
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards Open Services on the Web - A Semantic
Approach
Thesis
How to cite:

Maleshkova, Maria (2015). Towards Open Services on the Web - A Semantic Approach. PhD thesis The
Open University.

For guidance on citations see FAQs.

c© 2014 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

THE OPEN UNIVERSITY, UK

Towards Open Services on the Web -
A Semantic Approach

by

Dipl.-Inform. Maria Maleshkova

Thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

Knowledge Media Institute (KMi)

March 27, 2014

http://www.open.ac.uk/
maria@maleshkova.com
http://kmi.open.ac.uk/

Preface

”What doesn’t kill you makes you stronger.”

- Friedrich Nietzsche

I am not sure if Nietsche was working on his thesis when he came up with this statement but he

might just as well have been. We had a PhD adaptation of this quote to “What doesn’t kill you

makes you fatter”, which reflects quite adequately the correlation between paper deadlines and

consumption of custard donuts or chocolate.

The three years that I spent at KMI have been the most dramatic, fulfilling, exhausting, re-

warding and intense in my life so far. For better or for worse, the PhD experience has been a

life-changing one. Unfortunately no one can be told what being a PhD student is, you have to

see it for yourself. In the mean time I strongly believe that one is awarded the title not only

for the research contributions but also for actually going through the process and gaining the

experience and knowledge that are required to reach the point of submitting the written thesis.

As a computer scientist, I have always been very fascinated by the idea that software compo-

nents that implement a certain algorithm, or provide access to a sensor, or simply expose data,

can be accessed remotely by anyone in the world and be integrated in new applications and so-

lutions. Therefore, conducting research in the field of Web services and Web APIs has not only

presented a new and engaging challenge but also connected with my personal interests. I am

very thankful to all of my colleagues from the Semantic Web Services Group at KMI but espe-

cially to my supervisors – Carlos Pedrinaci and John Domingue. John saw the researcher in me

before anyone else did and Carlos helped me become the researcher that I am today. They have

undoubtedly played a central role in this journey and have been very supportive, giving me a lot

of opportunities to develop and pursue my research interests. I have always been able to rely on

their guidance and have learned a lot, starting with basic technical skills, building up to review-

ing the work of fellow researchers and writing high-quality papers. However, most importantly,

through them I learned what passion for science and dedication to work are. They taught me the

right attitude towards research and have strongly influenced my professional development.

I was very lucky to have great colleagues at KMI, who were a very important part of my life

both on professional and personal level. I really enjoyed working with Laurian, Dave, Dong,

Ning and Jacek. Laurian taught me how to detangle impossible to understand code and how to

hack applications so that they work (ignoring most of the things that I was taught about software

development at the university). I still miss our morning coffee sessions with Dave, which were

mainly focused on complaining about the general difficulties of life. This moaning sessions,

iii

contrary to expectations, always encouraged me to be productive and optimistic. The collabora-

tion with Dong and Ning has taught me a lot as well and, even though, we were not close fiends I

was very fortunate to have them in our research group. I will not miss the passionate discussions

with Jacek and his “Give me an example” statements (well maybe I will miss them a little) but

working with him has been great and gave me a new perspective on caring about detail, line

of argumentation, and structuring research approaches in general. I would also like to thank

Simone and Bruno for their collaboration on some of the more practically-oriented tasks. I also

need to mention my dear Miri and Hassan, who were always up for a friendly coffee and a chat.

KMI has been my home during my PhD years and I feel very privileged to have been a part of a

team of so talented and hard-working researchers.

I am also very thankful to Rudi Studer, who gave me the opportunity to start doing research

in the first place. After completing my diploma thesis at AIFB, he considered that I had the

potential to become a researcher and offered me a PhD position in his group. I have very much

enjoyed working at AIFB during the past one and a half years.

Finally, this would never have been possible without the support of my amazing family. They

have encouraged me and comforted me every step of the way. Some things in life are much

easier when you know that no matter what happens someone is there for you, ready to be on

your side no matter what. For me, this has always been my family and I think that this security

has given me the mindset to strive for the top and to live a life where no limits can be set. There

are no words to express how grateful I am for that.

v

THE OPEN UNIVERSITY, UK

Abstract
Knowledge Media Institute (KMi)

Doctor of Philosophy in Computer Science

by Dipl.-Inform. Maria Maleshkova

The World Wide Web (WWW) has significantly evolved since it was first released as a publicly

available service on the Internet, developing from a collection of a few interlinked static pages

to a global ubiquitous platform for sharing, searching and browsing dynamic and customisable

content, in a variety of different media formats. It plays a major role in the lives of individuals,

as a source of information, knowledge and entertainment, as well as in the way business and

communication are done within and between companies. This transformation was triggered

by the ever-growing number of users and websites, and continues to be supported by current

developments such as the Social Web, Linked Data, and Web APIs and Services, which together

pave the way for the Web as a dynamic data environment.

The work presented in this thesis aims to contribute to a more integrated Web, where services,

data and Web content can be seamlessly combined and interlinked, without having to deal with

the intricacies of the separate data sources or the specific technology implementations. The

vision of Open Services on the Web aims to facilitate the unified use of Web APIs, Web Ser-

vices and Linked Data sources, so that users can retrieve data without differentiating whether its

source is a website, a Web API or even a mashup. However, before this can be achieved, there

are a number of problems that need to be addressed. In particular, the integrated and unified han-

dling of services, and especially Web APIs, is very challenging because of the heterogeneous

landscape of implementation approaches, underlying technologies and forms of documentation.

In particular, in the context of Web APIs, the main limitations are caused by the fact that cur-

rently documentation is commonly provided directly in HTML, as part of a webpage, which

is not meant for automated machine processing of the service properties, in contrast to XML,

for example. This situation is aggravated by the fact that Web APIs are proliferating quite

autonomously, without adhering to particular guidelines and specifications. This results in a

wide variety of description forms and structures, accompanied by a range of diverse underlying

technologies, forcing developers to individually interpret the documentation, and carry out com-

plicated and tedious development work. The result is the implementation of individual custom

solutions that are rarely reusable and have very low support for interoperation.

http://www.open.ac.uk/
http://kmi.open.ac.uk/
maria@maleshkova.com

vi

We contribute towards achieving the vision Open Services on the Web by tackling some of these

challenges and supporting the wider, integrated and more automated use of Web APIs. In par-

ticular, we present a thorough analysis of the current state of Web APIs, giving the results of

two Web API surveys. We use the collected data in order to draw conclusions about occurring

practices and trends, and common API characteristics. The results provide essential input for

acquiring a real-world view on Web APIs, for identifying key service properties, for determining

best practices, for pointing out difficulties and implementation challenges, and for deducing a

baseline for the support that any solution approach needs to provide. The so gathered details

are used for developing a shared formal model for describing, modelling and annotating Web

APIs, which serves as the basis for decreasing the level of manual effort, involved in completing

common service tasks, and provides a unifying overlay on top of the heterogeneous API land-

scape. This shared model – the Core Service Model captures all essential API characteristics,

thus providing common grounds for developing support solutions in the context of using Web

APIs, but also enables a unified view over traditional Web services and APIs, facilitating their

interoperable handing and enabling the reuse of existing Web service approaches and solutions.

The work presented here aims to contribute to a more interoperable and automated use of Web

APIs, however, our focus is mainly on providing support for the completion of the invocation

and authentication tasks. These tasks are essential, since the exploitation of an API is dependent

on how well and how easy the process of actually sending an input, making a call, and receiving

a corresponding output, can be completed. In particular, we address this by defining exten-

sions to the Core Service Model, which are targeted specifically at supporting invocation and

authentication. These extensions are captured in the form of two formal models - the Web API

Grounding Model and the Web API Authentication Model. We describe the support provided

by the individual model elements, we demonstrate how they can be used to make annotations,

and we back up the presented approaches by actual implementations in the form of invocation

and authentication engines, which take as input annotated APIs and use these to automatically

complete the invocation and authentication processes.

Finally, we recognise the need for encouraging the adoption of the newly developed models and

we address this with the help of tools and annotation approaches. In particular, we introduce

SWEET, which is a web application that enables users to annotate HTML Web API documen-

tation. It hides formalism complexities behind a graphical interface and reduces the annotation

effort to selecting a particular property and linking it to the corresponding model element. Fur-

thermore, we support the semi-automated annotation process, by providing integrated ontology

and semantic entity search, and directly classifying the functionality of an API. The result is

an annotated HTML documentation, which can be republished on the Web, stored in a service

repository or be converted to a semantic RDF description that can be handled and processed

alongside existing semantic Web service descriptions.

Contents

Preface iii

Abstract iv

List of Figures xiii

List of Tables xv

I Introduction 1

1 Introduction 3
1.1 Thesis Motivation . 4
1.2 Research Questions . 6
1.3 Contributions . 8
1.4 Thesis Overview . 10
1.5 List of Publications . 12

2 Approach 15
2.1 Introduction . 15
2.2 Methodology . 16

2.2.1 Analysis of the Current State of Web APIs 18
2.2.2 Describing Web APIs . 19
2.2.3 Supporting the Creation of Web API Descriptions 21

II Context and Related Work 23

3 Web Services and Web APIs 25
3.1 Web Services . 26
3.2 RESTful Services and Web APIs . 29
3.3 Description Models for Web APIs . 31
3.4 Semantic Descriptions of Web Services and Web APIs 35

3.4.1 Semantic Web API Approaches . 43
3.5 Integrating Web Services and Linked Data . 48
3.6 Summary . 54

vii

Contents viii

4 Invocation and Authentication Approaches 57
4.1 Web API Invocation . 58

4.1.1 WSDL-based Web Service Invocation 58
4.1.2 Semantic Web Service Invocation . 61
4.1.3 Web API Invocation . 64

4.2 Web API Authentication . 67
4.2.1 WS-Security . 67
4.2.2 Common Authentication Approaches 68
4.2.3 Further Authentication Mechanisms 71

4.3 Summary . 73

5 Annotation Approaches and Tools 75
5.1 Annotation Approaches . 75

5.1.1 Automated Acquisition of Semantic Web Service Descriptions 76
5.1.2 Annotation Recommendation . 78

5.2 Ontology Visualisation and Annotation Tools 80
5.3 Summary . 82

III Supporting Open Services on the Web 85

6 On the Current State of Service on the Web 87
6.1 Introduction . 88
6.2 The Proliferation of Web APIs . 89
6.3 First Web API Survey . 91

6.3.1 Methodology . 91
6.3.2 General Web API Information . 93
6.3.3 Type of Web APIs . 95
6.3.4 Input Details . 98
6.3.5 Output Formats . 99
6.3.6 Invocation Details . 100
6.3.7 Authentication Details . 100
6.3.8 Additional Documentation . 102
6.3.9 Summary of Results . 102
6.3.10 Discussion . 105

6.4 Second Web API Survey . 105
6.4.1 Methodology . 106
6.4.2 General Web API Information . 108
6.4.3 Type of Web APIs . 110
6.4.4 Input Details . 112
6.4.5 Output Details . 114
6.4.6 Invocation Details . 115
6.4.7 Authentication Details . 116
6.4.8 Additional Documentation . 117
6.4.9 Summary of Results . 118

6.5 The Web API Survey System . 120
6.6 Summary . 121

Contents ix

7 Describing Web APIs 123
7.1 Introduction . 123
7.2 Discussion . 124
7.3 Definition of a Web API . 126
7.4 Requirements . 127
7.5 Core Service Model . 129

7.5.1 Design Decisions . 129
7.5.2 Minimal Service Model . 130
7.5.3 Using MSM to Create Semantic Web API Descriptions 133

7.5.3.1 Syntactic Structuring of Web API Documentation 135
7.5.3.2 Enhancing Web API Documentation with Semantics 137
7.5.3.3 MSM-based Semantic Web API Descriptions 138
7.5.3.4 Describing Resource-Based APIs with MSM 140

7.6 Summary . 144

8 Supporting the Automated Web API Invocation 145
8.1 Introduction . 145
8.2 Motivating Example . 147
8.3 Requirements . 148
8.4 Web API Grounding Model . 154

8.4.1 Design Decisions . 154
8.4.2 Extending MSM with Invocation Support 156

8.5 Implementation . 162
8.5.1 OmniVoke . 162

8.6 Summary . 166

9 Automating the Authentication of Web APIs 167
9.1 Introduction . 167
9.2 Motivating Example . 169
9.3 Requirements . 169
9.4 Web API Authentication Model . 171

9.4.1 Design Decisions . 171
9.4.2 Extending MSM with Authentication Support 172

9.5 Implementation . 177
9.5.1 Authentication Engine Implementation 177

9.6 Summary . 179

10 Supporting the Creation of Semantic Web API Descriptions 181
10.1 Introduction . 181
10.2 SWEET . 183

10.2.1 Design and Architecture . 183
10.2.2 SWEET Bookmarklet . 186
10.2.3 SWEET Web Application . 189

10.3 Automating the Creation of Semantic Web API Descriptions 193
10.3.1 Annotation Search . 194
10.3.2 Web API Classification Support . 195

10.3.2.1 HTML-based Classification 196

Contents x

10.3.2.2 Cross-Lingual Classification 201
10.4 Summary . 204

IV Evaluation and Conclusions 207

11 Evaluation 209
11.1 Evaluation of the Core Service Model . 209

11.1.1 Requirements Coverage . 210
11.1.2 Model Coverage . 211

11.2 Evaluation of the Web API Grounding Model 215
11.2.1 Requirements Coverage . 215
11.2.2 Model Coverage . 216
11.2.3 Suitability for Purpose . 221

11.3 Evaluation of the Web API Authentication Model 222
11.3.1 Requirements Coverage . 222
11.3.2 Model Coverage . 224
11.3.3 Suitability for Purpose . 226

11.4 Evaluation of Supporting Tools and Approaches 227
11.4.1 Evaluation of SWEET . 227
11.4.2 Evaluation of Web API Classification Support 232

11.4.2.1 Evaluation of HTML-based Classification 233
11.4.2.2 Evaluation of Cross-Lingual Classification 234

11.5 Summary . 235

12 Conclusions and Future Work 237
12.1 Summary of the Contributions . 239
12.2 Conclusions . 241

12.2.1 The Current State of Web APIs . 241
12.2.2 The Core Service Model . 242
12.2.3 Towards Automated Web API Invocation and Authentication 243
12.2.4 Supporting the Creation of Semantic Web API Descriptions 243

12.3 Future Work . 244
12.3.1 Continued Analysis of the State of APIs on the Web 245
12.3.2 Supporting the Invocation of Compositions and Processes 246
12.3.3 Supporting the Adoption of a Shared Authentication Approach 246
12.3.4 Extending SWEET . 246

V Appendices 249

A Web API Models 251
A.1 Details on the Minimal Service Model . 251
A.2 Details on the Web API Grounding Model . 258
A.3 Details on the Web API Authentication Model 261

Contents xi

B Supporting Tools 269
B.1 Using SWEET to Make Annotations . 269

B.1.1 Hands-on with SWEET . 270
B.2 The Web API Survey System . 275

B.2.1 Survey Model and Setup . 275
B.2.2 Survey System Implementation . 276

Bibliography 281

List of Figures

2.1 Methodology Overview . 17
2.2 Analysing Web APIs . 18
2.3 Creating Semantic Web API Descriptions . 20

3.1 WSDL Structure . 27
3.2 Combining SOA and the Semantic Web . 36
3.3 OWL-S Main Concepts . 38
3.4 The Top-level Elements of WSMO . 39
3.5 SAWSDL Elements and Their Relationship to WSDL 40
3.6 WSMO-Lite for Annotating WSDL . 42
3.7 Unifying SAWSDL and MicroWSMO through WSMO-Lite 44
3.8 Linked Open Data Cloud . 50

4.1 Automated WSDL-based Invocation . 59

6.1 Web Services/Providers Timeline (Total Numbers from 2007 to 2012) 89
6.2 APIs Timeline (Total Numbers Quarterly from 2007 to 2012) 89
6.3 Mashups Timeline (Total Numbers from September 2013 to March 2014) . . . 90
6.4 Number of Mashups (APIs per Number of Mashups) 94
6.5 Number of Operations (APIs per Number of Operations) 95
6.6 Web API Survey System - Form 1 . 121

7.1 Minimal Service Model . 132
7.2 Last.fm HTML Example . 134

8.1 Extract from the Last.fm API . 147
8.2 Invoking a Web API . 149
8.3 Composed HTTP Request . 151
8.4 HTTP Response Handling . 152
8.5 Web API Grounding Model . 156
8.6 OmniVoke Architecture . 163

9.1 Extract from the Last.fm API . 169
9.2 Web API Authentication Model . 172
9.3 Invoking the Last.fm API . 178

10.1 Semantic Annotation of Web APIs . 184
10.2 SWEET Architecture . 184
10.3 SWEET: Inserting hRESTS Tags . 185
10.4 SWEET: hRESTS Annotation . 186

xiii

List of Figures xiv

10.5 SWEET: Semantic Annotation . 188
10.6 SWEET: Searching for Suitable Ontologies 191
10.7 SWEET: Exploring Domain Ontologies . 192
10.8 Service Classifier Component . 198
10.9 Service Classifier Component Communication 199
10.10Classification Workflow . 200

11.1 SWEET Analytics – Overview . 231
11.2 SWEET Analytics – Country Distribution . 231
11.3 SWEET Analytics – Frequent Visitors . 232

A.1 Minimal Service Model . 254
A.2 Web API Grounding Model . 260
A.3 Web API Authentication Model . 264

B.1 Web API Survey System - Form 1 . 277
B.2 Web API Survey System - Form 2 . 278
B.3 Web API Survey System - Form 3 . 279
B.4 Web API Survey System - Form 4 . 279
B.5 Web API Survey System - Form 5 . 280

List of Tables

3.1 Semantic Web Service Approaches . 42
3.2 Semantic Approaches for Describing Web APIs 47
3.3 Service Description Models for Web APIs . 55

5.1 Annotation Approaches . 77

6.1 Survey 1 - General Web API Information . 93
6.2 Survey 1 - Type of Web APIs . 97
6.3 Survey 1 - Input Parameters . 98
6.4 Survey 1 - Output Formats . 99
6.5 Survey 1 - Invocation Details . 100
6.6 Survey 1 - Common Web API Authentication Approaches 100
6.7 Survey 1 - Way of Transmitting Credentials 101
6.8 Survey 1 - Complementary Documentation 102
6.9 Survey 2 - General Web API Information . 109
6.10 Survey 2 - Type of Web APIs . 111
6.11 Survey 2 - RESTful Web APIs . 111
6.12 Survey 2 - Input Details . 112
6.13 Survey 2 - Way of Transmitting Input Parameters 113
6.14 Survey 2 - Way of Transmitting Input Parameters 114
6.15 Survey 2 - Way of Requesting the Output Format 114
6.16 Survey 2 - Invocation Details . 115
6.17 Survey 2 - Common Web API Authentication Approaches 116
6.18 Survey 2 - Way of Transmitting Credentials 117
6.19 Survey 2 - Complementary Documentation 117

7.1 Mapping MSM to hRESTS/MicroWSMO Elements 137

8.1 Requirements Coverage . 153

11.1 Coverage Provided by MSM . 213
11.2 Fulfilment of the Design Requirements for the Web API Grounding Model . . . 216
11.3 Coverage Provided by the Web API Grounding Model 219
11.4 Test Web API Invocation Descriptions . 222
11.5 Coverage provided by the Web Authentication Model 225
11.6 Test Web API Authentication Descriptions . 226
11.7 Results for Classification Based on the k-Nearest Neighbour 233

A.1 Mapping MSM to hRESTS Elements . 255

xv

List of Tables xvi

A.2 Mapping of the Web API Grounding Model to hRESTS Elements 261
A.3 Mapping of the Web API Authentication Model to hRESTS Elements 265

B.1 Web API Survey Model . 276

Part I

Introduction

1

Chapter 1

Introduction

The World Wide Web (WWW) has undergone significant changes since it was first launched

in 1991. It has evolved from an infrastructure for static content of pages consumed by indi-

vidual users to a communication platform where people, organisations, companies, and devices

alike offer, consume and synthesise content and services on a massive scale. The initial found-

ing concept of providing individual pages, containing formatted text and simple media, that

are interlinked with further pages, has been adapted and further developed in order to provide

the basis for the building of communities and social networks, exposing businesses and con-

sumers to new markets, and enabling the creation of applications and services, which offer

much more complex functionalities than the initially envisaged static HTML content. The rise

of Web 2.0 [O’R09], the Social Web [Gru07] and the Semantic Web [BLHL01, SHBL06] have

paved the way for more recent developments such as the growing popularity of Web applications

and APIs [MPD10a] and the wider adoption of the Linked Data principles [BHBL09].

In particular, the value of Web platforms and applications is no longer restricted to only directly

making content available to users but is also in providing access to resources and functional-

ity through publicly available APIs that do not have a graphical user interface but are rather

designed for direct machine consumption1. The current trend of providing access to data in a

programmable way and exposing resources, in a format that is not meant for human users but is

rather targeted towards computer interpretation and processing, is supported by popular social

platforms, such as Facebook, Google, Flickr, YouTube and Twitter, and online service providers,

such as Google Maps, Google Search and eBay. These online platforms offer public APIs en-

abling third parties to combine and reuse heterogeneous data coming from diverse software com-

ponent interfaces, i.e. services, in data-oriented service compositions called mashups [SET09].

Similarly, more and more data holders such as government and public organisations, as well as

private institutions, expose their data on the Web as Linked Data [BHBL09], thus contributing to
175% of Twitter traffic goes directly through its Web API, source Programmable Web – Twitter Reveals: 75% of

Our Traffic is via API (3 billion calls per day), goo.gl/BtkM6U, visited April 2012.

3

goo.gl/BtkM6U

Introduction 4

a Web of Data [BHBL09] that lays the foundation for machine-oriented retrieval and processing

of different types of data.

As a result, the current popularity of Web APIs and the increasing importance of Linked Data

provide an opportunity not only for the machine-based retrieval and manipulation of diverse

resources but also for the building of versatile applications based on combining heterogeneous

data and manipulated by the means of openly exposed processing functionalities. The vision of

Open Services on the Web aims to facilitate the unified and integrated use of Web APIs, Web

Services and Linked Data sources. However, before this can be achieved, there are a number of

problems that need to be addressed first. The work presented in this thesis aims to contribute

precisely towards a Web, which is based on more dynamic content and seamlessly integrates data

and services, which can be transparently discovered, composed and executed by the computer

on behalf of its user.

1.1 Thesis Motivation

The world of services on the Web is increasingly dominated by Web applications and APIs,

which seem to be preferred over “traditional” Web services [ACKM04] in the context of de-

veloping Web applications and mashups, by accessing resources available over the Web. Web

services, based on WSDL [W3C07a] and SOAP [W3C07b], have played and, without a doubt,

will continue to play a major role in the development of loosely coupled component-based sys-

tems within and between enterprises [Bel08]. However, the past few years have been marked

by a trend towards a simpler approach for developing and exposing programmable interfaces,

moving away from the rather complex WS-*specification stack [CFNO04]. Instead, current

Web service providers are inspired by a technology that is based on adopting the original design

principles of the World Wide Web [BL99] to the world of services on the Web. The result is

the current proliferation of Web APIs2 that rely directly on the interaction primitives provided

by the HTTP protocol, with data payloads transmitted directly as part of the HTTP requests and

responses. Therefore, Web APIs, also referred to as RESTful services [RR07], when conform-

ing to the REST architectural principles [Fie00], are characterised by their relative simplicity

and their natural suitability for the Web. On the basis of this simple technology stack, providers

offer public APIs, which enable access by 3rd parties to some of the resources they hold, thus

enabling the direct retrieval and processing of data but also the building of applications, which

might use single or aggregated data sources.

Despite their growing importance, Web APIs are still facing a number of limitations. In contrast

to traditional Web services, whose processing relies on the information provided in the WSDL
2The number of Web APIs and existing mashups at http://www.programmableweb.com has progres-

sively increased during the past seven years.

http://www.programmableweb.com

Introduction 5

files [W3C07a] and is supported by a stack of specifications, the development of Web APIs has

evolved in a rather autonomous way. In fact, while the term “Web Service”3 is quite clearly de-

fined [Dai12], Web APIs still lack a broadly accepted definition. Currently the term “Web API”

has a general, sometimes even controversial, meaning and is used for depicting HTTP-based

interfaces, frequently being inconsistent about the specific technical and design underpinnings

(see Chapter 7).

Furthermore, the majority of the APIs4 are exposed and described only through human-oriented

documentation, which is useful only to a human developer and conforms to no established guide-

lines or specifications. This results in a wide variety of documentation forms and structures,

which have to be individually read and interpreted. Therefore, currently all related tasks, such

as finding suitable services, invoking them or composing them into mashups, rely solely on the

information provided in the HTML documentation, which is not meant for automated machine

interpretation and has to be processed manually.

In addition to the lack of descriptions that enable a certain degree of automation, only about

a third of the APIs are currently conforming to the REST principles, while the majority ig-

nore these best-practices and define interfaces in terms of operations instead of resources (see

Chapter 6). This results in a variety of underlying technologies, used to implement APIs, forc-

ing developers to build individual and custom software implementations. The result is a set of

solutions that have low interoperability and low levels of reuse. Therefore, current common

practices in using Web APIs are time and effort-consuming and will not scale in the context of

the growing number of available Web APIs [MPD10a]. Finally, there is still lack of support for

the unified handling of both “traditional” Web services and Web APIs – the two types of services

are stored in separate directories, commonly use different task automation approaches and are

rarely deployed in integrated solutions.

In summary, the main issues related to using Web APIs are the following:

1. There is no shared, widely accepted definition of what a Web API is. This results in a

lack of clarity and misunderstandings on the conceptual as well as the specific technology im-

plementation level. Furthermore, the gained experience is restricted to individual APIs and the

produced solutions have no interoperability.

2. The majority of the Web API descriptions are human-oriented, given directly in HTML as

part of webpages. This requires manual search, processing and interpretation.

3. The completion of common service tasks such as discovery, composition and invocation, as

well as the maintenance and reuse of developed solutions, requires extensive manual effort
and processing.

3http://www.w3.org/2002/ws/, last retrieved April 2012.
4Throughout this thesis we use the terms “APIs”, “services” and “Web APIs” interchangeably.

http://www.w3.org/2002/ws/

Introduction 6

4. The lack of common guidelines and specifications result in heterogeneity of the documenta-

tion. This in turn results in the need to individually handle each API and produce custom client

solutions with low potential for reuse, thus hampering the scalability and cost-efficiency of the

API use.

5. There is very limited support for unified handling of “traditional” Web services and Web
APIs.

The work presented here addresses all of the identified problems, focusing especially on en-

abling more integrated and automated Web API use through supporting the automation of the

invocation and authentication tasks. In particular, we distinguish between issues related to the

syntactical structuring of the documentation, such as the particular format, contained elements,

hierarchical structure of the elements, element types, etc., and the semantics of the API, such

as the type of service provided, type of input and output, functionality of the operations. This

distinction is important since the different challenges can be addressed with different solutions.

For example, the second point from the list above relates to the lack of a common syntactical

structure for describing Web APIs, while the third one is closely related to the second but also

addresses the lack of semantic information – for instance, without having an annotation about

the functionality of the API, the developer still has to select a suitable API manually. To this

end, our work focuses on the provisioning of a description model that enables the enhancement

of existing documentation with semantic annotations. This requires the addressing of existing

challenges on both the syntactic and semantic level. The following section lists the research

questions that are formed in order to address the identified key problems.

1.2 Research Questions

This thesis aims to contribute towards supporting the wider and more integrated use of Web

APIs. Therefore, it focuses on decreasing the level of manual effort involved in completing

common service tasks, which is achieved on the basis of addressing the need for a shared model

for describing Web APIs. Given the breadth and depth of all the problems raised above, we

emphasise mainly on aiding invocation and authentication, and thus enabling more automated

Web API use. The need for encouraging the adoption of the newly developed model with the

help of tools and annotation approaches is also addressed by the conducted work.

Overall, the presented research contributes towards answering the following main research ques-

tion:

Introduction 7

How can we enable Open Services on the Web?

In particular, we want to explore how the unified and integrated use of Web APIs, Web Services

and Linked Data sources can be enabled. Furthermore, we want to identify solutions and ap-

proaches that contribute towards enabling a Web, which is based on more dynamic content and

seamlessly integrates data and services, which can be transparently discovered, composed and

executed by the computer on behalf of its user.

The main research question covers a broad area of possible directions of work. The work pre-

sented here is focused on addressing issues related to Web APIs in the context of Open Services

on the Web, for it is the area which has least been studied in the literature, is least supported

through tools and approaches, and yet is also the most popular nowadays. Therefore, in order to

specify the particular scope of the conducted research, the above question is divided into several

sub-questions. These are as follows:

RQ1: What are the common Web API characteristics?

Given the current heterogeneity of the Web API landscape, it is not easy to directly grasp what

marks out an API and what are all the common features that characterise an API. Currently,

the API elements described in the documentation differ and they are captured in varying levels

of detail. Furthermore, we take a pragmatic approach, aiming to gather a clear picture of the

real-world state of Web APIs and provide incremental support and solutions. To this purpose

we want to explore what API descriptions look like, what information they provide, what API

elements are given, how they are structured, etc. Before any progress can be made towards

supporting the use of Web APIs, first we need to become aware of the current state of Web

APIs and gain a deeper understanding of how they are exposed on the Web and what the main

problems surrounding their development and use are.

RQ2: How to describe Web APIs?

In particular, we want to identify possible solutions for describing Web APIs in a way such that

we cover the majority of the currently existing APIs, support the unified handling of APIs and

“traditional” services, and enable the adoption of approaches and solutions devised as part of

research on Web services. A more detailed list of needs and requirements is indeed presented

in Chapter 7, where we cover the work we have carried out in this regard. However, the main

objective here is to explore how Web APIs can be described in such a way as to contribute

towards achieving the vision of Open Services on the Web.

RQ3: How to enable a more automated Web API use?

Since currently most of the work related to using Web APIs has to be completed manually, it

is important to determine how different tasks, such as discovery, composition and invocation,

can be performed with a higher level of automation. In particular, this requires the analysis of

Introduction 8

description details, which need to be part of the Web API description, in order to support more

automated API use.

RQ4: How to support the adoption of the new service model?

Given a formalism for the description of Web APIs, developers need to be supported by tools

that make the creation of Web API descriptions easier. This includes the provisioning of ex-

tensive tool support but also automating as much as possible the process of creating Web API

descriptions.

1.3 Contributions

This thesis encompasses research on enabling Open Services on the Web through supporting

the use of Web APIs. Overall, the work presented here aims to contribute towards a more

integrated Web, where Web services, data and Web content can be seamlessly combined and

interlinked, without having to differentiate between separate data sources or specific technology

implementations. This is achieved by combing semantic approaches, Linked Data principles

and fundamental Web technologies, including URIs and HTTP, and applying these on services

on the Web, in order to enable the creation of Web API descriptions that can serve as a basis for

automating API-based interactions and integration of resources. Bearing this context in mind,

this thesis makes the following contributions:

Contribution 1: A thorough analysis of the current state of Web APIs.

Before any significant impact and improvement can be made to current Web API practices and

technologies, we need to reach a deeper understanding of these. This involves, for instance, fig-

uring out how current APIs are developed and exposed, what kind of descriptions are available,

how they are represented, how rich these descriptions are, what is the existing tooling and sup-

port, etc. It is only then that we shall be able to clearly identify deficiencies and realise how we

can overcome existing limitations, and how much of the available know-how on Web services

can be applied.

To date, there is no clear information on the current state of Web APIs and there are no available

surveys that reflect on different API features. Therefore, this thesis includes two Web API

studies that capture common characteristics and provide a basis for reaching conclusions on the

common practices and technologies used when publishing APIs. The results of these surveys

directly contribute to understanding existing challenges and are a basis for devising solutions

and supporting mechanisms. We take a very pragmatic approach and base the here developed

solutions on the current real-world state of APIs, instead of relying on assumptions or theoretical

guidelines. In particular, the analysis of the current state of Web APIs lays the foundation for

the definition of a common description model. Furthermore, it provides insights about details

Introduction 9

that are required as part of the API description, in order to be able to complete common service

tasks without the need of a human developer to be engaged in the process.

Contribution 2: Definition of a Web API – a term clearly describing what should be taken as a

shared understanding when referring to Web APIs.

Despite the current proliferation of Web APIs and the frequent use of the phrase, it is often

not clear what the implied underlying principles or technologies are. This is due to the fact

that currently there is no specification or shared understanding about the characteristics that

mark out a Web API. Therefore, given the current heterogeneity of the world of Web APIs, it is

necessary to introduce a unifying definition that can contribute towards a common understanding

about APIs but also enforce some shared underlying concepts that can serve as a foundation for

developing an API description model and approaches for supporting API use. We develop this

definition of a Web API by relying on the survey results from Contribution 1.

Contribution 3: A core service model, capturing common API characteristics and providing a

basis for supporting the automation of common service tasks.

Based on the results of the Web API analysis we are able to deduce a description model that cap-

tures common service characteristics, but also provides high coverage in the context of the diver-

sity of the forms and structure of the available documentation. Given the current autonomous

proliferation of Web APIs, the description model is applied on top of existing HTML docu-

mentation by enhancing it with specific annotations and does not require the creation of new

descriptions from scratch. Furthermore, the model serves as a basis for providing a higher level

of automation to common service tasks, by including core service elements that are required

for completing these tasks. Finally, the Web API description model also enables the reuse and

adaptation of the wealth of research done in the context of Web services and Semantic Web

Services. Therefore, it provides common grounds for the unified handling of “traditional” Web

services and Web APIs.

Contribution 4: Web service model extensions for supporting automated invocation and au-

thentication.

As already mentioned, this thesis focuses on supporting Web API use through enabling a higher

level of automation of certain service tasks. Therefore, in addition to providing a shared service

model, the conducted work also delivers extensions to the description model that are especially

targeted at supporting tasks that are key for facilitating API use – invocation and authentication.

The presented model extensions are based on the analysis of the current state of Web APIs but

also take into consideration existing description frameworks and approaches in the context of

Web services. They can be used in combination with the introduced Web API description model

or independently of it and can be extended to accommodate further properties that might be

necessary for certain use cases.

Introduction 10

Contribution 5: Support for creating Web API descriptions, in the form of an annotation tool

and task-assisting solutions such as annotation recommendation mechanisms.

In order to be able to practically apply the developed Web API description model, users are

provided with annotation support in the form of a Web application tool and mechanisms for

assisting the completion of individual tasks along the process of creating API descriptions. The

tool has all functionalities necessary for manually annotating Web APIs, while further user as-

sistance is given by automatically determining the type of functionality that the API provides or

enabling ontology search for suitable annotations.

Each of the contributions, including the description model but also the supporting tools and

annotation solutions, have been thoroughly evaluated.

The contributions listed here address directly problems of the current status-quo in searching

for suitable Web APIs and developing client applications that facilitate their use. They pave the

way for the development of Open Services on the Web, which are a part of a more dynamic

and integrated Web, where Web services, data and Web content can be seamlessly combined

and interlinked, without having to differentiate between the separate data sources or the specific

technology implementations.

1.4 Thesis Overview

This thesis consist of twelve chapters, which are grouped into four main parts – Introduction,

Context and Related Work, Supporting Open Services on the Web, and Evaluation and Conclu-

sions. We introduce the contributions listed in the previous section in Part III: Supporting Open

Services on the Web. The thesis is structured as follows:

Part I: Introduction
This part introduces the context of our work and describes the current challenges faced by Web

APIs. In addition, the first chapter includes a list of the research questions as well as an overview

of the contributions made, while working towards providing solutions to the posed questions.

Chapter 2 describes the research approach that we followed in enabling better Web API use, in

particular, through supporting the automation of the invocation and authentication tasks.

Part II: Context and Related Work
The second part sets the context of our work and focuses on describing similar and related

research in the filed. In particular, this part is divided into three chapters. Chapter 3 gives details

on existing Semantic Web Service and Web API description approaches and points out some of

the limitations and drawbacks that they have. Chapter 4 provides an overview over current Web

Introduction 11

API invocation and authentication methods and solutions, while Chapter 5 focuses on tools and

implementations that provide tagging and annotation support.

Part III: Supporting Open Services on the Web
This part describes our main contributions, starting with Chapter 6, which focuses on providing

details on the results of the two Web API surveys and the conclusions that we can draw regarding

current practices and technologies, and common properties. This chapter also describes the

survey application that we implemented in order to be able to conduct further similar studies.

Chapter 7, 8 and 9 are structured very similarly. Each chapter starts with a set of requirements

that need to be met by the developed model, followed by a list of design principles and decisions.

The core part of each of the chapters describes the model, its individual properties and gives an

example of how it can be used to make annotations. In particular, Chapter 7 gives details on the

core service model, its main classes and how it can support the annotation of the majority of the

APIs. Chapter 8 presents extensions to the core model, which are specifically targeted at sup-

porting the automation of invocation, while Chapter 9 includes details on the design and content

of the Web API Authentication Model, which, as the name suggests, enables the capturing of

authentication-relevant characteristics.

This part is concluded by Chapter 10, which gives information about our tool and the developed

approaches for supporting the creation of semantic Web API descriptions, based on the previ-

ously introduced core service model. This chapter includes details on the different versions and

functionalities of SWEET – a web application that supports the creation of semantic Web API

descriptions. We also describe our approaches for classifying the type of API and the integrated

ontology search, which assist the user in making API annotations.

Part IV: Evaluation and Conclusions
The fourth part of the thesis concludes our work. Chapter 11 includes the evaluation of the

introduced models. In particular, we determine how well they conform with the defined design

requirements, what coverage they provide, and what is the level of support in terms of enabling

the automation of the invocation and authentication tasks. This chapter also provides the results

of the evaluation of SWEET and the two developed Web API classification approaches. In

Chapter 12 we discuss our conclusions and contributions, and point out future work.

