
Open Research Online
The Open University’s repository of research publications
and other research outputs

An Approach to Construct Dynamic Service Mashups
using Lightweight Semantics
Conference or Workshop Item
How to cite:

Liu, Dong; Li, Ning; Pedrinaci, Carlos; Kopecky, Jacek; Maleshkova, Maria and Domingue, John (2011). An
Approach to Construct Dynamic Service Mashups using Lightweight Semantics. In: The 3rd International Workshop
on Lightweight Integration on the Web (ComposableWeb 2011) at The 11th International Conference on Web
Engineering (ICWE 2011), 20-24 Jun 2011, Paphos, Cyprus.

For guidance on citations see FAQs.

c© 2011 The Authors

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82972615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

An Approach to Construct Dynamic Service
Mashups using Lightweight Semantics

Dong Liu, Ning Li, Carlos Pedrinaci, Jacek Kopecký, Maria Maleshkova, and
John Domingue

Knowledge Media Institute, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK
{d.liu,n.li,c.pedrinaci,j.kopecky,

m.maleshkova,j.b.domingue}@open.ac.uk

Abstract. Thousands of Web services have been available online, and
mashups built upon them have been creating added value. However,
mashups are mostly developed with a predefined set of services and com-
ponents. The extensions to them always involve programming work. Fur-
thermore, when a service is unavailable, it is challenging for mashups to
smoothly switch to an alternative that offers similar functionalities. To
address these problems, this paper presents a novel approach to enable
mashups to select and invoke semantic Web services on the fly. To ex-
tend a mashup with new semantic services, developers are only required
to register and publish them as Linked Data. By refining the strategies of
service selection, mashups can behave more adaptively and offer higher
fault-tolerance.

Keywords: Mashup, Semantic Web Services, Service Selection, Service
Invocation.

1 Introduction

More and more companies and organisations expose their core functionalities as
SOAP or RESTful services on the Web, so that third-party developers can create
new Web applications atop of these services in a more agile way. Repositories
and marketplaces such as ProgrammableWeb1, Seekda2 and Mashape3, have
been established to collect and publish descriptions of Web services. On the
other hand, mashups integrate data, services and contents available online into
a coherent application that creates new value [20]. Tools such as Yahoo Pipes4

and IBM Mashup Center5, have been available for assisting the development of
mashups.

1 http://www.programmableweb.com
2 http://webservices.seekda.com
3 http://www.mashape.com
4 http://pipes.yahoo.com/
5 http://www.ibm.com/software/info/mashup-center/

2 Dong Liu et al.

However, the mashups built with these tools are essentially static, i.e. de-
pending upon a predefined set of APIs and components. This has an impact
on the extendibility and fault-tolerance. Developers of a mashup have to work
on the programming code, even if they just want to extend it with services or
APIs offering similar functionalities. For instance, there are a few companies now
offering local business searching services, e.g. Scoot API6, Yahoo Local Search
API7, Yelp8 and CityGrid9. New local business searching services might also
come to the market at some point. Combining new business searching services
to an existing mashup requires both hard coding and re-deployment.

Online services might be unaccessible for reasons such as expiration of API
keys, connection failures, request timeout, etc. End-users will suffer from the
long response time of the mashups built with these unaccessible services. One
possible way to overcome this issue is to switch the mashups to other alternative
services. For example, although most of the local business services cover different
regions of the world, they (e.g. Yelp and Yahoo Local Search) may have some
overlaps with each other. When one of them is off-line, the mashups can use the
other one instead.

To address these issues, we propose a novel approach to build dynamic
mashups using Web services with lightweight semantics. The UI components
interact with unified interfaces of each kind of services, rather than invoking
those services directly. iServe, together with its extensions, performs service se-
lection and invocation behind those interfaces. The services to be invoked by the
mashups through iServe are controllable and determined at runtime. Therefore,
mashups built following our approach are more flexible and robust.

