during the last few decades for continuous
systems. However, nowadays, many engineering systems are
modeled as hybrid systems that have both continuous and
discrete-event dynamics. For such systems, the large num-
ber of possible system modes with different dynamics and
the existence of autonomous mode transitions significantly
increases the complexity of the fault diagnosis problem.

Different proposals exist in the literature for hybrid systems
diagnosis, focusing on either hybrid modeling, such as hy-
brid automata (Henzinger, 2000; Rienmüller, Bayoudh, Hof-
baur, & Travé-Massuyès, 2009; Bayoudh, Travé-Massuyès,
& Olive, 2008), hybrid state estimation (Hofbaur & Williams,
2004), or a combination of on-line state tracking and residual
evaluation (Benazera & Travé-Massuyès, 2009). However, in
all those approaches, the proposed solutions involve model-
ing and pre-enumeration of the set of all possible system-level
discrete modes, which grows exponentially with the number
of switching components. Both steps are computationally
very expensive or even infeasible for hybrid systems with a
large number of complex interacting subsystems.

One of the solutions to avoid the mode pre-enumeration prob-
lem consists of building hybrid system models in a composi-
tional way, where discrete modes are defined at a local level
(e.g., at the component level), and the system-level mode is
defined implicitly by the local component-level modes. This
allows the modeler to focus on the discrete behavior only
at the component level, and the pre-enumeration of all the
system-level modes can be avoided (Narasimhan & Brown-
ston, 2007; Trave-Massuyes & Pons, 1997). Additionally,
building models in a compositional way facilitates reusabil-
ity and maintenance, and allows the validation of the com-
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ponents individually before they are composed to create the
system-level hybrid model.

In previous work (Daigle, Bregon, & Roychoudhury, 2015),
we proposed a compositional modeling approach for hy-
brid systems, where models consist of user-defined com-
ponents. A component is constructed by defining a set of
discrete modes, with a different set of mathematical con-
straints describing the continuous dynamics in each mode.
Within this framework, we defined algorithms for efficient
causality assignment and re-assignment upon mode changes.
For a given system mode, structural model decomposi-
tion (Roychoudhury, Daigle, Bregon, & Pulido, 2013) is used
to construct minimal submodels for residual generation, and,
based on efficient causality reassignment, can be efficiently
reconfigured upon mode changes.

We demonstrated in (Daigle, Bregon, & Roychoudhury,
2015) how the minimal submodels can be used for efficient
residual generation over the different modes of the system.
In this paper, we extend this framework with a qualitative
approach for online fault isolation of hybrid systems. Our
approach assumes only single faults occur in the system and
we choose to deal with deviations in system parameters (i.e.
parametric faults) only and not discrete faults. The approach
works by abstracting qualitatively the transients of residual
deviations and comparing those with the predicted fault tran-
sients. Unlike previous approaches based on this methodol-
ogy (P. J. Mosterman & Biswas, 1999; Daigle, Koutsoukos,
& Biswas, 2009; Narasimhan & Biswas, 2007), we make use
of structural model decomposition to decrease the complexity
of the diagnosis task. In hybrid systems, mode changes typ-
ically modify the predicted fault transients, and, further, ob-
servation delays (e.g., due to delays in signal filtering within
a fault detection algorithm, or communication delays) can
cause that the observed transient may be consistent with a
previous mode of the system. As it has been discussed by
other authors (Narasimhan & Biswas, 2007), both issues sig-
nificantly complicate the reasoning process. Using structural
model decomposition, the associated complexity can be re-
duced greatly because (i) it allows the design of residuals that
respond to only a subset of the faults (Bregon et al., 2014);
and (ii) every time a mode change occurs, only a subset of
the residuals will need to be reconfigured (Daigle, Bregon, &
Roychoudhury, 2015). Using an electrical circuit as a case
study, we demonstrate that our approach can correctly isolate
faults in hybrid systems even if the system transitions among
different mode changes and presents observation delays dur-
ing the isolation process.

The paper is organized as follows. Section 2 summarizes
the compositional modeling approach and introduces the case
study. Section 3 presents the problem we solve in this paper.
Section 4 describes the qualitative fault isolation approach
for hybrid systems. Section 5 demonstrates the approach for

the electrical case study. Section 6 reviews the related work
and current approaches for hybrid systems fault diagnosis and
puts our work into context. Finally, Section 7 concludes the
paper.