Introduction 12

1.5 List of Publications

Most of the chapters in this thesis are based on work that has been presented as part of conference

contributions5 or published in the form of book chapters:

• Chapter 6 on exploring the current state of Web APIs in partially based on:

- Maleshkova, M., Pedrinaci, C. and Domingue, J. (2010) Investigating Web APIs on the

World Wide Web, European Conference on Web Services (ECOWS), Ayia Napa, Cyprus,

which describes the results of the first Web API survey.

• Chapter 7 is based on a number of publications that describe the Minimal Service Model

and its relationship to the iServe service repository:

- Pedrinaci, C., Maleshkova, M., Zaremba, M. and Panahiazar, M. (2012) Semantic Web

Services Approaches, in eds. Alistair Barros, Daniel Oberle, Handbook of Service De-

scription: USDL and its Methods, Springer

- Pedrinaci, C., Kopecky, J., Maleshkova, M., Liu, D., Li, N. and Domingue, J. (2011)

Unified Lightweight Semantic Descriptions of Web APIs and Web Services, Workshop:

W3C Workshop on Data and Services Integration, Bedford, MA, USA

- Kopecky, J., Vitvar, T., Pedrinaci, C. and Maleshkova, M. (2011) RESTful Services

with Lightweight Machine-readable Descriptions and Semantic Annotations, in eds. Erik

Wilde, Cesare Pautasso, REST: From Research to Practice, Springer

- Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J. and Domingue, J.

(2010) iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories

and Editors for the Semantic Web at 7th Extended Semantic Web Conference

- Pedrinaci, C., Lambert, D., Maleshkova, M., Liu, D., Domingue, J. and Krummenacher,

R. (2010) Adaptive Service Binding with Lightweight Semantic Web Services, in eds.

Schahram Dustdar and Fei Li, Service Engineering: European Research Results, Springer

- Domingue, J., Pedrinaci, C., Maleshkova, M. and Krummenacher, B. (2011) Fostering a

Relationship Between Linked Data and the Internet of Services, in eds. John Domingue,

Alex Galis, Anastasius Gavras, Theodore Zahariadis, Dave Lambert, Frances Cleary, Pet-

ros Daras, Srdjan Krco, Henning Müller, Man-Sze Li, Hans Schaffers, Volkmar Lotz,

Federico Alvarez, Burkhard Stiller, Stamatis Karnouskos, Susana Avesta, Michael Nils-

son, Future Internet: Achievements, Directions and Promises, Springer

• Chapter 8 includes publications on the Web API Grounding model, as well as published

work on OmniVoke:

- Maleshkova, M., Pedrinaci, C., Li, N., Kopecky, J. and Domingue, J. (2011) Lightweight

Semantics for Automating the Invocation of Web APIs, IEEE International Conference on

Service Oriented Computing & Applications (SOCA 2011), Irvine, California, USA
5In detail, the publications include 4 book chapters, 5 conferences, 7 workshops, and 4 demos and posters.

Introduction 13

- Li, N., Pedrinaci, C., Maleshkova, M., Kopecky, J. and Domingue, J. (2011) Omni-

Voke:A Framework for Automating the Invocation of Web APIs, Fifth IEEE International

Conference on Semantic Computing, Stanford University, Palo Alto, CA, USA

- Li, N., Pedrinaci, C., Kopecky, J., Maleshkova, M., Liu, D. and Domingue, J. (2011)

Towards Automated Invocation of Web APIs, Poster at 8th Extended Semantic Web Con-

ference

- Liu, D., Li, N., Pedrinaci, C., Kopecky, J., Maleshkova, M. and Domingue, J. (2011) An

Approach to Construct Dynamic Service Mashups using Lightweight Semantics, Work-

shop: The 3rd International Workshop on Lightweight Integration on the Web (Compos-

ableWeb 2011) at The 11th International Conference on Web Engineering (ICWE 2011)

• Chapter 9 is based on one main publication on the Web API Authentication Model

- Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G. and Martinez, I. (2010) Using

Semantics for Automating the Authentication of Web APIs, International Semantic Web

Conference (ISWC), Shanghai, China

• Chapter 10 encompasses a series of publications that describe SWEET, its functionalities

and application scenarios:

- Maleshkova, M., Pedrinaci, C. and Domingue, J. (2010) Semantic Annotation of Web

APIs with SWEET, Workshop: 6th Workshop on Scripting and Development for the Se-

mantic Web at Extended Semantic Web Conference, Heraklion, Greece

- Maleshkova, M., Kopecky, J. and Pedrinaci, C. (2009) Adapting SAWSDL for Semantic

Annotations of RESTful Services, Workshop: Beyond SAWSDL at OnTheMove Feder-

ated Conferences & Workshops, Vilamoura, Portugal

- Maleshkova, M., Pedrinaci, C. and Domingue, J. (2009) Supporting the Creation of Se-

mantic RESTful Service Descriptions, Workshop: Service Matchmaking and Resource

Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Conference,

Proceedings of ISWC ’09, Washington D.C., USA

- Maleshkova, M., Zilka, L. and Pedrinaci, P. (2011) Cross-Lingual Web API Classifi-

cation and Annotation, Workshop: The Multilingual Semantic Web at 10th International

Semantic Web Conference, Proceedings of ISWC 2011, Bonn, Germany

- Duke, A., Stincic, S., Davies, J., Lecue, F., Mehandjiev, N., Pedrinaci, C., Maleshkova,

M., Domingue, J., Liu, D. and Alvaro, G. (2010) Telecommunication mashups using

RESTful services, ServiceWave 2010

- Maleshkova, M., Pedrinaci, C. and Domingue, J. (2009) Semantically Annotating REST-

ful Services with SWEET, Demo at 8th International Semantic Web Conference, Wash-

ington D.C., USA

- Maleshkova, M., Gridinoc, L., Pedrinaci, C. and Domingue, J. (2009) Supporting the

Semi-Automatic Acquisition of Semantic RESTful Service Descriptions, Poster at ESWC

2009

Introduction 14

- Maleshkova, M., Gridinoc, L., Pedrinaci, C. and Domingue, J. (2009) Semi-Automatic

Acquisition of Semantic RESTful Service Descriptions, Poster at 2nd STI International

Offsite, Crete, Greece

Chapter 2

Approach

This chapter introduces the approach followed in this thesis. In particular, we aim to pave the

way for a Web, which is based on a dynamic and integrated use of content, which can come

from both services on the Web and the Web of data alike, so that users can retrieve data without

differentiating whether its source is a website, a Web API or even a mashup. The approach that

we follow towards achieving this goal is by enabling a more automated and interoperable Web

API use. To this purpose, we employ declarative descriptions of software component interfaces,

which are accessible over standard Web technologies (e.g. URIs and HTTP). Furthermore, we

use semantics as the basis for building an abstraction level over the existing heterogeneity in

terms of Web API documentation forms and structures, and the foundation for a higher level

of automation through supporting the development of reasoning algorithms based on semantic

entities. Finally, we also provide tool support for creating Web API descriptions enriched with

semantic metadata.

This chapter consists of two sections: We start with Section 2.1, which introduces the three main

postulates, which we follow. Section 2.2 describes in detail each of the parts of the introduced

approach.

2.1 Introduction

Our approach is based on taking into consideration three main postulates. First, given the current

autonomous proliferation of Web APIs, we advocate a non-invasive solution towards describing

them – i.e. we do not try to enforce a new description format and language, which would

require providers to rewrite all their documentation and partially adjust the implementations,

which would undoubtedly also affect all client implementation. A large number of the existing

Web API description formalisms and implementation infrastructures take an idealistic view on

15

Approach 16

the current state of Web APIs and assume conformity to a certain set of principles, such as

REST (see section 3.4). Instead we consider the current state of Web APIs as they are, with

their heterogeneity and lack of uniform solutions. Therefore, we explore ways of enhancing

existing HTML-based documentation with metadata, including the incremental structuring of

the documentation by identifying service properties such as operations, inputs and outputs, so

that they can be automatically processed, and the subsequent enrichment of these properties with

semantic information, which serves as the basis for a more automated completion of common

Web API tasks.

Second, we take a lightweight semantic approach. Research on Semantic Web Services (SWS)

has been devoted to reduce the amount of manual effort required for manipulating Web services.

The main idea behind this research is that tasks such as discovery, negotiation, composition and

invocation of Web services can have a higher level of automation and achieve better results, when

services are enhanced with semantic descriptions of their properties. Even though Web APIs

are widely used, they are currently facing the same limitations as “traditional” Web services,

in addition to further problems arising from the lack of standardisation and the availability of

only textual documentation. Therefore, we use lightweight semantics to contribute towards

reducing the amount of manual effort required for using Web APIs. We say that the semantics

are lightweight because instead of relying on extensive description frameworks that employ

complex ontologies and reasoning techniques, we follow the principle of “A Little Semantics

Goes a Long Way” [Hen97] and stick to a simple description model that is easier to use for

making annotations but still provides basic support for performing common service tasks.

Third, we aim towards providing a unified view over both “traditional” Web services and APIs,

not only to enable their integrated use in common solutions but also to benefit from the richness

of research in the SWS area. WSDL-based services and APIs are treated in a completely disjoint

way, however, in certain use cases, especially in the context of the development of end-user

applications and service compositions, support for shared handling would be extremely useful.

Furthermore, research in the area of SWS has been quite prolific and it would be very useful to

directly adopt some of the existing solutions, instead of starting from scratch.

2.2 Methodology

Our methodology includes three main parts (visualised in Figure 2.1). First, Field Analysis
is conducted in the form of a thorough study of the current state of Web APIs, focusing on

analysing common characteristics and deducing trends and followed practices. This step is

necessary in order to gain a realistic overview of the current state of Web APIs.

Approach 17

Second, the gathered results are used as input to the Solution Development. The main objec-

tives of this part are twofold. First, it includes the development of a conceptual solution in terms

of a model for the description of Web APIs. The model captures both the individual API parts

such as operations, inputs and outputs, and provides support for adding metadata in the form

of semantic annotations, which, for example, describe the particular functionality of the API

or the types of data that are consumed and produced. Second, the solution development also

includes the design and implementation of tooling for creating semantic Web API descriptions.

This includes tools, which hide formalism complexities behind a user interface, and automated

techniques, which reduce the manual effort required for service annotation, for example, by sug-

gesting suitable service metadata. In this way, the conceptual solution for describing Web APIs

can be directly put into practice by using the implemented tools.

FIGURE 2.1: Methodology Overview

The third and final part of the approach is the Evaluation, which is divided into two steps, cor-

responding to the two objectives of the solution development. First, we evaluate the conceptual

solution. Relevant metrics that we consider are conformity of the model with the defined design

requirements, the coverage that it provides, and the level of support in terms of enabling the au-

tomation of the invocation and authentication tasks. Second we evaluate the developed tooling

– on one side covering the user aspect via gathering user feedback and logging user activities,

and on the other side determining the accuracy of the designed supporting techniques in terms

of standard metrics, such as precision and recall [GK89].

It is important to point out that these steps are tightly connected and have been completed in an

iterative way, where the improvements in the description models and the supporting tool lead to

adjustments in the Web API analysis and vice versa. The following sections describe each step

in more detail.

Approach 18

2.2.1 Analysis of the Current State of Web APIs

Before any progress can me made towards enabling more automated use of Web APIs, we first

need to gain a realistic overview of the existing landscape of Web APIs. Given the diversity

of the documentation structures and forms, as well as of the underlying technologies, it is im-

portant to have in depth knowledge of individual API characteristics, instead of only relying

on assumptions. Therefore, the first step towards tackling some of the challenges related to us-

ing Web APIs is understanding the shared characteristics and some of the frequently occurring

problems. We achieve this by conducting a field analysis in the form of a thorough study of the

current state of Web APIs.

FIGURE 2.2: Analysing Web APIs

The steps followed for performing the analysis of the current state of Web APIs include:

1. Analyse Web API Descriptions – Documentations of popular Web APIs are analysed

and used to derive a set of common Web API characteristics.

2. Collect Web API Characteristics – Determine a set of Web API characteristics, which

are used to design a survey for gathering data for each of the identified criteria.

3. Conduct Web API Study – The Web API study is carried out.

4. Extend and Adjust the Web API Description Models – The results of the study are

taken as input for the conceptual solution in terms of Web API description models, iden-

tifying points were they can be refined and improved. Finally, the aggregated feedback is

used to update the list of covered characteristics.

Approach 19

Figure 2.2 shows the process of conducting the Web API field analysis. We performed two iter-

ations of the process. The first one serves as a reality check and provides valuable details about

common description types, characteristics and practices. It also helps to identify deficiencies

in existing approaches and gives information about the used technologies and implementation

approaches. The second iteration revisits the results of the first one and, in addition, further ex-

plores some of the trends and interesting co-relations that were exposed by the initially gathered

data.

The objectives of the analysis of the current state of Web APIs are threefold. First, the statistics

about the used Web API characteristics, the underlying technologies and followed approaches,

should provide a clear overview of the state of APIs on the Web and build a solid foundation for

identifying difficulties and challenges. Second, the results serve as a direct input for developing

the conceptual solution in terms of Web API description model, since they indirectly pose some

requirements through the identification of unwritten best practices and commonly used solu-

tions. Finally, the gathered data indicates, which characteristics are crucial in terms of achieving

large coverage of the proposed model, and which are less important.

2.2.2 Describing Web APIs

As already mentioned the solution development is divided into two objectives – conceptual

solution and tooling. The conceptual solution focuses on providing the means for formally

describing Web APIs. In particular, we advocate the bottom-up, incremental, non-intrusive and

modular development of conceptual models that could support the more automated use of Web

APIs, focusing in particular on the invocation and authentication tasks.

Bottom-up. First of all, we start with the current state of Web APIs and the available documen-

tation. In particular, the results of the analysis are directly used as input to deriving Web API

description models. Therefore, we can be sure that the developed solutions address problems

that current developers and Web API users are actually struggling with. In addition, we base our

conceptual solution on the existing documentation, instead of creating Web API descriptions

directly based on the developed description models.

Incremental and non-intrusive. Second, we aim to enhance existing documentation, instead

of enforcing the creation of new descriptions from scratch. We use an approach that is not based

on expecting that providers completely replace their current way of documenting APIs, instead

focus on providing the means for enhancing text/HTML with rich metadata. In particular, the

method followed in defining the Web API description model is based on creating annotations

on two different levels – syntactical structuring of the HTML documentation, by identifying the

different service elements, and their subsequent enhancing with semantics (see Figure 2.3).

Approach 20

FIGURE 2.3: Creating Semantic Web API Descriptions

Modular. Furthermore, we aim to develop a modular solution towards enabling higher level

of automation of service tasks. Instead of defining individual descriptions, which contain, for

instance, the relevant details required for performing discovery or composition, the description

support is realised by developing a shared core model, based on capturing common service char-

acteristics, and providing extensions to it for enhancing the automation support for individual

tasks. Since the scope of this thesis is focused on supporting the usability of Web APIs, by

enabling a more automated invocation and authentication process, the extensions are based on

capturing API characteristics that are especially targeted towards supporting these two tasks.

We also advocate the adaptation and integration of state of the art solutions for describing and

annotating Web APIs. First of all, the development of the description model itself is strongly in-

fluenced by previous work in the area, such as MicroWSMO [KV08] and SA-REST [LMR07].

In addition, based on the modularity of the conceptual solution and by defining separate decou-

pled description parts, the core model can be used independently or in combination with the

provided extensions, depending on the current use case. For example, the extensions can easily

be applied to enhance either MicroWSMO or SA-REST with the support for the specific task.

In summary, we follow a very traditional process towards developing the Web API description

model [SSS06, L9́9]. The used method is very much aligned with the phases of the ontol-

ogy engineering lifecycle [Gom98], undergoing specification, conceptualisation, formalisation

and implementation. Furthermore, as pointed out by López [L9́9] the process of defining an

ontology is very similar to the software development process, as defined in IEEE 1074-1995

standard [S+97], undergoing requirements analysis, design and implementation.

The developed core service model, as well as the individual task-supporting extensions are eval-

uated by determining the coverage that they provide in terms of being able to describe currently

existing Web API descriptions. In addition, we also determine the level of task support that they

offer, focusing on invocation and authentication. Furthermore, the description model is backed

up by implementations that support storage of Web API descriptions, search and retrieval, as

Approach 21

well as invocation and authentication. These reference solutions enable the validation of the

practical applicability of the designed description model.

2.2.3 Supporting the Creation of Web API Descriptions

In order to ease the use of the introduced description model, the development of supporting

tools, that enable the creation and interpretation of semantic Web API descriptions, is crucial.

In particular, the implemented tool enables the manual annotation of services, while individual

steps such as determining the type of functionality of the API or searching for suitable ontologies

are supported by automation components, thus resulting in a semi-automatic annotation solution.

Therefore, the provisioning of support for creating Web API descriptions, with the help of the

developed model, is based on the following two steps:

1. Providing a tool with complete support for the manual creation of semantic descriptions,

based on existing HTML documentation.

2. Enhancing the tool with automation mechanisms that ease the completion of different

annotation tasks.

The annotation tool is evaluated by directly questioning users about its different functions and

the effectiveness of the support that they provide. This is complemented by gathering feedback

from participants in training and hands-on sessions, where the tool is used. Finally, comments

and input from a number of use cases are also used to evaluate the different features of the

tool. Based on this data, conclusions can be drawn about the effectiveness of the tool support in

comparison to having to create the semantic descriptions without it, by using a text editor, for

example.

The following part discusses in detail related work and sets the context of our research.

Part II

Context and Related Work

23

Chapter 3

Web Services and Web APIs

While research in the area of Web APIs is still relatively new and not as prolific in terms of

approaches and implemented systems, there is quite a plenitude of work on Web Services and

Semantic Web Services. This chapter provides an overview of existing description frameworks,

suitable application use cases and addressed challenges, in order to provide a foundation for

determining the potential for reusing some of the previous work but also to identify open issues

and remaining difficulties.

The following sections describe research related to Web services and Web APIs, including un-

derlying principles and technologies, description formats, use of semantics and overall integra-

tion approaches. We divide the state of the art in three main parts. We start by providing an

overview of the fundamentals related to Web services and Web APIs, and reflect on the different

ways of capturing service properties in terms of documentation forms and formats (Sections 3.1,

3.2 and 3.3). Following is a section on semantic approaches developed in the context of Web

services and Web APIs (Section 3.4). Finally, we shortly provide an introduction to Linked

Data principles and work targeted at supporting the integration of data and services on the Web

(Section 3.5).

The work presented in this thesis aims to address some of the challenges faced by Web APIs and

to support their more automated use, in order to contribute to a dynamic and integrated Web,

where Web APIs, Web services and Linked Data sources can be employed together, so that users

and applications can access data without differentiating whether its source is a website, a Web

API or Linked Data. Therefore, we address precisely these three areas of related work because

in the context of developing a solution that contributes towards Open Services on the Web, it is

important to be aware of:

• The basic underlying technologies, which define the framework for the possible solutions;

25

Web Services and Web APIs 26

• The existing solutions for capturing service properties, in terms of descriptions (this cov-

ers the structuring of service details on a syntactic level);

• The use of semantics for enhancing services and the higher-level of automation support

for common service tasks, provided by employing semantics;

• The approaches that already contribute towards the integrated used of services and data

on the Web.

For each of theses lines of work we analyse their applicability in the context of using Web

APIs and discuss their features and limitations. In particular, while describing the solutions for

capturing service properties, we determine the:

• The service characteristics that can be captured;

• The support that they provide for common service tasks such as discovery and composi-

tion, focusing mainly on invocation and authentication;

• The complexity of the description formalism and the format itself.

Related work in the area of enhancing services with semantics is analysed in terms of:

• The type of semantic annotations;

• The definition of a service description model;

• The complexity of the description formalism and the format itself.

As a result we are able to gain a clear overview of the state of the art so far, identify approaches

and solutions that can be adopted and determine existing limitations, which need to be addressed.

3.1 Web Services

"Classical" Web services, based on WSDL [W3C07a] and SOAP [W3C07b], have for a long

time dominated the service world, playing a major role in the interoperability within and among

enterprises and serving as the basic construct for the rapid development of low-cost and easy-

to-compose distributed applications in heterogeneous environments [PTDL08]. Web Service

[ACKM04] technology enables publishing and consuming functionality of existing applications,

facilitating the development of systems based on decoupled and distributed components. There-

fore, Web services can be seen as reusable building blocks for creating distributed systems,

Web Services and Web APIs 27

which allow companies and individuals to make their digital assets available to the global com-

munity in a simple and effective manner.

Web services, or more precisely services based on the Web services technology stack [ACKM04],

are an established technology and are commonly used. However, despite their popularity there

are still only a few services available (28 0001 in comparison to 112 million of registered

domains2 and over 182 million websites3) and this number is not significantly increasing4.

Moreover, services based on WS- * (SOAP, WSDL, WS-Addressing, WS-Messaging and WS-

Security, etc.) [ACKM04] are argued to have high complexity, require trained developers, rela-

tively sophisticated infrastructure or extensive tooling [PZL08]. This is especially true if tradi-

tional WS are directly compared to Web APIs that rely only on HTTP for message transfer and

URIs for endpoint and resource identification (see Section 3.2).

FIGURE 3.1: WSDL Structure

The Web Service Description Language (WSDL) [W3C07a, W3C01] is used to describe the ser-

vice access endpoint, providing a machine-processable description of the structure of the service,

its operations and the request and response messages. It consists of two main parts, including an
1Source: http://webservices.seekda.com/
2Daily updated statistics at http://www.domaintools.com/internet-statistics/.
3Source: Netcraft http://news.netcraft.com/archives/2008/10/29/october_2008_web_

server_survey.html
4No significant increase in number during the past three years, source: http://webservices.seekda.

com/

http://webservices.seekda.com/
http://www.domaintools.com/internet- statistics/
http://news.netcraft.com/archives/2008/10/29/october_2008_web_server_survey.html
http://news.netcraft.com/archives/2008/10/29/october_2008_web_server_survey.html
http://webservices.seekda.com/
http://webservices.seekda.com/

Web Services and Web APIs 28

abstract and a concrete definition (see Figure 3.15). The abstract part includes an interface that is

a group of operations associated with the corresponding messages that can be sent and received.

However, none of these elements is restricted to a specific data format or transport protocol. As

a result the modular and implementation independent approach towards describing the service

promotes reusability of the individual parts and separation of design and programming concerns.

The abstract section of the WSDL file is complemented by concrete implementations that give

the actual transport and wire formats as well as the network address for the endpoint definition.

More importantly, WSDL is XML-based and its file structure, as well as all possible informa-

tion items, is defined in the http://www.w3.org/2007/06/wsdl/wsdl20.xsd XML

schema. Therefore, WSDL-based service descriptions are not meant for human interpretation

but rather serve as the basis for completing common tasks, such as discovery and invocation,

through automated machine processing. The structure of WSDL is visualised in Figure 3.1.

In summary, WSDL specifies: 1) the supported operations for invoking the Web service; 2) its

transport protocol bindings; 3) the message exchange format; and 4) its physical location. In

this way, the WSDL description contains all information necessary for invoking a service. A

WSDL service definition is commonly used with SOAP [W3C07b], which specifies the mes-

sages exchanged between the service consumer and provider. A SOAP message consists of an

Envelope, which groups the Header, containing communication specific details, and the Body,

including the actual message. SOAP is XML-based as well and a sample SOAP message can be

seen in Listing 3.16.

1 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap−envelope">
2 <env:Header>
3 <n: alertcontrol xmlns:n="http :// example.org/alertcontrol">
4 <n: priority >1</n: priority >
5 <n:expires>2012−06−22T14:00:00−05:00</n:expires>
6 </n: alertcontrol >
7 </env:Header>
8 <env:Body>
9 <m:alert xmlns:m="http://example.org/alert">

10 <m:msg>Project technical call at 3pm</m:msg>
11 </m:alert>
12 </env:Body>
13 </env:Envelope>

LISTING 3.1: Sample SOAP Message

WSDL and SOAP can be used in conjunction with WS-Addressing, WS-Messaging, WS-Security,

etc., specifications, which provide further support for particular use cases. As already stated in

the introduction of this chapter, we discuss the features of the individual approaches for cap-

turing service properties in order to be able to make a comparison and draw conclusions. In

the case of Web services described in WSDL, the following service properties are specified –

service, operation, input, output, types of the inputs and outputs and implementation binding.
5Image source – D11v0.2 WSMO-Lite [KV07], http://http://www.wsmo.org/TR/d11/v0.2/

20070421/
6Source – SOAP 1.2, http://www.w3.org/TR/soap12-part1/

http://www.w3.org/2007/06/wsdl/wsdl20.xsd
http://http://www.wsmo.org/TR/d11/v0.2/20070421/
http://http://www.wsmo.org/TR/d11/v0.2/20070421/
http://www.w3.org/TR/soap12-part1/

Web Services and Web APIs 29

In terms of the support that is provided for common tasks, based on the WSDL description,

invocation can be handled directly, without extensive manual effort (see Chapter 4). In contrast,

regarding discovery and composition, developers need to manually search for services in repos-

itories such as UDDI [CHvRR04], in order to subsequently design service compositions and

develop software that is able to invoke and manipulate them. Authentication information is not

directly described in the WSDL file but can be handled by adding WS-Security on top of the

SOAP messages.

Finally, in terms of complexity, a WSDL file is relatively simple, since it does not contain very

many elements. WSDL is written in XML, which is not meant for human interpretation and

might, therefore, require additional documentation in a textual form. However, it has the benefit

of being machine processable and by using an XML schema, it can be guaranteed that the file is

well-formed. A variety of XML editors can be used to ease the work with WSDL, visualising

the structure or summarising the main elements.

3.2 RESTful Services and Web APIs

Currently, there is an increasing importance and use of Web applications and APIs and some-

times it is even argued that they have displaced Web services [Rod08]. This trend is strongly

supported by the growing popularity and use of Web 2.0 technologies, because many Web 2.0

applications offer Web APIs as access points for interaction with application resources7. More-

over, Web APIs enable combining heterogeneous data coming from diverse sources, in order to

create data-oriented compositions called mashups [Wor07].

Web APIs, which conform to the REST principles [Fie00] are commonly referred to as REST-

ful services [RR07]. The representational state transfer (REST) paradigm was first described

by Roy Fielding in his Ph.D. dissertation [Fie00] denoting an architecture style of large-scale

distributed systems. A RESTful service is a simple service based on REST principles and fre-

quently implemented by using HTTP. RESTful services comprise a collection of resources and

comply with the following principles8:

• Client-server – there is a clear separation between the client and the server, which commu-

nicate via a uniform interface. This separation is realised by the client not being concerned

with server-specific tasks, such as data storage, and the server not being concerned with

client-specific tasks, such as user state-information.
7Twitter API Traffic is 10x Twitter’s Site, http://blog.programmableweb.com/2007/09/10/

twitter-api-traffic-is-10x-twitters-site/
8A complete and exhaustive list is available in [Fie00].

http://blog.programmableweb.com/2007/09/10/twitter-api-traffic-is-10x-twitters-site/
http://blog.programmableweb.com/2007/09/10/twitter-api-traffic-is-10x-twitters-site/

Web Services and Web APIs 30

• Stateless – The client-server communication is conducted in a stateless manner, i.e., there

is no client context being stored on the server between requests.

• Cacheable – Clients should be able to cache responses. This requires that the responses

contain caching information.

• Uniform interface – The communication between the client and the server takes place

via a fixed interface, which enables their decoupled and independent development. This

interface should be kept simple and is shared among all APIs. For instance, this can be

achieved by using the uniform methods of HTTP protocol.

• Layered system – The client is not aware of whether it is connected directly to the server

or not. The involvement of intermediary servers should be transparent to the client.

• Code on demand – Adding executable code can be used to temporally extend the func-

tionality of the client. For example, a client can download and use a JavaScript or java

applet to add further functionality, such as encryption of the communication. Still, the

server is not aware of any encryption routines / keys used in this process.

There are also a number of guidelines that should be followed while defining the interface. These

are especially relevant in the context of RESTful services, since they specify how the endpoint

should be defined and how the communication is realised.

• Uniquely identified resources: All resources are uniquely identified by URIs [BLFM05],

which enable the addressing and retrieving of resources on a global scale. In the context

of services, a RESTful service exposes a set of resources, which identify the endpoints

for interaction with clients. The resources themselves are conceptually separate from the

representations that are returned to the client. For example, an article about Milton Keynes

can be available as HTML, XML and also in different languages.

• Manipulation of resources through representations: Every interaction with a resource is

realised through its representation, which is available to the client. All resources can be

manipulated by using a fixed set of operations; in the case of an HTTP implementation,

theses would be – GET, POST, PUT, and DELETE. GET is used to retrieve a resource

representation, while PUT replaces an existing resource or creates it, if it does not exist.

POST creates a resource and returns its URI, and DELETE removes the resource.

• Self-descriptive messages: Each message includes the necessary information about how

to process it.

• Hypermedia as the engine of application state (HATEOAS): The state of the client can

change only through actions that are dynamically identified within hypermedia (for ex-

ample, through links in text) by the server.

Web Services and Web APIs 31

In summary, the essence behind RESTful services is that the interfaces are defined in terms of

resources, whose representations can be retrieved and manipulated via a fixed set of operations.

The REST principles have been developed in order to ensure a number of architecture character-

istics, which are beneficial for the developed systems. These include, independent deployment

of components, scalability of the component interaction, uniform interfaces, responsibilities de-

coupling, etc. When applied to the Web and the development of Web applications, REST helps

to ensure Web conformity and interoperability.

It is important to point out that currently, most available Web APIs do not follow all of these

REST principles [MPD10a] (see Chapter 6). In fact about two thirds of the Web APIs do not

define the interface in terms of resources manipulated via the HTTP methods but rather in terms

of parameterised arbitrary operations (see Chapter 6). Therefore, when we talk about Web APIs

and develop an approach, which aims to support their automated use, we cannot automatically

assume that the REST principles apply. As we will see in the chapter presenting the results of

the two Web API surveys (see Chapter 6), this is actually not the case. Therefore, RESTful

services represent a subset of all Web APIs. To this purpose we introduce a definition for Web

APIs, which is used throughout this thesis (see Chapter 7). In essence, a Web API, as defined

within the scope of this work, is an endpoint9 that provides access to functionalities or resources

in a programmable (i.e. machine-oriented) way over the World Wide Web, via Web-related

standards such as URIs and HTTP. This definition is described in more detail in Chapter 7.

Overall, Web APIs and WSDL-based services are suitable for different use cases. Web APIs fit

well in the context of developing applications with a Web setting, especially since the underlying

technologies are aligned with the fundamental workings of the Web. In contrast, traditional Web

services are suitable for an enterprise environment, where they enable the machine-to-machine

communication within a system or between decoupled systems [PZL08]. Furthermore, they

are more suited for scenarios, which require security measures or transactions. Therefore, Web

APIs have a number of advantages, especially for use cases based on Web technologies. They

are simpler to use because they do not need implementations of the WS technology stack and

instead rely directly on HTTP for message exchange and URIs for endpoint definition.

3.3 Description Models for Web APIs

Web services and Web APIs enable publishing and consuming functionalities and resources

in a programmable way, thus facilitating the development of applications based on combining

and pipelining individual inputs and outputs. As already mentioned, WSDL is an XML-based

language for describing the interface of a Web service, in a way that supports automated machine
9An endpoint in this context is a specific location for accessing a service, specified via URI, using a specific

protocol and data format.

Web Services and Web APIs 32

processing. In this section we discuss the existing description possibilities for capturing Web

API characteristics. Currently the majority of the Web APIs have only textual HTML-based

documentation and do not follow any particular guidelines prescribing the used format or the

included details. It is up to the providers to decide, which information about the API is made

available and how to structure it. The documentation is given in textual form, sometimes on

a single webpage, sometimes as part of a collection of interlinked pages. There is no clear

motivation as to why this is the case but the lack of a widely accepted standard format, as for

example XML, and a standardised structure, as for example WSDL, are characteristic for Web

APIs and lead to a number of challenges.

In particular, descriptions that require human interpretation cannot serve as the basis for scal-

able and interoperable solutions. Currently, developers need to manually search for suitable

APIs, read through the documentation, identify the service properties, browse through discus-

sion groups and forums and implement custom solutions, a lot of the time through trial-and-error

testing. This approach for using Web APIs is not scalable, the individual solutions are not in-

teroperable, changes in the documentation cannot be directly propagated in the implementation,

etc.

A unified view on Web APIs, through a common description language alleviates these difficul-

ties. Furthermore, as argued by Renzel et al. [RSK12] formal descriptions, especially in the

context of RESTful services, but also for services in general, allow for easier automated service

access and are often used for automated service composition [RS04, Pau09]. In this context,

we distinguish between approaches that require the creation of new descriptions from scratch

(e.g. WSDL 2.0 and WADL [Had06]) and approaches that rely on enhancing existing HTML

documentation (e.g. hRESTS [KGV08]). We discuss these in the following paragraphs.

It is important to point out that if all Web APIs were RESTful, the situation would be a bit dif-

ferent. The REST principles fix the way of conducting the communication between the client

and the server, there is a known set of operations to use on the resources, the way of defining

the URIs is also implicitly specified, and the output format is set via content negotiation and not

by using parameters. In summary, a lot of the service properties that would need to be specified

in a description, are already determined because of the architectural decisions. Ideally, through

the use of hyperlinks, link following and request construction, based on the hypertext and client

state, client development can be done without explicitly documenting Web APIs. However,

what would still be necessary is a list of all the resources. This is sometimes addressed by im-

plementations where the calling of the root URI, returns a list of all available resources. Still, the

current sate is that since there is no standard language that a machine could interpret, providers

commonly document the URIs, the used HTTP methods, and structures of representations (e.g.

as XML and JSON) directly in HTML as part of webpages. Furthermore, in the context of

providing a bottom-up solution and using semantics for enabling a higher level of automation

Web Services and Web APIs 33

to common service tasks (Section 3.4), an existing description that includes service properties,

which can be annotated, is a prerequisite. In summary, as already pointed out while describing

our approach, we aim to provide a real world, incremental solution covering a large percentage

of the existing Web APIs. Currently, the majority of the Web APIs have textual documentation10

and only about one third of the APIs are RESTful [MPD10a], therefore, we adopt a description-

based view on Web APIs.

WSDL. Similarly, to Web services, which provide access to the functionality of existing com-

ponents, Web APIs and Web applications conforming to the REST paradigm, provide access to

resources by using the WWW as an infrastructure platform. Based on this parallel between the

two types of services, WSDL was extended to Version 2.0 [W3C07a] for describing RESTful

services as well. As a result WSDL is a platform- and language-independent form of describing

both Web services and RESTful services on a syntactic level.

Still, WSDL is not particularly suitable for describing Web APIs that conform to REST. It is not

especially designed for resource-oriented services and as a result, everything has to be described

in an operation-based manner. In addition, WSDL lacks support for including simple links, for

instance, there is no mechanism to describe new resources that are identified by links to other

documents, which is essential for RESTful services. However, we aim to provide coverage for

all APIs and, as already pointed out, only a portion of the Web APIs is RESTful.

In section 3.1 we already analysed the service properties that can be captured by WSDL, the

provided task support, and the level of complexity of both the format and the formalism. There-

fore, here we focus only on its suitability to describing Web APIs. Given the service properties

that it can describe and the fact that there are already a lot of solutions based on WSDL, this

Interface Description Language (IDL) is in general suitable for APIs. It would be necessary to

define a mapping for the resource-oriented Web APIs to operations, by combining the resource

and the HTTP method in order to define the corresponding operation. Furthermore, the existing

textual documentation would have to be transferred into WSDL. Finally, developers would need

to learn to deal with WSDL instead of simply reading a natural language description. Therefore,

we do not exclude WSDL as a possible description format.

WADL. In contrast to WSDL, the Web Application Description Language (WADL) [Had06]

was especially designed for describing RESTful services in a machine-processable way. It is also

XML-based and is platform and language independent. As opposed to WSDL, WADL models

the resources provided by a service, and the relationships between them in the form of links. A

service is described using a set of resource elements. Each resource contains descriptions of the

inputs and method elements, including the request and response for the resource. In particular,

the request element specifies how to represent the input, what types are required and any specific
10While conducting the two Web API surveys we did not find any APIs without documentation.

Web Services and Web APIs 34

HTTP headers. The response describes the representation of the service’s response, as well as

any fault information, to deal with errors.

In the case of Web API descriptions in WADL, the following service properties are specified –

resource, method and resource type, where a resource has parameters (in the request) and rep-

resentation (in the response). The resource URIs are defined starting from the resource base,

relative to each other, depending on the node nesting. In terms of the support that is provided

for common tasks, WADL is very similar to WSDL – based on the WADL description, invoca-

tion can be handled directly (see Chapter 4). Regarding discovery, there is no popular registry,

such as UDDI, for publishing the descriptions, however, composition support based solely on

the description formalism is better because the links between the resources are explicitly de-

fined. Authentication information is not directly described in WADL and has to be handled by

additional protocols on top, similarly to WS-Security for SOAP messages.

In terms of complexity, WADL and WSDL are very similar and are relatively simple, not con-

taining many elements or any complex nesting structures. WADL files are written in XML and

benefit from being machine processable, even though, that might require supplementary doc-

umentation in a textual form. Currently, neither WADL nor WSDL are widely accepted and

used for Web APIs and RESTful services [All11]. Instead the documentation is usually given

in natural language as part of a webpage (see Chapter 6). It is up to the developer to decide

what structure to use and what information to provide. However, plain text/HTML descriptions

do not support the automated interpretation of the service properties, which means that if a de-

veloper wants to use a particular service, he/she has to go to an existing description webpage,

study it and write the application manually. Therefore, current research proposes the creation of

machine-interpretable descriptions on top of existing HTML documentation by using microfor-
mats [KC06]. Microformats offer means for annotating human-oriented webpages in order to

make key information automatically recognisable and processable.

hRESTS. One particular approach for creating machine-processable descriptions for RESTful

services by using microformats is hRESTS (HTML for RESTful Services) [KGV08]. hRESTS

enables the marking of service properties including operations, inputs and outputs, HTTP meth-

ods and labels, by inserting elements and attribute-value pairs within the HTML. In this way, the

user does not see any changes in the webpage, unless the used stylesheet highlights these tags.