The rest of the paper is organised as follows: Section 2 discuss principles re-
lated to semantic services and mashups. Section 3 details the proposed approach
to build dynamic service mashups. Section 4 summaries related work. Finally,
Section 5 concludes this paper and highlights our future work.

2 Services, Mashups and Semantics

A Web service is a set of operations on resources, which are accessible online.
Accordingly, there have emerged two types of Web services: operation-oriented
services (e.g. SOAP services) and resource-oriented services (e.g. RESTful ser-
vices). Both SOAP and RESTful services can be exploited as reusable building
blocks for new applications. Efforts made to integrate Web services are regarded
as service composition [15]. Service composition is usually performed on the
business logic layer, and results in executable workflows or plans that fulfil cer-
tain requirements of the new Web application. Mashup is an innovative way to
develop Web applications by syndicating contents, data and functionalities from
distributed sources on the Web. Different from service composition, mashup can

6 http://www.scoot.co.uk/about-us/add-scoot/reference.html
7 http://developer.yahoo.com/search/local/V3/localSearch.html
8 http://www.yelp.com/developers/documentation/v2/search_api
9 http://docs.citygridmedia.com/display/citygridv2/Places+API

Construct Dynamic Mashups 3

be carried out on layers ranging from data to presentation. Rather than enact-
ing a predefined workflow, components of a mashup are more loose-coupled, and
can interact with end-users. In this paper, we focus on service mashups that are
aim to bring them together mashups with easy-to-accomplish end-user service
compositions [3].

Semantic technologies have been adopted to automate service annotation,
discovery, composition and invocation [1]. Ontological models such as OWL-
S [10] and WSMO [16] provide formal languages for semantically describing Web
services, whereas annotation-based approaches (e.g. SAWSDL [19], hRESTS [7])
enable the creation of lightweight semantic Web services. We employ Minimal
Service Model (MSM)10 to capture the semantics of SOAP and RESTful ser-
vices, which are essential for selection and invocation of hybrid services. In
MSM, a Service is defined as a set of operations plus links to functional clas-
sifications and non-functional properties. An Operation is an atomic unit to
be invoked, having properties like input messages, output messages, addresses,
faults, etc. Instances of MessageContent are containers of the input and out-
put messages exchanged during the invocation of services. A MessageContent

may comprise a hierarchy of MessagePart. Additionally, modelReference bor-
rowed from SAWSDL enables the linking of service elements to semantic models
via URIs, while liftingSchemaMapping and loweringSchemaMapping are used
to specify data transformations from a syntactic representation to its semantic
counterpart and vice versa.

Dynamic Mashup

Web Service A Web Service B

iServe
SPARQL Endpoint RESTful API

Fig. 1. Mashup model.

From all above, dynamic mashup is defined as a Web application implemented
by selecting and invoking Web services described using MSM. Figure 1 shows
the conceptual model of dynamic mashup. By querying against iServe’s SPARQL
endpoint, a dynamic mashup selects some relevant APIs, and then quests iServe
to invoke them. Service invocation through iServe is always in a RESTful way,
and some of the inputs might be from the Web of Data. Some of the key features
of dynamic mashups are outlined as follows:

10 http://cms-wg.sti2.org/ns/minimal-service-model

4 Dong Liu et al.

– Dynamics Mashups can determine which services to invoke on the fly.
– Transparency The technical details of service selection and invocation are

transparent for the UI components of a mashup.
– Configurability Maintainers can easily control the behaviours of a mashup

just by revising the strategy of service selection, yet without programming
work.

– Extendibility To integrate more services offering similar functionalities,
developers only need to formally describe those services, and publish them
on the Web.

– Robustness When a service is temporarily unavailable, a dynamic mashup
can smoothly switch to the alternatives.

3 Building Dynamic Mashups

In our previous work [13], we have presented iServe, a public registry for semantic
services. It can import service descriptions conforming to heterogeneous schemas,
and publish them as Linked Data on the Web. iServe exposes a set of Web
APIs for manipulating the published service descriptions11, as well as for service
discovery on higher level of abstraction12.