2. COMPOSITIONAL HYBRID SYSTEMS MODELING

As we have mentioned, in (Daigle, Bregon, & Roychoudhury,
2015) we proposed a compositional approach for hybrid sys-
tems modeling, in which system models are made up of a
set of user-defined components, where each component is de-
fined by a set of discrete modes, with a different set of con-
straints describing the continuous dynamics of the component
in each mode. In this section, we summarize the main de-
tails of the hybrid system modeling framework and structural
model decomposition approach. For additional details, we
refer the reader to (Daigle, Bregon, & Roychoudhury, 2015).

2.1. System Modeling

At the basic level, the continuous dynamics of a component
in each mode are modeled using a set of variables and a set
of constraints. A constraint is defined as follows:

Definition 1 (Constraint). A constraint c is a tuple (εc, Vc),
where εc is an equation involving variables Vc.

A component is defined by a set of constraints over a set of
variables. The constraints are partitioned into different sets,
one for each component mode. A component is then defined
as follows:

Definition 2 (Component). A component κ with n discrete
modes is a tuple κ = (Vκ, Cκ), where Vκ is a set of variables
and Cκ is a set of constraints sets, where Cκ is defined as
Cκ = {C1

κ, C
2
κ, . . . , C

n
κ}, with a constraint set, Cmκ , defined

for each mode m = {1, . . . , n}.

To illustrate our proposal, throughout the paper we will use
a circuit example, shown in Fig. 1. The components of the
circuit are a voltage source, V, two capacitors, C1 and C2,
two inductors, L1 and L2, two resistors, R1 and R2, and two
switches, Sw1 and Sw2, as well as components for series and
parallel connections. Sensors measure the current or voltage
in different locations (i3, v8, and i11, as indicated in Fig. 1).
Because each switch has two modes (on and off), there are
four total modes in the system. The components of the circuit
are defined in Table 1.

Example 1. Consider the component Sw2 (κ10). It has two
modes: on (represented as mode 2 in Table 1) and off (rep-
resented as mode 1). In the off mode, it has three constraints
setting each of its currents (i9, i10, i11) to 0. In the on mode,
it has also three constraints, setting the three currents equal to
each other and establishing that the voltages sum up (it acts
like a series connection when in the on mode).
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Sw1 Sw2R1 R2C2C1

L1 L2v(t) i3

i11

v8

Figure 1. Electrical circuit running example.

Table 1. Components of the electrical circuit.

Component Mode Constraints
κ1: V 1 v1=uv

κ2: Sw1 1 i1=0
i2=0

2 i1=i2
v1=v2

κ3: Parallel Connection1 1 v2=v3
v2=v4
i2=i3 + i4

κ4: L1 1 ḟ3=v3
i3=f3/L1

f3=
∫ t

t0
ḟ3

κ5: Series Connection1 1 i4=i5
i4=i6
i4=i7
v4=v5 + v6 + v7

κ6: R1 1 v5=i5 ∗R1

κ7: C1 1 q̇6=i6
v6=q6/C1

q6=
∫ t

t0
q̇6

κ8: Parallel Connection2 1 v7=v8
v7=v9
i7=i8 + i9

κ9: L2 1 ḟ8=v8
i8=f8/L2

f8=
∫ t

t0
ḟ8

κ10: Sw2 1 i9=0
i10=0
i11=0

2 i9=i10
i9=i11
v9=v10 + v11

κ11: R2 1 v10=i10 ∗R2

κ12: C2 1 q̇11=i11
v11=q11/C2

q11=
∫ t

t0
q̇11

κ13: Current Sensor11 1 i∗11=i11
κ14: Voltage Sensor8 1 v∗8=v8
κ15: Current Sensor3 1 i∗3=i3

We define a system model as a set of components:

Definition 3 (Model). A modelM = {κ1, κ2, . . . , κk} is a
finite set of k components for k ∈ N.

Example 2. The model of the electrical system is made up of
the components detailed in Table 1, i.e., M = {κ1, κ2, . . . ,
κ15}. For each component, the variables and constraints are
defined for each component mode.

The set of variables for a model, VM, is the union of all
the component variable sets, i.e., for d components, VM =
Vκ1∪Vκ2∪. . .∪Vκd . VM consists of five disjoint sets, namely,
the set of state variables, XM; the set of parameters, ΘM;
the set of inputs (variables not computed by any constraint),
UM; the set of outputs (variables not used to compute any
other variables), YM; and the set of auxiliary variables, AM.
Parameters, ΘM, include explicit model parameters that are
used in the model constraints (e.g., fault parameters). Auxil-
iary variables, AM, are additional variables that are used to
simplify the structure of the equations.