However, based on these annotations, the service can be automatically recognised by crawlers

and the service properties can directly be extracted by applying a simple transformation. The

HTML documentation, with the tags marking the service properties, contains the syntactical

information of the described Web API and therefore, no longer relies solely on human interpre-

tation.

hRESTS specifies only a very limited number of properties – service, operation, input, output,

HTTP method and labels. Therefore, this approach is very simple and with low complexity

Web Services and Web APIs 35

in terms of the description formalism and the format - HTML tags. However, its simplicity

exhibits some limitations, since there is no support for describing parts of the input or the output,

the endpoint of the API cannot be captured, and it cannot be described what the input and

output types are. This affects also the support that hRESTS provides for common service tasks.

Basic Web API discovery can be done automatically by recognising a webpage as a Web API

description and being able to identify the annotated service properties. However, there is no

support for composition and invocation still has to be implemented through realising a custom

client, especially since some key information such as the endpoint or how the input is transmitted

(as part of the HTTP body or as URI parameter) is missing (see Chapter 4). Authentication

information also cannot be described with the help of hRESTS, so it has to be handled as part

of the client application solution.

It should also be pointed out that hRESTS is not directly suitable for describing resource-

oriented APIs, but instead takes an operation-centric view. This can be solved by creating

derived operations by combining the used HTTP method and the resource [KVPM11] (see

Chapter 7). However, approaches, based on making existing Web API service descriptions

machine-processable by using HTML tags are simpler than creating descriptions from scratch

and more lightweight, since they involve only 5-6 tags, as opposed to WSDL and WADL. In ad-

dition, as already mentioned, they can be applied directly on already available documentation,

rather then creating new service description files from scratch, as in the case with WSDL and

WADL. The adoption by developers is also easier, since the creation of a machine-processable

Web API service description is equivalent to Web content creation or modification.

3.4 Semantic Descriptions of Web Services and Web APIs

This section focuses on research work related to the semantic description of Web services, ex-

ploring the potential for reusing and adopting the richness of approaches developed in this area.

Machine-processable service descriptions, such as XML-based files, support the creation, pub-

lication and consumption of services. However, the service descriptions remain on a syntactic

level, capturing the individual properties but containing no information about the actual mean-

ing of the performed operations or their inputs and outputs. As a result, finding and composing

services still requires manual effort [SWGS05]. In order to address this challenge, research on

Semantic Web Services (SWS) has been devoted to reducing the manual effort required for

manipulating Web services [FLP+06, MSZ01]. The main idea behind this research is that tasks

such as the discovery, negotiation, composition and invocation of Web services can have a higher

level of automation, when services are enhanced with semantic descriptions of their properties

Web Services and Web APIs 36

(see Figure 3.211). In particular, SWS apply inference-based techniques on formalised semantic

descriptions, in order to better support the analysis of Web services.

Semantics are specified through ontologies, which are the means to avoid the misinterpretation

of terms by formally describing a conceptualisation [Gru93]. Ontologies are formalised by using

a logical language, which enables machines to process the encoded knowledge and to derive

additional facts. There are different types of ontologies; some can have a simple form of a

taxonomy tree that relates terms by specialisation and generalisation relations, while others may

use complex logical expressions to describe terms in relation to each other. OWL [BvHH+04]

defines a formal language for defining ontologies. It is a W3C recommendation for describing

ontologies based on other W3C recommendations, RDF [Hay04] and XML. RDF is used for

modelling metadata and is a general method for conceptual description of information, based

upon the idea of making statements about resources in the form of subject-predicate-object

expressions (triples).

FIGURE 3.2: Combining SOA and the Semantic Web

Most SWS technologies use ontologies for capturing service-specific data models, which serve

as a basis for providing task automation support but also for tackling the interoperability problem

at the semantic level. These models provide concepts to populate the generic description service

template, which captures the main aspects describing the essence of a Web service, with specific

entities (e.g. Flight, Hotel) and functionalities (e.g. bookTrip). On the other hand, the actual

Web service characteristics, that define what a service is and what it looks like, can also be

captured in a service model ontology. Both the data model ontologies and the service model

ontologies are collectively referred to as Web service ontologies [SWGS05].

Since Web APIs are currently facing similar challenges as WSDL-based Web services, and

require even further manual effort due to the lack of machine-interpretable documentation, such

as an XML description file, research related to creating and processing SWS descriptions should

be carefully considered as a basis for semantically enriching Web APIs. In addition, if Web APIs

can be semantically described by directly applying or by adapting existing SWS formalisms,
11Source [DM08]

Web Services and Web APIs 37

this would support the reuse of already developed semantic-enabled discovery, composition and

invocation approaches.

Web Service Semantics. Generally four main types of semantics have been defined, that can be

included in order to enhance a service description [SVSM03, She03]. Each type of semantics

relates to a particular set of service features. In particular, these are:

1. Informational semantics, also referred to as data semantics, which relate to the data pro-

cessed by the service. These are usually expressed through mappings to ontology ele-

ments.

2. Functional semantics, which relate to the functionality of the service.

3. Non-Functional semantics, which capture non-functional characteristics such as Quality

of Service (QoS), pricing, security or reliability.

4. Execution semantics, which pertain to the executional behaviour of the service.

All SWS approaches cover these four types of semantics, or at least a subset of them, thus

enabling the automated processing and reasoning over certain service features. Naturally, there

is a trade-off between the expressivity of the description models and the complexity that has to

be taken into consideration.

Semantic Web Service approaches can be grouped into two main types, based on the two main

trends in the area. There are top-down approaches, which are driven by high-level views over

Web services and require the introduction of new models and description forms, and bottom-up

approaches, which rely on enhancing and enriching existing Web services technologies, instead

of suggesting a completely new solution. OWL-S [Mar04] and WSMO [RKL+05] are two top-

down approaches. In the following sections we also discuss some commonly used bottom-up

approaches (SAWSDL [FL07] and WSMO-Lite [VKVF08]).

DAML-S and OWL-S. DAML-S [ABH+01] represents an initial effort towards enabling the

automatic location of Web Services on the basis of their capabilities, which neither SOAP nor

WSDL are of any help for. Therefore, it covers the abstract description of the capabilities of the

service as well as the specification of the service interaction protocol, to the actual messages that

it exchanges with other Web Services. In particular, the Service Profile is used to describe the

functionalities that a Web Service wants to provide. For instance, based on DAML-S Paolucci

et al. [PKPS02] propose an algorithm for matching service advertisements and service requests,

with different degree of match depending on how well the request and the advertisement capa-

bilities overlap.

Web Services and Web APIs 38

DAML-S evolved into OWL-S [Mar04], which defines an upper ontology for semantically de-

scribing Web services. OWL-S enables different levels of expressivity and decidability, depend-

ing on what subtype of the Web Ontology Language (OWL) [BvHH+04] is used – OWL-Lite,

OWL-DL or OWL-Full. The high-level objective of OWL-S is to [MBM+07]: (1) provide a

general purpose Semantic Web service framework, (2) support automated service usage and

management by software agents, (3) build on existing Web and Semantic Web standards, (4)

support a complete service lifecycle.

As visualised in Figure 3.312, OWL-S consist of three main parts: 1) the Service Profile for

advertising and discovering services, which contains the name of the Web service, its provider,

a natural language description, and a formal functional description that is defined in terms of in-

puts, outputs, preconditions and effects; 2) the Service Model, which gives a detailed description

of a service’s operation and describes how the Web service works; and 3) the Service Grounding,

which provides details on how to access the service and how to interoperate with a service, via

messages.

FIGURE 3.3: OWL-S Main Concepts

The service profile supports manual service discovery, based on the natural language descrip-

tions, as well as automatic discovery, based on the formal functional description. The service

model provides information for determining whether the communication between a client and

the Web service can be carried out successfully. Finally, the service grounding defines the map-

ping between the semantic descriptions and technological implementation in order to conduct

the actual message exchange. One weakness of OWL-S is related to conceptual insufficien-

cies, in particular, addressing the inadequacy of the process description language [LRPF04].

Related to Web APIs, OWL-S provides a good basis for identifying the semantic information,

which needs to be included in the service description, in order to effectively support the discov-

ery, composition and invocation tasks. However, it needs to be investigated whether the level
12Source – OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/

http://www.w3.org/Submission/OWL-S/

Web Services and Web APIs 39

of complexity that OWL-S introduces makes it unsuitable for solutions in the context of Web

applications and APIs.

WSMO. Another SWS description formalism is the Web Service Modeling Ontology (WSMO)

[RKL+05]. It defines four top-level notions including: 1) Ontologies that define formalised

domain knowledge; 2) Goals that describe the client’s objective in using the Web service; 3)

semantic description of Web Services; and 4) Mediators for enabling interoperability and han-

dling heterogeneity. In contrast to other description formalisms, WSMO proposes a goal-based
approach for Semantic Web Services. A client formulates requests in terms of goals, which

formally describe the objective to be achieved, while abstracting from the actual technical im-

plementation. The task of the system is to automatically discover and execute Web services,

which satisfy the client’s goal. In this way, Web services are not described only in terms of

their capabilities but also in terms of the problems that they solve. This approach is supported

by the integrated mediators, which enable the handling of potentially occurring heterogeneities.

Figure 3.413 visualises the four main elements of WSMO.

FIGURE 3.4: The Top-level Elements of WSMO

WSMO features are claimed to be more advanced than OWL-S [LRPF04], including options

for detailed specification of non-functional properties, mediation for handling heterogeneity,

and description of choreography semantics. WSMO promotes a goal-driven approach, which

goes beyond the idea of merely annotating Web services, aiming to provide means of ex-

pressing service offers and needs. In addition, WSMO defines its own specification language

WSML [dBLK+05] that covers all ontology languages that are considered for the Semantic

Web, and provides reasoners for them, making it therefore widely applicable. Moreover, there

are implementations of execution environments for Semantic Web Services, namely WSMX as

the WSMO reference implementation (see www.wsmx.org) [FKZ08] and IRS as a goal-based

broker for Semantic Web Services [DCG+08].
13Source – Web Service Modeling Ontology (WSMO), http://www.w3.org/Submission/WSMO/

http://www.w3.org/Submission/WSMO/

Web Services and Web APIs 40

Similarly to OWL-S, WSMO provides details about the semantic information necessary for cre-

ating semantic descriptions of Web APIs, which support the automation of service tasks. In

addition, WSMO provides a new perspective to services by introducing the concept of goals.

Still, it is important to point out that both OWL-S and WSMO bring a certain level of com-

plexity, which requires developers with good ontological knowledge and experience in using the

formalisms. This somehow contradicts the current trends in Web API development, where the

majority of the descriptions are given in simple HTML and the technology is more accessible to

less-trained developers.

FIGURE 3.5: SAWSDL Elements and Their Relationship to WSDL

SAWSDL. A more lightweight description formalism is the Semantic Annotations for WSDL

and XML Schema (SAWSDL) [FL07], which currently is the only official W3C recommenda-

tion for Semantic Web Services. It defines a set of extension attributes for WSDL, which enable

the linking of semantic entities to the service description. Many of the concepts in SAWSDL are

based on an earlier effort WSDL-S [AFM+05]. SAWSDL consists of two parts: 1) Mappings

of XML schema definitions to ontology concepts, which specify the translation of data between

the semantic layer and the layer of technical implementation. In particular, liftingSchemaMap-

pings capture how to lift data represented in XML to its semantic counterpart. Conversely,

loweringSchemaMappings capture how to carry out the inverse process, which is to transform

data represented semantically into the XML representation the service expects. 2) Semantic

annotation of WSDL elements through references to ontology concepts done with the help of

modelReference. Figure 3.514 visualises the two main SAWSDL elements and how they relate

to the individual WSDL description elements.
14Source – Semantic Annotations for WSDL and XML Schema, http://www.w3.org/TR/sawsdl/

http://www.w3.org/TR/sawsdl/

Web Services and Web APIs 41

It is important to point out that SAWSDL does not actually specify a language or a model for

describing Semantic Web Services. In essence, what SAWSDL provides is the means to link

service properties to semantic annotations, as exemplified in Listing 3.2. It is a simple but

powerful method for enhancing WSDL descriptions with metadata.

1 <wsdl:operation name="CheckAvailabilityRequestOperation"
2 sawsdl:modelReference="http://www.exmaples.org/taxonomy/Categorization#Electronics"
3 ...
4 </wsdl:operation>

LISTING 3.2: Example of using SAWSDL for annotating a WSDL operation

SAWSDL defines a set of minimal extensions that allow to define the semantics of a service

or its parts, by pointing to concepts from externally defined semantic models. Even though the

resulting annotations are not as expressive as the OWL-S or WSMO ones and adding of semantic

information is limited to service properties associated with semantic concepts, several recent

works build on this lightweight SWS approach [VKVF08, KV08]. In the context of annotating

Web APIs, given that the service properties are identified within the HTML documentation, the

SAWSDL approach is very promising because it enables adding semantic information directly

on top, by linking service keywords to ontology elements.

WSMO-Lite. SAWSDL supports the development of lightweight service description formats,

in order to enable the creation of Semantic Web Service descriptions. However, SAWSDL only

provides the solution to how to add annotations, it does not specify the type and meaning of the

made annotations. WSMO-Lite [VKVF08] supports the lightweight descriptions of WSDL ser-

vices, by filling the SAWSDL annotations with concrete service semantics. WSMO-Lite defines

four aspects of service semantics including: 1) Information Model, which defines the data model

for input, output and fault messages. This type of annotations are visualised through the A1 and

A2 arrows in Figure 3.615; 2) Functional Semantics, which define the functionality, which the

service offers to a client when it is invoked. This type of annotations are visualised by the A3 and

A4 arrows; 3) Behavioural Semantics, which define details specific to a service provider, or the

service implementation or its running environment; and 4) Nonfunctional Descriptions, which

define nonfunctional service properties such as quality of service or price (A5). These service

semantics are linked to a WSDL description by applying the SAWSDL annotation approach.

In particular, WSMO-Lite adopts the types of annotations provided by SAWSDL and, therefore,

supports two types of annotations – reference annotations and transformation annotations. A

reference annotation points from a WSDL component (XML Schema message or type definition,

interface, operation, binding, service, or endpoint) to a WSMO-Lite semantic concept. A trans-

formation annotation specifies a data transformation in terms of liftings and lowerings. A major
15Source – WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web, http://www.w3.org/

Submission/WSMO-Lite/

http://www.w3.org/Submission/WSMO-Lite/
http://www.w3.org/Submission/WSMO-Lite/

Web Services and Web APIs 42

FIGURE 3.6: WSMO-Lite for Annotating WSDL

advantage of the WSMO-Lite approach is that it provides means for describing service seman-

tics without really being bound to a particular service description format (for example, WSDL).

As a result, service properties, for example, marked with hRESTS, in an HTML documentation

of a RESTful service can be used as annotation points for linking WSMO-Lite semantic con-

cepts in the same way as using service properties described in WSDL. In essence, WSMO-Lite

identifies the main kinds of semantics that can be provided for services and does not define a

service model by itself.

Approach Functional Non-Functional Informational Behavioural Processes
DAML-S / OWL-S yes yes yes yes yes
Capabilities Model yes no yes yes no
myGrid & SADI yes yes yes no no
ASWS yes no yes yes no
DIANE yes yes yes yes no
Semantic MOBY no yes yes no no
SWSO yes yes yes yes yes
WSDL-S yes no yes yes no
WSMO yes yes yes yes yes
COWS yes yes yes yes yes
QuASAR / ISPIDER yes no yes no yes
Web service ontology yes no yes yes yes
BPEL4SWS yes yes yes no yes
SAWSDL not explicitly not explicitly yes no no
FUSION Ontology yes yes yes no no
YASA via SAWSDL via SAWSDL via SAWSDL via SAWSDL no
MSM via WSMO-Lite via WSMO-Lite yes no no
ER Model yes yes yes yes yes

TABLE 3.1: Semantic Web Service Approaches

Further Semantic Web Service Approaches. Until now we described only a few popular SWS

approaches. However the research work in this area is quite rich and diverse. While the majority

of the approaches focus on describing the semantics of the inputs and outputs or the service

functionality, Cardoso, Sheth et al. [CSM02] argue that the quality of service metrics play an

Web Services and Web APIs 43

important role in the context of certain service tasks such as discovery and composition. There-

fore, Web services operational metrics need to be captured using a suitable model describing the

QoS metrics. QoS represents the quantitative and qualitative characteristics of an e-workflow

application, which are necessary to achieve a set of initial requirements. In particular, the au-

thors introduce a model for describing execution time, cost, reliability, etc. It is important to

point out that the introduced model does not contradict the approach followed in this thesis.

To the contrary, it can be used as an extension to MSM, in order to complement it with QoS

features.

Further SWS approaches include the Capabilities Model [OHE03], which is used for explicitly

describing what a service or an agent can do. The capturing of Web service capabilities supports

its advertising and discovery. DIANE is a framework for automating the discovery, composi-

tion, binding and invocation of services [KKRM05, KKRKS07]. The Semantic Web Services

Ontology (SWSO) is part of the Semantic Web Services Language (SWSL) [BBB+05], which

consists of formal conceptual definitions as well as individual Web services. Its goal is to en-

able reasoning about the semantics underlying Web services. A complete overview of currently

available SWS approaches is given in [PMZP12, CDM+04], which also provides a timeline

of how the individual solutions developed and a comparative analysis of the support that they

provide.

Table 3.1 provides an overview of a selection of common SWS approaches, comparing the

support that they offer for capturing different service semantics. This table is an adaptation of the

summary available in [PMZP12], listing only the SWS approaches applied on traditional Web

services and the coverage that they provide in terms of functional, non-functional, informational,

behavioural and process semantics. As can be seen the functional and informational semantics

are the two types that are most commonly covered. The following section focuses on describing

solutions for capturing semantics as part of Web API descriptions.

3.4.1 Semantic Web API Approaches

In contrast to research in the area of SWS, which has been quite prolific, as seen by the numer-

ous description solutions detailed in the previous section, the number of semantic frameworks

targeted at capturing Web API characteristics is relatively limited. This is probably due to the

fact that Web APIs have only recently achieved greater popularity and wider use, thus raising

the interest of the research community. In this section we discuss the two main approaches –

MicroWSMO and SA-REST, aiming to support a greater level of automation of common ser-

vice tasks through employing semantics. We also consider further description languages and

ontologies, including ReLL and ROSM.

Web Services and Web APIs 44

MicroWSMO. MicroWSMO [KV08] is a formalism for the semantic description of Web APIs,

which is based on adapting the SAWSDL approach. MicroWSMO uses microformats for adding

semantic information on top of HTML service documentation, by relying on hRESTS for mark-

ing service properties and making the descriptions machine-processable. It uses three main

types of link relations: 1) modelReference, which can be used on any service property to point

to appropriate semantic concepts identified by URIs; 2) liftingSchemaMapping and 3) lower-
ingSchemaMapping, which associate messages with appropriate transformations (also identi-

fied by URIs) between the underlying syntactic format such as XML or JSON and a semantic

knowledge representation format such as RDF. Therefore, MicroWSMO, based on hRESTS,

enables the semantic annotation of WebAPIs in the same way in which SAWSDL, based on

WSDL, supports the annotation of Web services.

FIGURE 3.7: Unifying SAWSDL and MicroWSMO through WSMO-Lite

In addition, MicroWSMO can be complemented by the WSMO-Lite service ontology speci-

fying the content of the semantic annotations (see Figure 3.716). Since both Web APIs and

WSDL-based services can have WSMO-Lite annotations, this provides a basis for integrating

the two types of services. Therefore, WSMO-Lite enables unified search over both Web APIs

and WSDL-based services, and tasks such as discovery, composition and mediation can be per-

formed based on WSMO-Lite and a shared service model, such as the Minimal Service Model

introduced in Chapter 7, completely independently from the underlying Web service technology

(WSDL/SOAP or REST/HTTP).

SA-REST. Another formalism for the semantic description of RESTful services is SA-REST

[SGL07], which also applies the grounding principles of SAWSDL but instead of using hRESTS

relies on RDFa [ABMP08] for marking service properties. RDFa enables the embedding of RDF

data in HTML by providing a set of attributes that can be used to insert metadata in an XML

language, in general, and in an XHTML Web API documentation, in the scope of our work.
16Source – MicroWSMO and hRESTS [KVF09]

Web Services and Web APIs 45

Similarly to hRESTS, SA-REST enables the annotation of existing HTML service documenta-

tion by defining the following service elements: service, operation, input message, parameter,

output message, HTTP method. Therefore, it implicitly defines a service model based on these

properties. In addition, it also includes the specification of lifting, lowering, or fault and linking

these to semantic entities.

MicroWSMO, in combination with hRESTS, and SA-REST represent two very similar ap-

proaches and the main differences are not the underlying principles but rather the implemen-

tation techniques. As already mentioned, the service characteristics that can be captured by

SA-REST are operation, input, parameter, output and HTTP method. Similarly to hRESTS, this

accounts for the low complexity of both the description formalism and the format. However,

this also affects the level of support for performing common device tasks. For instance, as is the

case with hRESTS, SA-REST supports the automated recognition of the HTML documentation

as a Web API description and the identification of the service properties. However, in terms

of enabling invocation, there are crucial elements missing, such as the endpoint and the way of

passing the input in the HTTP request. Similarly, authentication information cannot be captured

with SA-REST.

ROSM. The Resource-Oriented Service Model (ROSM) [FN10] ontology is a lightweight ap-

proach to the structural description of resource-oriented Web APIs, compatible with WSMO-

Lite annotations. It is a service model ontology that enables the annotation of resources be-

longing to a service. In turn the resources can be described as being part of collections and

having addresses (URIs) serving as endpoints for access and manipulation. The organisation of

resources in collections, which again belong to a service, allows capturing an arbitrary number

of resources and attaching semantic annotations to them by following the SAWSDL approach.

Furthermore, resources can have certain HTTP methods associated with them, which define

how it is possible to interact with a resource. The methods are realised in terms of operations

that are assigned to the request. To this purpose, ROSM17 enables the explicit modelling of

requests and responses with their associated aspects (e.g., parameters, response codes, etc.). In

summary, ROSM represents a simple ontology for describing resource-centred services, in terms

of resources, collections of resources, addresses and HTTP methods. The specific semantics of

a ROSM-based service description can be made explicit by using the WSMO-Lite ontology.

ReLL. Resource Linking Language (ReLL) [AW10] is a language describing interlinked REST

resources, and thus the service that can be accessed by interacting with those resources. It

is based on a service description metamodel consisting of a service that provides one or more

resources that have optionally a URI pattern. The URI pattern does not represent a fixed structure

for a URI but instead describes the constraints for resource unique identifiers. Each resource may

have representations, which are the serialisation of the resource in some syntax. In turn, each
17http://www.wsmo.org/ns/rosm/0.1/

http://www.wsmo.org/ns/rosm/0.1/

Web Services and Web APIs 46

representation can contain links relating one resource to another target resource. The explicit

description of links between resources is a unique characteristic of ReLL. The links are typed

and can be retrieved from representations through selectors that can be specified, for example,

through the XML Path Language (XPath)18. In addition, links follow the rules specified by a

protocol, including the method to be used for the request, plus additional information.

In summary, MicroWSMO (and hRESTS), SA-REST, ROSM and ReLL all provide a service

description model, which is used as a basis for adding semantic annotations. The models used by

MicroWSMO (through hRESTS – service, operation, input, output, HTTP method and labels)

and SA-REST (service, operation, input message, parameter, output message, HTTP method)

are very similar and take an operation view on Web APIs. As previously discussed, they provide

basic support for task automation but lack some key information, which would be required for

automatically completing the invocation process. In contrast, ROSM and ReLL take a resources-

based view, adopting a RESTful approach towards Web APIs. It is important to point that, even

though, these approaches assume that Web APIs follow the REST principles, they still define

an explicit service model, instead of relying on the architectural design decisions for interacting

with the service.

In the context of providing support for the invocation task, ROSM is unfortunately not very well

documented. However, it does define an HTTP method and provides support for describing how

the parameters are sent in the request – via the URI, the HTTP header or the HTTP body. What

is missing is the endpoint specification and a description of how the parameter values are used

to construct the HTTP request. The later is not a part of the service description model but is

required grounding information, which prescribes how the semantic Web API description can

be actually used to construct a request that can be processed by the server. ReLL, on the other

hand aims to create an interlinked network of resource representations, which can be explored.

In this context, invocation is reduced to being able to follow the links and transfer from one

resource, and its representations, to the next one. This is an adequate solution that works within

the scope of the ReLL-based work, however, it cannot directly be applied to the multitude of

existing individual Web APIs, which do not always take a resource-oriented view and for which

the relevant links remain to be defined.

Further Semantic Web API Approaches. ServONT is an ontology-based hybrid approach

where different kinds of matchmaking strategies are combined together to provide an adaptive,

flexible and efficient service discovery environment [BAM08]. Semantically-enriched frame-

works are considered key for enabling discovery and dynamic composition of services. In con-

trast, the ServFace project aims at creating a model-driven service engineering methodology for
18http://www.w3.org/TR/xpath/

http://www.w3.org/TR/xpath/

Web Services and Web APIs 47

an integrated development process for service-based applications19. Finally, the Simple Seman-

tic Web Architecture and Protocol (SSWAP) is the driving technology for the iPlant Semantic

Web Program20. It combines Web service functionality with an extensible semantic framework

to satisfy the conditions for high throughput integration [GSM+09]. SSWAP originates from the

Semantic MOBY project, which is a branch of the BioMOBY project [WL02]. Using SSWAP,

users can create scientific workflows based on the discovery and execution of Web services and

RESTful services.

Approach Functional Non-Functional Informational Behavioural Processes
MicroWSMO via WSMO-Lite via WSMO-Lite via WSMO-Lite via WSMO-Lite no
ServONT yes no yes yes not explicitly
SA-REST not explicitly not explicitly yes no no
ServFace yes no yes yes yes
SSWAP yes no no yes not explicitly
RELL no no no no no
ROSM via WSMO-Lite via WSMO-Lite via WSMO-Lite via WSMO-Lite no

TABLE 3.2: Semantic Approaches for Describing Web APIs

Table 3.2 lists all the semantic approaches that can be used for describing Web APIs. As can

be seen, none of the approaches provide support for capturing non-functional and process se-

mantics (the only exception is ServFace). In contrast, the majority focus on functional and

informational semantics, which are also crucial in the context of providing support for the most

commonly performed service tasks, such as discovery and composition. The current status of

the semantic Web API description approaches demonstrates that still more advanced topics such

as orchestration and choreography are not the focus of the research activities. To date, the pri-

mary concern is with identifying the type of functionality that the API provides and capturing

the informational semantics of the data that it processes.

It is important to point out that by analysing the characteristics of the semantic Web API ap-

proaches it does not directly become evident that the automated completion of the invocation

and authentication tasks represents a challenge, which to date remains unsolved. Invocation

and authentication were never an issue in the context of traditional Web services, which rely

on WSDL files and existing implementation libraries that enable the direct generation of client

stubs, which can then be used to call the service. Similarly, authentication is specified and han-

dled by the WS-Security stack. In contrast, Web APIs are all invocable directly over HTTP,

however the way of transmitting the input data, the used HTTP method, the way of composing

the invocation URI and the complete HTTP request, differ from API to API. This is due to the

fact that Web API development proliferates autonomously and it is up to the providers to decide

on the specific details of how to enable access to their resources. Therefore, the work presented

in this thesis focuses precisely on tackling these issues, which remain unaddressed by current

semantic Web API approaches.
19http://www.servface.eu/
20http://sswap.info

http://www.servface.eu/
http://sswap.info

Web Services and Web APIs 48

Even though, there is some initial research in the area of semantic Web API descriptions, which

can be used as a foundation for further work, none of the here discussed formalisms can be

directly adopted for the creation of semantic descriptions, which enable the automated com-

pletion of common service tasks. The existing formats for creating machine-processable de-

scriptions based on available HTML documentation, in particular hRESTS, do not support the

identification of all service elements commonly provided within a Web API or Web application

documentation. For instance, most service descriptions include information about the necessary

authentication, the response format, and examples. However, currently none of the available

formats can represent this information.

3.5 Integrating Web Services and Linked Data

Linked Data (LD) is used to refer to a set of principles [BCH08] describing the way for pub-

lishing and connecting structured data on the Web [BHBL09]. Following these principles, data

providers can publish and link their data, contributing to the development of a global data space

– the Web of Data. Linked Data suggests that the same principles that enabled the Web of

documents to become so popular should be applied to data as well. In this way, data coming

from diverse domains, which has previously been hidden away in databases or repositories, can

be made available on the Web and interlinked with existing documents.

The Web of Data provides the basis for new types of applications, which can operate on it. For

example, data can be explored with the help of a browser such as Tabulator [BlCC+06], by

following links to related data sources. In addition, it can be used for building Web applica-

tions [Hau09] or it can be searched and queried for a particular topic of interest by simultane-

ously covering a number of linked sources.

By applying the underlying principles of the Web, Linked Data uses the Web to create links

between data coming from different sources. The resulting published data is machine-readable,

with explicitly defined meaning, and is linked to/from other external data sets. There is a set of

rules21 defined for publishing data on the Web in a way that it becomes part of a single global

data space. These rules are summarised below:

1. Use URIs to name things.

2. Use HTTP URIs to enable looking up (dereferencing) the item identified by the URI.

3. Provide useful information, when dereferencing the URI to a thing (using standards such

as RDF and SPARQL [PS08]).
21http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

Web Services and Web APIs 49

4. Links to other URIs should be included, which enables the discovery of more data.

These principles should be carefully evaluated, in the context of Web APIs, since services can

operate on and manipulate the data, in return providing output information, which can be pub-

lished as Linked Data as well.

The main technologies behind Linked Data include HyperText Transfer Protocol (HTTP), Uni-

forms Resource Identifiers (URIs) and Resource Description Framework (RDF*). HTTP and

URIs are essential technologies for the Web, where URIs provide the means for identifying doc-

uments and other entities and HTTP enables retrieving resources or entity descriptions based on

the provided URI. These are supplemented by RDF, which provides a graph-based data model

for structuring and linking data that describes things in the world.

By using these three underlying technologies and by following the Linked Data Principles, data

providers can add their data to the global data space, where it can be discovered and used by

applications and users alike. There are three basic steps for publishing data sets as Linked
Data [HB11]:

1. Entities described by the data should be assigned URIs and these URIs, when retrieved

over HTTP, should result in the corresponding RDF representations.

2. RDF links to other data sources on the Web should be defined.

3. The published data should be supplemented by metadata.

More detailed guidelines about how to publish Linked Data on the Web are available in [BCH08].

By following these steps for adding datasets and adopting the Linked Data Principles, the W3C’s

Linking Open Data22 (LOD) project was developed.

Figure 3.823 illustrates the datasets participating in the LOD cloud. This initiative started with

only a few datasets and more and more datasets were linked, leading to the bootstrapping of

the Linked Open Data cloud. In general, anyone can publish a dataset by following the Linked

Data principles. Currently, the cloud contains diverse information, including data about people,

scientific publications, books, geographical locations, music, films, and many more.

The published data can be used as a basis for developing a wide variety of new applications,

which can dynamically analyse and interpret the data, browse from one data source to another

by following the links, or collect and query data related to a particular topic of interest. There are

two main types of Linked Data applications. The first ones are data interaction applications, such
22http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData
23Source – Linked Data - Connect Distributed Data across the Web, http://linkeddata.org/, last updated:

2011-09-19

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://linkeddata.org/

Web Services and Web APIs 50

FIGURE 3.8: Linked Open Data Cloud

as search, visualisation and analysis. The second ones are applications built on top of Linked

Data, e.g. applications that use the data to provide some added value to the user. In the context

of interacting with Linked Data, the majority of the developed applications focus on enabling

data browsing and visualisation. These include LD browsers with text-based presentation, such

as Sig.ma24, Sindice25 and Marbles26, LD and RDF bowsers with graphical visualisation, such

as Tabulator27, IsaViz28 and RDF Gravity29, LD visualisation toolkits, such as Visual RDF30 and

LOD Live31, and SPARQL visualisation, such as Gruff32 for AllegroGraph33 and SPARQL for

R34. Another set of applications focus on providing search support. These include indexers and

search engines. Some popular applications include DuckDuckGo35, FacetedDBLP36, Sense-

Bot37, and Longwell38. The applications built on top of LD are usually domain specific and
24http://sig.ma
25http://sindice.com
26http://mes.github.io/marbles/
27http://www.w3.org/2005/ajar/tab
28http://www.w3.org/2001/11/IsaViz/
29http://semweb.salzburgresearch.at/apps/rdf-gravity/
30http://graves.cl/visualRDF/?url=http://graves.cl/visualRDF/
31http://en.lodlive.it
32http://www.franz.com/agraph/gruff/
33http://www.franz.com/agraph/allegrograph/
34http://linkedscience.org/tools/sparql-package-for-r/
35https://duckduckgo.com
36http://www.ieee-tcdl.org/Bulletin/v4n1/balke/balke.html
37http://www.sensebot.net
38http://simile.mit.edu/wiki/Longwell

http://sig.ma
http://sindice.com
http://mes.github.io/marbles/
http://www.w3.org/2005/ajar/tab
http://www.w3.org/2001/11/IsaViz/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://graves.cl/visualRDF/?url=http://graves.cl/visualRDF/
http://en.lodlive.it
http://www.franz.com/agraph/gruff/
http://www.franz.com/agraph/allegrograph/
http://linkedscience.org/tools/sparql-package-for-r/
https://duckduckgo.com
http://www.ieee-tcdl.org/Bulletin/v4n1/balke/balke.html
http://www.sensebot.net
http://simile.mit.edu/wiki/Longwell

Web Services and Web APIs 51

include the BBC Sports39, ResearchSpace40 and Open Pharmacology Space41. However, over-

all the applications hardly go beyond aggregating, filtering and browsing data gathered from

different sources, leaving the potential of this massive data space mostly unexploited.

More importantly, in the context of Web APIs and services on the Web in general, the prolif-

eration of Linked Data clearly demonstrates how lightweight semantics can bring significant

benefits, which, in turn, justify the efforts that need to be devoted to making the annotations and

deploying the necessary machinery. Furthermore, this initiative is contributing to generating

a body of knowledge, in the form of lightweight ontologies and data expressed in their terms,

that can help to significantly reduce the effort for creating semantic annotations for services.

Therefore, Linked Data can be used as background information, for automatically suggesting

service annotations, but it also already provides a set of ontologies, which can directly be used

for semantically describing services. The resulting semantic descriptions of Web APIs can be

published by following the Linked Data Principles and be directly integrated in the Linked Data

cloud [PD10].

Some of the main approaches aiming to contribute to the integration of services on the Web and

Linked Data are described in more detail below.

The first step in this direction was made by implementing Linked Data interfaces for services,

e.g., in the form of the book mashup [BCG07], which provides RDF about books based on

Amazon’s API, or twitter2foaf42, which encodes a Twitter follower network of a given user

based on Twitter’s API. These are useful examples for the integration of information services

and Linked Data. However, they are based on manual implementation work and do not present

an overall solution. Still these initial efforts are valuable contributions both from the point of

view of the offered dataset as well as demonstrating the benefits of integrating Web APIs and

Linked Data.

Linked Data Services. Linked Data Services (LIDS) [SH10], are part of the new trend on

Linked Services [PD10], which aim to bridge the gap between Linked Data and services. LIDS

focuses on integrating existing data services (e.g. services that provide data) exposed through

Web APIs, with Linked Data principles [BHBL09] by having LIDS consume and produce RDF

triples. In particular, Web APIs are described with a lightweight service description model

where service inputs and outputs are specified using SPARQL graph patterns. The description

model is defined by a simple LIDS vocabulary43, which defines a class for LIDS and a property
39BBC Sports – Dynamic Semantic Publishing, http://www.bbc.co.uk/blogs/bbcinternet/2012/

04sports_dynamic_semantic.html
40ResearchSpace – a digital Wunderkammer, https://sites.google.com/a/researchspace.org/

researchspace/
41Open Pharmacy Space Platform, http://www.openphacts.org/

open-phacts-discovery-platform
42http://www.alexa.com/siteinfo/twitter2foaf.appspot.com
43http://openlids.org/vocab

http://www.bbc.co.uk/blogs/bbcinternet/2012/04 sports_dynamic_semantic.html
http://www.bbc.co.uk/blogs/bbcinternet/2012/04 sports_dynamic_semantic.html
https://sites.google.com/a/researchspace.org/researchspace/
https://sites.google.com/a/researchspace.org/researchspace/
http://www.openphacts.org/open-phacts-discovery-platform
http://www.openphacts.org/open-phacts-discovery-platform
http://www.alexa.com/siteinfo/twitter2foaf.appspot.com
http://openlids.org/vocab

Web Services and Web APIs 52

relating a LIDS to a SPARQL query by using the CONSTRUCT operator. A Linked Data

Service invocation is equivalent to running the so defined SPARQL query, where the input is

defined in the WHERE selector, in the form of a simple graph-pattern, the endpoint is within the

FROM operator and is the base URI of the service, and the resulting io-relation relates one of the

input variables to the output variables. The approach does not explicitly define a service model,

but rather encapsulates a Web API in a wrapper that assumes the existence of input, endpoint

and output. Authentication needs to be handled separately, since LIDS does not provide support

for describing an authentication mechanisms or submitting credentials.

In summary, LIDS are parameterised and formally described Web resources, which return RDF

when dereferenced via HTTP. The difficulty here lies in creating the actual Web API wrappers,

which currently have to be written manually by interpreting the existing HTML documentation.

More importantly, the approach requires an architectural shift where descriptions are seen as

SPARQL queries, which can be run against a global data space. The benefits of investing effort

into creating annotations and providing the required processing machinery still remains to be

seen.