The proposed approach to build dynamic mashups centres upon iServe and
its extensions for service invocation [8]. This section elaborates how to construct
dynamic mashups by taking advantage of iServe’s capabilities of service discovery
and invocation, and also by following the steps listed below.

– Semantic Services Authoring This step includes 1) annotating service
descriptions with concepts of the MSM and domain ontologies; 2) publishing
them as Linked Data via iServe.

– Specifying Strategies of Service Selection This step can be done by
either exploiting iServe’s built-in service discovery mechanisms, or writing
SPARQL queries to be executed against the RDF dataset of iServe.

– Defining Lowering and Lifting Schema Mappings This step outcomes
XSPARQL [2] queries for translating RDF triples into parameters used to
invoke services, and also for rewriting the invocation results as RDF state-
ments.

– Merging Service Invocation Results This step deals with issues regard-
ing to put together invocation results from different sources, e.g. eradicating
any duplicated items, sorting by specific properties, etc.

In order to demonstrate the workflow of building a dynamic mashup, an
example is given in this section, which visualises the local business search results
on a map (see Figure 2). Besides the Web APIs for local business searching

11 http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_RESTful_API
12 http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_Higher_Level_

Discovery_API

Construct Dynamic Mashups 5

mentioned previously, the mashup also makes use of Google map API13 and
Google Web Toolkit14.

Fig. 2. Screenshot of the example of dynamic mashup.

3.1 Semantic Services Authoring

Essentially, semantic services authoring is to add annotations to the original
documents of service descriptions, so as to make them more understandable
for machines. Tools such as SWEET and SOWER [9], have been developed
to facilitate annotating both HTML and WSDL files. Although authors can
arbitrarily annotate services descriptions, we argue that semantic services will
be easier to be discovered and invoked, if being annotated following principles
and patterns shown below.

– Service categories should be attached to services rather than operations or
messages. This can simplify service discovery based on functional classifica-
tions.

– The addresses and types of HTTP methods, e.g. GET, POST, PUT, etc.,
should be declared, otherwise operations will not be able to be invoked.

– Information related to groundings of input messages should be provided.
– Lowering schema mappings must be associated with input messages. When

an input message has a hierarchical structure, lowering schemas are usually
utilised to annotated message parts on the lowest level. Section 3.3 shows
how this can help in the preparation for service invocation.

13 http://code.google.com/apis/maps/
14 http://code.google.com/webtoolkit/

6 Dong Liu et al.

– In principal, lifting schema mappings are for output messages only.
– In many cases, messages are annotated with concepts of domain ontologies,

while their sub-parts are annotated with properties of such concepts. This
can ensure the alignment of formal semantics of input/output messages and
the ontological knowledge. In addition, it also gives hints on writing and
understanding the lifting and lowering schema mappings.

For instance, Listing 1 shows the aforementioned Scoot API described in
RDF, using the vocabulary of MSM and several domain ontologies such as DB-
pedia ontology15, Service Categories ontology16 and W3C WGS84 vocabulary17.
service:Scoot a msm:Service;

msm:hasOperation operations:search;
sawsdl:modelReference finder:InternetSearch .

operations:search a msm:Operation;
msm:hasInput inputs:query , inputs:place ;
msm:hasOutput outputs:result ;
hrests:hasMethod "GET" ;
hrests:hasAddress "http :// www.scoot.co.uk/api/find.php?format=xml&what={p1

}&lat={p2}&long={p3}" .
inputs:query a msm:MessageContent;

sawsdl:modelReference rdf:Literal ;
hrests:isGroundedIn "p1" .

inputs:place a msm:MessageContent;
sawsdl:modelReference dbp -ont:Place ;
msm:hasPart types:lat , types:lng .

outputs:result a msm:MessageContent;
msm:hasPart types:result -item .

types:lat a msm:MessagePart;
sawsdl:modelReference geo -pos:lat ;
sawsdl:loweringSchemaMapping lowerings:lat ;
hrests:isGroundedIn "p2" .

types:lng a msm:MessagePart;
sawsdl:modelReference geo -pos:long ;
sawsdl:loweringSchemaMapping lowerings:lng ;
hrests:isGroundedIn "p3" .

types:result -item a msm:MessagePart;
sawsdl:modelReference dbp -ont:Place ;
sawsdl:liftingSchemaMapping liftings:result -item .