Example 3. In the circuit model, we have XM =
{f3, q6, f8, q11}, ΘM = {L1, R1, C1, L2, R2, C2}, UM =
{uv}, and YM = {i∗3, i∗11, v

∗
8}. Remaining variables belong

to AM. Here, the ∗ superscript is used to denote a measured
value of a physical variable, e.g., i3 ∈ XM is the current and
i∗3 ∈ YM is the measured current.

The interconnection structure of the model is captured us-
ing shared variables between components, i.e., components
κi and κj are connected if Vκi ∩ Vκj 6= ∅.

Example 4. In the circuit model, component κ5 (Series
Connection1) is connected to κ3 (Parallel Connection1)
through i4, to κ6 (R1) through i5 and v5, to κ7 (C1) through
i6 and v6, and κ8 (Parallel Connection2) through i7 and v7.

In our work, a fault is the cause of an unexpected, persistent
deviation of the system behavior from the acceptable nominal
behavior. To simplify our approach, we link faults only to the
set of parameters ΘM, i.e., no discrete faults are considered.
More formally, a fault is defined as follows.

Definition 4 (Fault). A fault, denoted as f, is a persistent de-
viation of exactly one parameter θ ∈ΘM of the system model
M from its nominal value.

The model constraints, CM, are a union of the component
constraints over all modes, i.e., CM = Cκ1

∪Cκ2
∪ . . .∪Cκd .

Constraints are exclusive to components, that is, a constraint
c ∈ CM belongs to exactly one Cκ for κ ∈M.

To refer to a particular mode of a model we use the concept of
a mode vector. A mode vector m specifies the current mode
of each of the components of a model. So, the constraints for
a mode m are denoted as Cm

M.

Example 5. Consider a model with five components, then
if m = [1, 1, 3, 2, 1], it indicates that components κ1, κ2,
and κ5 use constraints of their mode 1, component κ3 use
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constraints of its mode 3, and component κ4 use constraints
of its mode 2.

For shorthand, we will refer to the modes only of the compo-
nents with multiple modes. So, for the circuit, we will refer
only to components κ2 and κ10, and we will have four possi-
ble mode vectors, [1 1], [1 2], [2 1], and [2 2].

The switching behavior of each component can be defined
using a finite state machine or a similar type of control spec-
ification. For the purposes of this paper, we view the switch-
ing behavior as a black box where the mode change event is
given, and refer the reader to many of the approaches already
proposed in the literature for modeling the switching behav-
ior (Henzinger, 2000; P. Mosterman & Biswas, 2000).

2.2. Structural Model Decomposition for Hybrid Systems

In our framework, we use structural model decomposition to
generate submodels for the purpose of computing residuals,
i.e., the difference between observed and predicted system
behavior, which are then used for diagnosis. The main advan-
tage that structural model decomposition provides, in contrast
to using a global model for residual generation, is that each
residual is designed to respond to only a subset of the faults,
thus decreasing the complexity of diagnosis. Further, it al-
lows the diagnosis task to be distributed, improving scalabil-
ity (Bregon et al., 2014). We will show later, in Section 4,
the specific advantages that structural model decomposition
provides for diagnosis of hybrid systems.

In order to derive submodels, we need to assign causality
to the system. Given a constraint c, belonging to a specific
mode of a specific component, the notion of a causal assign-
ment is used to specify a possible computational direction,
or causality, for the constraint c. This is done by defining
which v ∈ Vc is the dependent variable in equation εc. For a
given mode, we have the set of causal assignments over the
entire model in that mode, and with that we can compute the
minimal submodels, using the GenerateSubmodel algo-
rithm described in our previous work (Roychoudhury et al.,
2013). The algorithm finds a submodel, which computes a
set of local outputs given a set of local inputs, by search-
ing over the causal model. It starts at the local inputs, and
propagates backwards through the causal constraints, find-
ing which constraints and variables must be included in the
submodel. When possible, causal constraints are inverted in
order to take advantage of local inputs. Additional informa-
tion and the pseudocode are provided in (Roychoudhury et
al., 2013).