LOS. Another approach targeted at supporting the integration of Linked Data and Web APIs

is Linked Open Services (LOS) [KNM10]. LOS aim to provide support for combining LOD

endpoints and Web APIs in general. In this context, services are described based on RDF and

SPARQL, and show how each service is a consumer and producer of RDF, by defining inputs and

outputs as SPARQL graph patterns. Existing work on linking service messaging with semantic

representations. e.g. lifting and lowering [KV08], is reused in order to describe how the RDF

input is mapped to the particular values and, in turn, how the produced output can be transformed

into RDF. The followed approach is similar to LIDS, where the original Web API interface is

wrapped in a new description. In the case of LOS, the wrapper includes the inputs and outputs

in terms of the expected/produced RDF (instead of, for example, Strings and XML/JSON). The

used service model is based on the one provided by hRESTS, with annotations of the inputs and

outputs. LOS does not include any specific work on implementation and authentication and the

required activities have to be implemented as part of the wrapper.

Current work in this filed also provides initial approaches towards supporting the creation of

Linked Services. Taheriyan et al. [TKSA12] (based on work on Karma [ADG+09]) presents a

solution that allows domain experts to create semantic models of services with the help of an

interactive web-based interface. In particular, the work focuses on semi-automatically building

semantic models that can be used for the annotation of Web APIs, including the lowering and

lifting specifications. Based on samples of Web API requests and a set of vocabularies, the

system invokes the service and creates a model that captures the semantics of the inputs, outputs

and their relationships. The results are visualised in a graphical interface that can also be used to

make corrections. In addition, the system also generates the lowering and lifting specifications.

Web Services and Web APIs 53

The service model in this approach is based on using SWRL44 to define the input and output

model, and the Karma knowledge model45. In addition to creating the semantic linked service

descriptions, the system provides support for storing them, searching with the help of SPARQL

queries, and invoking them. The main limitation of this work is that the solution allows using

only the HTTP GET method and is restricted to assuming that all inputs for service invocation

are embedded in the invocation URL. There is no clear description of how authentication is

handled it this context.

Saquicela et al. present a semi-automatic approach for annotating Web APIs in the geospatial

domain [SBC12, SBC11]. In particular the work focuses on creating syntactic descriptions of

Web APIs and semantically enriching their parameters, through the partial automation of the

process. Therefore, we discuss this approach in more detail also in Chapter 5 on Annotation

Approaches and Tools. However, the authors also introduce a service description model based

on – method (not denoting the HTTP method but rather the operation), input and output, as well

as invocation, input value and output value. As a result the description contains both the service

properties, as well as the values that would be required for the invocation. Semantic information

from DBpedia46 and GeoNames47 is used to enhance Web APIs with metadata through defining

Parameters that represent the semantic annotations of inputs and outputs. The presented work

is not especially focused on supporting invocation and authentication, therefore, these are not

discussed in much detail.

A final approach that needs to be mentioned is offered by Verborgh et al. [VSD+12] who in-

troduce RESTdesc, as a means for capturing the functionality of hypermedia links in order to

integrate Web APIs, REST infrastructure, and the Linked Data. The idea is to enable intelligent

agents to get additional resources at runtime from the functional description of the invoked API.

RESTdesc uses N3 notation to express the service description. Similarly to LIDS, LOS, and

Taheriyan et al., it can model the relationships between the input and output attributes.

In summary, there are currently two main groups of approaches aiming to enable the integra-

tion of Web APIs with the Linked Data cloud. The first one focuses on annotating the ser-

vice attributes using concepts of known ontologies and publishes the service descriptions into

the cloud [PD10, ADG+09]. The second one is based on wrapping the APIs in order to en-

able them to communicate at the semantic level so that they can consume and produce Linked

Data [SH10, KNM10]. These approaches represent an important milestone towards enabling

the integration of Web APIs and the Web of Data, however, they do not directly offer a solution

to task automation problems, especially focusing on invocation and authentication.
44Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
45http://isi.edu/integration/karma/ontologies/model/current
46The DBpedia Ontology, http://dbpedia.org/Ontology
47GeoNames Ontology, http://www.geonames.org/ontology/documentation.html

http://www.w3.org/Submission/SWRL/
http://isi.edu/integration/karma/ontologies/model/current
http://dbpedia.org/Ontology
http://www.geonames.org/ontology/documentation.html

Web Services and Web APIs 54

3.6 Summary

This chapter provides an overview of existing research work related to creating semantic Web

API descriptions. We draw a parallel between traditional Web services and Web APIs by ex-

ploring the existing solutions that support individual steps or the complete lifecycle of services,

with or without the help of semantics. In particular, we summarise current approaches towards

syntactically describing Web services and Web APIs. These approaches lay the foundation for

the employment of semantics as a means for providing a higher level of abstraction that enables

service processing based directly on individual service characteristics, instead of on technical

details. We discuss common SWS frameworks and some semantic Web API solutions. We pro-

vide a comparative overview of the types of semantics that each approach covers and identify

gaps in the corresponding solution support.

In summary, current research in the area of SWS and semantic Web API descriptions provides

a foundation, which can be extended by approaches and tools particularly targeted at handling

the challenges faced by Web APIs, which have up to date remained unaddressed. Developments

in the area of Web API invocation and description are marked by two main trends. The first

one is simplicity – visible through the autonomous development based on a simple technology

stack (URIs and HTTP) and a simple, widely accessible description form (HTML webpages).

This trend is recognisable also in the existing semantic Web API approaches, which are very

lightweight and not as complex as solutions in the context of SWS, such as WSMO and OWL-S.

The second trend is the integration of Web APIs with Linked Data – demonstrated by the grow-

ing number of mashups and applications48 created on top of Web APIs and the increasing efforts

towards bridging the gap between Web APIs and Linked Data.

Since the approach that we follow is based on developing a semantic Web API description

model, which enables the automation of the invocation and authentication tasks, we give a

summary of the existing service description models and the level of support that they provide.

Table 3.3 includes an overview of the approaches discussed in this chapter, giving details on

whether they include a service description model, if it is operation- or resource-based, if there is

any work related to supporting the invocation, how is the grounding realised and which service

properties are enhanced with semantic information. It is important to point out that some of

the discussed solutions actually offer only a model (for example, ROSM), while others propose

approaches (LIDS) and complete systems (Taheriyan et al.). Still we compare these based on

the models that they use to specify what a service is and the resulting task support.

As can be seen, there are different ways of approaching the definition of a service description

model. For some of the offered solutions the model is the essential contribution, while for others
48Currently there are 6812 mashups and Web applications and their number is constantly growing, source – pro-

grammableWeb, http://www.programmableweb.com/mashups, viewed 10.10.2012

http://www.programmableweb.com/mashups

Web Services and Web APIs 55

Approach Explicit Service Model Operation-based Resource-based
MicroWSMO/hRESTS MSM yes no
SA-REST SA-REST Model yes no
ROSM ROSM no yes
ReLL ReLL metamodel no yes
LIS implicit yes no
LOS MSM yes no
Taheriyan et al. SWRL&Karma KM yes no
Saquicela et al. yes yes no

Approach Invocation Support Grounding Semantic Annotations
MicroWSMO/hRESTS insufficient details lifting/lowering via MicroWSMO
SA-REST insufficient details lifting/lowering yes
ROSM insufficient details unclear via SAWSDL/MicroWSMO
ReLL implicit via defined links NA no
LIS via SPARQL and wrapper as part of the wrapper on input and output
LOS via wrapper lifting/lowering on input and output
Taheriyan et al. limited support lifting/lowering on input and output
Saquicela et al. test invocation explicit mapping on input and output

TABLE 3.3: Service Description Models for Web APIs

it is a means to supporting a certain task. However, for all of the here discussed work it is es-

sential to specify what the particular Web API characteristics are and what makes out a service,

since theses provide the foundation for the developed approaches. This also indicates that re-

lying on the REST architectural principles is insufficient and formally determining the relevant

service properties gives the necessary basis for developing solutions related to processing and

interacting with Web APIs. In summary, as shown by the overview of existing approaches, all

solutions related to automating the use of Web APIs to some extent rely on a service descrip-

tion. Furthermore, currently most of the solutions take an operation-based view on APIs, which

demonstrates that RESTful services are not central both in the context of designing APIs and in

providing approaches and tools that support their use.

In the context of invocation, most description models do not include some of the information that

is actually required, such as SA-REST and MicroWSMO, while others hardcode the solution as

part of the implementation of the wrappers. Currently the most extensive invocation solution

is provided by Taheriyan et al. and it is limited to Web APIs that can directly be invoked

via HTTP GET and a parameterised URI, which basically reduced the work of an invocation

engine to creating and processing the GET HTTP request and response. The grounding support

is frequently realised through the definition of lifting and lowering transformations, and the

semantic annotation of service properties is often limited to inputs and outputs.

Overall, neither the service description models, nor the existing invocation solutions provide

support with wide coverage, which can be used to deal with the majority of the currently avail-

able APIs. The description models miss key service characteristics or are suited only for a subset

of the Web APIs. Similarly, the invocation support is limited to custom implementations or to

very basic cases. Furthermore, none of the discussed solutions consider authentication support.

Web Services and Web APIs 56

The related work clearly demonstrates that in the context of Web APIs, there still remain quite a

few challenges that are unaddressed by existing approaches. This is especially true for providing

support for completing the invocation and authentication tasks. The chapter is concluded by a

discussion of current trends in the area of Web API development.

In the following chapter we explore work related to Web API invocation and authentication, and

use it as a foundation for deriving further objectives for developing an approach towards creating

semantic Web API descriptions.

Chapter 4

Invocation and Authentication
Approaches

In the context of developing service-oriented applications, the discovery of services, ranking and

selection of the results, and the creation of compositions are fundamental but also time consum-

ing tasks. However, none of the tasks influence the successful usage of Web APIs as much as

providing proper invocation support. Even if a suitable Web API is known or found and the data

required to make a service request is available, the API cannot be actually used without support

for invoking it. While for traditional Web Services (WS) based on the WSDL description, invo-

cation can be handled directly without extensive manual effort, for most APIs the server requests

and responses have to be realised through individual implementation solutions. The same holds

for retrieving data based on a composition of Web APIs. Some providers address this difficulty

by offering individual clients for using a particular Web API, however, this approach has rather

limited coverage and the majority of the Web APIs require that developers interpret the exist-

ing documentation and implement customised invocation solutions. Therefore, in this chapter

we focus on exploring existing approaches that support Web service and Web API invocation.

Furthermore, many providers restrict the access to their services by requiring some form of au-

thentication. Actually, more than 80% of the APIs require authentication (see Chapter 6), a fact

that is commonly ignored by existing Web API software infrastructures. Therefore, we also

provide an overview of commonly used authentication approaches in the context of Web API

invocation.

In particular, this chapter contains two main sections – one on invocation approaches and solu-

tions, and one on authentication. As in the previous chapter we explore work that has already

been done in the context of traditional Web services and draw a parallel to the solutions devised

especially for handling Web APIs. In particular we analyse invocation approaches in terms of:

• The type of service that is supported;

57

Invocation and Authentication Approaches 58

• The level of support;

• In the case of semantic solutions, the ways of handling lifting and lowering.

We conclude with a brief discussion of the current state of invocation and authentication solu-

tions and derive a set of objectives that are to be met by the approach followed throughout this

thesis.

4.1 Web API Invocation

Automated invocation in the context of “traditional” Web services has not been prominently ad-

dressed by semantic Web service researchers because of the solutions and libraries that provide

direct support based on WSDL. In particular, invocation done directly on the level of WSDL

and SOAP is well supported by a variety of frameworks and implementations (see following

section). Invocation based on semantically annotated WSDL files is handled with the help of

lifting and lowering transformations. In this section we give an overview of the main invocation

tools and describe existing efforts towards supporting the dynamic invocation of Web services,

which presents the challenge of identifying the services to be invoked at runtime. We continue

by identifying the main reasons that hinder us from adopting invocation solutions that were de-

vised in the context of Web services to also enable Web API invocation and, therefore, focus

in particular on research targeted specifically at enabling Web API invocation. Finally, we con-

clude this section by analysing the invocation support provided by existing Web API description

models.

4.1.1 WSDL-based Web Service Invocation

Web services based on WSDL and SOAP have for a long time dominated the world of services

on the Web, even though, they are currently being overshadowed by the proliferation of Web

applications and APIs. The invocation of Web services relies on the information provided in

the WSDL documentation that allows for the decoupled definition of the abstract functional

characteristics of a Web service and their specific binding to a particular implementation. The

part describing the specific implementation defines how the service can be accessed using a

particular communication protocol, commonly SOAP, including the service endpoints and their

protocol bindings (for more details on WSDL see Section 3.1).

Invocation based on WSDL is relatively well supported, even though, the implementation sup-

port provided for WSDL 2.0 [W3C07a] is somewhat more limited and offered by fewer libraries

than the one for WSDL 1.0 [W3C01]. In this section we focus mostly on discussing existing

Invocation and Authentication Approaches 59

FIGURE 4.1: Automated WSDL-based Invocation

solutions based on Java, since it provides the richest and most commonly used implementa-

tions, and because this is the programming language that we used for developing our own ap-

plications. Library implementations based on WSDL such as Apache Axis1 or Apache Web

Services Invocation Framework (WSIF) [DMS+01]2 take the Interface Description Language

(IDL) file and generate the necessary wiring such as stubs and implementation skeletons or

templates, for implementing a Web service client within a specific programming language. Fur-

ther implementation solutions include GLUE3, SOAP::Lite for Perl4 and simple tools such as

Generic SOAP Client5 that directly support the SOAP message generation. Figure 4.16 shows

the general approach towards automated WSDL-based invocation [Cer02], where the complex-

ity of marshalling parameters and executing remote procedure calls (RPC) is hidden from the

programmer and the generated code overcomes the necessity to have any knowledge or to ma-

nipulate the raw SOAP or XML messages. In particular, the stub code on the client side is

automatically generated based on consuming an interface description of the invoked function,

expressed in WSDL. The stub wraps the function from the server side and offers it as a local

function to the client. Therefore, based on the operations, inputs, outputs, their types, service

ports/endpoints and specific bindings described in a WSDL file and benefiting from the existing

tool implementation, Web service invocation based on WSDL can be performed automatically.

Dynamic WS invocation. However, the task of invoking Web services becomes more chal-

lenging when the necessity arises to be able to dynamically change service providers instead of
1http://axis.apache.org/axis2/java/core/
2http://ws.apache.org/wsif/
3http://www.themindelectric.com
4http://www.soaplite.com
5SOAPClient.com
6Source – SOA adventures, Part 1: Ease Web services invocation with dynamic decoupling [Dav05]

http://axis.apache.org/axis2/java/core/
http://ws.apache.org/wsif/
http://www.themindelectric.com
http://www.soaplite.com
SOAPClient.com

Invocation and Authentication Approaches 60

hardwiring them via the generation of stubs at design time. The majority of current Web ser-

vice client frameworks rely strictly on pre-generated service invocation code on the client-side

that is not exchangeable at run time. In that sense, it can be argued that if service providers

are hardwired into the service consumers application code, producers and consumers cannot by

any means be considered loosely coupled resulting in the need to provide support for dynamic

service invocation [LRD09].

There are a number of approaches and implementations targeted at supporting at least to some

extent the dynamic invocation of Web services. Apache WSIF provided the first solution incor-

porating the idea of dynamic service invocation [DMS+01]. It is a step in the right direction,

even though the possibilities for exchanging service providers at run time is somewhat limited.

In particular it requires that the exact signature of the WSDL operation to invoke is known in

advance and has some obstacles when it comes to using complex XML Schema types as service

parameters or return values because they require additional coding and need to be mapped to an

existing Java object beforehand.

A more extensive solution is provided by the Apache Axis 2 [The12a] framework that offers

more flexibility and more options for realising the invocation than WSIF. Axis 2 supports dy-

namic invocation through a set of APIs but requires the client to create the complete SOAP body

and to craft the input for the requests itself. It supports client-side asynchrony and despite the

fact that it still depends on the usage of stubs, it enables the swapping of services at run time,

if the client provides the entire payload for the invocation. In addition to supporting SOAP, it

also has a well developed REST stack. Similarly to Axis 2, Codehaus XFire [Cod08] and its

successor – Apache CXF [The12b], rely on static and pre-generated components to access Web

services, therefore, catering for little support for dynamic invocation scenarios.

JAX-WS (Java API for XML-based Web Services) [KG07], the followup of JAX-RPC [JSR03]

is implemented as part of the Apache CXF project, focusing mainly on WSDL-to-operation

mappings. It also provides HTTP binding support, in addition to SOAP, so that the communica-

tion can be realised directly over HTTP. Therefore, one can directly send XML over HTTP. In

this sense, for a restricted number of Web APIs with a WSDL description, which rely on XML

for representing the inputs and outputs, this framework would constitute an implementation so-

lution.

Finally, in terms of enabling dynamic service invocation, a different approach has been proposed

by Nagano et al. [NHOH04], who rely on using static stubs but provide more flexibility by

binding them to more generic interfaces instead of service-specific ones. Therefore, one stub

can be used to invoke any service with a similar interface. BPEL [MVD12] enables the dynamic

swapping of a WSDL file by the using the Partner Link element. If an exchange is made,

the new WSDL files is automatically wrapped and integrated within the current process. The

DAIOS [LRD09] framework represents a main contribution by providing a client-side service

Invocation and Authentication Approaches 61

framework that features a fully expressive and easy to use dynamic interface, works entirely

message-oriented, has full support for non-blocking communication and supports SOAP-based

services and Web APIs. In the context of Web APIs, the user can specify an example request

instead of the WSDL file. This example is used to generate a parameterised URI, which is filled

with the corresponding values in order to perform the invocation.

Up to now we have discussed invocation approaches, which are based on WSDL descriptions.

As can be seen, the support in the context of WSDL in combination with SOAP is quite ex-

tensive. This includes a number of systems that also support dynamic invocation. In contrast,

there are no invocation solutions that have been solely designed to support Web APIs. Instead

the systems that provide some level of support, offer this as an additional functionality. Within

JAX-WS, Web APIs can be invoked based on XML messaging and HTTP communication, given

a WSDL description. DAIOS represent the most advanced solution in the context of Web APIs

and enables the invocation based on parameterised URIs. Dynamic invocation, specifically in

the context of Web APIs, is still mostly out of the research scope. This is mainly because of

the difficulties faced when trying to provide some level of support for individual API invoca-

tion, without even considering the dynamic elements. In summary, existing systems that support

Web service invocation based on WSDL are unsuited for being directly adopted for Web APIs.

This is mainly because the solutions do not explicitly focus on Web APIs and as a result the

support is limited to a particular subset, thus not providing wide coverage or a general solution.

4.1.2 Semantic Web Service Invocation

As already introduced in Section 3.4 the main objective of research in the area of Semantic Web

Service (SWS) technologies is to enable the automation of common service tasks such as dis-

covery, composition and invocation by providing ontology-based semantic descriptions for each

service, comprising a formal description of the service’s functionality, non functional aspects,

and external behaviour. Specifically in the context of SWS invocation WSMX [FKZ08] and

IRS-III [DCG+08] represent two main environments for invoking services described through

the WSMO paradigm. In the context of OWL-S based approaches, the OWL-S virtual ma-

chine [PASS03] and the OWL-S API [SP04] enable the invocation of OWL-S based services.

The Web Service Execution Environment (WSMX) [FKZ08] is the result of the substantial effort

of the SWS research community to develop engines and frameworks able to interpret and handle

WSMO descriptions. It represents one of the reference WSMO-based execution engine imple-

mentations and is also one of the implementations of Semantic Execution Environments (SEE)

being standardised within OASIS [NPDZ08]. WSMX is a SEE that aims to support invocation,

as well as discovery, composition, mediation and selection, based on a set of user requirements.

Invocation and Authentication Approaches 62

Each layer supports tasks with an increasing level of complexity and addressing different stake-

holders. The invocation support is implemented as part of the middle layer, which provides

brokering facilities necessary for manipulating semantic Web service descriptions. This layer

comprises components for discovery, selection, data and process mediation, choreography, or-

chestration, grounding, and transport handling. The execution environment was not specifically

developed to support invocation but is rather designed around a set of different execution sce-

narios such as goals achievement and service selection. As a result somewhat heterogeneous

components with different levels of maturity are bound via common interfaces and a shared

overall architecture, aiming to support a number of predefined Web service use cases.

Another service execution environment is the Internet Reasoning Service (IRS-III) [DCG+08]

that supports service invocation, among other tasks, by serving as a broker-based platform that

mediates between clients and service providers, thus enabling their integration. The platform in-

corporates the WSMO conceptual model and provides additionally a set of tools to support the

SWS developer at design time in creating, editing and managing a library of semantic descrip-

tions as well as publishing and invoking Semantic Web Services [DCG+08]. Since the IRS-III

is aligned with WSMO, it is based on contemplating Goals, Web Services, Mediators, as well

as Choreography and Orchestration of services. In IRS-III the Web service invocation is capa-

bility driven, based on the underlying goal-centric invocation mechanism. Therefore, a client

application can simply ask for a goal to be solved and IRS-III selects an appropriate service,

invoking the associated Web service in turn. The grounding declares the operations involved in

the invocation (communication primitives) and the associated mappings to the implementation

level. More specifically, each operation input and output is associated with a lifting or lowering

function. The grounding also relates to information about the corresponding publishing plat-

form. The platform is not restricted to handling only WSMO-based services but has an OWL-S

import mechanism [HDM+04]. In addition, IRS-III is interoperable with further WSMO im-

plementations, including WSMO studio [DSK+07] and WSMX, facilitated through a common

API.

The OWL-S Virtual Machine (OWL-S VM) [PASS03] provides a general purpose Web service

client for the invocation of a Web service based on the process model provided by OWL-S. The

main functionality offered by the OWL-S VM is to control the interaction between Web ser-

vices based on the process description, captured using OWL-S. In particular, the OWL-S VM

executes the process model of a given service by going through the process model while respect-

ing the OWL-S operational semantics and invoking individual services represented by atomic

processes. During the execution, the OWL-S VM processes inputs given by the requester and

outputs returned by the provider services, handles the control and data flow of the composite

process model, and uses the grounding to invoke WSDL based web services when needed. The

grounding can be created with the help of WSDL2OWL-S [PASS03] that provides transition be-

tween WSDL and OWL-S, where the results of this transformation are a complete specification

Invocation and Authentication Approaches 63

of the grounding and partial specification of the process model and profile of OWL-S. In sum-

mary, the OWL-S VM is a generic execution engine, which can be used to develop applications

that need to interact with OWL-S Web services.

OWL-S API [SP04] is a Java API that supports the majority of the OWL-S specifications. It

provides an API for programmable access to create, read, write, and execute OWL-S atomic

as well as composite services. The implemented library provides a basic process execution en-

gine that can execute atomic processes and composite processes. It has been used as the basis

for developing an execution framework for Semantic Web Services, based on service execution

agents (SEA) [LB07]. SEA use context information to adapt the Semantic Web Services execu-

tion process to a specific situation, thus improving its effectiveness and providing a faster and

better service to its clients.

One further solution addresses the semantic Web service invocation problem by employing

a process execution engine. MWSCF – METEOR-S Web Service Composition Framework

[SMSV05], is a framework for composing semantic Web processes. The composition is based

on Semantic Process Templates (SPTs), which enable the semantic definition of each activity

involved in a process. With an SPT, an executable process can be generated, where each activity

is bound to a concrete Web service implementation, which conforms to the semantics of the

activity. The mapping between a process and supporting Web services is based on the semantic

information of the template and the semantic annotations in SAWSDL, on the Web service side.

The SPTs, with the mapped Web services are used to generate an executable process specified

in BPEL4WS (Business Process Execution Language for Web Services) [CGK+03], which can

in turn be executed in any BPEL execution engine. This approach shows how SWS invocation

can be solved as part of process composition solutions.

Similarly, Cardoso et al. [CS03] address the challenge of the composition of workflow processes

based on Web Services. This work is also a part of the METEOR-S project, which builds on

earlier experiences in developing a METEOR workflow management system with the emerging

Web Services and Semantic Web technologies. The developed approach targets to enable the

efficient discovery of Web services based on functional and operational requirements, and to

facilitate their integration as part of executable processes. However, in contrast to previous so-

lutions, it takes into account QoS aspects such as execution time, cost, and reliability [CSM02].

In summary, in the context of supporting the invocation of SWS there are some quite compre-

hensive systems that not only take a semantic Web service description, perform the lifting and

lowering to a specific grounding, for processing the actual service request and responses, but

also support more complex tasks such as choreography and orchestration. There are solutions

that support OWL-S, WSMO and SAWSDL and all the frameworks take care of the data trans-

formations (i.e. lifting and lowering) based on the provided semantic descriptions. Overall,

the SWS invocation is covered by comprehensive solutions that have a high level of support.

Invocation and Authentication Approaches 64

However, their direct applicability in the context of Web APIs is doubtful. First of all the re-

quired input is semantically annotated WSDL files, which as we have already seen, are not really

suitable for describing Web APIs. In addition, WSDL, to start with, is not widely adopted for

describing Web APIs. In fact, none of the APIs that we analysed (see chapter 6) had a WSDL

of WADL file. Finally, the discussed solutions are not really meant for a Web environment, in

the context of supporting the development of client applications. In the following section, we

present work related directly to Web API invocation.

4.1.3 Web API Invocation

This section provides an overview of Web API invocation approaches. We differentiate between

approaches for Web APIs based on the REST principles, semantic approaches, and approaches

based on platforms and mashup frameworks. Furthermore, in section 4.1.1 we already covered

two approaches that partially support HTTP and URI-based Web API invocation, as part of

WSDL-based frameworks.

Currently, when a developer wants to use a particular Web API he/she has to find the documenta-

tion, read through it and interpret it, create a custom client application, which has to be changed

every time that the interface is changed, and which is rarely reusable or compatible with further

invocation implementations. This situation is due to the fact that the majority of the APIs on the

Web are described in natural language, without conforming to any particular guidelines about

the format or the level of detail. As a result all descriptions are structured differently, contain

different information, and sometimes even miss crucial elements such as the used HTTP method

(see Chapter 6). Therefore, the development of a common shared approach that supports invo-

cation and provides wide coverage, given the current heterogeneity, presents a challenge. As

we have seen in this chapter, this situation is aggravated by the fact that most approaches that

provide a Web API description model actually do not cover the information necessary to support

invocation.

In this section we differentiate between approaches that provide invocation support on the level

of implementation and syntactic processing, and approaches that enable automation through the

use of metadata. On the syntactic level, the creation and processing of HTTP requests and re-

sponses, defining how the input is transmitted and how the output is interpreted are required.

The semantic level requires the lifting and lowering of the data and the specifying of the com-

munication protocol with the server. However, it enables processing based on the meanings of

the inputs and the outputs, abstracting from the particular format, providing a higher level of

automation in comparison to the support of systems based on enabling the construction of the

HTTP messages.

Invocation and Authentication Approaches 65

RESTful Invocation. The automated invocation of Web APIs would not present such a chal-

lenge if all APIs would strictly follow the REST architectural design principles [Fie00]. REST-

ful APIs are based on resources, which are identified by global IDs – typically using URIs (see

Section 3.2). The manipulation of resources or collections of resources is usually done over

the HTTP methods (GET/ POST/ PUT/ DELETE) and the format of the output is determined

via content negotiation over the supported media types. Unfortunately, as our survey of Web

APIs and their characteristics [MPD10a] points out, currently about one third of the APIs are

resource-centred and the majority are not truly RESTful (see Chapter 6). Therefore, RESTful

invocation and Web API invocation, in general, need to be supported by more extensive tooling.

REST specifies how the API is realised and how the communication with it should be conducted.

However, when it comes to finding suitable services, creating compositions and invoking them,

this specification is not sufficient in order to enable a fully-automated interaction.

The Web Application Description Language (WADL) (see Section 3.3) [Had06] is especially

designed for describing RESTful services, capturing interface details based on the exposed re-

sources, the access endpoints, the available HTTP methods, and the corresponding request pa-

rameters and response representations. WADL use is backed up by development support such

as the one provided by JAX-RS7, which is a Java API that provides support for creating Web

services according to the REST architectural pattern. JAX-RS uses annotations, to enable the de-

velopment and deployment of Web service clients and endpoints, which can be realised directly

by using its Jersey8 implementation. Another example is soapUI9, which supports invocation as

part of functional testing via a graphical interface. However, despite the fact that WADL could

be the solution for eliminating the current heterogeneity of documentation content and structure,

it is unfortunately rarely used and providers prefer to describe Web APIs directly in HTML. In

fact, a Google search for “filetype:WADL” delivers only about 200 results10, not all of which

represent actual services. Furthermore, it is suitable for describing only about one third of the

Web APIs, namely, the ones that are defined in terms of resources and not operations [MPD10a].

“Pipe”-based and Platform-based Solutions. The most widespread Web API invocation so-

lutions are based on the “pipes”-approach, where a user interface allows for composing a set of

services, which are pre-hard wired into the mashup framework. Example systems include Yahoo

Pipes, Google Mashup Editor currently available as part of the Google App Engine, DERI Pipes,

and more extensive solutions like IBM Mashup Center11. DERI Pipes provides a graphical en-

vironment for transforming and combining data on the Web. It supports RDF, XML and JSON,

where the data aggregation is done with the help of scripting languages such as SPARQL and
7http://cxf.apache.org/docs/jax-rs.html
8http://jersey.java.net/
9http://www.soapui.org

10Search done on 30.08.2013, with the first page of matches being Facebook pages of people whose family name
is Wadl.

11http://pipes.yahoo.com/pipes/, http://code.google.com/appengine/, http:
//pipes.deri.org/, http://www-01.ibm.com/software/info/mashup-center/

http://cxf.apache.org/docs/jax-rs.html
http://jersey.java.net/
http://www.soapui.org
http://pipes.yahoo.com/pipes/
http://code.google.com/appengine/
http://pipes.deri.org/
http://pipes.deri.org/
http://www-01.ibm.com/software/info/mashup-center/

Invocation and Authentication Approaches 66

XQUERY. The result of the “Pipeline” is an output stream of data (e.g. XML, RDF, JSON) that

can be used by further applications. When invoked directly in a browser, the user is presented

with a standard GUI for entering the parameter values and browsing the results. The drawbacks

of using such a system are the lack of flexibility, in terms of the fixed client application, its user

interface and the available functionality, which is predefined by the framework implementation.

Furthermore, additional Web APIs can not always be integrated into the framework and if that

is possible, there is some work involved in adding the particular service in the form of coding a

wrapper and implementing the framework interfaces for realising the communication.

Web API invocation is handled as part of service composition in [Pau09], where BPEL is ex-

tended in order to provide RESTful service support. A dynamic invocation approach is pre-

sented in [CLL+10], where the research is based on the introduction of the new HTTP binding

in WSDL 2.0 as a promising approach for wrapping a RESTful service and then describing its

interface using the WSDL language [Chi07]. However, from a practical point of view, a wide

adoption of such an approach is yet to be seen [Pau09]. The newest trend in the area of API in-

vocation is marked by the development of platforms that support only a predefined set of APIs,

such as the solution offered by the Try it function of the Google APIs Discovery12 or by the

test invocation of Mashery13. These implementations are a step in the right direction but the

coverage that they provide is very limited in term of the number of Web APIs that they support

and the particular type of service description that can be added.

Semantic-based Approaches. To the best of our knowledge, to date there is no comprehensive

solution that enables automated invocation of the majority of the APIs on the Web. Currently

invocation is realised through the development of individual Web API client applications, which

require extensive manual effort, starting with the search for suitable Web APIs, interpreting the

documentation and proceeding to implementing custom implementation solutions. As already

pointed out, even in the case of RESTful services, most of these tasks still require significant

human involvement. Overall there is no established reference implementation of an invocation

engine that supports the automated Web API invocation, given its description. Furthermore,

dynamic invocation and exchanging or binding APIs at run time are still unaddressed, mainly

because there is no solution for the underlying simpler tasks.

Supporting API invocation has been addressed in a number of previous research efforts, the

main approaches probably being [AMG+10] and [LJ10]. SPICES [AMG+10] is a Web-based

tool where end-users can interact with semantically annotated services, both WSDL and REST-

ful, and directly invoke them. In the context of Web APIs, the tool supports invocation of

parameterised URIs over HTTP GET, where the parameter values are directly mapped based on

the labels and there is no explicit lowering. Therefore, SPICES provides a limited invocation
12http://code.google.com/apis/discovery/
13http://developer.mashery.com/iodocs

http://code.google.com/apis/discovery/
http://developer.mashery.com/iodocs

Invocation and Authentication Approaches 67

solution, due to the insufficient description capacities of the used model. With similar inter-

ests, the work in [LJ10] aims to enable the automated invocation of RESTful and RPC-style

services. It presents an approach that draws the service interface into an HTTP ontology, and

uses backward-chaining rules to translate between semantic service invocation instances and the

HTTP messages passed to and from the service. This approach discards the widely recognised

lowering and lifting mechanisms and works solely at the ontology level.

In summary, the main limitations of current invocation solutions and approaches are based on

the fact that they are only able to support a certain type of Web APIs, such as strictly REST-

ful ones, or the ones conforming to the particular platform requirements, which represent only

a very small subset in most cases. Automated invocation based on the meaning of the inputs

and the outputs, and the aim to achieve a certain goal is only partially supported by two ex-

isting approaches. Furthermore, the dynamic discovery and invocation of Web APIs, which is

already well supported in the context of WSDL-based services, is still out of the scope of cur-

rent research work. Furthermore, research on Web API invocation commonly disregards the

need of handling authentication before the actual invocation can be performed. Therefore, in the

following section we provide an overview of frequently used authentication approaches.

4.2 Web API Authentication

In this section we describe existing approaches for handling security and, in particular, authenti-

cation in the context of Web services and Web APIs. Authentication plays a very important role

in supporting the use of Web APIs through automated invocation approaches, since more than

80% of the APIs reviewed required some form of authentication [MPD+10b] (see Chapter 6).

4.2.1 WS-Security

The issues of authentication and security have already been tackled in the context of WSDL

and SOAP-based Web services. The result is a unified Web service security standard. WS-

Security (WSS) [NKMHB06] specifies a set of feature extensions to SOAP messaging, in order

to provide message integrity and confidentiality. In addition, it also provides a mechanism for

associating security tokens with message content and allows for a variety of signature formats

and encryption algorithms. As a result, the defined enhancements provide support for ensuring

that the message is not altered by a third party (message integrity), that its content cannot be

read by anyone but the designated client or server (confidentiality) and that the user has the

necessary credentials in order to access particular resources (authentication). This is realised

by a set of associated specifications including WS-Secure Conversation, WS-Federation, WS-

Authorization, WS-Policy, WS-Trust and WS-Privacy.

Invocation and Authentication Approaches 68

WS-Security provides the general guidelines and mechanisms for realising secure solutions,

which can be used in conjunction with other Web service extensions and higher-level application-

specific protocols to accommodate a wide variety of security models and security technologies.

However, the particular implementation is only as secure as the developer designs it to be.

WS-Security addresses the main security issues in the context of Web services. However, in

contrast to WSDL-based services, Web APIs are proliferating autonomously, without conform-

ing to standards and independently from Web services. The result is a very heterogeneous

set of practices and techniques, where security issues such as confidentiality and message in-

tegrity, guaranteed by the WS-Security standard, are not considered as crucial. In fact, as our

authentication-specific study shows (see Section 6.3.7), security in the context of Web APIs

is reduced only to authentication, which in turn serves mainly the purposes of access control,

where providers want to restrict and track the number of requests, instead of providing data

integrity.

4.2.2 Common Authentication Approaches

This section describes common types of Web API authentication approaches. Currently, most

Web APIs use one of the following authentication mechanisms. We differentiate between ap-

proaches based only on authentication credentials (API Key or username and password), ap-

proaches using a transmission security protocol (HTTP Basic Authentication, HTTP Digest Au-

thentication and OAuth), and approaches that use different parts of the HTTP request in order

to transmit the authentication information. We start by describing authentication mechanisms

relying only on the input credentials.

API Key. Currently, the most common way of Web API authentication is via an API Key

(also called “developer key”, “developer token”, “token Id”, “user Id”, “user key”). Web APIs

using this mechanism include Last.fm14, New York Times15 and Remember the Milk16. This

authentication mechanism does not have any security measures for the message integrity and

confidentiality but is instead only based on the necessary credentials. The user only needs to

provide the API key, which can be obtained by signing up for the particular Web API. The

key is transmitted either as a parameter, as part of the Web API URL, or directly in the HTTP

request.

Each client that provides a valid API key is permitted access to the requested resources. This

approach is very simple to use and to implement. However, since the API key is not protected in

any way during the message transmission, but is rather sent directly as plain text, this method is
14http://www.last.fm/api
15http://developer.nytimes.com/docs/best_sellers_api
16http://www.rememberthemilk.com/services/api/

http://www.last.fm/api
http://developer.nytimes.com/docs/best_sellers_api
http://www.rememberthemilk.com/services/api/

Invocation and Authentication Approaches 69

suitable for Web API providers, who only want to control the access to the available resources.

For use cases where the user identity has to be verified, in order to retrieve protected data, a

more secure authentication mechanism is required.

Username and Password. Similarly, to authentication via API key, authentication via username

and password is also only based on the required credentials. It provides no message encryption

or signature and the login details are transmitted as parameters of the request URI or are included

in the HTTP request. Example Web APIs include Happenr17 and FileSocial18. The user only

needs to create an account for the particular Web API and can use the username and password

(in some cases email and password, telephone number and pin, username and token or API key

and private key) to access resources. Similarly to the authentication via API key, this approach

is only suitable for providers who want to restrict the traffic and the number of requests to their

APIs.

The first two authentication mechanisms are only based on the required credentials, while the

following approaches, including HTTP Basic Authentication and HTTP Digest Authentication,

are transmission security protocols. These, provide a higher level of security for the login details

and the client’s message.