Listing 1. Description of Scoot API in RDF.

As depicted by Listing 1, Scoot API is assigned to the category of Internet
Search. It has one operation called “search”, which takes keywords and an in-
stance of dbp-ont:Place as inputs, and returns a list of relevant local businesses
also as instances of dbp-ont:Place. Note that the input message inputs:place
has one model reference dbp-ont:Place and two sub-parts types:lat and
types:lng. And, the model references of types:lat and types:lng are respec-
tively geo-pos:lat and geo-pos:long, which are two properties of the concept
dbp-ont:Place.

3.2 Service Selection

This sub-section focuses on SPARQL-based service selection, which enables the
on-the-fly refinement of the selection strategies. Listing 2 gives an example seek-

15 http://wiki.dbpedia.org/Ontology
16 http://www.service-finder.eu/ontologies/ServiceCategories
17 http://www.w3.org/2003/01/geo/wgs84_pos

Construct Dynamic Mashups 7

ing for the services used to implement the mashup mentioned before, i.e. those
under the category of “Internet Search”, taking a rdf:Literal value and an in-
stance of dbp-ont:Place as inputs, and returning instances of dbp-ont:Place
as outputs.

SELECT DISTINCT ?s WHERE {
?s rdf:type msm:Service . ?s sawsdl:modelReference ?c .
?c rdfs:subClassOf finder:InternetSearch .
?s msm:hasOperation ?o . ?o msm:hasInput ?in1 .
?in1 sawsdl:modelReference rdf:Literal .
?o msm:hasInput ?in2 . ?in2 sawsdl:modelReference ?in2mr .
dbp -ont:Place rdfs:subClassOf ?in2mr .
?o msm:hasOutput ?out . ?out msm:hasPart ?outpart .
?outpart sawsdl:modelReference ?outmr .
?outmr rdfs:subClassOf dbp -ont:Place .

}

Listing 2. SPARQL query for service selection.

By means of rewriting the SPARQL query above, the mashup can behave
more adaptively, namely, dynamically choose the services to invoke. Three ex-
amples for the typical usage are listed as follows. Mashup developers can create
more complex queries to satisfy their own requirements.

FILTER (?s != service:Scoot)

When the Scoot service is now unavailable, this filter can avoid the attempts
to invoke it. In this way, it also can meet the requirement for smoothly
switching between services at runtime.

?o hrests:hasAddress ?addr FILTER regex(str(?addr), ".uk") .

This clause with the regular expression can select services having addresses
that contains “.uk”, i.e. services provided by companies registered in the
UK.

LIMIT 3

The solution sequence modifier LIMIT can restrict the number of services to
invoke, so as to reduce the response time of the mashup.

3.3 Service Invocation

The overall process of service invocation includes dereferencing, lowering, ground-
ing, invoking and lifting. When identifiers of resources on the Web of Data are
used as parameters for invoking services, iServe will first attempt to retrieve RDF
triples describing those resources, i.e. dereferencing the resources. After that,
RDF statements are lowered to literal values by executing XSPARQL queries.
Those values are then used to instantiate requests to be sent to the service end-
points. Grounding refers the instantiation of service requests, which is the last
step of the preparation for the actual invocation of services. After receiving the
results in the format of XML, another set of XSPARQL queries will be executed
to transform them into RDF.

As stated in the beginning of Sectionn 3, iServe provides RESTful APIs
for publishing and removing the descriptions of semantic services. And, all the
services stored in iServe are to be invoked as RESTful APIs. Therefore, an action

8 Dong Liu et al.

http://.../services/Scoot/operations/search/invoke?
query=pizza&place=http://dbpedia.org/resource/London

http://www.scoot.co.uk/api/find.php?format=xml&what=
{p1}&lat={p2}&long={p3}

http://www.scoot.co.uk/api/find.php?
format=xml&what=pizza&lat= 51.507221&long=-0.127500

dbp-res:London a dbp-ont:Place ;
 geo:lat "51.507221" ;
 geo:long "-0.127500" .