In the context of residual generation, we set the local output
set to a single measured value, and the local inputs to all other
measured values and the (known) system inputs. That is, we
exploit the analytical redundancy provided by the sensors in
order to find minimal submodels to estimate values of sensor

outputs. In this framework, we consider one submodel per
sensor, each producing estimated values for that sensor. As-
suming that the set of sensors does not change from mode to
mode, we will always have one submodel per sensor. Since
the set of constraints changes from mode to mode, the set of
submodels will change as well, however, by taking advantage
of causality information, reconfiguring the submodels can be
done efficiently (Daigle, Bregon, & Roychoudhury, 2015).

Example 6. Submodels can be represented visually using a
graph notation, where vertices correspond to variables, and
edges correspond to constraints with causal assignments, i.e.,
a directed edge from vi to vj means that vj is computed using
vi. The submodel graphs for the circuit in mode m = [1 2]
are shown in Fig. 2, and in mode m = [2 1] in Fig. 3. For
example, consider i∗11. In the first mode, it is computed using
the measurements v∗8 and i∗3 as inputs. The variable i2 is ef-
fectively an input; it is set to 0 since Sw1 is off. Here, only a
fault in L2 will propagate to i∗11. In the second mode, Sw2 is
off, and so i11 is set to 0, and the submodel contains only i11

and i∗11, and these variables are decoupled from all faults.

3. PROBLEM FORMULATION

Our qualitative fault diagnosis approach (Daigle, Roychoud-
hury, & Bregon, 2015) works by reasoning over observations
of how measurements deviate from expected nominal behav-
ior. These observations are formed from a qualitative ab-
straction of residual signal deviations. Residuals are com-
puted as the difference between predicted nominal, ŷ(t), and
measured, y(t), system variables, i.e. a residual r(t) is com-
puted as r(t) = y(t) − ŷ(t). Predicted system variables
ŷ(t) are computed using the minimal submodels as described
in the previous section. Fault detection works by determin-
ing statistically significant nonzero deviations in the residu-
als. Residual deviations are then abstracted into a symbolic
representation to form fault signatures. These symbols are
computed from the residuals using symbol generation, as de-
scribed in (Daigle, Roychoudhury, & Bregon, 2015). Finally,
the predicted signatures are compared with observed signa-
tures in order to isolate faults.

In the context of hybrid systems, the structure of the resid-
ual generators changes from mode to mode, causing the set
of fault signatures to also change. Observing mode change
events can help to match the observations to both the fault and
the mode in which they occurred. Further, if there is a delay
in the observation of fault signatures, then the mode in which
the deviation actually occurred may not be the current mode
in the system in which it was observed, and consequently,
the fault signature for the estimated fault could mismatch the
fault signature for the current mode. A hybrid system diag-
nosis algorithm must handle each of these challenges.

We restrict the problem to single faults.
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Figure 2. Submodel graphs for m = [1 2].

Assumption 1. Only single faults occur in the system.

Thus, we define a diagnosis as follows.

Definition 5 (Diagnosis). For a system with fault set F , a
diagnosis is a fault f ∈ F that is consistent with a given
finite sequence of observations. A set of diagnoses is denoted
as D.

In our diagnosis definition we appeal the Principle of Parsi-

v1 v2 v3 i3uV

i3
*

f3
.

f3

L1

(a) i∗3 submodel graph.

i11

i11
*

(b) i∗11 submodel graph.

v1 v2 v4

i4

v5 i5

v6i6

v7

i7

v8 i8

i9

R1

C1

uV

v8
*

f8f8
.

q6q6
.

L2

(c) v∗8 submodel graph.

Figure 3. Submodel graphs for m = [2 1].

mony as stated by (Reiter, 1987), meaning that a diagnosis is
a conjecture that some minimal set of components are faulty.

The diagnosis problem can then be formally defined as fol-
lows.

Problem 1. For a system with fault set F , given a finite se-
quence of observations O, find the set of diagnoses D ⊆ F
that is consistent with O.

4. QUALITATIVE FAULT ISOLATION FOR HYBRID SYS-
TEMS

Generally speaking, for the purposes of diagnosis, we con-
sider an observation to be an event observed at a particular
time.

Definition 6 (Observation). An observation is a tuple (e, t),
where e is an observed event and t is the time of observation.
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Table 2. Fault Signatures for global model of the electrical system.