HTTP Basic Authentication. HTTP Basic Authentication [FHBH99] provides a simple way

for user authentication. It is based on a challenge-response model, where the HTTP server

requests and validates the authentication of the Web client. Example Web APIs include Assem-

bla19 and Basecamp20. In order to access a Web page or a Web API operation, which requires

authentication, the client needs to provide the corresponding username and password in the form

of an authentication header (with value base64encode of the string username+":"+password

[FB96]). The base64-encoded string is transmitted and decoded by the receiver, resulting in the

colon-separated user name and password string, which are checked against the expected values.

If the client does not provide any credentials, the server will respond with 401 Authorization

Required [FGM+99] HTTP response code.

This type of authentication is very simple and is supported by all popular Web browsers. How-

ever, although it uses base64 encoding, it does no encryption and the username and password

can directly be decoded from the transmitted message. Therefore, this type of authentication is

only suitable for Web APIs with low data security demands.

HTTP Digest Authentication [FHBH99] follows the same process as the HTTP Basic one –

request, credentials challenge and response. However, it only transmits a digest of the username
17http://www.happenr.com/webservices/, for example http://happenr.com/

webservices/getEvents.php?username=xxx&password=xxx&town=London
18http://filesocial.com/api/docs
19https://www.assembla.com/wiki/show/breakoutdocs/Assembla_REST_API
20http://developer.37signals.com/basecamp/

http://www.happenr.com/webservices/
http://happenr.com/ webservices/getEvents.php?username=xxx&password=xxx&town=London
http://happenr.com/ webservices/getEvents.php?username=xxx&password=xxx&town=London
http://filesocial.com/api/docs
https://www.assembla.com/wiki/show/breakoutdocs/Assembla_REST_API
http://developer.37signals.com/basecamp/

Invocation and Authentication Approaches 70

and password, which cannot be directly decoded. Example Web APIs include Talis21 and Ad-

Speed22. The first time a client sends a request to the server, the server responds with a nonce

(a random string) and the realm (typically a description of the computer or system being ac-

cessed). The client uses the username and password, to compute the digest response (result of

MD5(username:realm:password)) and the digest of the nonce (usually by using MD5 [Riv10]),

which are put in the response. The server processes the response by retrieving the stored pass-

word for the user and testing the nonce. If the nonce is correct, the response digest is checked

by using the nonce, username and password to compute a digest and compare it to the received

one. If the two digests match, the client is permitted access to the resources.

Since this type of authentication is based on a digest of a combined set of values, it should

be difficult to determine the original input when only the output is known. However, if the

password itself is too simple, there is the option to do brute-force attacks, which involves testing

all possible inputs and find a matching output. Therefore, HTTP Digest Authentication adds

some additional security in comparison to HTTP Basic authentication, but is still vulnerable to

password guessing and man-in-the-middle attacks.

OAuth. One protocol for making authenticated HTTP requests by using a token is OAuth

[MA10]. It enables users to share private resources stored on one website with another site

by using a token, which is an identifier denoting an access grant with specific scope, duration,

and other attributes, instead of the username and password. Therefore, OAuth supports the in-

teroperability and the combining of resources coming from different websites, in a way that is

transparent for the user. Example Web APIs include Fire Eagle23 and Delicious24.

Whenever a Web API (or a website) needs to access resources from another Web API, the user

is asked to provide his/her access information for the host Web API, while in the background,

OAuth creates a token, which can be used by other APIs to gain access to the resources. As a

result the username and password are kept private and unavailable for third-party websites and

APIs, while the interoperability is still facilitated. This authentication approach is extremely

important in the context of mashups, since it does not require that the user provides credentials

for every Web API included in the composition, but rather relies on token-based user-transparent

handling of authentication.

A more comprehensive solution is presented by Rosenberg et al. [RKD+09] who offer a semantic-

based approach for providing authentication support for mashups, covering a variety of authenti-

cation mechanism (e.g., basic authentication, custom application IDs, OAuth, etc.). The authors
21http://n2.talis.com/wiki/Platform_API
22http://www.adspeed.com/Knowledges/830/AdSpeed_API/AdSpeed_API_Overview.

html, for example http://api.adspeed.com/?method=METHODNAMEparam1=VALUEparam2=
VALUEmd5=SIGNATURE

23http://fireeagle.yahoo.net/developer/documentation
24http://delicious.com/help/api

http://n2.talis.com/wiki/Platform_API
http://www.adspeed.com/Knowledges/830/AdSpeed_API/AdSpeed_API_Overview.html
http://www.adspeed.com/Knowledges/830/AdSpeed_API/AdSpeed_API_Overview.html
http://api.adspeed.com/?method=METHODNAMEparam1=VALUEparam2 =VALUEmd5= SIGNATURE
http://api.adspeed.com/?method=METHODNAMEparam1=VALUEparam2 =VALUEmd5= SIGNATURE
http://fireeagle.yahoo.net/developer/documentation
http://delicious.com/help/api

Invocation and Authentication Approaches 71

address the problem that currently mashups that combine different resources from at least one

enterprise source, lack the ability to enable security, based on diverse security requirements in

terms of authentication. The provided solution incorporates both a model and semantics for

integrating security concerns into mashups, as well as a supporting implementation in the form

of a Secure Authentication Services (SAS). One limitation of the approach is that it currently

supports only HTTP basic authentication and OAuth. Furthermore, the authentication credential

descriptions have to be created manually, in an XML-based BPEL like language, which might

present a challenge. It is also not clear how many Web APIs have already been implemented by

using the SAS.

So far we have described authentication based on different credentials and on using different

authentication mechanisms. In addition, there are also two main ways of sending the authenti-

cation information to the Web API. One very common way is to directly provide the API key

or username and password as parameters in the request URI. For example Last.fm25 and Fire

Eagle26 use this approach. Since the authentication credentials are not protected in anyway, this

way of sending data is suitable only for openly available resources, where providers want to

control the access to the Web API but are not really concerned with enforcing access rights and

user identity. The other common way of transmitting authentication credentials is directly in the

HTTP request. This method is somewhat more complex because the client needs to construct

the request, instead of only calling a parameterised URI. However, it enables a higher level of

security since the information can be encrypted and signed. For example, this way of sending

information is commonly used by the HTTP Digest authentication approach.

The most popular authentication approaches are based on the API key, or passing a username

and password as parameters in the URI. However, HTTP Basic is also a commonly used ap-

proach and, therefore, a solution that provides support for passing credentials, alongside input

parameters, would not provide a wide coverage. In summary, current authentication approaches

have three main characteristics: 1) the required credentials, 2) the used authentication proto-

col, and 3) the way of sending the authentication information. These characteristics are taken

into consideration when developing the Web API Authentication (WAA) Model, presented in

Chapter 9.

4.2.3 Further Authentication Mechanisms

In this section we describe further existing Web API authentication mechanisms and solutions,

which address different challenges in the context of authentication but have not yet reached

greater popularity.
25http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist=

Cher&apikey=XXX
26https://fireeagle.yahooapis.com/api/0.1/

http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX
http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist=Cher&apikey=XXX
https://fireeagle.yahooapis.com/api/0.1/

Invocation and Authentication Approaches 72

OpenID. This approach targets to solve the problem of one single user being forced to have

many different Web application and API accounts, in order to be able to execute a mashup. It is

a method based on using a single login at a trusted provider to automatically gain access to other

websites. In this way the user can log on to different services with the same digital identity,

where these services trust the authentication body. Web site providers, which use OpenID27

include AOL, IBM, Microsoft and others. OpenID is often seen as a complementary approach

to OAuth, where OpenID credentials can be used as a basis for generating OAuth tokens.

WebID. This approach [SIS+11] is based on providing means for uniquely identifying a per-

son, company, organisation, or other agent using a URI, by applying the same process used

in OpenID. It was originally introduced as FOAF+SSL [SHJJ09] for RESTful authentication.

The main approach is to enable the linking of the user agent (browser) to an URI, in order to

restrict the access to resources only to members of a group or selected individuals. WebID28

is an authentication protocol which uses X.509 certificates to associate a browser to a person

identified via a URI. It also enables automated session login, in addition to interactive session

login. Therefore, it requires the user to enter neither a password nor an identifier but rather uses

SSL and a custom trust protocol. All transmitted data is encrypted and guaranteed to only be

received by the person or organisation that was intended to receive it. WebID presents a novel

authentication approach, which includes Semantic Web fundamentals in the authentication pro-

cess and is supported by leading members in the field29. Still it remains to be seen if it will

manage to establish itself as one of the most commonly used solutions.

Web-key. The solution offered by Web-key [Clo08] is quite similar to WebID. It provides an

authentication mechanism, especially designed to tackle the difficulties arising in the context of

mashup authentication. Web-key is an HTTPS URL convention for representing a transferable

permission in a Web application. It binds each permission issued from the Web application to a

randomly generated string (key), which is transmitted in the fragment segment of the URL (for

example, https://www.emaple.com/ app/#mhbqcmmva5ja3). The keys are gener-

ated on behalf of the user for every Web API that is part of the composition. In this way, each

Web API has its unique key, instead of the user having to share his username and password

across all composite APIs and the complete authentication process is user-transparent. How-

ever, this approach is fairly new and there are only very few Web APIs, which have adopted

it.

XAuth. Another authentication mechanism is XAuth30. It provides an approach for extending

authenticated user services throughout the Web by issuing user browser tokens for each of the
27http://openid.net
28http://www.w3.org/wiki/WebID
29Give yourself a URI - on Tim Berners-Lee’s blog, http://dig.csail.mit.edu/breadcrumbs/

node/71
30http://xauth.org

http://openid.net
http://www.w3.org/wiki/WebID
http://dig.csail.mit.edu/breadcrumbs/node/71
http://dig.csail.mit.edu/breadcrumbs/node/71
http://xauth.org

Invocation and Authentication Approaches 73

participating services. In this way the provider can recognise, which users are logged on the ser-

vices and not only give access to resources but also give additional relevant options. A different

approach is followed by Yadis31, which instead of suggesting a new authentication mechanism

proposes means for automatically detecting, which authentication protocol a particular system is

more likely to use. Therefore, Yadis addresses the question of how do we know, which authen-

tication mechanism needs to be used, by providing a service discovery system that determines

automatically, without end-user intervention, the most appropriate protocol to use.

In addition to the here listed authentication mechanisms, there is also one approach that uses

semantic Web service descriptions in order to capture authorisation and privacy service prop-

erties [KPS+04]. The authors suggest that privacy and authentication policies should be in-

corporated into the OWL-S Web service descriptions. This additional information can then be

integrated into the service matchmaking process, in order to be able to select only services with

particular security characteristics, for example, only services that provide encryption. However,

it should be pointed out that this approach is suitable only for WSDL-based services annotated

in OWL-S.

4.3 Summary

Invocation is a crucial task in the context of Web API use. Currently, it is usually enabled through

the implementation of custom clients or, in rare cases, based on libraries offered by the providers.

As a result, the produced solutions are not reusable and are rarely compatible with each other,

which is strongly desirable if compositions and mashups are to be developed. Furthermore, the

majority of the Web APIs require some form of authentication, which is most often disregarded

in existing invocation approaches. Therefore, this chapter provides an overview of research

work and solutions in the context of SWS and Web API invocation. It also describes common

credential types, the ways of transmitting them and the used authentication protocols.

Based on the analysis of current approaches and solutions targeted at supporting Web API invo-

cation, it can be deduced that there are two main ways of providing invocation support. The first

one is based on enforcing a new technology standard or assuming the wide acceptance of one,

such as in the case of RESTful services. Given such a foundation, different theoretical solutions

and implementations can be developed. The drawbacks in this case are that it might be difficult

to convince service providers to adjust their Web APIs to conform to the newly introduced guide-

lines (see Chapter 6) or that a relatively limited number of Web APIs actually employ a certain

set of communication principles, for example, REST. As a result the coverage offered by this

type of approaches is rather limited. Furthermore, this would only enable support for invocation

on the syntactic level, not being able to process services based on the meanings of the inputs
31http://yadis.org

http://yadis.org

Invocation and Authentication Approaches 74

and outputs, and the envisioned functionality or goals. A shared technology standard, would

still require that developers search manually for Web APIs, read through the documentation and

implement client applications.

The second type of approach for facilitating Web API invocation support is based on develop-

ing frameworks that enable the automated use of APIs that are registered within the particular

platform, i.e., implemented in such a way that conforms to the chosen invocation mechanisms.

As a result, there are only few APIs that can be used within the framework but the provided sup-

porting functionalities require very little or no developer involvement. Naturally, such solutions

have a limited coverage but might be very useful in restricted domains or use cases that require

only a small number of Web APIs in order to complete a certain task.

However, based on the analysis of current Web API invocation approaches, we argue that the

lack of a general solution can be traced back to the heterogeneity of the Web API description

forms but is also due to the fact that the information relevant for invocation is not captured in

a way that enables automated processing. Therefore, we advocate an approach for creating se-

mantic Web API descriptions that include all the details necessary for completing the invocation

task, thus unifying the majority of the APIs under a common description model.

Considering common authentication approaches, it can be observed that providers prefer to use

simple solutions to control the Web API access by requiring the provisioning of credentials,

such as an API key or username and password, directly as part of the invocation URI. Further-

more, it is evident that currently there is not one established authentication approach but rather

a broad range of available options. The frequent use of highly heterogeneous non-standardised

authentication mechanisms is yet another limitation that needs to be circumvented in order to

enable the automated Web API invocation.

In the following chapter we explore work related to tools and mechanisms for supporting the

creation of semantic Web API descriptions. Since the manual creation of descriptions is effort

and time consuming, we investigate existing tools that provide annotation functionalities and

approaches for automatically completing some annotation tasks, such as the search for suitable

ontologies or determining the type of functionality that the Web API exposes.

Chapter 5

Annotation Approaches and Tools

Semantic Web Services (SWS) aim to address the limitations of services on the Web by aug-

menting the service descriptions with semantic metadata, in order to achieve a higher level of

automation for common tasks such as discovery, compositions and invocation. However, in the

context of Web services in general and especially for Web APIs, the creation of semantic de-

scriptions is a time consuming and resource intensive undertaking. Therefore, in this chapter we

consider approaches and solutions targeted towards enabling the (semi-)automated creation of

semantic Web API descriptions. In particular, we discuss approaches for the recommendation

of semantic annotations for the data model, service classification, as well as for assisting inter-

mediate, yet necessary steps such as finding suitable ontologies. In addition, existing tools for

ontology visualisation and service annotation are also described.

In particular we divide the discussed approaches into two main groups – annotation methods,

and visualisation and annotation tools. We analyse the related work in terms of the types of

service, which are supported (WSDL-based or Web API), and the input/output of the approach

or tool (WSDL file, ontologies, service description model).

5.1 Annotation Approaches

This section focuses on research work related to supporting the creation of semantic descriptions

of Web services and Web APIs. In particular, it considers research approaches and implemen-

tation solutions in the areas of automatically acquiring semantic Web service descriptions and

annotation recommendation.

75

Annotation Approaches and Tools 76

5.1.1 Automated Acquisition of Semantic Web Service Descriptions

In the context of SWS, the task of supporting the creation of semantic descriptions has already

been addressed by a range of research propositions. In particular, there are a number of de-

veloped approaches aiming to support the acquisition of semantic Web service descriptions.

Paolucci et al. [PSSN03] offer a simple solution by addressing the problem of creating seman-

tic metadata (in the form of OWL-S) from WSDL. The result is a syntactical transformation

of the WSDL description, which contains no semantic information because WSDL contains no

semantic information, in the first place. A challenge that is not addressed by this approach, is

the mapping of WSDL-based service properties to classes or instances in a domain ontology. In

addition, the difficulty of determining a suitable domain ontology for service annotation is also

not discussed.

In contrast, Sabou et al. [SWGS05] tackle precisely the problem of creating domain ontologies

that can be used for the annotation of a particular service. The authors use shallow natural

language processing techniques to assist the user in creating an ontology based on software

APIs. The solution is applied within the scope of two ontology building processes, in the context

of two concrete research projects, revealing some of the major aspects necessary for building a

Web service ontology.

Focusing on the Web service annotation task, Patil et al. [POSV04] apply graph similarity tech-

niques to select a relevant domain ontology for a given WSDL file from a collection of ontolo-

gies. The presented approach involves also work on matching XML schemas to ontologies in

the Web services domain. The authors use a combination of lexical and structural similarity

measures, based on the assumption that the user’s goal is not to annotate similar services with

one common ontology, but rather to use different ontologies. Therefore, they also address the

problem of choosing the right domain ontology within a set of ontologies.

Finally, Hess and Kushmerick [HK04] employ Naive Bayes [ELM03] and SVM [TK01] ma-

chine learning methods to classify WSDL files into manually defined task hierarchies. In addi-

tion, there are a number of approaches, which use existing Web service repositories, in particular

UDDI, and enhance them with rich semantic markup [AGDR03], [LMK05].

Currently there are two approaches especially developed in the context of creating Web API

descriptions. Saquicela et al. [SBC10] present a semi-automatic approach for annotating Web

APIs in the geospatial domain. In particular, work focuses on creating syntactic descriptions

of the Web APIs and semantically enriching their parameters, through the partial automation

of the process [SBC11]. The authors introduce a service description model based on method1,

input and output, as well as invocation, input value and output value. As a result, the description
1The method is used to denote the actual Web API operation, and not the HTTP method as the names suggests.

Annotation Approaches and Tools 77

contains both the service properties, as well as the values that would be required for the invo-

cation. Semantic information from DBpedia2 and GeoNames3 is used to create annotations for

the service. The result is a set of Web API annotations, which are linked to the API and stored

in a repository, in a proprietary format.

It needs to be pointed out that the creation of the descriptions is only possible based on a given

working invocation example for the particular Web API. This represents a drawback, since in

most cases invocation examples are hard to find and have to be prepared manually. Furthermore,

the invocation system is restricted to handling only Web APIs that can be called over HTTP GET,

providing no support for POST or DELETE requests.

The second approach is developed by Taheriyan et al. [TKSA12], who present a system sup-

porting the creation of semantic models of services in a semi-automated way. The user has to

provide examples of the Web API request URLs, based on which the system automatically pro-

poses a service model that represents the semantics of the API functionality. Similarly to the

previously introduced approach, this represents a limitation since suitable and actually invoca-

ble URLs have to be found and parameterised, with appropriate values in place. The resulting

model can be refined by the user via a user interface. The system also produces the required

lifting and lowering transformations. The complete models are stored in a local repository.

Approach Type of Service Service Model Input Output
Paolucci et al. WSDL/SOAP WSDL/OWL-S WSDL OWL-S (only

syntactic info)
Sabou et al. WSDL/SOAP WSDL/OWL-S WSDL OWL-S & learned

domain ontologies
Patil et al. WSDL/SOAP WSDL WSDL SAWSDL
Hess and Kush. WSDL/SOAP WSDL WSDL generic classification

i.e. OWL-S
Saquicela et al. op.-based new description sample set of sem. annotations,

Web APIs model Web APIs proprietary format
Taheriyan et al. op.-based (KARMA ex. request sem. annotations,

Web APIs + SWRL) URLs proprietary format

TABLE 5.1: Annotation Approaches

Table 5.1 summarises the approaches for creating semantic Web service and Web API descrip-

tions. The approaches that require a WSDL file, rely on the availability of syntactical infor-

mation. Therefore, they cannot be directly applied on Web APIs and some modifications are

necessary in order to enable the creation of semantic annotations on top of existing HTML

documentation. In the context of Web APIs, solutions are available only for operation-based

APIs and the result is a set of annotations, which are in a format specific to the particular ap-

proach. Therefore, the produced semantic descriptions are not compatible with each other and
2The DBpedia Ontology, http://dbpedia.org/Ontology
3GeoNames Ontology, http://www.geonames.org/ontology/documentation.html

http://dbpedia.org/Ontology
http://www.geonames.org/ontology/documentation.html

Annotation Approaches and Tools 78

can hardly be reused with other solutions. Furthermore, Saquicela et al. propose a solution only

for the geospatial domain, while the approach of Ambite et al. is restricted to the annotations

already available in the database.

5.1.2 Annotation Recommendation

In the context of automating the process of creating Web API descriptions, we consider recom-

mendation approaches that could be adopted in order to directly suggest suitable annotations for

the different parts of the API, including operations, inputs and outputs, but also for the API as

a whole. In general, the main aim of recommender systems is to assist users in making deci-

sions among different alternatives, based on user preferences. Or more precisely, recommender

systems support users by identifying interesting products and services in situations where the

number and complexity of offers outstrips the user’s capability to survey them and reach a de-

cision [TH01]. Therefore, in the context of semantic Web service descriptions, recommender

systems can help a user select suitable annotations by suggesting only a subset out of a large

collection of ontologies.

There are a number of recommender systems developed for the purpose of aiding users in pro-

viding semantic information and these systems are particularly relevant to our work on creating

semantic descriptions of Web APIs. TagAssist [SH07] is a system, which provides tag sug-

gestions for new blog posts by utilising existing tagged posts. Similarly, [LC07] use collective

intelligence extracted from collaborative tagging, in addition to word semantics, in order to learn

the best set of tags to use for new blog entries. The approach presented in [JMH+07] is an adap-

tation of user-based collaborative recommendation and graph-based recommendation, which

suggests tags for different resources. All of these approaches use common recommender tech-

niques (e.g. collaborative filtering), for the purpose of making the process of adding semantic

information on the Web easier, by suggesting tags and annotations.

In general, there are different formats and methods for creating semantic service descriptions,

however, there are some main tasks, which very commonly need to be addressed. These include

the classification of the service based on its functionality, the finding and selection of a data

model annotation, and the annotation of the individual service properties. ASSAM [HJK04],

a tool that assists a user in creating semantic metadata for Web Services, offers a solution for

some of these issues. It automatically suggests semantic metadata based on two main machine

learning algorithms. The first one, aims to semantically classify Web services, while the second

one, facilitates recommendation of semantic annotations for the service inputs and outputs, by

aggregating data returned by multiple semantically related Web services. A similar approach is

taken in the METEOR-S Web Service Annotation Framework [POSV04], a framework for semi-

automatically marking up Web service descriptions with ontologies. The framework focuses on

Annotation Approaches and Tools 79

determining a relevant domain ontology for making data model annotations based on WSDL

files. Classification is also applied by using classification domain ontologies to categorise Web

services into domains.

METEOR-S addresses one of the main challenges of creating semantic descriptions of Web

APIs, namely, determining suitable domain ontologies. Similarly to [SWGS05], some re-

search [NV04, ZN08] on the semantic description of Web services focuses on learning domain

ontologies for service annotation. Such approaches are effective because learnt ontologies are

more service-specific and, therefore, more suitable for making annotations than general purpose

ontologies. However, this means that each service or group of services has its own ontology and

as a result, common tasks such as service discovery, composition and invocation, have to devote

processing effort related to ontology mapping and concept matching, which would not be the

case if a set of common ontologies were used for the annotation. In addition, instead of reusing

annotations from already semantically described services, service-based ontology learning adds

additional complexity to the service annotation process.

Recently, with the growing use and popularity of Linked Data, there is an abundance of semantic

data available and Linked Data represents a very valuable source of ontologies and background

knowledge. This provides the basis for enhancing existing techniques for annotation recom-

mendation to use this semantic data [SBC10, TKSA12]. In addition, there are tools such as

Watson [dSM+08] and Sindice [TDO07], which assist users in searching for semantic tags and

ontologies. In the context of creating semantic service descriptions, Linked Data provides the

basis for the development of annotation approaches, based on reusing published semantic data.

In contrast to most recommendation approaches, Billsus and Pazzani [PB07] address the prob-

lem in a different way. They suggest that the recommendation of alternatives based on user rat-

ings can be solved by transforming the recommendation problem into a classification problem.

Automatically assigning a Web service to a particular group of services with similar function-

ality or similar application domain, already provides semantic information, which directly con-

tributes to the improved automation of the service discovery and composition tasks. Moreover,

in some approaches, the classification task can be equivalent to determining a suitable domain

ontology for the annotation of the service [HK03]. In other approaches classification can at

least simplify the process of determining a domain ontology and finally, sometimes [OTSV04]

annotation recommendations are computed as part of the classification process. Therefore, most

approaches for acquiring Semantic Web Service annotations rely on service classification for

both determining the type of functionality that is provided and selecting domain ontologies.

Commonly used classification approaches are the k-nearest neighbour, naive Bayes and Roc-

chio [OTSV04] algorithms, while naive Bayes is the most commonly used one. Support vector

machines (SVM) based on document frequency values are also used in Web service classifica-

tion and annotation [BCPS05].

Annotation Approaches and Tools 80

In summary, there are two systems that support the semantic annotation of WSDL-based ser-

vices – ASSAM and the METEOR-S Web Service Annotation Framework. They both take as

input the XML service description file and produce OWL-S and SAWSDL descriptions, cor-

respondingly. In the context of adding metadata to Web APIs, Taheriyan et al. [TKSA12] and

Saquicela et al. [SBC10] are the two main approaches that aim to leverage Linked Data in order

to create semantic annotations. They take as input example requests and endpoint URIs, and re-

turn a set of annotations for the Web API inputs and outputs. Finally, approaches that facilitate

classification can be used as a basis for determining suitable domain ontologies, which can be

employed in order to describe the APIs.

5.2 Ontology Visualisation and Annotation Tools

In this section we provide an overview of general semantic data tools, as well as tools that

are especially developed for supporting the creation of semantic Web service descriptions. In

particular, we discuss ontology visualisation tools and semantic annotators. In the context of

SWS, we look at WSMO Studio [DSK+07], the Web Service Modelling Toolkit [KMTF07]

(WSMT) and ASSAM [HJK04]. It is important to point out that the work by Taheriyan et

al. [TKSA12] and Saquicela et al. [SBC10] is also relevant in the area of annotating Web APIs,

since the output of the two approaches is metadata related to the inputs and the outputs of the

service. However, we only mention them here shorty, since it was already discussed in the

previous section.

The process of semantic annotation can be assisted by ontology visualisation tools, which enable

users to view and explore an ontology and to decide whether or not it can be used for the

annotation of a particular service. A good overview of current ontology visualisation tools is

provided in [KHL+07], including common tools with explorer-based view of the ontology such

as Protégé [NFM00], OntoEdit [SAS02], NeOn Toolkit [HLSE08], Kaon [KAO02, BEH+02]

and OntoRama [ERG02].

Ontology visualisation already provides some user support, however, functionalities such as

adding or viewing annotations are even more relevant in the context of supporting the cre-

ation of semantic descriptions of Web APIs. There are tools, which enable the annotation of

Web content such as OntoMat-Annotizer [HS02] and SMORE [KG05]. OntoMat-Annotizer is

a webpage annotation tool, which supports users in creating and maintaining ontology-based

OWL-markups. A similar tool is SMORE, which enables users to markup HTML documents

in OWL by using Web ontologies. It includes some options for ontology editing and provides

users with the possibility to create a new ontology based on terms from web documents. The

results of both tools are a webpage with attached markup.

Annotation Approaches and Tools 81

PowerMagpie [DMD07, dMD+08] is a tool that uses semantic information in a quite differ-

ent way. PowerMagpie was initially implemented as a tool using ontologies to markup Web

documents. Its current version has evolved into a semantically-enhanced Web browser. While

browsing, PowerMagpie identifies and provides any available semantic markup, which can be

found on the Web. It is not restricted to one predefined ontology, but rather accesses the whole of

the semantic data on the Web through Watson [dM11] and selects and presents to the user rele-

vant information. The approach used by PowerMagpie, lays the foundation for the development

of tools that enable the semi-automatic creation of semantic Web API descriptions.

Until now we discussed tools that support ontology visualisation as well as tagging and annota-

tion of web content. In the following, we describe applications that are especially developed for

the creation of semantic Web service descriptions.

WSMO Studio [DSK+07] is developed for modelling and creating Semantic Web Services and

semantic business processes. It provides a modelling and visualisation framework for assisting

users working in the WSMO domain with tasks related to the semantic Web service annotation.

Similarly, the Web Service Modelling Toolkit (WSMT) [KMTF07] comprises a number of tools

for Semantic Web Services, based on WSMO, WSML and WSMX, including a Web Service

Modelling Language visualiser, a WSML reasoner and a WSMX data mediation mapping tool.

SOWER4 (also known as WSMO-Lite Editor) is an editor, which enables the manual annotation

of WSDL service descriptions with semantic information, following the WSMO-Lite service

ontology specification and using the SAWSDL annotation mechanism. Using the tool, the user

is able to create new annotations on existing descriptions and also modify or remove already

created annotations. The editing process itself is completely manual and is based on drag-and-

drop, context and drop-down menus, thus hiding formalism complexities from the user.

Currently, the only tool that is particularly targeted at the semi-automated creation of semantic

Web service descriptions is ASSAM [HJK04]. It includes a WSDL tree-based viewer, a category

browser, as well as a datatypes display and a service browser. These components are common

also for other annotation tools, however, the key feature of the WSDL annotator is its ability

to suggest, which ontological concepts to use for annotating service elements. The result is

a higher level of automation in comparison to other existing tools for creating semantic Web

service descriptions.
4http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/

sower/

http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/
http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-platform/sower/

Annotation Approaches and Tools 82

5.3 Summary

Providing tools and mechanisms for supporting the creation of semantic Web API descriptions,

is an important part of enabling the declarative and formal description of service semantics.

Since the manual creation of descriptions is effort and time consuming, we investigate existing

tools that provide annotation functionalities and approaches for automatically completing some

annotation tasks, such as the search for suitable ontologies or determining the type of function-

ality that Web APIs expose.

Based on the analysis of approaches and tools in the context of enabling the semi-automated cre-

ation of semantic Web API descriptions, we can conclude that currently there is no implemented

framework or methodological solution that provides the required support for the majority of the

Web APIs. Still, there are a number of solutions that can be adopted in order to reduce the

amount of manual effort required for the completion of some annotation tasks. In particular this

is true for determining the type of functionality that the service provides and for retrieving a set

of semantic entities, which can be used to enhance individual service properties or the service

as a whole. Since these research areas exhibit a plenitude of approaches and implementation

solutions, it must me determined how this work can be adopted to address challenges in the

context of semantic Web APIs.

Up to date, there are only two approaches, which to some extent support the semantic annota-

tion of Web APIs. In particular, Taheriyan et al. [TKSA12] and Saquicela et al. [SBC10] take

as input example requests and endpoint URIs, and return a set of annotations for the Web API

inputs and outputs. These approaches show some limitations, since they are suitable for only a

particular type of API and have been applied only to limited domains. Another possible solu-

tion can be based on existing tools for the annotation of WSDL-based services, which can be

analysed and used for determining requirements and guidelines for the necessary computational

and visualisation components. Approaches for ontology visualisation and browsing can be sim-

plified and adopted from popular tools such as Protégé. Since the majority of the existing Web

APIs are described in HTML webpages, a necessary feature for a tool developed to support the

creation of semantic descriptions of Web APIs is to be able to directly manipulate the HTML

content displayed in a Web browser, similarly to PowerMagpie.

In terms of developing an application that enables the semi-automated creation of semantic

Web API descriptions, it is important to identify, which are the most time and effort consuming

tasks, within the annotation process, and especially focus on providing solutions towards easing

their completion. Similarly, the provisioning of semantic details, which are crucial for enabling

certain service tasks, should be prioritised. This is especially true for describing the inputs and

the outputs of the service as well as the functionality that it provides.

Annotation Approaches and Tools 83

In addition, we aim to reduce the level of expertise required by the people creating semantic

Web API descriptions, who can be service providers, developers or API users. Therefore, we

aim to hide formalism complexities behind a user interface, requiring only the completion of

simple tasks such as the selection of the text related to a particular service property and clicking

on a corresponding element for making an annotation.

Part III

Supporting Open Services on the Web

85

Chapter 6

On the Current State of Service on the
Web

Currently the world of services on the Web can be split into two main groups – the “traditional”

Web services, based on WSDL and SOAP, and the Web APIs, also referred to as RESTful

services [RR07] when conforming to the REST architectural principles [Fie00]. Recent years

have been marked by the proliferation and increased use of Web APIs. However, despite their

popularity, the use of Web APIs is still characterised by a number of challenges, mostly resulting

from the fact that in contrast to Web service technologies, work around Web APIs has evolved

in a rather autonomous way, conforming to no particular guidelines or standards, leading to

a wide range of description formats and structures and different levels of description detail.

Therefore, in this chapter we present an analysis of the current state of services on the Web,

focusing especially on Web APIs. Traditional Web services are already largely studied and

their characteristics are first of all predefined by specifications and standards, and second of all,

can be surveyed through a number of established WS repositories [SMP10]. In contrast, the

current state of Web APIs remains largely unexplored. Therefore, in order to be able to provide

adequate approaches and a description model for addressing the challenges faced by Web APIs

and supporting their use, we first need to gain a comprehensive overview of the current landscape

of APIs on the Web, including their characteristics, existing correlations and trends.

The work presented in this chapter serves as a reality check over the current state of Web APIs.

It provides a clear picture of current Web API properties and features, and lays the foundation

for identifying deficiencies and developing approaches that support the more automated Web

API use.

87

On the Current State of Service on the Web 88

6.1 Introduction

Despite the fact that there are already a number of approaches targeted at describing Web

APIs [W3C07a, Had06] and supporting their use by the means of semantic technologies [KV08,

SGL07], none of the existing proposals are based on actual studies or data that reflects the cur-

rent state of Web APIs. Before any significant impact and improvement can be made to current

Web API practices and technologies, we need to reach a deeper understanding of how Web APIs

are published and used. This involves, for instance, figuring out how current APIs are developed

and exposed, what kind of descriptions are available, how they are represented, how rich these

descriptions are, etc. We need to gain a clear picture of the current state and practices with

Web APIs, in order to be able to identify deficiencies and realise how we can overcome existing

limitations, how much of the available know-how can be applied and in which manner.

This chapter focuses on a thorough analysis over a body of publicly available API descriptions.

We conduct two consecutive studies, the first one targeted at gathering an initial overview of

API characteristics, the second one revisiting the gathered result and exploring some further

properties in more details. In particular, we analyse how Web APIs are published, we check

which information is provided and its level of detail. We investigate the characteristics of input

parameters and record the type of functionality that the API provides. Similarly, we study the

provided output descriptions and analyse the different types of APIs interface technology imple-

mentations, as well as the availability of relevant details such as the HTTP method, invocation

URI and authentication requirements. We also record whether example requests and responses

are provided, since they indicate how the communication between the client and the server is

realised. Finally, we also study general API information, such as the number of mashups and

operations, in order to be able to draw conclusions about the reuse and the granularity of the

APIs.

This chapter is structured as follows: Section 6.2 provides an overview of current trends sur-

rounding Web APIs. Section 6.3 and Section 6.4 describe in detail the two Web API studies that

we conducted, including the setup, the individual characteristics that were analysed, the gath-

ered results and a discussion of some identified trends and correlations1. Section B.2 introduces

the survey system that was used to conduct the second study. It takes the form of a Web appli-

cation, is highly configurable and gathers the data in RDF format. The chapter is concluded by

a short summary.
1All the gathered data is available at http://purl.oclc.org/NET/WebApiSurvey/.

http://purl.oclc.org/NET/WebApiSurvey/

On the Current State of Service on the Web 89

6.2 The Proliferation of Web APIs

Web APIs have been gaining in popularity and use during the past couple of years, becoming an

important trend in the context of services on the Web. This is especially evident by comparing

the development of the number of available traditional Web service and Web APIs over the past

few years.

FIGURE 6.1: Web Services/Providers Timeline (Total Numbers from 2007 to 2012)

Figure 6.12 shows the number of currently existing Web services, as given by the Seekda WS

search engine. The important aspect is that there is no significant growth or decline, and this

picture has remained relatively unchanged during the past four years. After the initial growth in

the number of WS, a level of stagnation was achieved during 2010. In contrast, the number of

APIs registered with ProgrammableWeb is exponentially increasing, with more and more entries

over a shorter period of time.

FIGURE 6.2: APIs Timeline (Total Numbers Quarterly from 2007 to 2012)

Figure 6.23 shows the growth-rate of the number of available Web APIs. As can be seen, there is

a continuous growth, characterised by a significant increase during 2011. In fact, currently the

number of registered APIs has reached over 110004. This clearly demonstrates a strong increase
2Source – Seekda Web Services search engine, http://www.seekda.com/, last viewed April 2012.
3Source – ProgrammableWeb, http://www.programmableweb.com, last viewed January 2012.
4Last viewed March 2014.

http://www.seekda.com/
http://www.programmableweb.com

On the Current State of Service on the Web 90

in interest, which is also reflected on the developer side by the growing number of applications

and mashups built on top of the APIs.

FIGURE 6.3: Mashups Timeline (Total Numbers from September 2013 to March 2014)

Figure 6.35 shows a constant increase in the number of mashups over the past six months. This

illustrates that more and more developers are using the available Web APIs in order to create

new solutions benefiting from the exposed resources.

Despite these trends in the context of Web API provisioning, up-to-date the current state of Web

APIs, including different description forms, input types, invocation details, etc., has remained

unexplored. However, there are two similar studies, devoted to investigating Web services on

the Web.

The authors in [LLZ+07] provide a study on Web services, focusing on deriving statistics based

on operations analysis, size analysis, word distribution and function diversity analysis by using

the Google API. This study is based only on a few Web service characteristics and is restricted

to only one source.

A broader and more complete study is given by [AMQ08]. The authors have developed a crawler

for collecting metadata about service interfaces available through repositories, portals and search

engines. The gathered data is used to determine statistics about object sizes, type of technology

and functioning of the Web services, among others. In comparison to previous studies, this

one also provides conclusions about the status of Web services and what percentage of the Web

services are considered to be active and responsive.