{ for $place $lat
from <London.rdf>
where { $place geo:lat $lat.}
return {$lat}}

{ for $place $lng
from <London.rdf>
where { $place geo:long $lng.}
return {$lng}}

XSPARQL Execution Engine

51.507221 -0.127500

Fig. 3. An example for preparing the service request.

<rdf:RDF>
 <dbp-ont:Place>

<foaf:name>Prezzo plc</foaf:name>
<dbp-ont:address>31-32 Northumberland Avenue, London, Greater London</dbp-ont:address>
<geo:lat >51.5071000</geo:lat>
<geo:long>-0.1276490</geo:long>

 </dbp-ont:Place>
...
</rdf:RDF>

return <rdf:RDF> {
 for $entry in $doc//results/entry
 let $companyname := $entry/companyname
 let $longitude := $entry/longitude
 let $latitude := $entry/latitude
 let $l1address := $entry/l1address
 ...
 let $l6address := $entry/l6address
 return
 <dbp-ont:Place>
 <foaf:name>{data($companyname)}</foaf:name>
 <dbp-ont:address>{data($l1address)} ..., {data
($l6address)}</dbp-ont:address>
 <geo:lat>{data($latitude)}</geo:lat>
 <geo:long>{data($longitude)}</geo:long>
 </dbp-ont:Place>} </rdf:RDF>

<?xml version="1.0"?>
...
<entry>
 <result>1</result>
 <companyname>Prezzo plc</
companyname>
 <l1address>31-32 Northumberland
Avenue</l1address>
 ...
 <l5address>London</l5address>
 <l6address>Greater London</l6address>
 <postcode>WC2N 5BW</postcode>
 <description></description>
 <longitude>-0.1276490</longitude>
 <latitude>51.5071000</latitude>
</entry>
...

XSPARQL Execution Engine

Fig. 4. An Example for Lifting.

Construct Dynamic Mashups 9

resource [6], named “invoke”, has been added to each operation of the services.
In other words, the template of the addresses to invoke services stored in iServe
is:

http://.../services/service-id/operations/operation-id/invoke?

parameter1=V1¶meter=V2&...

Figure 3 illustrates the preparation for calling of the search operation of the
Scoot service. iServe first found a dereferenceable URI, http://dbpedia.org/
resource/London in the original request, and got a piece of RDF by sending
there an HTTP GET with header Accept: application/rdf+xml. Then, the
XSPARQL query engine loaded that piece of RDF as well as the lowering schema
mappings shown on the right hand side of Figure 3, and extracted the latitude
and longitude of London. Finally, variables in the URI template were replaced
with the query keywords and the values of latitude and longitude. Part of the
raw XML file returned by Scoot API is shown in the upper left of Figure 4,
while the XSPARQL query guided the lifting of service invocation results is in
the upper right. And, some of the generated RDF triples are shown in the lower
part of Figure 4.

3.4 Extensions to Existing Mashups

As stated in Section 1, one of the key features of dynamic mashups is the ex-
tendibility. Developers can integrate new semantic services to built-up mashups
without efforts on the modification of the source codes. Taking as an example
CityGrid18, another local business searching service, the following things have to
be done to ensure being found by executing the SPARQL query in Section 3.2:
firstly, put it into the category of Internet Search by adding a model reference to
the service; secondly, use the DBpedia ontology and W3C WGS84 vocabulary to
annotate the service description. Moreover, to make it invocable, developers have
to specify the lowering and lifting schema mappings for the CityGrid service. The
lowering schema for Scoot API is particularly reusable in this case. Therefore,
the developers only need to write the XSPARQL query (see Listing 3) for data
lifting on the basis of analysis on the sample results of invoking the CityGrid
service.