Mode m = [1 2] m = [2 1]

Fault ri∗11 ri∗3 rv∗
8

Orderings ri∗11 ri∗3 rv∗
8

Orderings

C−
1 0- 0+ 0- ∅ 00 00 -+ rv∗

8
≺ ri∗3 , rv∗

8
≺ ri∗11

C−
2 0+ 0- -+ rv∗

8
≺ ri∗3 , rv∗

8
≺ ri∗11 00 00 00 ∅

L−
1 -+ +- -* ∅ 00 +0 00 ri∗3 ≺ ri∗11 , ri∗3 ≺ rv∗

8

L−
2 -+ 0- -* ri∗11 ≺ ri∗3 , vrv∗

8
≺ ri∗3 00 00 -* rv∗

8
≺ ri∗3 , rv∗

8
≺ ri∗11

R+
1 0+ 0- 0+ ∅ 00 00 +- rv∗

8
≺ ri∗3 , rv∗

8
≺ ri∗11

R+
2 0+ 0- -+ rv∗

8
≺ ri∗3 , rv∗

8
≺ ri∗11 00 00 00 ∅

We consider two types of events: (i) fault signature events and
(ii) mode change events. Section 4.1 reviews the event-based
fault modeling framework based on the concepts of fault sig-
natures (Daigle et al., 2009), and extends it to hybrid sys-
tems. Following that, Section 4.2 describes how diagnostic
reasoning can be performed under this new framework in the
presence of mode changes.

4.1. Event-based Fault Modeling

The basis of the qualitative fault isolation approach is the con-
cept of a fault signature.

Definition 7 (Fault Signature). A fault signature for a fault f
and residual r in modem, denoted by σf,r,m is a pair of sym-
bols s1s2 representing potential qualitative changes in magni-
tude and slope of r caused by f at the point of the occurrence
of f in mode m. The set of all fault signatures for a fault f
over residuals R in mode m is denoted as Σf,R,m.

When a fault occurs, it produces a transient in the observed
behavior with respect to the predicted nominal behavior, ob-
served as changes in the residual signal (P. J. Mosterman &
Biswas, 1999). These changes are formulated as qualitative
changes (+, -, or 0) in residual magnitude and slope.

Changes are observed in each residual that is a function of the
fault. Thus, when a fault occurs, we observe a sequence of
fault signatures. Relative residual orderings define a partial
order of signatures for a given fault, and thus define all the
possible fault signature sequences that can be produced by a
fault.

Definition 8 (Relative Residual Ordering). A relative resid-
ual ordering for a fault f and residuals ri and rj in mode m
is a tuple (ri, rj), denoted by ri ≺f,m rj , representing that
f always manifests in ri before rj in mode m. The set of all
orderings for a fault f over residuals R in mode m is denoted
as Ωf,R,m.

Example 7. Table 2 shows the fault signatures for two modes
of the circuit system for the global model residuals. For ex-
ample, in mode m = [1 2], C−2 will cause a -+ in rv∗8 , i.e., a
decrease in magnitude and increase in slope. On ri∗3 it will

Table 3. Fault Signatures for minimal submodels of the elec-
trical system.

Mode m = [1 2] m = [2 1]

Fault ri∗11 ri∗3 rv∗
8

ri∗11 ri∗3 rv∗
8

C−
1 00 0+ 00 00 00 -+

C−
2 00 00 -0 00 00 00

L−
1 00 +- 00 00 +0 00

L−
2 -0 00 00 00 00 -*

R+
1 00 0- 00 00 00 +-

R+
2 00 00 +0 00 00 00

cause 0-, i.e, no change in magnitude and an increase in
slope. In m = [2 1], however, C2 is disconnected from the
circuit and so cannot affect any of the residuals.

Example 8. Table 3 shows the fault signatures for the cir-
cuit for the same two modes for the local submodel residuals.
Since residuals are computed independently, no orderings can
be declared. Consider again the fault C−2 . In m = [1 2], it
now affects only the residual for v∗8 , as it appears only in that
local submodel (see Fig. 2). In fact, this is true for all faults -
each is found in exactly one local submodel and so will affect
exactly one residual, in either mode.

A single sequence of fault signatures is termed a fault trace.

Definition 9 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by λf,R,m, is a se-
quence of fault signatures that can be observed given the oc-
currence of f in mode m.

Fault traces are grouped into fault languages.1

Definition 10 (Fault Language). The fault language for a
fault f and residual set R in mode m, denoted by Lf,R,m,
is the set of all fault traces for f over R in m.