It is important to point out that both studies cover only Web services and not Web APIs. There-

fore, the analysis results presented here are the first ones that directly contribute to gaining a

better understanding about the overall state of Web APIs.
5Source – ProgrammableWeb, http://www.programmableweb.com, last viewed March 2014.

http://www.programmableweb.com

On the Current State of Service on the Web 91

6.3 First Web API Survey

In this section we describe the first Web API survey that was conducted in order to gather insights

about common Web API characteristics.

6.3.1 Methodology

The first Web APIs survey was conducted during February 2010, manually analysing the de-

scription of 222 Web APIs from the ProgrammableWeb6 directory. ProgrammableWeb is a

popular API directory, that at the time of the study provided information about 2002 APIs and

4827 mashups. In order to enable basic search, the APIs are sorted in categories. The analysis

covered all 51 categories, aiming to provide domain-independent results. The analysed Web

APIs covered all categories by choosing the top 4 APIs within a category, as listed by Pro-

grammableWeb. However, since some categories have only one or two entries, we compensated

this by taking additional APIs from the previous and following categories. Therefore, the anal-

ysed number of Web APIs per category varies. Overall, the survey covered 18% of the Web APIs

that are marked as RESTful in ProgrammableWeb7 (222 APIs out of 1235 APIs, at the time of

the study). Therefore, we consider the following results to be representative for the directory

and in general, since ProgrammableWeb is currently the largest directory8.

Each Web API description was analysed in terms of six main groups of features, including

general Web API information, type of Web API, input parameters, output formats, invocation

details and complementary documentation. The Web API analysis was conducted manually,

and some features such as the type of Web API were examined twice in order to achieve greater

accuracy. More concretely, each Web API was examined in terms of:

1. General Web API information – we recorded the name of the API, its description, cate-

gory, number of mashups, date updated, URL and number of operations.

2. Type of Web API – we checked whether the API description is RESTful, RPC-style or

hybrid (for more details see Section 6.3.3).

3. Input parameters – we collected details on the use of default parameters, optional pa-

rameters, coded parameters (for example, instead of “English” use “en”), parameters with

alternative values (for example, the input value is 1 or 2 or 3), and whether the datatype

of the input parameter is stated and boolean (yes/no, true/false) parameters are used.
6http://www.programmableweb.com
7ProgrammableWeb classifies APIs according to the used protocol/style into Atom, Blogger, JavaScript, iCal,

REST, SOAP and XML-RPC.
8Webmashup.com (http://www.webmashup.com) contains around 1800 Web APIs and 3100 mashups,

while APIFinder (http://www.apifinder.com) provides around 1100 Web APIs, numbers from February
2010

http://www.programmableweb.com
http://www.webmashup.com
http://www.apifinder.com

On the Current State of Service on the Web 92

4. Output formats – we recorded the form of the output (for example, XML or JSON) and

whether it is determined via an input parameter.

5. Invocation details – we checked whether the HTTP method and the invocation URI are

provided. Furthermore, we recorded whether the API requires authentication and if yes,

what type, how are the input parameters transmitted and how is the authentication infor-

mation transmitted.

6. Complementary documentation – we examined the provisioning of example request,

example response and a list of error messages/codes.

We focus our analysis on studying precisely these groups of API features because each of them

plays an important role for different aspects of the API use. The general information provides

insights on the characteristics that are commonly used to describe Web APIs and how this in-

formation is captured, including reusability and level of granularity. Since, an important part of

current research work on APIs is focused on investigating and comparing different Web service

types (REST vs. WSDL and SOAP) [Pau09], we also record and analyse the existing types

of Web APIs. We study input parameters, output formats and invocation details, since they

serve as the basis for conducting main service tasks, focusing on invocation and authentication.

These Web API features are present in all interface description languages (IDLs), as they are

considered essential for invocation [Pau09], composition [GRN+08] and discovery. The com-

plementary documentation provides details on how the communication between the client and

the service is realised, and what are the possible errors that can occur.

The analysis approach involved a sequence of steps. First, for each API picked for the study, the

ProgrammableWeb9 webpage was opened. The APIs to analyse were randomly chosen within

each category, covering all categories. This was necessary in order to ensure that the results

are domain-independent and at the same time representative for the whole directory (see Sec-

tion 6.3.2 for more details). For each API the general information was recorded. Second, the

provider’s Web API documentation was examined, recording the documentation URL, counting

the number of operations and determining the type of the API interface (for more details see

Section 6.3.3)). We also analysed the input parameters of each operation, in case of RESTful

services these are also referred to as the scope [RR07]. For the output of each API, the serialisa-

tion format was recorded, including the available alternatives and how they are chosen (through

parameterisation, through a separate URI for the invocation, or through content negotiation). Fi-

nally, the invocation details, included in the description, and the complementary documentation

were recorded. Our objective was to gain a picture of the current state of the Web APIs land-

scape as depicted by their documentation. We did not perform any test invocations of the APIs,

which would be necessary in order to identify discrepancies between the actual implementation

and the provided documentation.
9http://www.programmableweb.com

http://www.programmableweb.com

On the Current State of Service on the Web 93

The documentation of every Web API had to be reviewed manually. In the process, we already

noticed that the work was slowed down by the fact that the description forms and structures

are very diverse and each API had to be examined from scratch, without being able to benefit

from the analysis of previous APIs. This already provides some indication about the difficulties

arising from having to deal with heterogeneous textual API documentation.

In the following sections we present the results of our study. The results are structured into

six groups, according to the different parts of the API descriptions that were analysed. Each

group provides valuable insights about separate aspects of the APIs and serves as the basis for

identifying common characteristics and drawing conclusions.

6.3.2 General Web API Information

The analysis of the general Web API information includes the recording of some details provided

directly by the API directory, such as the name of the API, its description, the category that it is

assigned to, the URI of the API and the latest update of the description. Table 6.1 provides the

numbers for these features.

Description Maximum Minimum Average
APIs per Category 12 1 4
Number of Mashups 506 0 6.4
Number of Operations over 200 1 15.5

TABLE 6.1: Survey 1 - General Web API Information

Of these general details, the number of mashups is of particular relevance because it provides a

measure for the level of reuse of Web APIs and to a certain extent can help to highlight factors

influencing the reusability of APIs. Since we cannot collect data about the actual API use, which

is available only to providers, the number of mashups10 is the only measure indicative for the

popularity of an API. The analysis shows that a few APIs are highly reused, whereas most APIs

are used in very few or no mashups at all. In particular, there are 136 APIs with 0 mashups, 60

APIs with 1 to 4 mashups and 26 APIs with 5 to 506 mashups (see Figure 6.4). The API with

most mashups is Flickr11, which can be easily integrated into different Web applications as a

source of images and photos. In summary, there is a big difference in the frequency of reuse

of some APIs, while most APIs are not used often as part of mashups. Also it must be noted,

that the number of mashups is as provided by ProgrammableWeb, therefore the actual values

can somewhat differ. However, for comparison purposes it is still representative, since the data

comes from the same source for all APIs, thus being affected by the same inaccuracy.
10As provided by ProgrammableWeb.
11http://www.flickr.com/services/api/

http://www.flickr.com/services/api/

On the Current State of Service on the Web 94

0	

20	

40	

60	

80	

100	

120	

140	

160	

0	 C
ou
nt	

1	 C
ou
nt	

2	 C
ou
nt	

3	 C
ou
nt	

4	 C
ou
nt	

5	 C
ou
nt	

6	 C
ou
nt	

7	 C
ou
nt	

8	 C
ou
nt	

10
	 Co
un
t	

12
	 Co
un
t	

13
	 Co
un
t	

14
	 Co
un
t	

15
	 Co
un
t	

20
	 Co
un
t	

21
	 Co
un
t	

24
	 Co
un
t	

25
	 Co
un
t	

28
	 Co
un
t	

33
	 Co
un
t	

34
	 Co
un
t	

70
	 Co
un
t	

13
9	 C
ou
nt	

14
2	 C
ou
nt	

50
6	 C
ou
nt	

Mashups	

FIGURE 6.4: Number of Mashups (APIs per Number of Mashups)

The collected general API information also delivers some valuable insights about the granularity,

i.e., the number of operations, of the APIs. 109 of the APIs or about 50% have 1 to 7 operations,

while 36 APIs or 16% have only 1 operation. 92 APIs have between 7 and 50 operations,

where more APIs have fewer operations. Finally, 21 APIs have between 50 and 200+ operations

(Yahoo Ads12) (see Figure 6.5). This leads us to the conclusion that the majority of the APIs

are small and have very few operations. We investigated whether there is a correlation between

the size of the APIs and their use as part of mashups, but even though social and community

websites, seem to expose a larger number of operations, there are important exceptions such as

del.icio.us13, which has only 15 operations but 142 mashups, and geocoder14 with 3 operations

but 28 mashups.

Finally, we discuss two characteristics that do not relate so much to the individual Web API

descriptions but rather to the way of storing details in the ProgrammableWeb directory. First

of all, our analysis highlighted that since all details are added manually to the Web API di-

rectory, some of the details were not always accurate. This is especially true for the URL of

the documentation, which had sometimes been moved or was no longer available, and for the

authentication information, which was very often inaccurate. In this case, we used Google to

search for the website with the API documentation and referred to the provider’s information

for determining the correct authentication method. Second, some of the entries were outdated,

which was especially obvious when the Web APIs no longer existed. During our first survey, we
12http://developer.yahoo.com/everything.html
13http://delicious.com/help/api
14http://geocoder.us/help/

http://developer.yahoo.com/everything.html
http://delicious.com/help/api
http://geocoder.us/help/

On the Current State of Service on the Web 95

0	

5	

10	

15	

20	

25	

30	

35	

40	

1	
Co

un
t	

3	
Co

un
t	

5	
Co

un
t	

7	
Co

un
t	

9	
Co

un
t	

11
	 C
ou

nt
	

13
	 C
ou

nt
	

15
	 C
ou

nt
	

17
	 C
ou

nt
	

19
	 C
ou

nt
	

21
	 C
ou

nt
	

23
	 C
ou

nt
	

25
	 C
ou

nt
	

27
	 C
ou

nt
	

29
	 C
ou

nt
	

31
	 C
ou

nt
	

33
	 C
ou

nt
	

36
	 C
ou

nt
	

43
	 C
ou

nt
	

46
	 C
ou

nt
	

50
	 C
ou

nt
	

52
	 C
ou

nt
	

54
	 C
ou

nt
	

58
	 C
ou

nt
	

74
	 C
ou

nt
	

90
	 C
ou

nt
	

10
4	
Co

un
t	

12
1	
Co

un
t	

17
6	
Co

un
t	

Number	 of	 Opera:ons	

FIGURE 6.5: Number of Operations (APIs per Number of Operations)

did not record how many APIs were in the directory but no longer available and simply chose

another API. In the second survey, we collected this information (see Section 6.4).

This is indicative for the difficulties resulting from using directories based on manual entries.

First, there is the possibility to retrieve outdated information, because the entries cannot be

automatically updated. Second, the retrieved information can be erroneous, due to wrong or in-

accurate user input. Therefore, despite the fact that currently these manually created directories

are the easiest way to search for APIs, since the included general information is often inaccurate,

it is impractical to develop approaches that are based on more detailed properties, such as the

ones required for supporting discovery, composition and invocation.

6.3.3 Type of Web APIs

In this section we describe our findings regarding the different types of Web APIs and their

frequency of use. We have identified three types of APIs: RESTful, RPC-style and Hybrid.

RESTful services are defined as services, which conform to the representational state transfer

(REST) paradigm [Fie00]. REST is based on a set of constraints such as the client-server based

communication, statelessness of the request and the use of a uniform interface (see Section 3.2).

A RESTful service comprises a collection of uniquely identified resources and their links to

each other, and is commonly implemented by using HTTP. In addition, RESTful services are

characterised by resource-representation decoupling, so that resource content can be accessed in

different formats.

On the Current State of Service on the Web 96

It is important to point out that for the scope of our study, we identify Web APIs as RESTful,

when their descriptions indicate that they are resource-centred and data retrieval and manip-

ulation is done only over the HTTP methods (for a complete list of the RESTful service re-

quirements see Section 3.2). We define RESTful APIs in this way, for the scope of our survey,

because REST principles dictate the architectural style of the application and are applied to the

actual implementation. Therefore, what we can observe in the Web API documentation is only

a propagation of the underlying technical realisation. For example, we cannot determine from

the documentation whether an API is based on a layered system and if the responses support

caching mechanisms. As a result, we classify the APIs based on the appearance of the interface,

as captured in the documentation. Example APIs, which were classified as RESTful, include

MusicBrainz15 and Doodle16. RESTful APIs can have a scope, or a set of parameters, to restrict

the effect of the HTTP methods on the resource only to the ones determined by the parameter

values. For example, instead of retrieving all news resources in the News collection by using

GET (HTTP GET http://url/.../News), the API can also be invoked by including a parameter and

retrieve only news created by a particular user (HTTP GET http://url/.../News?user=aUser).

Furthermore, we define RESTful APIs based on these two criteria because they determine how

the actual communication with the service is realised, which is key for supporting invocation. In

other words, if we know that an APIs is resource-centred and uses directly HTTP-based messag-

ing and communication, it is clear how the HTTP request and responses can be processed. For

this reason, we are not more restrictive, including requirements such as determining the output

format only through content negotiation and realising state changes only through links (HA-

TEOAS). This would enable us to identify what percentage of the Web APIs are strictly-REST

conforming (observed in the second survey, see Section 6.4), however, it would not support us

in developing a Web API description model, covering the majority of the APIs.

We define RPC-style APIs as APIs that are not based on resources but rather on operations,

which can perform simple actions, such as read or write, or more complex ones, such as the

computation of functions or a multi-step process. These operations are then invoked over

HTTP, where the semantics of each operation should conform to the semantics of the used

HTTP method (for example, an update of a record is realised using HTTP POST and not HTTP

GET). For example, an RPC-style API, providing the same information as the news REST-

ful one, would look like: HTTP GET http://url/.../getNews and there can be a scope or a set

of parameters (HTTP GET http://url/.../getNews?user=aUser). Example APIs include GeoN-

ames17 and Daylife18. It is important to point out that, similarly to RESTful APIs, we base

our classification strictly on the API documentation, since we have no direct information about
15http://wiki.musicbrainz.org/XMLWebService
16http://doodle.com/xsd1/RESTfulDoodle.pdf
17http://www.geonames.org/export/web-services.html
18http://developer.daylife.com/docs

http://wiki.musicbrainz.org/XMLWebService
http://doodle.com/xsd1/RESTfulDoodle.pdf
http://www.geonames.org/export/web-services.html
http://developer.daylife.com/docs

On the Current State of Service on the Web 97

the underlying implementation. Still our definitions of Web API types share a common under-

standing with the ones given in [RR07], stating in essence that RPC APIs expose internal func-

tionalities through an arbitrary programming-language-like interface that is different for every

service, while resource-oriented APIs expose internal data through a simple uniform document-

processing interface.

Hybrid APIs, as the name suggests, represent a mix between RESTful and RPC ones. Hybrid-

style APIs define their own operations, but employ operation information, which is contra-

dictory to the used HTTP method. For example, a hybrid API can realise the getNews op-

eration through POST and addNews through GET. Example hybrid APIs include ClearForest

(http://www.opencalais.com/documentation/calais-web-service-api), which uses POST for get-

ting resources and Box.net (http://developers.box.net/ApiOverview) where adding a new ele-

ment can be done by using GET. The use of hybrid APIs can be very problematic since they

do not guarantee operation safety, especially in cases where data manipulation is realised by

using GET, because of the possibility of unintentional data modification. In such cases a simple

crawler can change or delete resources, since it would use GET, expecting to retrieve informa-

tion instead of altering it.

Description In %
RPC-Style 47.8%
RESTful 32.4%
Hybrid 19.8%
Mashups with RPC-Style APIs 42%
Mashups with RESTful APIs 34%
Mashups with Hybrid APIs 24%

TABLE 6.2: Survey 1 - Type of Web APIs

Table 6.2 shows the distribution of the different types of APIs. Almost half of the Web APIs

are RPC-style and about one third are RESTful. The hybrid APIs represent about 20% of the

analysed data. This shows that, even though RESTful services are by design based on the

same principles as the Web, their level of adoption is still relatively low. Instead of identifying

resource collections and manipulating them with the help of HTTP methods, developers prefer

to define their own operations, whose functionality sometimes even contradicts the used HTTP

method (hybrid APIs). As a result, two thirds of the API descriptions are based on operations

and not resources, disregarding the REST principles.

A very similar distribution can be detected among the APIs, which are reused as part of mashups.

42% of the APIs are RPC-style, 34%– RESTful and 24%– hybrid19. Therefore, we can conclude

that API reuse is not driven by the type of description, since the mashups percentage distribution
19The percentages are determined by dividing the total number of mashups to the number of mashups that are

realised using RPC-style, RESTful and hybrid APIs, correspondingly.

On the Current State of Service on the Web 98

matches almost exactly the Web API distribution. As a result, contrary to common belief, we

can argue that the current proliferation of Web APIs cannot be attributed to the use of RESTful

services. As our study shows, most Web APIs do not have RESTful descriptions and how APIs

are described does not seem to have an impact on their reuse.

6.3.4 Input Details

In this section we present an analysis of the information in the API documentation, relating to

the input parameters. As can be seen in Table 6.3 about 60% of APIs use optional parameters,

while 45% use default values. This has a strong effect on the matchmaking and invocation

approaches, since one API can be found or not depending on whether optional parameters are

taken into account or not. Similarly, if invocation is done on the basis of default values, the

output results can be drastically changed. For example, a lot of APIs have XML as a default

output format but some use also JSON as default. If the default parameter value is used, the

results might be retrieved in the wrong format.

Description Number In %
APIs with optional parameters 136 61.3%
APIs with alternative values for a parameter 114 51.3%
APIs with default values for parameters 99 44.6%
APIs that state the datatype of the parameters 61 27.5%
APIs with coded values for a parameter 55 24.8%
APIs with boolean parameters 39 17.6%

TABLE 6.3: Survey 1 - Input Parameters

The fact that a lot of APIs use alternative values for one parameter (for example, a range of 1, 2

or 3) and coded values (for example, ’en’ for English) makes the API invocation even more chal-

lenging. For the automated invocation of single APIs, the input data has to be transformed in the

correct format, which can be very difficult, since sometimes the lists with alternative or coded

values are not provided. For the invocation of mashups, the transformation between the outputs

of one API and the inputs of the next one has to be defined. Currently, this work requires exten-

sive manual effort and the adaption of existing Web service invocation approaches is hindered

by the under-specification and the variability of the parameters. Therefore, client application

developers are required to test-invoke APIs, in order to determine the missing information in the

documentation, and to implement custom solutions that handle the different processing options.

This situation is aggravated by the fact that two thirds of the APIs do not even state the datatype

of the input parameters. As a result developers need to determine the proper input format by

making assumptions or through trial-and-error. In addition, the development of new client ap-

plications is made difficult, since the datatype information is simply not available. The lack of

On the Current State of Service on the Web 99

datatype specification hinders the automated processing, imposing the need to manually interpret

the documentation, instead of having a description that already supports the machine-to-machine

communication, such as WSDL.

6.3.5 Output Formats

As can be seen in Table 6.4, there are two main common output formats – XML and JSON.

XML is provided in 85% of the cases and JSON in 42%, while more than one third of the

APIs provide both. Further output formats include HTML, CVS, RDF, Text, object, RSS, GFF,

Serialised PHP, Tab, YAML. These results show that providing support for the use of XML and

JSON addresses the vast majority of the APIs.

It is also important to point out that only about 6% of the APIs deliver the output in RDF,

enabling the communication based on semantic information. This plays an significant role for

the scope of this thesis, since one key step along the way of enabling Open Services on the Web,

based on the integration of services on the Web and Linked Data, is the support for exchanging

and communicating via a format that can capture semantics (i.e. RDF). As can be seen, currently

the adoption of RDF for APIs is still very limited.

Description Number In %
XML 80 36%
XML and JSON 53 23.9%
XML and other 34 15.3%
XML, JSON and other 23 10.4%
only JSON 12 5.4%
only other 14 6.3%
JSON and other (except XML) 6 2.7%
RDF 13 5.8%
Total XML 190 85.6%
Total JSON 94 42.4%

TABLE 6.4: Survey 1 - Output Formats

Even though, HTTP provides a standardised way of determining the required output format (via

content negotiation [FGM+99]), as part of the HTTP request, most providers disregard this and

the majority of the APIs specify how the results should be structured in two main ways. Either

the API provides a separate operation for every output format or it is determined through a

parameter (for example, http://my.example.org/.../getXmlNews?user=aUser

and http://my.example.org/.../getNews?user=aUser&format=xml).

http://my.example.org/.../getXmlNews?user=aUser
http://my.example.org/.../getNews?user=aUser&format=xml

On the Current State of Service on the Web 100

6.3.6 Invocation Details

In this section we describe our findings in relation to the invocation details commonly provided

in API descriptions. The collected data is of crucial importance, since it has a direct impact on

the usability of the APIs.

Description Number In %
Provide HTTP method 134 60.4%
Provide invocation URI 214 96.4%

TABLE 6.5: Survey 1 - Invocation Details

Table 6.5 shows that almost all descriptions provide the URI for invoking the API, while the

remaining 3% do not include it as part of the documentation. In such cases developers have to

assume that the invocation URI is the same as the documentation one or seek further support.

Either way, this requires additional manual effort. Not providing the invocation URI, would

be unthinkable if a formal interface description language were used, such as WSDL for Web

services. This is also true for not stating the HTTP method, which holds for two thirds of the

APIs. One possibly reason is that providers assume that the method to use is GET, especially

for APIs that can be invoked directly through parameterising the URI. If the description of APIs

were guided by standards, this form of underspecification would not be allowed. This kind of

crucial but commonly omitted Web API characteristics highlights the need for the work carried

out in this thesis (see Chapter 7).

6.3.7 Authentication Details

Authentication Mechanisms Number In %
API Key 89 38%
HTTP Basic 32 14%
Username and Password 19 8%
OAuth 14 6%
Web API Operation 12 5%
HTTP Digest 11 5%
API Key in Combination with Other Credentials 5 2%
Session Based 5 2%
Other 2 1%
Authentication Only for Data Modification 4 2%
Offer Alternative Authentication Mechanisms 16 7%
No Authentication 46 19%

TABLE 6.6: Survey 1 - Common Web API Authentication Approaches

On the Current State of Service on the Web 101

Our analysis also shows that more than 80% of the APIs require some form of authentication20

(Table 6.6). As can be seen, using an API key (also called “developer key”, “developer token”,

“token Id”, “user Id”, “user key”) is by far the most common way of authentication21 (38%). It is

followed by 19% of APIs, which do not require any authentication. HTTP Basic and HTTP Di-

gest [FHBH99] are not used as often (14%, 5%), while about 6% of the APIs use OAuth [MA10]

and 5% implement their own operations, which need to be called, before being able to invoke

other operations. There are some APIs, which require authentication only for operations, which

perform data modification but require no authentication for only reading resources.

In summary, 3 out of 4 APIs require some form of authentication, which means that developers

would have to sign up with providers for acquiring the appropriate credentials. In addition,

there is no established approach for Web API authentication but rather a landscape of different

approaches. Also, about only a quarter of the APIs use a mechanism that protects the user

credentials and does not transmit them directly in plain text (HTTP Basic, OAuth and HTTP

Digest) . This shows that providers are not so much concerned with securing the user credentials

and do not invest implementation work in securing the message transfer but rather prefer to focus

on controlling resources usage. This is verified by the fact that only about 10% of the Web APIs

use signatures and encryption (OAuth and HTTP Digest).

Transmission Medium Number In %
URI 117 70%
HTTP Header 45 27%
URI or HTTP Header, Depending on the 6 3%
Type of Authentication and HTTP Method

TABLE 6.7: Survey 1 - Way of Transmitting Credentials

Table 6.7 shows the most commonly used ways for transmitting authentication credentials. As

can be seen, 70% of the Web APIs send authentication information directly in the URI, while

less than one third require that a special HTTP header is constructed. This means that even

if Web APIs require authentication, most of them do not need a custom client but can rather

be invoked directly from a Web browser. These numbers are similar for invocation in general,

where about one third of the APIs require the construction of the HTTP request, while the rest

can be invoked by using the URI.
20Sum over all authentication types, adding up to 81%.
21See Section 4.2 for a detailed description of all authentication approaches.

On the Current State of Service on the Web 102

6.3.8 Additional Documentation

Finally, this section describes API description features, which are not strictly necessary for di-

rectly supporting service tasks such as discovery or invocation, but are useful when implement-

ing and using APIs. As Table 6.8 shows, more than 75% of the APIs provide example requests

and responses. These give valuable information about the structure and the form of the request

as well as of the retrieved results and, therefore, ease development work.

Description Number In %
APIs that provide an example Request 186 83.8%
APIs that provide an example Response 167 75.2%
APIs that describe the Error messages 118 53.1%

TABLE 6.8: Survey 1 - Complementary Documentation

We also found out that about only half of the APIs describe the used error codes. This represents

a problem for the implementation of client applications, since developers cannot determine what

went wrong and whether the error is due to an incorrect invocation, to missing credentials, etc.

6.3.9 Summary of Results

This section provides a summary of the findings of the first survey and derives a number of

important conclusions, characterising the Web API landscape. The made observations are an

important step towards gaining a clear picture of the development process, used technologies,

available information, richness of the descriptions, etc., in the context of Web APIs. These serve

as a foundation for developing approaches and software solutions that lead to a more automated

API use.

1) Web API directories, like ProgrammableWeb, which are based on manual input contain

inaccurate or outdated details.

This result points out one of the main challenges faced by current Web API repositories. Since

the API descriptions are published and updated manually by users, some of the entries are not

up-to-date or no longer exist. Therefore, there is a need for developing solutions for a more

automated way of collecting, publishing and updating API descriptions.

2) Few APIs are highly reused, whereas most APIs, are used in very few or no mashups

at all. In addition, there is no correlation between the level of reuse of APIs and their

granularity.

On the Current State of Service on the Web 103

The level of reuse, as indicated by the number of mashups per API, is a very important charac-

teristic of the current Web API landscape. Since we have no direct information about how many

of the existing APIs are actually being used, the number of mashups is an indirect indication for

that.

3) There are three main types of Web API descriptions (RESTful, RPC-style and hybrid).

Developers prefer to describe APIs in terms of operations, rather than resources.

This means that each type of Web API requires separate invocation solutions, otherwise the sup-

port provided by any approach would have only limited coverage. Currently, with the exception

of some frameworks, with limited functionality (see Section 4.1.3), API invocation is based on

custom solutions, which have a low level of reusability and do not contribute to the automation

of a shared API invocation process.

The fact that most developers prefer to describe APIs in terms of operations, disregarding REST

principles may be explained by looking at popular ways for defining interfaces and frequently

used programming languages in general, which are commonly based on operations and methods.

Therefore, developers with previous knowledge of interface description languages and a back-

ground in programming intuitively tend to formulate Web APIs in terms of operations, rather

than resources that are manipulated through the HTTP methods. This, however, still needs to be

confirmed by directly questioning Web API developers.

4) The current proliferation of Web APIs cannot be attributed to the use of RESTful APIs.

The popularity and use of Web APIs, being offered by websites, is not driven by a particular

REST features, since RESTful APIs account for only about 30%.

5) API reuse in not driven by the particular type of Web API description (RESTful, RPC-

style or hybrid).

We base this conclusion on the fact that the mashups percentage distribution matches almost

exactly the Web API description type distribution. Our data shows no indication of RESTful

APIs having a leading role in determining whether APIs are used in mashups or not.

6) The description of input parameters is very diverse, allowing for the use of default values,

coded values, alternative values and optional parameters.

Service tasks that predominantly rely on the input information, such as discovery, composition

and invocation, gain complexity, since the presence of some parameters is non-restrictive and

On the Current State of Service on the Web 104

the input data has to be transformed into coded or alternative values. Therefore, the approaches,

which aim to support the use of Web APIs, should be able do deal with the diversity of the input

parameters. This is especially true for invocation, which would require the development of an

integrated view on all theses diverse input forms.

7) XML and JSON are establishing themselves as the main output formats.

Even though there are no guidelines for the format of the output, currently most APIs give their

results either in XML or JSON. Therefore, providing support for using and processing only

these two formats, would already enable the handling of the majority of the APIs’ output.

8) Authentication plays a major role in the context of supporting automated Web API use.

More than 80% of the APIs require some form of authentication. Therefore, authentication is a

vital part of the invocation process and any approach for supporting the use of APIs and mashups

that disregards authentication, has very limited applicability. Currently, developers have to sign

up with multiple providers in order to acquire credentials necessary for APIs participating in

mashups or restrict the implementations to APIs, which are based on shared credentials such as

OAuth [MA10].

9) API documentation is frequently characterised by under-specification.

Our data shows that two thirds of the APIs do not state the datatype of the input and 40% of

the APIs do not state the HTTP method. If a standard interface description language, such as

WSDL, were used to describe Web APIs, not specifying these details would be unthinkable.

However, since there is no common IDL, under-specification is very common.

Looking at the different results provided in this section, it becomes obvious that currently the

Web API landscape is very heterogeneous and there is no such thing as a ‘standard Web API

documentation’ or standard practices for that matter. Without a doubt, all descriptions contain

common pieces of information, which are required for the support of main service tasks, such

as discovery, composition and invocation. However, since Web API development is not guided

by standards, the diversity spreads from the structure and the form of the documentation up to

the technological principles used behind the implementation. Therefore, currently the use of

APIs requires extensive manual effort and the development of automated approaches is very

challenging. With our study we provide the foundation for the development of approaches that

better support API use by contributing to a clearer picture of the current Web API landscape.

Furthermore, the gathered insights can be used to guide the development of applications and

solution approaches, or even serve as the basis for launching activities that would encourage

providers to offer more REST-conforming APIs.

On the Current State of Service on the Web 105

6.3.10 Discussion

In this section we reflect on a number of further trends and correlations that we discovered while

conducting our Web API analysis. In particular, we describe how APIs from the same domain

tend to have some similar features.

One interesting correlation that we detected is that APIs from the same ProgrammableWeb cat-

egory tend to have the same type of description. For example, all bookmarking APIs were

RPC-style, while all project management ones were RESTful. This is also true for most of the

categories, where we found out that the majority of the APIs have the same type22. This might

be due to developers investigating competing providers and their services and, therefore, being

influenced by the way APIs with similar functionalities are structured and described.

In addition to having similar types of descriptions, we discovered that APIs from the same

category usually have similar authentication mechanisms. For example, most APIs from the

government or health information domain require no authentication, while APIs for job search

and general search commonly use an API key. This can be attributed to the tendency that certain

domains should naturally be very accessible, while others related to more private or confidential

information, should be supported by stronger authentication measures.

The survey also provided some important information about the Web API description forms.

In particular, none of the analysed APIs used WSDL [W3C07a] or WADL [Had06] and the

majority of the APIs are documented directly in HTML webpages. In addition, some of the

descriptions were in PDF, which requires downloading the documentation and makes crawling

for APIs and automated processing more difficult.

6.4 Second Web API Survey

The second Web API survey was conducted in February 2012, almost two years after the initial

study. It was carried out to cover the exact same APIs that were investigated in the first study.

Our main goal was to revisit the results of the first study and to identify any changes or trends

in the analysed characteristics. In particular, we covered the 222 APIs from the first study and

added the top 10 most popular APIs in order to compensate, in the case that some entries no

longer existed. In fact, we found out that 4 of the APIs were no longer available in the directory,

resulting to a total of 228 to analyse.

Currently ProgrammableWeb is still the most popular and commonly used API directory, which

at the time of the second study provided information about 4796 Web APIs and 6404 mashups

(numbers from mid-January 2012). The structuring of the directory has not been significantly
22All the gathered data is available at http://purl.oclc.org/NET/WebApiSurvey/.

http://purl.oclc.org/NET/WebApiSurvey/

On the Current State of Service on the Web 106

altered, still including the same options for keyword search and browsing by category, data

format, company (provider) and protocols/styles. With the growing number of the stored APIs,

the number of categories used to the describe them has increased from 51 to 55.

6.4.1 Methodology

In contrast to the first study, which had the purpose to provide a general overview of the state of

the Web APIs and their general characteristics, this survey aims to review and further explore the

initially conducted analysis and also to capture the developments in the ways of describing and

providing APIs. In addition, its goal is to investigate some correlations and interesting features

that were identified while completing the first study. Therefore, all the previously used criteria

were included and some new ones were added. Based on this set up, we are able to compare

the results of the two studies and discuss trends and developments that have taken place over the

past two years.

In particular, the analysis included all the APIs from the first study, in order to be able to reflect

on how their characteristics have changed, and was extended with an additional 10 entries from

the list of most popular APIs. We chose to include the most popular APIs, instead of adding

randomly chosen APIs from each category, because in this way the results will reflect the char-

acteristics of the most commonly used APIs. In total, the second Web API survey covers 7% of

the APIs listed in ProgrammableWeb, which are marked as using REST (3309 APIs at the time

of the study). Similarly, to the first study, it was done manually but this time also assessed by a

supporting system (see Section B.2).

Each Web API documentation was manually analysed in terms of the same six main groups

of features, whose individual properties were extended and refined. These include general Web

API information, type of Web API, input details, output details, invocation details and additional

documentation. The Web API analysis was conducted manually. However, this time it was done

with the help of an especially designed and implemented Web application, described in more

detail in Section B.2. Each Web API was examined in terms of:

1. General Web API information – we recorded all the characteristics from the first study,

including the name of the API, its description, the date when the documentation in Pro-

grammableWeb was updated, the assigned categories and tags, number of mashups, URL

and number of operations. This time we also checked whether the documentation URL

actually points to the provider’s documentation webpage (correctness of the documenta-

tion URL).

On the Current State of Service on the Web 107

2. Type of Web API – we checked whether the API description is RESTful, RPC-style

or hybrid. During the second study we also recorded if the invocation URL reflects the

hierarchical structure of the resources.

3. Input details – in addition to the characteristics analysed in the first study (default param-

eters, optional parameters, coded parameters, alternative values for parameters, boolean

parameters, stating of the datatype), we also collected details on whether the input is a

complex object and whether there are any links between the outputs and inputs of differ-

ent operations.

4. Output details – we recorded the form of the output (for example, XML or JSON) and

whether it is determined via an input parameter. This time we also checked if there is an

output schema definition provided.

5. Invocation details – in addition to the collected invocation details during the first survey

(provisioning of the HTTP method and the invocation URI, type of authentication and

way of transmitting the input details and the authentication information), during the sec-

ond survey we also checked whether the invocation URI uses templates, parameters and

version number. Furthermore, we also recorded for which operations authentication is

required.

6. Additional documentation – we examined the provisioning of example request, example

response and a list of error messages/codes. For this study, we also checked if the used

errors are the standard HTTP errors or are custom ones used.

The second Web API survey includes the same groups of features as used in the initial one, with

the addition of a few new features that had been identified as relevant. For example, during the

first survey it became evident that sometimes the URL listed in ProgrammableWeb, which is

supposed to point to the documentation of the API, actually points to the provider’s website or

to a different website instead. In addition, some of the APIs from the directory were no longer

available. We decided to record this information in order to be able to make statements about

the accuracy of the information provided in the directory but also about the dynamic nature

of the entries. Naturally, the main focus was on gathering details about different API aspects

that are relevant for developing a method that supports a more automated API use. While the

first study provides an initial overview of the heterogeneous API landscape, the second analysis

was more targeted towards gathering input for refining and improving the description models,

which are detailed in Chapter 7. This includes a more detailed analysis of the different Web API

types, gathering of data about the input message, output provisioning and presentation, and error

handling. We align with the features that are present in interface description languages (IDLs),

as they are considered essential for enabling invocation [Pau09]. In addition, we consider the

On the Current State of Service on the Web 108

complementary documentation, which provides details on how the communication between the

client and the server is realised, and what are the possible errors that can occur.

The analysis approach of the second study was conducted in a slightly different manner as

opposed to the initial one. A collection of all Web API entries that were chosen for the survey,

including all the available details from ProgrammableWeb, was stored in a triplestore datastore

(we used Sesame23). The APIs to analyse included all the entries from the first study. We did

not chose the APIs randomly because we wanted to be able to compare the results for the exact

same set of entries, as originally used. In this way we are able to revisit the data collected from

the first survey, confirm the made statements and explore further relevant features.

The second API survey was based on the following steps – each API entry is opened in an es-

pecially designed survey Web application (presented in detail in the Section B.2) and the details

available from ProgrammableWeb are directly presented for validation. The person completing

the survey has to fill out four Web forms, based on free-text, drop-down selections, radio but-

tons and checkboxes, and finally click on a button to submit the results. The new survey system

can be configured to include only a sub-set of all the analysis features and makes it possible to

crowdsource the evaluation process to people from distributed locations. Each survey entry is

user-specific (based on recording their email address), enabling the collection of data inputted

by a single user or a group of people. The results presented here are based on the full set of

features and were completed by a domain expert.

The main objective of the second survey is to provide insights on improving the support for

automating the use of Web APIs, therefore, more attention was paid to invocation-relevant char-

acteristics and less space was devoted to collecting general API information. The results of the

second Web API study are presented in the following section.

6.4.2 General Web API Information

The analysed general Web API information includes validation and recording of some of the

details provided by ProgrammableWeb about each API. In addition to the characteristics anal-

ysed during the first study, we also determine the correctness of the documentation URL, let the

person completing the survey freely assign categories to the API, record a set of tags and count

the number of operations.

As we discovered, in some cases the survey cannot be completed because the API is no longer

available or because the documentation cannot be found. We record these cases and the corre-

sponding reason for not being able to fill-out the question forms. These results are of special
23http://www.aduna-software.com/technology/sesame

http://www.aduna-software.com/technology/sesame

On the Current State of Service on the Web 109

interest for the subset of APIs included in the first study because we can determine what percent-

age of the APIs were taken offline during the two years between the surveys. Table 6.9 provides

the numbers for some of these features, including a comparison with the results from the first

survey (columns marked with ’S1’).

