398 research outputs found

    An Approach to Construct Dynamic Service Mashups using Lightweight Semantics

    Get PDF
    Thousands of Web services have been available online, and mashups built upon them have been creating added value. However, mashups are mostly developed with a predefined set of services and components. The extensions to them always involve programming work. Furthermore, when a service is unavailable, it is challenging for mashups to smoothly switch to an alternative that others similar functionalities. To address these problems, this paper presents a novel approach to enable mashups to select and invoke semantic Web services on they. To extend a mashup with new semantic services, developers are only required to register and publish them as Linked Data. By refining the strategies of service selection, mashups can behave more adaptively and other higher fault-tolerance

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Semantic web service automation with lightweight annotations

    Get PDF
    Web services, both RESTful and WSDL-based, are an increasingly important part of the Web. With the application of semantic technologies, we can achieve automation of the use of those services. In this paper, we present WSMO-Lite and MicroWSMO, two related lightweight approaches to semantic Web service description, evolved from the WSMO framework. WSMO-Lite uses SAWSDL to annotate WSDL-based services, whereas MicroWSMO uses the hRESTS microformat to annotate RESTful APIs and services. Both frameworks share an ontology for service semantics together with most of automation algorithms

    Abmash: Mashing Up Legacy Web Applications by Automated Imitation of Human Actions

    Get PDF
    Many business web-based applications do not offer applications programming interfaces (APIs) to enable other applications to access their data and functions in a programmatic manner. This makes their composition difficult (for instance to synchronize data between two applications). To address this challenge, this paper presents Abmash, an approach to facilitate the integration of such legacy web applications by automatically imitating human interactions with them. By automatically interacting with the graphical user interface (GUI) of web applications, the system supports all forms of integrations including bi-directional interactions and is able to interact with AJAX-based applications. Furthermore, the integration programs are easy to write since they deal with end-user, visual user-interface elements. The integration code is simple enough to be called a "mashup".Comment: Software: Practice and Experience (2013)

    Enhancement of the usability of SOA services for novice users

    Get PDF
    Recently, the automation of service integration has provided a significant advantage in delivering services to novice users. This art of integrating various services is known as Service Composition and its main purpose is to simplify the development process for web applications and facilitates reuse of services. It is one of the paradigms that enables services to end-users (i.e.service provisioning) through the outsourcing of web contents and it requires users to share and reuse services in more collaborative ways. Most service composers are effective at enabling integration of web contents, but they do not enable universal access across different groups of users. This is because, the currently existing content aggregators require complex interactions in order to create web applications (e.g., Web Service Business Process Execution Language (WS-BPEL)) as a result not all users are able to use such web tools. This trend demands changes in the web tools that end-users use to gain and share information, hence this research uses Mashups as a service composition technique to allow novice users to integrate publicly available Service Oriented Architecture (SOA) services, where there is a minimal active web application development. Mashups being the platforms that integrate disparate web Application Programming Interfaces (APIs) to create user defined web applications; presents a great opportunity for service provisioning. However, their usability for novice users remains invalidated since Mashup tools are not easy to use they require basic programming skills which makes the process of designing and creating Mashups difficult. This is because Mashup tools access heterogeneous web contents using public web APIs and the process of integrating them become complex since web APIs are tailored by different vendors. Moreover, the design of Mashup editors is unnecessary complex; as a result, users do not know where to start when creating Mashups. This research address the gap between Mashup tools and usability by the designing and implementing a semantically enriched Mashup tool to discover, annotate and compose APIs to improve the utilization of SOA services by novice users. The researchers conducted an analysis of the already existing Mashup tools to identify challenges and weaknesses experienced by novice Mashup users. The findings from the requirement analysis formulated the system usability requirements that informed the design and implementation of the proposed Mashup tool. The proposed architecture addressed three layers: composition, annotation and discovery. The researchers developed a simple Mashup tool referred to as soa-Services Provisioner (SerPro) that allowed novice users to create web application flexibly. Its usability and effectiveness was validated. The proposed Mashup tool enhanced the usability of SOA services, since data analysis and results showed that it was usable to novice users by scoring a System Usability Scale (SUS) score of 72.08. Furthermore, this research discusses the research limitations and future work for further improvements

    Configuration of smart environments made simple combining visual modeling with semantic metadata and reasoning

    Get PDF
    We present an approach that combines semantic metadata and reasoning with a visual modeling tool to enable the goal-driven configuration of smart environments for end users. In contrast to process-driven systems where service mashups are statically defined, this approach makes use of embedded semantic API descriptions to dynamically create mashups that fulfill the user's goal. The main advantage of the presented system is its high degree of flexibility, as service mashups can adapt to dynamic environments and are fault-tolerant with respect to individual services becoming unavailable. To support end users in expressing their goals, we integrated a visual programming tool with our system. This tool enables users to model the desired state of their smart environment graphically and thus hides the technicalities of the underlying semantics and the reasoning. Possible applications of the presented system include the configuration of smart homes to increase individual well-being, and reconfigurations of smart environments, for instance in the industrial automation or healthcare domains

    Quire: Lightweight Provenance for Smart Phone Operating Systems

    Full text link
    Smartphone apps often run with full privileges to access the network and sensitive local resources, making it difficult for remote systems to have any trust in the provenance of network connections they receive. Even within the phone, different apps with different privileges can communicate with one another, allowing one app to trick another into improperly exercising its privileges (a Confused Deputy attack). In Quire, we engineered two new security mechanisms into Android to address these issues. First, we track the call chain of IPCs, allowing an app the choice of operating with the diminished privileges of its callers or to act explicitly on its own behalf. Second, a lightweight signature scheme allows any app to create a signed statement that can be verified anywhere inside the phone. Both of these mechanisms are reflected in network RPCs, allowing remote systems visibility into the state of the phone when an RPC is made. We demonstrate the usefulness of Quire with two example applications. We built an advertising service, running distinctly from the app which wants to display ads, which can validate clicks passed to it from its host. We also built a payment service, allowing an app to issue a request which the payment service validates with the user. An app cannot not forge a payment request by directly connecting to the remote server, nor can the local payment service tamper with the request
    • 

    corecore