1Fault languages can be automatically derived for certain classes of system
models (Daigle, 2008), obtained via simulation, or obtained experimentally.
In this work, we assume that the fault languages are given as input.
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For the purposes of this paper, we assume that signatures and
orderings are correctly observed.2

Assumption 2 (Correct Observation). If a fault f occurs in
mode m, then the observed fault trace will belong to Lf,R,m.

4.2. Hybrid Systems Diagnosis

For hybrid systems, fault signatures, residual orderings, fault
traces, and fault languages are a function of the system mode.
If the mode does not change between the point of fault occur-
rence and the diagnosis of the fault, then the problem reduces
to the continuous systems case. Otherwise, we will observe
some new trace that may not belong to any mode-specific
fault language, i.e., it may be a trace that is composed of par-
tial traces for a fault from the different modes encountered
during diagnosis.

Example 9. For example, consider the global model residu-
als (Table 2). Assume that the system starts in m = [1 2] and
R+

1 occurs. Then we could observe r0+
i∗11

, followed by r0−
i∗3

.
So far, this partial trace can be found as a prefix to a trace
in LR+

1 ,R,[1 2]. Now, assume that the system moves to mode
m = [2 1], now we would observe r+−

v∗8
. This trace is not

found in any mode-specific fault language.

Thus, the first challenge is that now observed fault traces
may contain some subtraces corresponding to one mode, and
other subtraces corresponding to other modes. Thus, the fault
isolation reasoning must span over several potential mode
changes. If we know the system mode, then we know which
fault language corresponds to the predicted observations for
each fault. If there are unobservable mode changes, this adds
another layer of complexity, because we must not only diag-
nose which fault has occurred but also what mode the system
is currently in. For the purposes of this paper, we make the
following assumption.

Assumption 3 (Mode Change Observability). All mode
change events are observable.

Given Assumption 3, we can define mode change events as
follows.

Definition 11 (Mode Change Event). An event em represents
the system changing from its current mode to mode m.

However, even if we know the current mode of the system,
there is another layer of complexity to consider: observation
delay. Specifically, in our framework, this corresponds to the
observations of fault signatures being delayed. The difficulty
is that the system may be in one mode, but when the observa-
tion arrives we have moved to a different system mode, and
thus we do not know in which mode the observation was ac-
tually made.

2Relaxation of this assumption has been explored for continuous systems
in (Daigle, Roychoudhury, & Bregon, 2014).

Algorithm 1 Di+1 ←
FaultIsolation(Di, λi, σi+1,M∆)

1: Di+1 ← ∅
2: for all q ∈M∆ do
3: for all f ∈ Di ∩ Fr,q do
4: if σi+1 ∈ Σf,rσi+1

,m and ¬∃r′ ∈ (R −
Rλi) s.t. r′ ≺ rσi+1

∈ Ωf,R−Rλi ,m then
5: Di+1 ← {f}

Example 10. Consider again the previous example, in which
the global model residuals are used, the system starts in m =
[1 2] and R+

1 occurs. Again, we observe r0−
i∗11

, followed by
r0+
i∗3

, and then change to m = [2 1]. Say that r0−
v∗8

occurred in
the previous mode, but we only see get the observation now.
This observation is not consistent with R+

1 in m = [2 1].

Observation delay can manifest in different ways. For exam-
ple, fault detection is usually performed by checking whether
a residual crosses some threshold. To make this approach
robust to noise, usually we check that the mean of the resid-
ual, computed over some small time window, has crossed that
threshold. This means that the signal could actually cross the
threshold in one mode, but the mean of the signal could cross
only in the next mode. Thus, the observation of this signature
is delayed. In practice, we can assume that observation delay
is finite and bounded.

Assumption 4 (Bounded Observation Delay). The delay of
any observation is no greater than ∆.

Given our assumptions, the algorithm for a single step of fault
isolation for hybrid systems is shown as Algorithm 1.3 As in-
puts, it takes the current diagnosis, Di, the previous sequence
of fault signatures, λi, the new fault signature, σi+1, and the
set of recent modes that falls within [t − ∆, t], M∆. The
change from the continuous systems case is that we need to
check signatures and orderings for each of the recent modes.
If it is consistent in any of the modes, it must be added to
Di+1. Here, for a given mode m, we need to check only the
subset of faults that are included in the current diagnosis and
can actually affect this residual in this mode, denoted as Fr,m.
To check consistency, we check that the predicted signature
for the residual associated with σi+1, denoted as rσi+1

, can
be found in the signature set for that fault and residual, and
that the orderings, with respect to residuals that have not yet
deviated (those in R − Rλi , where Rλi denotes the residuals
associated with the trace λi), are not violated.