Description Maximum S1 Minimum S1 Average S1
APIs per Category 53 12 1 1 8 4
Number of Operations 100 < # < 200 # > 200 1 1 11 < # < 50 15.5
Number of Mashups 602 506 0 0 8 6.4

TABLE 6.9: Survey 2 - General Web API Information

As part of the analysis, we determined that the distribution of the categories was quite different

in comparison to the first study (maximum of 53 entries for one category and minimum of 1 for

a total of 53 used categories), while the most popular categories were social, tools and other24.

This is due to the fact that the overall number of APIs in ProgrammableWeb has increased,

which results in an increase of the APIs assigned to each category.

In the initial study, if we could not complete the survey for a given API, we simply moved on

to the next one. This time we recorded the number of cases, in which the URL listed in the

directory did not point to the actual Web API documents. This was the case with 97 APIs,

which accounts for a surprising 42% of the analysed APIs. This means that developers cannot

rely on the directory to find the link to the provider’s documentation and in half of the cases

have to search for it themselves. In addition, the survey could not be completed for a total of 55

APIs25. There are two main reasons for not being able to complete the survey – first, the APIs is

no longer available (36 APIs), second, the documentation cannot be found or is not available (18

APIs). What is more interesting is that out of the APIs used to complete the first survey almost

25% were no longer available and 4 APIs were removed from the directory. This demonstrates

that the API landscape is very dynamic, with a large portion of APIs being taken offline and new

ones being published.

Similarly to the first survey, we take the number of mashups as a measure for the reuse of Web

APIs and use it as an indicator for factors that influence the reuse of APIs. Since ten of the APIs

are taken from the list of the most popular APIs in ProgrammableWeb, we base this analysis

only on the remaining part of the studied APIs, i.e. we consider only the APIs from the first

survey. Otherwise the average number of mashups per API would rise from 8 to 19.

The second study confirms again that a few APIs are highly reused, whereas most APIs are used

in very few or no mashups at all. In particular, there are 101 APIs with 0 mashups, 85 APIs with
24The numbers for ’APIs per Category’ are based on the complete ProgrammableWeb directory and not on our

test API subset.
25This number should not be confused with the 4 APIs, which were excluded from the second survey, because

they are no longer listed in ProgrammableWeb.

On the Current State of Service on the Web 110

1 to 4 mashups and 32 APIs with 5 to 602 mashups. The API with most mashups is Flickr26

(overall in ProgrammableWeb is Twitter with 690 mashups). Overall, the average number of

mashups per APIs has increased, from 6 to 8. This shows an overall tendency of building more

mashups, since the total number of mashups over all analysed APIs this time was 1879 (1350

for the first study).

As part of collecting general information about Web APIs, we recorded the number of operations

for each API. It is important to point out that we used the results of the first study to adjust the

features used in the second one. For example, we used a range, instead of an exact number,

for recording the number of operations (1, 2-10, 11-50, 51-100, 101-200, 200+). The limits

of the ranges are based on the results of the initial survey, which indicated a distribution of the

numbers matching these ranges. This adjustment helped speed up the analysis of each API, since

counting the individual operations was very time consuming during the first study. The results

show that the majority of the APIs have between 2-10 (37%) and 11-50 (35%) operations, while

only few APIs have only one operation (17%) or more that 50 (11%) operations. This leads us

to the conclusion that most APIs have fewer operations.

The results of the second Web API survey also confirm the overall problem that since all details

are added manually to the Web API directory, some of the feature descriptions were not always

accurate. This is especially true for the URL of the documentation, which had sometimes been

moved or was no longer available, and for the authentication information, which was very often

inaccurate. This yet again confirms the difficulties resulting from using directories based on user

entries and highlights the need to develop approaches for automatically collecting and extracting

API descriptions from the Web.

6.4.3 Type of Web APIs

We used the same three types of Web APIs, which were defined and identified during the first

Web API survey – RESTful, RPC-style and Hybrid. It is important to note that the APIs

classified as RESTful in the survey are the ones that closely follow the representational state

transfer (REST) paradigm [Fie00] and represent a subset of the APIs labelled as “REST” in

ProgrammableWeb. This occurs because the APIs marked as “REST” in ProgrammableWeb

actually include RPC-style and hybrid ones as well. The term RESTful services is often misused

to denote Web APIs in general, instead of only the ones conforming to the REST principles.

Table 6.10 summarises the overall distribution of the types of APIs. As can be seen, similarly to

the results of the first study, currently almost half of the Web APIs are RPC-style and about one

third are RESTful. The hybrid APIs represent only about 16% of the analysed data. This per-

centages demonstrate that REST principles still remain to be widely adopted by API providers.
26http://www.flickr.com/services/api/

http://www.flickr.com/services/api/

On the Current State of Service on the Web 111

Description In % S1 In %
RPC-Style 47.1 47.8 %
RESTful 36.6 32.4 %
Hybrid 15.7 19.8 %

TABLE 6.10: Survey 2 - Type of Web APIs

This distribution is very similar to the one of the first study, which indicates that providers are

not eager to change the existing implementation in order to adopt a REST view on APIs.

In comparison to the first survey, we aimed to explore the characteristics of RESTful APIs in

more depth and included the tracking of features such as the hierarchical structuring of the

resources, statelessness of the request, and determining the output format via content negotia-

tion27 [FGM+99]. It needs to be pointed out that, similarly to the first survey, we were only able

to explore the Web APIs based on the interface properties captured in the documentation. Since

the REST principles apply to the actual architectural style, what we see in the documentation is

an indirect reflection of the underlying implementation. In particular, we analysed the following

characteristics:

• RESTful APIs with hierarchical structuring of the resources – REST conform;

• RESTful APIs with scope definition (URI with parameters) – REST conform;

• RESTful APIs with parameter-determined output format (violating content negotiation),

as opposed to RESTful APIs with content negotiation-based output format – not REST

conform;

• RESTful APIs using client-specific information, such as sessions – not REST conform.

The use and the stating of the HTTP method, which is also relevant in the context of RESTful

APIs, is discussed in Section 6.4.6 as part of the invocation details.

Description In %
RESTful APIs with Hierarchical Structure of Resources 80.9%
RESTful APIs with scope definition 61.9%
RESTful APIs with output format via content negotiation 19%
RESTful APIs using client-specific information 0%

TABLE 6.11: Survey 2 - RESTful Web APIs

Considering the analysis of REST-specific characteristics (see Table 6.11), we found out that the

majority of the RESTful APIs use URIs that reflect the hierarchical structuring of the resources
27REST principles are discussed in detail in Section 3.2.

On the Current State of Service on the Web 112

(81%). In addition only about two thirds of the APIs use parameter query values in order to

restrict the scope of the retrieved results. These two characteristics conform to REST principles

and indicate that when providers chose to define interfaces in terms of resources instead of

operations, they follow the guidelines for defining the corresponding URIs [RR07].

In contrast, instead of using the HTTP header properties in order to specify the expected output

format (content negotiation), the majority of the APIs (more than 80%) do this directly as part of

the URI, for example through parameters or file extensions (‘.xml’). In the context of developing

client applications, this means that instead of relying on HTTP and handling the requested output

format directly, the developed solutions need to handle the different formats based on the passed

parameter values. This leads to additional overhead and the development of individual custom

implementations, which could be avoided by relying on the HTTP standard. This example is

indicative for the trend that even if providers are trying to develop RESTful services, the level

of conformity to all principles is relatively low and they stick to simple characteristics such as

the hierarchical structuring of the access points.

6.4.4 Input Details

In contrast to the first survey, where only the diverse characteristics of the input parameters

were analysed, this time we also tracked the way of sending the input, for example, as part of

the URL or in the HTTP body, and also recorded the cases where the input is not parameter-

based but is rather given in a more complex format, such as JSON or XML. These new insights

provide guidance on crafting an API description model that captures the input characteristics

and lead to requirements related to the way the actual HTTP request needs to be formed, as part

of completing the API invocation process.

Description Number In % S1 S1 In %
APIs with optional parameters 95 55.2% 136 61.3%
APIs with required parameters 95 55.2% na na
APIs with alternative values for a parameter 110 63.9% 114 51.3%
APIs with default values for parameters 89 51.7% 99 44.6%
APIs that state the datatype of the parameters 49 27.9% 61 27.5%
APIs with coded values for a parameter 60 34.9% 55 24.8%
APIs with boolean parameters 58 33.7% 39 17.6%

TABLE 6.12: Survey 2 - Input Details

Table 6.12 summarises the results regarding input details. As can be seen, about 55% of APIs

use optional parameters, while 55% use required parameters. The percentages of APIs using

optional and required parameters do not add up to a 100 because a parameter was recorded as

optional or required only if this was explicitly stated in the descriptions. For example, if an

On the Current State of Service on the Web 113

API has five parameters, two of which were marked as required and the remaining three were

not described as optional, the API was counted as using only required parameters. We make

this differentiation for a number of reasons but mainly because we wanted to collect results

that directly reflect the inconsistency or incompleteness of the documentation. First, if we use

natural language processing techniques to analyse the documentation and automatically extract

API properties, we would not be able to recognise if the property is optional or required, since

this is simply not stated. Second, in order to check whether a parameter is truly optional and

what the corresponding default values and effects on the retrieved results are, we would need

to perform test invocations. This again highlights the need for guidelines and standards on

describing APIs and demonstrates how their lack results in underspecification and misleading

information.

Similarly to the first study, more than two thirds (72%) of the APIs do not state the datatype

of the input parameters. Therefore, developers need to determine the proper input format by

making assumptions or through trial-and-error. This is crucial not only for providing correct

input values, but more importantly for using existing datasets as input sources, which would

need to be transformed in the correct format before they can be used. Similarly, this hinders

the integration with further APIs and as part of existing applications. Overall, the percentage

values for the different input parameter characteristics are very similar to those of the first study,

therefore, we cannot conclude that there is an improvement in the level of underspecification or

that certain formats are preferred over others. Therefore, providers are not necessarily eager to

up update or change the offered documentation and to enrich it with missing details. One would

expect that user complaints and feedback would encourage completeness of the documentation,

therefore, resulting in a change in the percentage values. However, such trend is not to be

observed.

Transmission Medium Number In %
URI 135 78.5%
HTTP Header 1 0.6%
HTTP Body 32 18.6%
Mixed 3 1.7%

TABLE 6.13: Survey 2 - Way of Transmitting Input Parameters

Concerning the way of transmitting the input parameter values (see Table 6.13), currently with

the majority of the APIs, this is done directly as part of the invocation URI (almost 80%). A

small number of APIs require sending input data directly in the HTTP Body, while only a few

use the Header. These values are indicative in the context of developing solutions that support

the automation of the invocation task, since they show that providing a mechanism that relies

on defining the URI and the corresponding input values, would already provide support for the

majority of the APIs.

On the Current State of Service on the Web 114

6.4.5 Output Details

Confirming the results of the first study, XML and JSON are being established as the two most

commonly used output formats (see Table 6.14). This is especially true for XML, which is

sometimes used without even explicitly stating in the API documentation that the output is

XML-based. The gathered data show that providing support for the use of XML and JSON

addresses the vast majority of the APIs. Again these results are very similar to the results of the

first survey, with a slight growth in the overall use of JSON (growth of 10%).

Description Number In % S1 S1 In %
XML 65 37.8% 80 36%
XML and JSON 46 26.7% 53 23.9%
XML and other 8 4.6% 34 15.3%
XML, JSON and other 27 15.7% 23 10.4%
only JSON 10 5.8% 12 5.4%
only other 12 6.9% 14 6.3%
JSON and other (except XML) 5 2.9% 6 2.7%
RDF 11 6.4% 13 5.8%
Total XML 144 83.7% 190 85.6%
Total JSON 91 52.9% 94 42.4%

TABLE 6.14: Survey 2 - Way of Transmitting Input Parameters

Since XML is by far the most commonly used output format, we recorded how often there is a

schema definition provided as part of the description of the output. The results show that fre-

quently there is an example but the cases where the structure of the output is formally specified

are rather an exception than a rule. In particular, only about 11% of the APIs provide a schema

definition for the output, or 14% of all APIs that use XML. This numbers are still very low,

which means that we cannot rely on the information in the documentation in order to be able to

process directly the output and some additional interpretation would be necessary.

Description Number In %
Via input parameter 36 20.1%
As a file extension 34 19.8%
As part of the URI 15 8.7%
Via content negotiation 18 10.5%
Unclear/not specified 119 40.9%

TABLE 6.15: Survey 2 - Way of Requesting the Output Format

During the first study, we discovered that there are a number of different ways of requesting a

specific output format, which did not align with the standardised way of determining it – via

content negotiation as part of the HTTP request. As can be seen in Table 6.15, the most com-

monly used solution is via a parameter with the particular format as value (www.example.

www.example.com/api/getNews?format=xml
www.example.com/api/getNews?format=xml

On the Current State of Service on the Web 115

com/api/getNews?format=xml), by adding the format as a file extension at the end of

the URL (www.example.com/api/getNews.xml) or by providing a separate operation

for every output format (www.example.com/api/getXMLNews). Especially for RESTful

services, it would be expected that the format of the output is determined via content negotiation

by using the HTTP header. However, the results clearly show that API providers prefer a more

visible way that requires less knowledge of the underlying technology stack. The percentage

values do not add up to 100, since the remaining portion of the APIs did not have multiple

output formats or did not explicitly specify how the output format was determined.

6.4.6 Invocation Details

Table 6.16 shows that in the majority of the cases the documentation provides the URI for

invoking the API, while only about 60% state the HTTP method to be used. These results are

very similar to the ones obtained two years ago.

Description Number In % S1 S1 In %
Provide HTTP method 102 59.3% 134 60.4%
Provide invocation URI 154 89.5% 214 96.4%
Invocation URI composed through templates 121 70.3% na na
Invocation URI uses query parameters 133 77.3% na na
Invocation URI includes version number 40 23.2% na na

TABLE 6.16: Survey 2 - Invocation Details

In addition to the features analysed in the first study, this time we also collected some details

on how the invocation URI is constructed. In particular, we found out that 70% of the URIs

are based on using templates, where a placeholder in the path is substituted by a particular

value in order to retrieve the wanted output (www.example.com/api/{date}/news).

Furthermore, the majority of the APIs use parameters (77%) (www.example.com/api/

getXMLNews?topic=tv), therefore providing support for parameterised URI as part of the

Web API description model is crucial. This affects both the way that the actual invocation

endpoint is specified and influences the input provisioning, which needs to include a mapping

between the actual values and the parameters in the URI. We also found out that 23% of the

APIs use the version number as part of the invocation URI, in order to differentiate between

previous and current versions. In this way multiple versions of the same API can coexist and

the implementations realised with older versions can continue to be used and do not necessarily

have to be recoded every time the API is updated. This is an interesting trend but it is yet to be

seen if it finds wider adoption.

www.example.com/api/getNews?format=xml
www.example.com/api/getNews?format=xml
www.example.com/api/getNews.xml
www.example.com/api/getXMLNews
www.example.com/api/{date}/news
www.example.com/api/getXMLNews?topic=tv
www.example.com/api/getXMLNews?topic=tv

On the Current State of Service on the Web 116

6.4.7 Authentication Details

Authentication plays a crucial part in enabling the usability of APIs, since without providing

support for it, the actual API invocation cannot be completed. This is why we devote special

attention to the commonly used authentication approaches and the ways of transmitting the

required credentials as part of the HTTP message. Our analysis also shows that 80% of the

APIs require some form of authentication (Table 6.17). These results are very similar to the data

collected during the first study and confirm the continuous importance of authentication in the

context of using Web APIs.

Authentication Mechanisms Number In % S1 S1 In %
API Key 53 30.8% 89 38%
HTTP Basic 37 21.5% 32 14%
Username and Password 13 7.5% 19 8%
OAuth 22 12.8% 14 6%
Web API Operation 8 4.6% 12 5%
HTTP Digest 10 5.8% 11 5%
API Key in Combination with Other Credentials 20 11.6% 5 2%
Session Based 3 1.7% 5 2%
Other 1 0.6% 2 1%
Authentication for All Operations 147 85.5% na na
Auth. Only for Data Modification or Some Operations 8 4.6% 4 2%
Offer Alternative Authentication Mechanisms 35 20.3% 16 7%
No Authentication 35 20.3% 46 19%

TABLE 6.17: Survey 2 - Common Web API Authentication Approaches

As can be seen, using an API key continues to be by far the most common way of authentication

(31%). It is followed by 21% of APIs, which use HTTP Basic, showing an increase in the

numbers in comparison to the first study. As in the first study, about 20% of the APIs require no

authentication.

The results confirm the trend that there is not one established authentication approach, but the

majority of the APIs require some form of authentication. There is no significant development

towards adopting one particular authentication approach, even though, OAuth shows a doubling

of the percentage values, and HTTP Basic shows an increase as well.

Each authentication approach can be realised with a different set of credentials that are sent via

different parts of the HTTP request. In order to be able to provide support for describing the au-

thentication approach used by an API, we also studied the commonly used ways for transmitting

authentication credentials.

As can be seen in Table 6.18, about 70% of the Web APIs send authentication information

directly in the URI, while 23% require that the HTTP header is constructed. Therefore, for the

On the Current State of Service on the Web 117

Transmission Medium Number In % S1 S1 In %
URI 95 69.3% 117 70%
HTTP Header 32 23.4% 45 27%
HTTP Body 8 5.8% na na

TABLE 6.18: Survey 2 - Way of Transmitting Credentials

majority of the APIs it is sufficient if the invocation URI is constructed properly, while only

about one third of the APIs require the construction of the HTTP request, inserting input and

authentication credentials in the body or the header. These numbers are very similar to the

results of the first API survey.

6.4.8 Additional Documentation

As can be seen in Table 6.19, the majority of the API documentations include example requests

and responses. These details can be used to complete missing information that is not given as

part of the input, output or endpoint documentation. In addition, they can also serve as a basis

for deducing the structure of the request and the format of the results. The percentage values for

the two surveys are very similar, therefore, we cannot say that there is a trend towards providing

a more detailed documentation, that includes further information such as examples.

Description Number In % S1 S1 In %
APIs that provide an example Request 153 88.9% 186 83.8%
APIs that provide an example Response 137 79.6% 167 75.2%
APIs that provide description of Errors 94 54.6% 118 53.1%
APIs that use Custom Errors 50 29.1% na na
APIs that use standard HTTP Errors 44 25.6% na na

TABLE 6.19: Survey 2 - Complementary Documentation

In the first study we did not investigate in much detail the description of errors and the use of

standard HTTP errors. In this survey we were able to determine that about half of the APIs

provide descriptions of the errors that can occur when calling the API. Overall, only about 25%

use standard HTTP errors.

Unfortunately a large portion of the APIs (30%) use customs errors, where a 200 OK HTTP code

is returned to the client but instead of the expected data, the output contains an error description.

This makes the realisation of client applications more difficult, since developers would need to

handle custom exception implementations, in order to be able to determine what went wrong

and whether the error is due to an incorrect invocation, to missing credentials, etc. Furthermore,

this presents a challenge for developing approaches that are capable of handling errors as part of

On the Current State of Service on the Web 118

the API invocation process, since the error cannot be recognised directly based on the returned

status code but instead, the actual output needs to be processed.

6.4.9 Summary of Results

Based on the analysis of the data collected as part of the second API study, we are able to make

some conclusions about the general state of APIs on the Web. While the main focus of the first

survey was on gaining an initial clear picture of the used technologies, available information,

richness of the descriptions, etc., the goal of the second study was to observe changes and de-

velopments in the results of the first study and also to investigate in more detail the features

that were identified as influential to the use of APIs. In addition, based on comparing the two

datasets, we were able to identify some trends in the ways of providing API documentation.

Overall, the collected results are extremely valuable as an input for designing a Web API de-

scription model that is able to capture the diversity of formats and structure of the existing APIs

in a unified way, thus providing the basis for developing approaches for a more automated Web

API use.

The results of the second study, to a large part, confirm our findings from the first one, providing

some further insights. Web API search still has to be done manually and existing directories

continue to have inaccurate and outdated entries [LHPD12] (Section 6.4 point (1)). Furthermore,

we were able to confirm that the entries are not always up-to-date and, more importantly, that

some APIs no longer exist but are still kept in the directory.

1) The Web API landscape is very dynamic, with many new APIs being offered but also a

number of APIs no longer being available.

Given the statistics available about the growth of numbers of APIs and mashups in the Pro-

grammableWeb directory, it is easy to assume that every day there are more and more providers

that choose to offer access to existing resources of functionalities through programmable in-

terfaces. Indeed, comparing the entries in the directory now28 with those two years ago, the

number of APIs has almost doubled. However, by analysing the same set of APIs used for the

first study we discovered that 24% of them are no longer available. This gives a new perspective

over the Web API landscape, which is very dynamic with new APIs being offered but also a lot

of the already existing ones being taken offline.

The new data also confirmed the tendency of using a few popular APIs in a multitude of

mashups, as opposed to most of the APIs being rarely used as part of mashups or not at all.

Therefore, in order to be able to reflect on the types of documentation that developers are most
28At the time of the writing, applies to the state of the directory in early 2012.

On the Current State of Service on the Web 119

frequently faced with and to be able to provide adequate support as part of an API description

model, we need to focus on analysing the features of the most popular APIs.

There continue to be three types of Web APIs (RESTful, RPC-style and hybrid) (Section 6.4

point (3)) and the majority of the APIs are still based on operations and not resources. In

addition, despite the growing awareness of the REST principles and the effort of some providers

to expose truly RESTful APIs, the analysis shows that there are still some characteristics such as

the definition of the expected output format via a parameter or the use of custom errors that break

with protocol standards and REST guidelines. This raises the questions whether REST is not

counterintuitive for developers with previous knowledge of interface description languages and

a background in programming, and whether the underlying principles are not too challenging to

adopt for both providers and client-developers novice to the field.

When it comes to the data consumed and produced by the APIs in the form of input and output,

the results of the second study show that the description of the input parameters continues to be

rather diverse and frequently underspecified (Section 6.4 point (5)) while XML, in particular,

and JSON are becoming de-facto standard output formats (Section 6.4 point (6)).

2) The API input is transmitted via different parts of the HTTP message and not only in the

form of parameters in the invocation URI.

This finding is quite important for developing a description model with wide coverage, which

supports API invocation, since we can no longer assume that capturing the used parameters as

part of the URI is sufficient.

3) The expected output format of the API is commonly requested as part of the input.

This results again in additional requirements for designing a Web API description model, since

the output format has to be explicitly captured, instead of transparently handling it via content-

negotiation.

The results of the second survey confirm the importance of authentication as part of supporting

API use (Section 6.4 point (7)), since currently 80% of the APIs require some form of authen-

tication. In addition, the landscape of used authentication credentials and approaches continues

to be quite diverse and heterogeneous.

Finally, still most API documentations are characterised by some missing information that

would be required for completing common service tasks and especially invocation (Section 6.4

point (8)). These usually include not providing the parameter datatypes and omitting the HTTP

method. Even if currently the underspecification is not effecting the level of API reuse, despite

that it represents an implementation overhead for the application developers, it is important to

On the Current State of Service on the Web 120

give providers some initiative to offer complete documentation. A first step in this direction

would be an API description model that includes all the characteristics for enabling API use.

In summary, we can conclude that currently Web API documentation is human-oriented and not

meant for automated processing by Web service search engines or Web API composition and

invocation frameworks. In addition, Web APIs proliferate without conforming to any standards

or guidelines, relying on HTML webpages for giving details about the URI used for identify-

ing endpoints, and HTTP for passing and receiving data, and completing the communication.

However, the simplicity of the underlying technology stack is accompanied by heterogeneity

and underspecification of the provided API documentation. As a result, the use of APIs requires

extensive manual effort and the realised implementation solutions are usually API-specific and,

therefore, rarely reusable. The two studies provide the basis for identifying common API charac-

teristics and aligning these with the pieces of information, which are required for enabling main

service tasks, such as discovery, composition and invocation, in order to develop a description

model capable of supporting unified and more automated API use.

6.5 The Web API Survey System

This section briefly describes the Web API survey system, which was designed and implemented

in order to ease the collection of data about different Web API features. More details on the

system, including data model, design, implementation, setup, and user instructions are available

in Appendix B.

The experience of the first study, where all the results were collected in a single spreadsheet,

raised the need for a supporting tool that would speed up the analysis process and let the survey

participant focus on the API documentation and not on how the collected inputs are stored and

structured. The survey system is implemented as a Web application that can be easily configured

and without redeployment be used to conduct different surveys in parallel. Furthermore, it was

designed to ease the gathering of Web API details by enabling people from distributed locations

to provide input, thus supporting the crowd-sourcing of the Web API analysis task.

Figure 6.6 shows the first pages of the user interface. Some of the API details are already

displayed, based on the API’s documentation in ProgrammableWeb, while others, such as the

category, and whether the URL points to the API documentation, have to be filled in by the

survey participant.

The survey system implements all API characteristics used as part of the second survey, how-

ever, it can be configured to show only a desired subset in order to collect information about

a restricted number of features. For example, the system can be used to gather details related

only to classification or only to authentication. The result is a flexible and customisable Web

On the Current State of Service on the Web 121

FIGURE 6.6: Web API Survey System - Form 1

application that can be distributed to different groups of participants in order to serve a variety

of research interests.

6.6 Summary

Simply by browsing through the documentation of the most popular Web APIs, it becomes

evident that the diversity in the used description forms and structure as well as the level of

provided detail vary greatly from API to API. Therefore, before any significant progress and

improvement can be made towards supporting and automating the use of Web APIs, we need to

reach a deeper understanding of how APIs are developed and exposed, what kind of descriptions

On the Current State of Service on the Web 122

are available, how they are represented and how rich these descriptions are. We contribute

directly to this goal by providing two thorough studies on the current state of Web APIs based on

investigating six groups of main features – general information, type of Web API, input details,

output details, invocation details and complementary documentation. In addition, we provide

a survey system that is customisable and can be used for a series of studies, investigating a

variety of API characteristics. As a result, by using the collected data, we can better realise what

the current difficulties are, which problems need to be addressed, and how should supporting

mechanisms be devised.

In this sense, we show that currently Web APIs descriptions are human-oriented and not meant

for supporting automated API processing. The results of the first study demonstrate that REST-

ful services are not the driving force behind the current Web API proliferation and that Web

API descriptions are characterised by under-specification, where important information such as

the datatype and the HTTP method is commonly missing. Instead, simplicity and the trend to-

wards opening data are driving the evolution that results in the world of services on the Web

being increasingly dominated by Web applications and APIs, which seem to be preferred over

traditional Web services based on WSDL and SOAP. These initial observations are confirmed

by the second study, which in addition also shows that the Web API environment is very dy-

namic with old APIs becoming no-longer available and new ones being offered. Moreover, by

reflecting on the results of the initial survey, we were able to refine the analysed features towards

gathering further details and deriving requirements for designing a description model capable of

supporting more automated Web API use. Therefore, the impact of the API surveys is twofold.

First, they determine the details that need to be captured by the description model, such as the

different types of input parameters or in which part of the HTTP request they are transmitted.

Second, they serve as input for decisions on whether certain features should be included or not

and in what form, in order to ensure a greater coverage of the model, such as for example, tak-

ing a resource or operation-based approach towards describing Web APIs. As a result, the data

gathered by the surveys serves as the basis for the evolutions and updates for the Minimal Ser-

vice Model, and drove the definition of the Web API Grounding model and the Authentication

model, presented in the following chapters.

In the following chapter we describe the Minimal Service Model and demonstrate how the re-

sults of the two surveys influenced some of its properties and shaped its design.

Chapter 7

Describing Web APIs

This chapter introduces the core service model, which on the one hand aims to support the

description and modelling of Web APIs, and on the other hand enables the unified handling

of APIs and RPC-oriented services, such as WSDL-based ones. In particular, it uses the data

gathered by the two Web API studies, takes into consideration existing description approaches

and presents a set of requirements for designing a model, capable of capturing the majority of the

existing APIs. The result is the Minimal Service Model (MSM), which represents an operation-

based approach towards describing APIs, thus supporting the description of operation-based

services in general. The applicability of MSM is demonstrated based on a simple example

and is evaluated in terms of its conformance with the postulated requirements and the overall

coverage that it provides (see Chapter 11 for details on the evaluation).

7.1 Introduction

The results of the two surveys, introduced in the previous chapter, clearly demonstrate that

currently the Web API landscape is very heterogeneous. Moreover, there is no common format

or structure for describing APIs and as a result, they all present different characteristics and

different levels of documentation depth and detail. These facts make the task of developing a

common Web API description approach a very challenging one.

Our work is inspired by the gathered data, the analysis of work related to SWS and existing Web

API description approaches in order to derive a unifying model used to describe and capture the

characteristics of Web APIs. In particular, the so designed core model provides the basis for the

unified handling of Web APIs and serves as the foundation for enabling the development of au-

tomated algorithms for completing common service tasks. In addition, extensions to the model

are developed in order to give specific support for individual service tasks, such as invocation

123

Describing Web APIs 124

and authentication. In summary, the here presented model enables the semantic description of

Web APIs but also serves as the foundation for modelling, annotating and invoking APIs and

operation-based services in general.

This chapter is structured as follows: Section 7.2 gives a discussion about current Web API

approaches and points out some issues that need to be taken into consideration while defining

the core service model. Section 7.3 gives our definition of a Web API, as used in the context

of the here described work. Section 7.4 includes a set of requirements, which result directly

from the two surveys and need to be satisfied by appropriate elements in the core service model.

The Minimal Service Model (MSM), as well as a motivation of the design decisions and some

examples, is provided in Section 7.5. Finally, Section 7.6 concludes the chapter.

7.2 Discussion

Despite the fact that Web API popularity has been increasing over the past 6-7 years, it is still

often unclear what the main driving principles are and how they relate to traditional Web Ser-

vices. This section aims to address precisely some of the misconceptions and grey areas, when

it comes to defining what a Web API is. In particular, we discuss:

• The main differences between WSDL/SOAP-based services and Web APIs;

• The relationship between Web APIs, RESTful services and data endpoints;

• The relationship between implementation and interface definitions.

Currently, it is often unclear why Web APIs are more suitable than Web services for certain use

cases and what the fundamental differences between the two approaches are [PZL08]. It is im-

portant to point out that Web APIs and Web services rely on different technology stacks and have

different description forms – Web APIs have mostly human-oriented documentation such as text/

HTML given as part of webpages, while Web services have XML descriptions meant for ma-

chine interpretation, which can be accompanied by further textual documentation. Web services

are guided by standards (such as the ones by OASIS1 or IBM2) and specifications that clearly

prescribe the form and structure of the descriptions, the format of the communication messages,

the ways of providing additional information and meeting further requirements such as message

security or quality of service. In contrast, Web APIs have evolved rather autonomously and it is

up to the provider to decide what information to include in the documentation, how to implement

the service, by applying REST or rather by using an RPC-approach (see Chapter 3 for details),

and how to expose the data. In summary, Web services and Web APIs represent two completely
1https://www.oasis-open.org/standards
2http://www.ibm.com/developerworks/webservices/standards/

https://www.oasis-open.org/standards
http://www.ibm.com/developerworks/webservices/standards/

Describing Web APIs 125

contrasting approaches towards technology evolution – standardisation vs. autonomous devel-

opment.

However, the most important difference is not in the development approach but rather in the

underlying technologies. Web services employ a quite complex stack, starting with WSDL

and SOAP and building up to security, reliable messaging, transactions, WS-BPEL, etc. (see

Chapter 3). They rely on SOAP messages that can be transported over HTTP and employ the

generation of stubs and hubs, which enables the client-server communication. In contrast, Web

APIs use mostly only natural language based documentation, which needs to be interpreted

before a corresponding implementation can be realised that handles the HTTP-based message

exchange. In essence, they adopt the fundamental Web technologies in order to enable decou-

pled programmable access to resources and pre-implemented functionality.

Another important differentiation is between Web APIs, RESTful services [RR07] and data

endpoints. As we have demonstrated, by the results of the two studies (see Chapter 6), only

a small percentage of the Web APIs are in fact RESTful. Still it is very common that the

terms “RESTful services” and “Web APIs” are used interchangeably. This is misleading and

inaccurate, and in such cases the RESTful services do not actually strictly conform to all REST

principles but are referred to as “RESTful” because of the HTTP-based communication.

Furthermore, since Web APIs provide access to resource representations, sometimes it is unclear

how they differ from data endpoints, such as SPARQL [PS08] endpoints, which in principle

enable RDF data querying support over HTTP, or a simple Web service can enable access to

server resources or a file directory over HTTP. Sometimes Web APIs provide access to the

functionality of components and in other cases they expose resources. Therefore, it might be

difficult to differentiate when an API, or a service in general, enables the direct access to data

and when it actually does some computation in order to determine the data. In essence, it is up

to the developer to explicitly define the Web API as a service and not as a data endpoint, and to

implement it as such.

In addition, the actual processing logic is hidden behind the Web API or service interface. There-

fore, we can only judge by the description of the interface, what the service actually provides.

Still, only by the description, we cannot actually know if a Web API directly provides access

to resources available on the server or if there is processing and computation required, which is

not visible for the client application. This makes the differentiation between APIs and data end-

points less clear. In general, if there is only little or no processing required in order to retrieve

some data, we can talk about dealing with a data-provisioning system. In the context of our

work we focus on Web APIs in general, independently on whether they are more data-centric or

rather provide access to computational functionality. The important distinction is rather the way

of exposing the interface, in terms of an URI identified endpoint and direct HTTP messaging,

with data payloads sent and received as part of the requests and responses.

Describing Web APIs 126

7.3 Definition of a Web API

Based on the Web API discussion, the related work (see Section 3), and taking into account

the data collected by the Web API surveys and the existing work related to creating Web API

descriptions, we deduce a Web API definition, introduced in this section.

A Web API, as defined within the scope of this work, is an endpoint3 that provides access to

functionalities or resources in a programmable way4 over the World Wide Web, i.e. via Web-

related standards such as URIs and HTTP. The implementation of these resources or function-

alities is not part of the Web API itself, which only provides an interface for accessing them.

The endpoint is identified by a URI and the means of communication with it are specified in

an interface definition. The interface definition5 can be based directly on the REST principles,

or be given in a description, which is in natural language or in a machine-interpretable format

such as an XML-based language. The interface definition can be accompanied by additional

documentation such as a webpage, workflow graphics, and sample messages. Web APIs should

conform to the following characteristics:

1. Communication between the client and the Web API server is realised over HTTP, with

the help of HTTP request and response messages.

2. The Web API exposes a set of operations, which can be the uniform set of REST opera-

tions or an arbitrary set of operations.

3. An operation is uniquely identified by the combination of the used HTTP method and an

endpoint URI.

4. The Web API operations can have input data, which can be simple key-value pair or

complex objects, and is passed as part of the HTTP request (either as part of the URI, the

HTTP Body or the HTTP Header). However, there are Web APIs operations that require

no input data.

5. The Web API operations have output data, which is transmitted in the Body of the HTTP

response. The output data can be retrieved in different formats, which are usually machine-

interpretable.

Web APIs rely on an interface, in order to enable the communication between pieces of software

over the WWW. In the case of RESTful APIs the specification of the interface is implicit, deter-

mined by the REST principles. For the majority of the Web APIs, the interface specification is
3An endpoint in this context is a specific location for accessing a service, specified via URI, using a specific

protocol.
4A way that is meant for machine consumption and interpretation, instead of, for instance, a human user.
5An interface definition determines the types of messages and the message exchange patterns, including any

conditions implied by those messages.

Describing Web APIs 127

done as part of an explicit description, which is usually in a human-oriented format – HTML/

text. The core service model aims to formally define the description of the interface and thus

promote a common understanding, in order to facilitate reuse and compatibility of the produced

solutions.

7.4 Requirements

In this section we focus on deriving the requirements for a core service model, capable of cap-

turing common Web API characteristics and thus providing description support for the majority

of the APIs. Furthermore, the requirements also reflect our goal to develop a model that enables

the unified and automated handling of traditional WS and Web APIs. This will provide the

foundation for the development of integrated solutions based on both using APIs and WS, and

directly contributes towards achieving the vision of Open Services on the Web. In this context

we use the data gathered by the two surveys and derive the following set of requirements:

• R1: The model should be able to describe the majority of the APIs on the Web. The

aim is to provide a solution that can be adopted for the majority of the APIs, thus enabling

the development of approaches with wide applicability and coverage. This includes also

capturing common Web API characteristics.

This requirement is a crucial one, not only for MSM but also for the Web API Grounding

Model and the Web API Authentication Model, since without sufficient coverage, the models

would not really be applicable. In this context, we tried to support as many of the Web API

characteristics identified through the Web API surveys as possible, however, still aiming to

enable the easy creation of annotations. Trying to find a balance between the level of detail and

the level of complexity, we aimed for a coverage of at least 80%. This number was determined

by identifying that about two thirds of the APIs have interfaces based on operations. We aim to

cover all operation-based Web APIs and, in addition to that, we want to support at least a half

of the remaining APIs (resulting to a total of about 82%). As we demonstrate in the chapter on

evaluation (see Chapter 11), we actually cover a larger percentage.

• R2: The core service model should take an operation-based view, as opposed a resource-

based one. Since, the majority of the Web APIs are described in terms of operations and

we aim to provide high coverage, we need to be able to capture the common features of

as many APIs as possible. Furthermore, an operation-based view would enable the easier

integration with WS and support the reuse of SWS approaches.

• R3: The core service model should be able to describe input and output data of
the APIs’ operations. Two very important elements of the Web API description are the

Describing Web APIs 128

operations’ inputs and outputs, which should be machine interpretable on syntactic level6

and extendable with semantic information about the particular type of data. Furthermore,

based on the collected statistics from the Web API surveys, we have determined that both

the data transmitted to the server, as well as the data sent as part of the response, can be

either in the form of simple key-value pairs or be complex objects. Therefore:

R3.1: The core service model should be able to describe individual operation
parameters but also the complete inputs and outputs as a whole. This is an important

requirement not only in the context of capturing key Web API features but also because the

detailed description of the data payloads is crucial for supporting a more automated com-

pletion of tasks such as discovery, compositions and especially invocation. Here again,

we aim to capture the parameters at the syntactic level and subsequently enable their en-

hancement with semantic metadata.