return <rdf:RDF > {
for $entry in $doc// locations/location
let $name := $entry/name
let $address := $entry/address
let $street := $address/street
let $city := $address/city
let $state := $address/state
let $postal_code := $address/postal_code
let $longitude := $entry/longitude
let $latitude := $entry/latitude
return <dbp -ont:Place >

<foaf:name >{data($name)}</foaf:name >
<dbp -ont:address >{data($street)}, {data($city)}, {data($state)}, {data(

$postal_code)}</dbp -ont:address >

18 http://docs.citygridmedia.com/display/citygridv2/Places+API

10 Dong Liu et al.

<geo:lat >{data($latitude)}</geo:lat >
<geo:long >{data($longitude)}</geo:long >

</dbp -ont:Place >} </rdf:RDF >

Listing 3. XSPARQL query for lifting CityGrid invocation results.

All the results of service invocation are transformed into RDF through data
lifting, and they conform to the same ontology. Thus, developers can easily merge
them together by adding them to a common RDF model before serialising and
sending them to the client side.

4 Related Work

Several platforms have been established to facilitate the design and development
of mashups. For instance, IBM Sharable Code is an online platform to support
the whole life-cycle of Web APIs and service mashups [11]. Mashup developers
are required to use Domain Specific Language (DSL) to specify data mediation,
process mediation and UI customisation. A lightweight framework, Mashlight,
is proposed in [5], which is composed of four components: Block Builder, Block
Library, Mashup Builder and Run-time Engine. Developers can use the Block
Builder to encapsulate functionalities as Mashlight Blocks, and save them into
the Block Library. Mashup Builder is a visual tool for defining the workflow,
and the Run-time Engine is the execution environment to enact the mashups.
The overall architecture of Mashlight is similar to our work, but lack of explicit
semantics and effective discovery and selection mechanisms.

MatchUp built on top of the IBM Mashup Center provides a solution to
the mashup autocompletion [4]. The proposed autocompletion algorithm can
recommend relevant components and the connections between them to help
users building mashups in a more convenient and intuitive way. Comparing with
MatchUp, our approach intends to enable mashups to automatically select and
invoke services at runtime, rather than design time.

In the context of Web services, RESTful service composition is another re-
lated topic to our work. Bite, a lightweight and executable language for RESTful
service composition, is proposed in [17]. Bite offers a basic set of language con-
structs for specifying the business logics of Web-scale workflows, and inherits
concepts from scripting languages such as dynamic data types. Bite has four
runtimes to satisfy different requirements. In contrast to introducing a new lan-
guage, minor extensions are made to BPEL for the composition of RESTful
services [12]. Efforts also have been made to automate the process of RESTful
service composition [21].

The work stated above adopts little semantic technology. SA-REST, an anno-
tation-based approach to add semantics to RESTful services, is briefly described
in [18]. Mashups created using SA-REST, denoted with smashup (semantic
mashup), are to be hosted at a proxy server together with domain ontologies.
Similar to our approach, the data mediation is carried out through lowering and
lifting, but implemented with XSLT. To my best knowledge, SA-REST does not
address the issues of service modelling, registry and discovery.

Construct Dynamic Mashups 11

Apart form SA-REST, Semantic Web Pipes (SWP) proposed in [14] is a
rapid prototype method of semantic mashups on the data layer. SWP provides a
set of operators for merging, splitting and transforming RDF triples in the cloud
of Linked Data. It extends SPARQL with workflows, and implements dynamic
transformations of RDF data using XQuery and XSPARQL. Our approach also
follows the principles of Linked Data and applies SPARQL, XSPARQL for data
mediation.

5 Conclusions and Future Work

In this paper, we present a novel method of building mashups using Web ser-
vices with lightweight semantics, which is implemented based on iServe and its
extensions for service invocation. By applying our approach, mashups gain the
ability of selecting and invoking semantic services. Moreover, developers can
easily extend a mashup without programming work, as well as switch it to the
alternatives with a service is unaccessible. In short, our approach is effective for
building mashups more flexible, robust and extendible.