Algorithm 1 executes a single reasoning step, given a newly
observed fault signature. This would be placed within a pro-
gressive monitoring algorithm, that keeps track of the current

3Because fault languages can become prohibitively large, we implement the
fault isolation step directly using the signatures and orderings, which is
more efficient (Daigle et al., 2009).
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diagnosis, and computes the set of recent modes based on the
times events are observed.

The complexity of the fault isolation algorithm is dependent
on the number of faults, |F |, the number of residuals, |R|, and
the number of modes, |M |. For the global model case, each
time a new residual deviates, we must check, for each mode
in M∆, whether each fault is consistent. The local submodel
approach improves over the global model approach by simul-
taneously reducing both the effective |R| and the effective
|M |. The effective |R| is decreased, because with structural
model decomposition each fault affects only a subset of the
residuals, so for each new residual deviation only a a subset
of faults needs to be checked for consistency. The effective
|M | is reduced, because with structural model decomposition
each residual reconfigures only based on a few local compo-
nent modes, whereas for the global model each residual is
dependent on the system-level modes (which increases expo-
nentially with the number of switching components). Due to
these properties of structural model decomposition, the ap-
proach scales at a significantly smaller rate as the system size
increases than with the global model approach.

Example 11. Consider the residual ri∗3 . For the global model
residuals (Table 2), all 6 faults can affect this residual in
m = [1 2], but in m = [2 1], only 1 fault affects it. So,
if we are unsure of the mode in which the observation was
actually made, all 6 faults must be considered in the conflict
set. For the local submodel residuals (Table 3), 3 faults affect
the residual in m = [1 2] and 1 in m = [2 1]. In a system
with more modes, this number increases at a much smaller
rate than for the global model, due to the effects of the de-
composition.

5. DEMONSTRATION OF APPROACH

In this section, we demonstrate the approach through some
example scenarios using the circuit system. We consider
two modes: one where Sw1 is on and Sw2 is off (i.e.,
m = [2 1]), and one where Sw1 is off and Sw2 is on (i.e.,
m = [1 2]). In all cases, the system starts in mode m = [2 1],
switches to m = [1 2] at t = 10 s, and switches back
to m = [2 1] at a later time, depending on the scenario.
The complete fault candidate set considered for diagnosis is
{C−1 , R

+
1 , L

−
1 , C

−
2 , R

+
2 , L

−
2 }. In each case, we compare the

performance of the global model approach and the local sub-
model approach.

The symbol generation approach described in (Daigle et al.,
2010) is used, which uses the Z-test for statistical fault de-
tection and symbol generation. A window of samples is used
to compute the mean, and thus can produce a delay that in-
creases with window size. For the particular fault detector
settings, we consider the bounded observation delay to be
∆ = 5 s.

Example 12 (R+
1 fault). In this scenario, an increase inR1 is

injected at t = 12 s. The measured and estimated values are
shown in Fig. 4, which show that the behavior can be tracked
through the mode changes during nominal operation. The
residuals are shown in Fig. 5. In the global model residuals,
we first observe r0+

v∗8
at t = 12.2 s (Fig. 5c), which can be

due only to R+
1 (see Table 2). We then observe at 12.3 s,

r0+
i∗11

(Fig. 5b) and r0−
i∗3

(Fig. 5a), and the diagnosis remains
the same. Since a mode change occurred within 5 s prior
these observations, we must consider that the fault may have
occurred in the previous mode (m = [2 1]). However, none
of these signatures are consistent with any fault in that mode,
and so the diagnosis remains the same. In the local submodel
residuals, we first observe r0−

i∗3
at t = 12.3 s (Fig. 5a), which,

in this mode, is consistent only with R+
1 . In the previous

mode, it is not consistent with any fault, and thus this is our
diagnosis. At t = 20.0 s, a second mode change occurs, and,
in this mode, rv∗8 will now respond to both these faults, and so
r+−
v∗8

is observed (Fig. 5c), confirming the previous diagnosis.

Example 13 (C−1 fault). In this scenario, a decrease in C1

is injected at t = 12 s. The residuals are shown in Fig. 6.
For the global model residuals, we first observe r0−

v∗8
at 12.5 s,

which can be due to only C−1 (Table 2). Next, a mode change
occurs at 12.7 s. At 13.0 s, we observe r0+

i∗3
, yet in this new

mode we do not expect the fault to have any effect on ri∗3 ,
i.e., this is a delayed observation from the previous mode,
consistent still with C−1 . No further residuals deviate. For
the local submodel residuals, we observe first r−+

v∗8
at 12.7 s,

which is when the mode changes after the fault injection. This
signature is consistent with C−1 occurring in this mode and
L−2 in this mode (Table 3). At 12.9 s, we observe r0+

i∗3
, which

is not expected in this mode, in fact it is delayed from the
previous mode and consistent only with C−1 , ruling out L−2 ,
so C−1 is the only diagnosis. No other residuals deviate, and
so no more reasoning is performed.

6. RELATED WORK

During the last decade or so, modeling and diagnosis for hy-
brid systems have been an important topic of researchers from
both the FDI and DX communities. In the FDI community,
several hybrid system diagnosis approaches have been devel-
oped. In (Cocquempot, El Mezyani, & Staroswiecki, 2004),
parameterized ARRs are used. However, the approach is not
suitable for systems with high nonlinearities or a large set
of modes. In the DX community, some approaches have
used different kind of automata to model the complete set
of modes and transitions between them. In those cases, the
main research topic has been hybrid system state estima-
tion, which has been done using probabilistic (e.g., some
kind of filter (Koutsoukos, Kurien, & Zhao, 2003) or hy-
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Figure 4. Measured and estimated values with an increase in
R1 at t = 12 s.

brid automata (Hofbaur & Williams, 2004)) or set-theoric ap-
proaches (Benazera & Travé-Massuyès, 2009).

Another solution has been to use an automaton to track the
system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs for
each mode (Bayoudh et al., 2008), or parameterized ARRs
for the complete set of modes (Bayoudh, Travé-Massuyès,
& Olive, 2009)). Nevertheless, one of the main difficulties
regarding state estimation using these techniques is the need
to pre-enumerate the set of possible system-level modes and
mode transitions, which is difficult for complex systems. We
avoid this problem by using a compositional approach.

In (Alonso, Bregon, Alonso-González, & Pulido, 2013), the
authors present a qualitative fault isolation approach for hy-
brid systems that is based on structural model decomposition.
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Figure 5. Residual values with an increase in R1 at t = 12 s.

This approach, however, unlike ours, does not take into ac-
count observation delays. Moreover, the approach presented
in (Alonso et al., 2013) is applicable only to systems that are
modeled using hybrid bond graphs.

The focus of the research published in (Gaudel, Chanthery,
& Ribot, 2015) is the treatment of both knowledge-based and
observation-based uncertainty in health monitoring of hybrid
systems. The diagnosis approach can reason with unobserv-
able discrete events (e.g., faults), as well as false observa-
tions. However, unlike our generic formulation of hybrid sys-
tems, this work is restricted to systems modeled using the
Hybrid Particle Petri Nets (HPPN) formalism.

Finally, in (Bregon, Narasimhan, Roychoudhury, Daigle, &
Pulido, 2013), the authors had developed an efficient model-
based methodology for diagnosis that integrated structural
model decomposition within the Hybrid Diagnosis Engine
(HyDE) architecture (Narasimhan & Brownston, 2007). The
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Figure 6. Residual values with a decrease in C1 at t = 12 s.

HyDE architecture offers flexibility to choose the modeling
paradigm and reasoning algorithms for diagnosis of hybrid
systems. The authors show how the integration of the struc-
tural model decomposition reduces the computational com-
plexity associated with the fault diagnosis of hybrid systems.
In our paper, similar reduction in computational complexity
of fault diagnosis is observed, further bolstering the support
for using structural model decomposition for hybrid systems
diagnosis.

7. CONCLUSIONS

In this work, we have developed a qualitative fault isolation
approach for hybrid systems using structural model decom-
position. Fault isolation is performed by analyzing the quali-
tative information of the residual signals. It has been proven
that structural model decomposition can be used for hybrid
systems fault isolation in the presence of observation delays,
while the complexity of the isolation process can be reduced

compared to a global model approach. The approach was
demonstrated with a circuit system. In future work, we will
further develop the hybrid systems diagnosis approach for
discrete faults and for multiple fault diagnosis, and we will
apply our approach to more complex systems. We will also
show mathematically the improvement in the computational
cost of the local algorithms. Finally, the assumption about
unobservable mode changes occurring in the system can also
be dropped, using the ideas developed in (Narasimhan &
Biswas, 2007).
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