Our future work will involve realising the caching mechanisms for service
selection, and filtering services by QoS parameters, e.g. availability, response
time, throughput, etc. In addition, we will also focus on the context-awareness
of mashups, i.e. automatically change the strategies of service selection according
the running state of the involving services. For example, when a service is down,
mashups can be aware of it and automatically switch to alternative ones with
high semantic similarity.

Acknowledgements This work is partly funded by the EU project SOA4All
(FP7-215219) and NoTube (FP7-231761). The authors would like to thank the
European Commission for their support.

References

1. Agarwal, S., Handschuh, S., Staab, S.: Annotation, composition and invocation of
semantic web services. Web Semantics 2(1), 31–48 (2004)

2. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling
between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. In:
Proceedings of the 5th European Semantic Web Conference (ESWC2008). pp. 432–
447. Springer-Verlag (2008)

3. Benslimane, D., Dustdar, S., Sheth, A.: Services Mashups: The New Generation of
Web Applications. Internet Computing, IEEE 12(5), 13–15 (2008)

4. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for Mashups. Proceedings
of the VLDB Endowment 2(1), 538–549 (2009)

5. Guinea, S., Baresi, L., Albinola, M., Carcano, M.: Mashlight: a Lightweight Mashup
Framework for Everyone. In: Proceedings of 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009) at WWW 2009
(2009)

12 Dong Liu et al.

6. Hadley, M., Pericas-Geertsen, S., Sandoz, P.: Exploring Hypermedia Support in
Jersey. In: Proceedings of the First International Workshop on RESTful Design.
pp. 10–14. WS-REST ’10, ACM, New York, NY, USA (2010)

7. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML Microformat for De-
scribing RESTful Web Services. In: The 2008 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI2008). IEEE CS Press (2008)

8. Li, N., Pedrinaci, C., Kopecký, J., Maleshkova, M., Liu, D., Domingue, J.: Towards
Automated Invocation of Web APIs. In: Poster at the 8th Extended Semantic Web
Conference (ESWC2011) (2011), to appear

9. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the Creation of Semantic
RESTful Service Descriptions. In: Workshop: Service Matchmaking and Resource
Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Con-
ference (2009)

10. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,
D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth,
A. (eds.) Semantic Web Services and Web Process Composition, Lecture Notes in
Computer Science, vol. 3387, pp. 26–42. Springer Berlin / Heidelberg (2005)

11. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web
APIs and Service Mashups. IEEE Internet Computing 12(5), 32–43 (2008)

12. Pautasso, C.: RESTful Web Service Composition with BPEL for REST. Data and
Knowledge Engineering 68(9), 851–866 (2009)

13. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecký, J., Domingue, J.:
iServe: a Linked Services Publishing Platform. In: Proceedings of Ontology Repos-
itories and Editors for the Semantic Web at 7th ESWC (2010)

14. Phuoc, D.L., Polleres, A., Tummarello, G., Morbidoni, C., Hauswirth, M.: Rapid
Semantic Web Mashup Development through Semantic Web Pipes. In: Proceedings
of the 18th World Wide Web Conference (WWW2009). pp. 581–590. Madrid, Spain
(2009)

15. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In:
Cardoso, J., Sheth, A. (eds.) Semantic Web Services and Web Process Composi-
tion, Lecture Notes in Computer Science, vol. 3387, pp. 43–54. Springer Berlin /
Heidelberg (2005)

16. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

17. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing
12(5), 24–31 (2008)

18. Sheth, A., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups. Internet Computing, IEEE 11(6), 91–94
(2007)

19. W3C: Semantic Annotations for WSDL and XMLSchema (2007), http://www.w3.
org/TR/sawsdl/

20. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

21. Zhao, H., Doshi, P.: Towards Automated RESTful Web Service Composition. In:
Proceedings of 7th IEEE International Conference on Web Services(ICWS2009).
pp. 189–196. IEEE Computer Society