R3.2: The core service model should be able to describe optional and mandatory
input parts. We discovered that a large percentage of the Web APIs use optional param-

eters. Therefore, we need to be able to individually describe the separate input parts, in

addition to the complete input message as a whole. This requirement has a direct influ-

ence on the level of support that the model provides in terms of discovery, since depend-

ing on the available data, Web APIs that require some types of input can be found or not.

Similarly, invocation would provide different results depending on whether an optional

parameter with default values is used or only required parameter values are provided.

• R4: The core service model should be able to describe the used HTTP method. The

HTTP method is crucial, especially in the context of invocation, since it specifies the way

that the request is sent to the server.

• R5: The core service model should be able to describe the endpoint URI. Similarly to

the HTTP method, the actual endpoint is of high importance, especially for the invocation,

since it determines how to access the API.

In summary, the here listed requirements are based on common features that were defined as

part of our analysis of the current state of Web APIs. Furthermore, they take into account

compatibility with traditional WS definitions and basic task support that needs to be guaranteed

through the specification of key elements of the model. In the following section, we describe in

detail the resulting Minimal Service Model (MSM).
6In this context, we mean machine-oriented syntactic structuring of the operations’ inputs and outputs.

Describing Web APIs 129

7.5 Core Service Model

In this section we introduce the core service model. In particular, we motivate the design deci-

sions that were made, when determining the individual model parts. We describe MSM and its

characteristics in detail, and also provide some annotation examples.

7.5.1 Design Decisions

The purpose of the core service model is to provide unified handling and automation support

for common service tasks for the majority of the APIs, and for Web services in general. As

already mentioned, we aim to achieve this goal by using the data from the two Web API surveys

and taking into consideration existing service description approaches. The process of defining

the model was guided by a number of design decisions, which needed to be made before de-

termining the individual elements. In particular, we follow a traditional ontology engineering

process towards developing the Web API core model [SSS06, L9́9]. The used method is very

much aligned with the phases of the ontology lifecycle [Gom98], undergoing specification, con-

ceptualisation, formalisation and implementation. In this chapter we reflect on how we have

undergone each of these phases, without talking about ontology engineering explicitly.

Therefore, the steps followed while developing the Web API description model are the follow-

ing:

1. Based on the Web API analysis, we define an initial set of service elements, which need

to be included in the API description. This includes considering existing models and their

potential for being reused or extended.

2. We design a core service model capable of capturing common service properties.

3. We develop extensions to the core model for supporting the automation of specific service

tasks, focusing in particular on invocation and authentication.

Guided by the results of the Web API study, we analysed the collected data and derived a core

service ontology, which enables the annotation of common service properties as part of a se-

mantic Web API description. The process of defining this ontology was guided by a number of

competency questions and design principles.

First, we started by identifying the main service properties, which need to be captured and their

specific characteristics. Relevant information in this respect is: “What are the main service ele-

ments?”, “What are the relationships between them?”. These questions can be refined: “What

are the operations of service X?”, “What are the inputs and outputs of operation X?”, “What

Describing Web APIs 130

are the error messages of operation X?”, “What are the different parts of input X?”, “What are

the different parts of output X?”, “What are the relationships between the parts of input/output

X?”, and “What are the different types of input/output parts?”.

Each operation has an endpoint and an HTTP method that can be used to call it. We modelled

this by reflecting on: “What are the HTTP methods of operation X?” and “What are the end-

points/addresses for operation X?”. In order to reuse existing ontologies we tried to link to

already defined concepts instead of defining new ones – “Are there ontologies that define these

concepts?” and ‘Which exciting ontologies can be used to extend the model?”.

In addition to the competency questions, used for identifying the information that needs to be

captured by the core service model, we implemented some complementary requirements. In

particular we followed the Principles for the Design of Ontologies [Gru95]:

• Clarity: To communicate the intended meaning of defined terms.

• Coherence: To use terms and rules that are consistent with definitions and inference re-

sults.

• Extensibility: To anticipate the use of the shared vocabulary.

• Minimal Encoding Bias: To be independent of the symbolic level.

• Minimal Ontological Commitments: To make as few claims as possible about the world.

These competency questions and the requirements ensure that the resulting ontology can capture

the common service properties and their relationships, thus being able to model the majority of

the Web APIs. The so designed ontology is not bound to any particular annotation formalism

and, based on the principle of Minimal Ontological Commitments, it should be easy to interpret

and use while generating annotations. In the next section we describe the Minimal Service

Model in detail.

7.5.2 Minimal Service Model

The Minimal Service Model (MSM) is a simple RDF(S) ontology that supports the description

of Web APIs, based on common service properties. It also aims to enable the reusability of

existing SWS approaches by capturing the maximum common denominator between existing

conceptual models for services. Additionally, as opposed to most SWS research to date, MSM

aims to support both “traditional” Web services, as well as Web APIs with a procedural view on

resources, so that they can be handled in a unified way.

As seen by the two Web API studies, currently documentation is given directly as part of a

webpage, not conforming to any particular format or structure. Therefore, usually there is no

Describing Web APIs 131

explicit description and client application developers have to read and interpret the documen-

tation, identifying the individual service properties. Originally MSM was introduced together

with hRESTS [KGV08], which aims to address the difficulty that the service structure is not

automatically recognisable in the HTML documentation. In particular, hRESTS enables the

marking of service properties including service, operations, inputs and outputs, HTTP methods

and labels, by inserting tags within the HTML (see Chapter 3). MSM has been subsequently

adjusted and updated to its current version, which not only enables the capturing of the struc-

ture of services (missing in the context of Web APIs) but also provides means for integrating

heterogeneous services (i.e., WSDLs and Web APIs).

In particular, MSM, can be used in conjunction with WSMO-Lite in order to facilitate a com-

mon framework covering the largest common denominator of the most used SWS formalisms

on the Web. WSMO-Lite provides support for capturing the main semantics of services (data

model semantics, functional semantics, nonfunctional semantics, and behavioural semantics)

through simple annotations using SAWSDL constructs. Therefore, MSM together with WSMO-

Lite build the foundation for the provisioning of generic publication and discovery solutions

that support not only Web APIs with textual documentation but also SAWSDL, WSMO-Lite,

hRESTS/MicroWSMO, and OWL-S services [PLM+10].

The so developed services share a common conceptual model – MSM, and are directly integrated

with existing Linked Data [BHBL09]. This integration serves both as a means to simplify the

creation and management of Semantic Web Services through reuse, as well as it provides a

new view over Semantic Web Services understood as a means to support the generation and

processing of Linked Data. Therefore, MSM directly contributed towards achieving the vision

of Open Services on the Web. Subsequent work around the Minimal Service Model is focused

on supporting the invocation and authentication of Web APIs (see Chapter 8 and Chapter 9).

In the following we provide more details on the MSM ontology and its individual concepts

and properties. The original MSM [KGV08] defined a Web API in terms of a Service that has

a number of Operations, which have an Input, an Output, and Faults. However, the original

MSM, which was used as a basis for SA-REST [SGL07] and MicroWSMO [KV08], fails to

capture some significant parts of the descriptions that our survey highlights as necessary. This

for instance concerns optional, default and mandatory parameters, which can have a crucial

effect on discovery and invocation. In addition, it does not enable the direct description of the

inputs/outputs, their parts, and the parts of their parts7. As a result, in the context of this thesis

and guided by the analysis of the current state of Web APIs, MSM has been extended [PLM+10]

to support some of the service characteristics identified by the survey.
7It enables it indirectly, via the conceptual definition of the annotated input/output, i.e. the conceptual definition

contains the parts definitions.

Describing Web APIs 132

FIGURE 7.1: Minimal Service Model

MSM8, in its current version, is visualised in Figure 7.1. MSM, denoted by the msm namespace,

defines Services which have a number of Operations. Operations in turn have input, output

and fault MessageContent descriptions. A MessageContent may be composed of MessageParts,

which can be mandatory or optional. The intent of the message part mechanism is to support

finer-grain processing of tasks, such as discovery, based on message parts and allowing to dis-

tinguish between mandatory and optional parts.

MSM9 is used as the core structure for describing Web APIs, while supplementary models are

defined for capturing details that are of particular relevance for the separate service tasks. As part

of identifying extensions to MSM, work on supporting the automation of invocation [MPL+11]

(see Chapter 8) and authentication [MPD+10b] (see Chapter 9) was conducted. Due to the fact

that in our survey none of the analysed APIs had a machine-processable description in the form

of a WSDL or WADL file, we accommodate the fact that providers publish details about services

as text/HTML, and processing and automation support is based on subsequent enhancement of

these with annotations.

Details about the evaluation of MSM in terms of requirements coverage and model coverage are

given in Chapter 11.
8MSM ontology in RDF/XML available at http://purl.org/msm/
9Further details on MSM are available in the Appendix in Section A.1.

http://purl.org/msm/

Describing Web APIs 133

7.5.3 Using MSM to Create Semantic Web API Descriptions

In this section we provide a complete example that demonstrates how MSM can be used to

create semantic Web API descriptions by annotating and processing existing documentation.

In particular, MSM provides the conceptual view to a service, including its individual classes

and properties. This conceptualisation can be used to create syntactic representations of MSM-

based descriptions within HTML pages. This is realised by taking MSM ontological elements

and mapping them on the level of text/HTML through the definition of microformat tags.

MSM can be used to directly create the corresponding service properties in RDF and complete

the description, based on reading and interpreting the textual documentation. However, this

requires some expert knowledge in the filed of semantics and APIs. Therefore, we advocate

a bottom-up approach, where the HTML webpage that includes the Web API details is first

syntactically structured by marking the service properties with the help of microformats. Sub-

sequently, the identified service properties can be annotated with semantic entities. Finally, the

so enhanced HTML can be used to extract the MSM-based representation of the API in RDF.

In this particular section we use hRESTS [KGV08] (see Chapter 3) as the means to represent

the MSM conceptual view of a service within the HTML via MSM-hRESTS element map-

pings (see Table 7.1). In this way we enable the capturing of service properties on the syntactic

level. Alternatively, RDFa is also an option for marking up HTML content, based on a ser-

vice conceptualisation as defined in MSM. hRESTS, in general, enables the identification of

operations, inputs, outputs, etc., by inserting HTML tags. We have extended the initially in-

troduced hRESTS [KGV08] with further tags in order to be able to completely map to MSM

(see Listing 7.2 for an example HTML documentation with hRESTS annotations). The full list

of MSM-based hRESTS tags is given in the Appendix in Section A.1 and is discussed in the

following section.

MSM only captures the structure (service, operations, inputs, outputs, etc.) but not the semantics

of a service (semantics of the data model, functionalities, etc.). To this end, the structural de-

scriptions are enriched with annotations to domain ontologies or existing rules by using pointers

based on adopting the SAWSDL [FL07] approach (see Chapter 3). In particular, we enhance

service properties with metadata, by using the modelReference link relation, which can be ap-

plied on any service property to point to semantic concepts identified by URIs (see Listing 7.3

for an example HTML documentation with modelReference annotations).

The annotation process for creating MSM Web API descriptions is as follows:

• We start with the HTML documentation of the API, without any annotation markup.

• The HTML is enhanced with hRESTS annotations that identify the individual service

properties, in order to create the syntactic MSM-based structure of the service.

Describing Web APIs 134

• Subsequently, we add metadata by using the SAWSDL modelReference link relation to

point to semantic entities.

• Finally, a MSM-based RDF description can be extracted from the annotated HTML doc-

umentation.

The output of the annotation process is twofold – an HTML file containing hRESTS tags and

modelReferences (see Listing 7.3 for an example), and an extracted RDF-based Web API de-

scription, which captures the API in terms of its MSM representation (see Listing 7.4 for an

example).

FIGURE 7.2: Last.fm HTML Example

In this section and throughout the following chapters, we use a running example, based on the

Last.fm API. Last.fm10 is an online community platform that collects and offers information

about music artists, concerts, events, albums and songs. All the gathered data is also made avail-

able through a set of publicly exposed Web APIs11, which enable the integration with further

data sources or the building of applications.

Figure 7.2 shows a screenshot from the artist.getInfo operation of the Last.fm API. As can be

seen, it contains a description of the input parameters, an example invocation address and a

sample response. This operation can be used to retrieve details about a particular artist, given a

name or the MusicBrainz Id ("mbid").
10http://www.last.fm
11http://www.last.fm/api

Describing Web APIs 135

1 <h1 class="header">Last.fm Web Services</h1>
2 <h1>artist.getInfo</h1>
3

4 <div>Get the metadata for an artist onLast.fm. Includes biography.</div>
5

6 <p>e.g. <a href="javascript:callProxy(’http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&
7 artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026’)">http://ws.audioscrobbler.com/2.0/?
8 method=artist.getinfo&artist=Cher&api_key=b25b959554ed76058ac...</p>
9

10 <div><h2>Params</h2>
11 artist (Optional) : The artist name in question

12 mbid (Optional) : The musicbrainz id for the artist

13 username (Optional) : The username for the context of the request. If supplied, the user’s
14 playcount for this artist is included in the response.

15 lang (Optional) : The language to return the biography in, expressed as an ISO 639 code.

16 api_key (Required) : A Last.fm API key.</div>

17

18 <h2>Sample Response</h2>
19 <div id="sample">
20 <pre>
21 <artist>
22 <name>Cher</name>
23 <mbid>bfcc6d75−a6a5−4bc6−8282−47aec8531818</mbid>
24 <url>http://www.last.fm/music/Cher</url>
25 ...
26 </artist></pre></div>

LISTING 7.1: Example of HTML Description without Annotations

Listing 7.1 contains a simplified version of the HTML source of the artist.getInfo operation. We

use this short HTML snippet in order to demonstrate how hRESTS, based on MSM element

mappings, can be used to mark the individual service properties within the description.

7.5.3.1 Syntactic Structuring of Web API Documentation

Following our bottom-up approach, we show how the HTML documentation can be enhanced

with hRESTS tags, which mark the individual service properties. Listing 7.2 includes the same

operation webpage source, this time with the inserted HTML tags. As can be seen, the ser-

vice body is marked with the class="service" and is assigned and Id – id="LastFMService".

Similarly, the part of the HTML that describes the operation is also marked (class="operation"

id="ArtistGetInfo"). The same is done with the input, output and the address. The result is

an HTML file, which contains a syntactically structured Web API documentation, based on

hRESTS tags mapped to the conceptual representation of a MSM-based service.

As can be seen the class="service" tag marks the complete part of the HTML, which describes

the different service properties. This tag is supposed to be placed in such as way as to encom-

pass all the content related to the API. Within the service tag, class="operation" tags can be

placed, which in turn can include class="input" and class="output". The operation element

also includes a class="address", while the input, includes two parameters – an optional and a

mandatory one. The nesting of the HTML tags reflects the relationship between the service

Describing Web APIs 136

properties in an implicit way. For example, the fact that the input is defined within the opera-

tion tag means that it belongs to this particular operation (i.e. the ArtistGetInfo operation has

ArtistGetInfoInput, which in turn has artist and api_key).

1 <div class="service" id="LastFMService">
2 <h1 class="header">Last.fm Web Services</h1>
3 <div class="operation" id="ArtistGetInfo"><h1>artist.getInfo</h1>
4

5 <div>Get the metadata for an artist onLast.fm. Includes biography.</div>
6

7 <p>e.g. <a href="javascript:callProxy(’http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&
8 artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026’)">
9 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&

10 artist=Cher&api_key=b25b959554ed76058ac...</p>
11

12 <div class="input" id="ArtistGetInfoInput">
13 <div><h2>Params</h2>
14 artist (Optional) : The artist name in question

15 mbid (Optional) : The musicbrainz id for the artist

16 username (Optional) : The username for the context of the request. If supplied, the user’s
17 playcount for this artist is included in the response.

18 lang (Optional) : The language to return the biography in, expressed as an ISO 639 code.

19 api_key (Required) : A Last.fm API key.</div>

20 </div>
21 <h2>Sample Response</h2>
22 <div id="sample">
23 <div class="output" id="ArtistGetInfoOutput">
24 <pre>
25 <artist>
26 <name>Cher</name>
27 <mbid>bfcc6d75−a6a5−4bc6−8282−47aec8531818</mbid>
28 <url>http://www.last.fm/music/Cher</url>
29 ...
30 </artist></pre></div></div></div></div>

LISTING 7.2: Example of HTML Description with Annotations

This becomes even more evident when looking at the mappings that we defined between MSM

and hRESTS, shown in Table 7.1. The properties from MSM that express the relationship from

one concept to the other are reflected in hRESTS indirectly through the nesting structure, where

the parent element has a child element with particular attributes. As already mentioned, hRESTS

is only one possible way of using the MSM-based conceptualisation of an API and applying it

on the syntactical level for structuring API documentation and making the contained service

properties explicit.

The only new hRESTS elements that were introduced are the parameter and parameter-

mandatory. The parameter is used to identify individual parts of the input and output, while

the parameter-mandatory is used to mark required input parts. Some MSM properties and con-

cepts are not directly mapped to hRESTS, including the ones related to faults. In this case,

the corresponding elements have to be created directly as part of the semantic descriptions and

instantiating MSM, without following the bottom-up approach of annotating the HTML doc-

umentation and using the annotations to extract an MSM-based description. This was inten-

tionally done in order to stick to the pre-established format and ensure backward compatibility.

The rdfs:isDefinedBy and rdfs:seeAlso properties are automatically generated, pointing to the

Describing Web APIs 137

MSM Property/Concept hRESTS Element
msm:Service class attribute + ’service’ as a value
msm:hasOperation + msm:Operation class attribute + ’operation’ as a value
msm:hasInput + msm:MessageContent class attribute + ’input’ as a value
msm:hasOutput + msm:MessageContent class attribute + ’output’ as a value
msm:hasPart + msm:MessagePart class attribute + ’parameter’ as a value
msm:hasOptionalPart + msm:MessagePart class attribute + ’parameter’ as a value
msm:hasMandatoryPart + msm:MessagePart class attribute + ’parameter-mandatory’ as a value
msm:hasInputFault + msm:MessageContent not mapped to hRESTS
msm:hasOutputFault + msm:MessageContent not mapped to hRESTS
rest:hasAddress + rest:URITemplate class attribute + ’address’ as a value
rest:hasMethod + rest:Method class attribute + ’method’ as a value
msm:hasName + rdf:Literal class attribute + ’label’ as a value
rdfs:isDefinedBy + rdf:Resource not mapped to hRESTS
rdfs:seeAlso + rdf:Resource not mapped to hRESTS
sawsdl:modelReference + rdf:Resource rel attribute + ’model’ as a value

+ href to linked URI

TABLE 7.1: Mapping MSM to hRESTS/MicroWSMO Elements

original HTML documentation and to the annotated HTML documentation, correspondingly.

Furthermore, the rest:hasAddress and rest:hasMethod properties are handled in more detail in

the following chapter, which focuses on Web API invocation.

Indeed, it is up to the annotator to decide, which sections of the documentation is marked up

and captured as part of the semantic description. In our example, the optional parameters mbid,

username, lang are not identified via hRESTS tags, but they could have been. The annotator

determines, which elements should be included in the syntactical structuring of the documenta-

tion and which should be avoided. Naturally, he/she has to take into account that the resulting

description should still included all details required for supporting common tasks, such as dis-

covery and invocation.

7.5.3.2 Enhancing Web API Documentation with Semantics

Once the HTML documentation is marked up with hRESTS and the syntactical structuring is

completed, the so identified service properties can be enhanced with semantic annotations by

linking the particular service elements to semantic entities (i.e. their URIs). As already men-

tioned, for this purpose we use SAWSDL modelReferences for pointing to semantic concepts

identified by URIs.

As can be seen in Listing 7.3, the service element is enhanced with a rel="model" attribute-

value pair and an href pointing to the linked semantic entity, in this case a class within a service

categorisation ontology. The rel="model" represents the modelReference mapping to hRESTS

and the added link describes the type of functionality that the service provides, in this case a

music service.

Describing Web APIs 138

1 <div class="service" id="LastFMService"
rel="model" href="http://www.service-finder.eu/ontologies/ServiceCategories#Music">

2 <h1 class="header">Last.fm Web Services</h1>
3 <div class="operation" id="ArtistGetInfo"><h1>artist.getInfo</h1>
4

5 <div>Get the metadata for an artist onLast.fm. Includes biography.</div>
6

7 <p>e.g. <a href="javascript:callProxy(’http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&
8 artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026’)">
9 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&

10 artist=Cher&api_key=b25b959554ed76058ac...</p>
11

12 <div class="input" id="ArtistGetInfoInput">
13 <div><h2>Params</h2>
14
15 artist (Optional) : The artist name in question

16 mbid (Optional) : The musicbrainz id for the artist

17 username (Optional) : The username for the context of the request. If supplied, the user’s
18 playcount for this artist is included in the response.

19 lang (Optional) : The language to return the biography in, expressed as an ISO 639 code.

20 <span id="api_key" class="parameter-mandatory" rel="model"

href="http://purl.oclc.org/NET/WebApiAuthentication#API_Key">api_key
21 (Required) : A Last.fm API key.</div>
</div>
22

23 <h2>Sample Response</h2>
24 <div id="sample">
25 <div class="output" id="ArtistGetInfoOutput">
26 <pre>
27 <artist>
28 <name>Cher</name>
29 <mbid>bfcc6d75−a6a5−4bc6−8282−47aec8531818</mbid>
30 <url>http://www.last.fm/music/Cher</url>
31 ...
32 </artist></pre></div></div></div></div>

LISTING 7.3: Example of HTML Description with Semantic Annotations

Furthermore, the two parameters artist and api_key are also enhanced with links that describe the

input elements as an artist from the MusicBrainz12 ontology and as an API key from the Web

API Authentication ontology (see Chapter 9), correspondingly. In this way, the syntactically

structured documentation can be enhanced with links to semantic entities.

7.5.3.3 MSM-based Semantic Web API Descriptions

In the final step of our bottom-up approach we demonstrate how the annotated HTML doc-

umentation can be processed in order to derive an MSM-based representation of the API. In

particular, the HTML visualised in Listing 7.3 can be used to automatically extract a seman-

tic Web API description in RDF. This can be done with the help of a simple XSLT transfor-

mation [Kay07, Bre09] that exploits the hRESTS-MSM element mappings and transforms the

corresponding HTML parts to RDF statements.

Listing 7.4 shows the result of the transformation. As can be seen the elements defined by the

msm namespace are msm:Service, msm:Operation, msm:hasInput, msm:hasOutput, msm:Message-

Content and msm:MessagePart. These are derived directly based on the annotated HTML, by
12MusicBrainz – the open music encyclopaedia, http://musicbrainz.org

http://musicbrainz.org

Describing Web APIs 139

transforming the tags to the corresponding RDF elements. Furthermore, the two msm:Message-

Parts have attached a sawsdl:modelReference, adding further details. For example, the artist is

described with the Artist class from the MusicBrainz ontology.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
3 @prefix msm: <http://purl.org/msm#>.
4 @prefix rest: <http://purl.org/hRESTS#>.
5

6 :LastFMService a msm:Service;
7 sawsdl:modelReference <http://www.service−finder.eu/ontologies/ServiceCategories#Music>;
8 msm:hasOperation :ArtistGetInfo.
9

10 :ArtistGetInfo a msm:Operation;
11 msm:hasInput :ArtistGetInfoInput;
12 msm:hasOutput :ArtistGetInfoOutput;
13 rest:hasAddress "http://ws.audioscrobbler.com/2.0/?method=artist.getinfo&artist={artist}&api_key={api_key}".
14

15 :ArtistGetInfoInput a msm:MessageContent.
16 msm:hasPart :artist;
17 msm:hasMandatoryPart :api_key.
18

19 :artist a msm:MessagePart;
20 sawsdl:modelReference <http://musicbrainz.org/mm/mm−2.1#Artist>.
21

22 :api_key a msm:MessagePart;
23 sawsdl:modelReference <http://purl.oclc.org/NET/WebApiAuthentication#API_Keys>.
24

25 :ArtistGetInfoOutput a msm:MessageContent.

LISTING 7.4: Example of RDF-based Web API Description

The derived semantic description can be used as the basis for making further statements about

the individual service properties. For example, we can add fault messages or further define the

msm:MessageParts by specifying whether they are required or optional. Listing 7.5 shows how

the input can be modified to contain two optional parameters and one mandatory parameter–

msm:hasOptionalPart and msm:hasMandatoryPart.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
4 @prefix msm: <http://purl.org/msm#>.
5

6 :ArtistGetInfoInput a msm:MessageContent ;
7 msm:hasOptionalPart :artist ;
8 msm:hasOptionalPart :mbid ;
9 msm:hasMandatoryPart :api_key .

10

11 :artist a msm:MessagePart ;
12 sawsdl:modelReference <http://musicbrainz.org/mm/mm−2.1#Artist> .
13 :mbid a msm:MessagePart ;
14 sawsdl:modelReference <http://musicbrainz.org/mm/mm−2.1#ArtistId> .
15 :api_key a msm:MessagePart ;
16 sawsdl:modelReference <http://purl.oclc.org/NET/WebApiAuthentication#API_Keys> .

LISTING 7.5: Example of Optional and Mandatory Parts

Describing Web APIs 140

7.5.3.4 Describing Resource-Based APIs with MSM

MSM is based on defining an API in terms of operations, however, it is not limited to covering

only operation-based documentation or only RPC-oriented interfaces. In this section we de-

scribe how resource-based APIs can be captured with MSM in order to create a semantic Web

API description. Since resource-oriented APIs do not have operations, a key part in the process

is deriving the operation by combing the resource and the used HTTP method. For instance,

having a resource News that can be used with HTTP GET will result in a getNews operation.

It is important to point out that this way of deriving the operation is not limited to resource-

based APIs that have a documentation, which provides details about the API characteristics. It

can also be applied to RESTful services, without documentation, where the annotator would

have to retrieve the list of exposed resources (similarly to retrieving the documentation, if there

is a webpage describing the API) and define the operations in MSM, by combining each of the

resources with the applicable HTTP methods. The inputs and outputs are determined in the same

way as operation-based APIs, with the exception that the HTTP GET method has as output the

resource itself, which might not be explicitly specified. We illustrate this consideration and the

process of creating a MSM-based description via a detailed example.

Listing 7.6 gives part of the documentation of the BOX13 data storage and management API.

The BOX API gives access to the content management features, which are available through the

web app for storing, managing and sharing personal documents online. In particular, we look

at the comment resource and the part of the interface that enables the adding of new comments

to an item14. The available resource is comment, while the set of properties that a comment can

have are – item, type, id, and message. All of the comment properties are required.

1 HTTP Method: POST
2

3 Resource: /comments
4 Response: The new comment object is returned. Errors may occur if the item id is invalid , the item type is
5 invalid /unsupported, or if the user does not have access to the item being commented on.
6

7 Description: Used to add a comment by the user to a specific file or comment (i.e. as a reply comment).
8

9 Comment Properties:
10 Name Value isRequired Description
11 item object required The item that this comment will be placed on.
12 type string required The type of the item that this comment will be placed on.
13 Can be file or comment.
14 id string required The id of the item that this comment will be placed on.
15 message string required The text body of the comment

LISTING 7.6: Example of a Resource-based Web API - Add a Comment to an Item

13BOX for online file sharing, https://www.box.com
14 http://developers.box.com/docs/#comments-add-a-comment-to-an-item

https://www.box.com
http://developers.box.com/docs/#comments-add-a-comment-to-an-item

Describing Web APIs 141

Listing 7.7 shows a simplified example HTTP request, where a new comment is created. The

comment resource properties are formatted in JSON and the used HTTP method is POST. There-

fore, based on the described approach for deriving the operation, it will be defined by combining

POST and comment to result in ‘postComment’. If in some cases, the label does not really cap-

ture the semantics of the activity, the MSM-based description can still be enhanced with, for

instance, a classification annotation that states that this is an API for adding comments.

1 curl https://api.box.com/2.0/comments \
2 −H "Authorization: Bearer ACCESS_TOKEN" \
3 −d ’{"item": {"type": "file", "id": "FILE_ID"}, "message": "YOUR_MESSAGE"}’ \
4 −X POST

LISTING 7.7: Resource-based Web API - Example Request for HTTP POST

Listing 7.8 shows a simplified example response, with the confirmation that the resource has

been created (Line 1) and a pointer to where it has been created (Line 2).

1 Response: 201 CREATED
2 Location:https://api.box.com/2.0/comments/191969
3

4 {
5 "type": "comment",
6 "id": "191969",
7 "is_reply_comment": false,
8 "message": "These tigers are cool!",
9 "created_by": {

10 "type": "user",
11 "id": "17738362",
12 "name": "sean rose",
13 "login": "sean@box.com"
14 },
15 "created_at": "2012−12−12T11:25:01−08:00",
16 "item": {
17 "id": "5000948880",
18 "type": "file"
19 },
20 "modified_at": "2012−12−12T11:25:01−08:00"
21 }

LISTING 7.8: Resource-based Web API - Example Response for HTTP POST

Based on this example, we can use the provided details in order to create the following semantic

Web API description. Listing 7.9 describes a service with a postComment operation. The oper-

ation has a method POST, an input and an output (Lines 14-16). The input consists of two parts,

both of which are mandatory (Line 18-20). The first message part contains further parts, all of

which are again mandatory (Lines 25-27). As exemplified, it is actually very easy to create the

description.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix msm: <http://purl.org/msm#> .
4 @prefix rest: <http://purl.org/hRESTS#> .
5

Describing Web APIs 142

6 :service1 rdf:type msm:Service ;
7 rdfs:isDefinedBy "http://developers.box.com/docs/#comments−add−a−comment−to−an−item" ;
8 rest:hasAddress "https://api.box.com/2.0" ;
9 msm:hasOperation :postComment .

10

11 :postComment rdf:type msm:Operation ;
12 rdfs:label "Add a Comment to an Item" ;
13 rest:hasAddress "/comments" ;
14 rest:hasMethod "POST" ;
15 msm:hasInput input ;
16 msm:hasOutput output .
17

18 :input rdf:type msm:MessageContent ;
19 msm:hasMandatoryPart item ;
20 msm:hasMandatoryPart message .
21

22 :output rdf:type msm:MessageContent ;
23 msm:hasPart comment .
24

25 :item rdf:type msm:MessagePart ;
26 msm:hasMandatoryPart :type ;
27 msm:hasMandatoryPart :id .
28 :message rdf:type msm:MessagePart ;
29 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Body> .
30

31 :type rdf:type msm:MessagePart ;
32 sawsdl:modelReference <http://www.agls.gov.au/rdf/documentType> .
33 :id rdf:type msm:MessagePart ;
34 sawsdl:modelReference <http://purl.org/atom/ns#id> .
35

36 :comment rdf:type msm:MessagePart ;
37 sawsdl:modelReference <http://www.w3.org/2001/12/replyType#Comment> .

LISTING 7.9: Example Semantic Web API Description - Add a Comment to an Item

We also provide an example based on using the HTTP GET method. Listing 7.10 shows a short

documentation of the comment resource and how it can be used with HTTP GET.

1 HTTP Method: GET
2

3 Resource: /comments/{comment id}
4 Response: A full comment object is returned is the ID is valid and if the user has access to the comment.
5

6 Description: Used to retrieve the message and metadata about a specific comment.
7 Information about the user who created the comment is also included.
8

9 Request Body Attributes: None are accepted

LISTING 7.10: Example of a Resource-based Web API - Get a Comment

Listing 7.11 shows sample HTTP request, where a comment is retrieved. As stated in the de-

scription, there are no input parameters passed in the HTTP body and the particular comment is

directly requested over the URI and the COMMENT_ID, which would have an actual id value

(similarly to the ACCESS_TOKEN). The used HTTP method is GET on the comment resource.

Therefore, based on the described approach for deriving the operation, the resulting operation is

‘getComment’.

1 curl https://api.box.com/2.0/comments/COMMENT_ID
2 −H "Authorization: Bearer ACCESS_TOKEN"

LISTING 7.11: Resource-based Web API - Example Request for HTTP GET

Describing Web APIs 143

Listing 7.12 shows a simplified example response, containing the complete comment message

and related metadata.

1 {
2 "type": "comment",
3 "id": "191969",
4 "is_reply_comment": false,
5 "message": "These tigers are cool!",
6 "created_by": {
7 "type": "user",
8 "id": "17738362",
9 "name": "sean rose",

10 "login": "sean@box.com"
11 },
12 "created_at": "2012−12−12T11:25:01−08:00",
13 "item": {
14 "id": "5000948880",
15 "type": "file"
16 },
17 "modified_at": "2012−12−12T11:25:01−08:00"
18 }

LISTING 7.12: Resource-based Web API - Example Response for HTTP GET

Listing 7.13 gives the semantic Web API description to retrieving the comment resource with

the HTTP GET method, based on the brief documentation in Listing 7.10. The service has an

operation getComment with an input and an output (Lines 11-15). The input consists only of the

comment id (Lines 17-18), which is sent directly as part of the URI, specifying the value in the

address URI pattern (/comments/{comment id}).

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix msm: <http://purl.org/msm#> .
4 @prefix rest: <http://purl.org/hRESTS#> .
5

6 :service1 rdf:type msm:Service ;
7 rdfs:isDefinedBy "http://developers.box.com/docs/#comments−get−information−about−a−comment" ;
8 rest:hasAddress "https://api.box.com/2.0" ;
9 msm:hasOperation :getComment .

10

11 :getComment rdf:type msm:Operation ;
12 rest:hasAddress "/comments/{comment id}" ;
13 rest:hasMethod "GET" ;
14 msm:hasInput input ;
15 msm:hasOutput output .
16

17 :input rdf:type msm:MessageContent ;
18 msm:hasMandatoryPart id .
19

20 :output rdf:type msm:MessageContent ;
21 msm:hasPart comment .
22

23 :id rdf:type msm:MessagePart ;
24 sawsdl:modelReference <http://purl.org/atom/ns#id> .
25

26 :comment rdf:type msm:MessagePart ;
27 sawsdl:modelReference <http://www.w3.org/2001/12/replyType#Comment> .

LISTING 7.13: Example Semantic Web API Description - Get a Comment

Describing Web APIs 144

Finally, the operation has one output, which is the actual comment containing all the comment

details as well (as opposed to only the comment id). Further examples are included in the

Appendix, in Section A.1.

In summary, independently whether creating the semantic Web API descriptions directly or by

following the here presented bottom-up approach, MSM is a conceptualisation of a Web API,

which can either be propagated to the syntactic level by creating corresponding mappings to

the used annotation vocabulary (in our case hRESTS) or can be used to create MSM-based API

representations. Due to the way, in which it was developed – by using the data gathered by the

two Web API studies, taking into consideration existing description approaches and conforming

to a set of requirements, MSM supports both the description and modelling of Web APIs, as

well as the unified handling of APIs and RPC-oriented services, such as WSDL-based ones.

We also demonstrate the direct applicability of MSM. In particular, it is used as the Web API

model in SWEET (see Chapter 10), where it serves as the basis for making annotations on

top of HTML documentation. In essence, SWEET is an annotation tool in the form of a Web

application, which enables the creation of semantic Web API descriptions based on MSM by

hiding the formalism complexities from the user behind a simple graphical interface. It enables

the marking of service properties within the HTML, by simply selecting the corresponding part

of the webpage and clicking on the element that should be associated with it.

7.6 Summary

The main contributions introduced in this chapter are twofold. First we give a definition of what

a Web API is, as used in the context of this thesis. Second, we describe the core service model,

which serves as the basis for capturing common API characteristics and providing a unified view

over Web APIs and operation-based services in general, thus laying the foundation for devel-

oping solutions for higher levels of task automation. The core model is realised through MSM

in the form of a simple RDFS ontology, containing four main classes – Service, Operation,

MessageContent and MessageParts. As a result, it enables capturing the main service elements,

which can be used to add further semantic annotations, for example, through the inclusion of

modelReferences. Furthermore, MSM can be used in conjunction with WSMO-Lite for giv-

ing specific semantics to the annotations, or with the Web API Grounding Model to support

invocation, as described in the next chapter.

Chapter 8

Supporting the Automated Web API
Invocation

This chapter introduces the extensions to the core service model that were especially derived

in order to better support invoking Web APIs automatically. The extensions consist of proper-

ties that enable capturing the details relevant for the construction and processing of the HTTP

messages. The Web API descriptions, created with the help of the Web API Grounding Model,

can be automatically processed by the invocation engine OmniVoke, without the need for cus-

tomising or manually implementing a custom tailored client capable of calling the API. It is

important to point out that in this chapter we focus solely on service properties required for

constructing the HTTP request and processing the HTTP response, assuming that authentication

is handled separately. We handle the modelling of commonly used authentication approaches in

the following chapter, advocating a solution that is based on modularity and extensibility.

8.1 Introduction

Web service invocation is concerned with the actual calling of a Web service operation, includ-

ing preparing the request message, and receiving and handling the response message [Cer02,

PDS10]. We differentiate between invocation and execution [Cer02] by considering invocation

as the task that needs to be completed by the client, while execution is performed solely as a

processing step on the Web service server. Since our approach is based on a semantic model

for describing APIs, we also consider the required groundings, i.e. liftings and lowerings, that

need to be defined in order to be able to map semantically described messages to actual low

level operations, to required data payload and to protocol messages of the Web APIs. The need

for taking grounding into account arises from the fact that traditional Semantic Web Services

and semantic Web APIs alike are essentially handled at the semantic level, which is sufficient

145

Supporting the Automated Web API Invocation 146

for tasks such as discovery and composition. However, the completion of invocation requires

specific details, which are not available as part of the semantic descriptions.

Web API invocation is the main task that determines the successful usage of individual APIs, as

well as applications built on top of them. In the context of the growing number of available Web

APIs during the past few years, invocation plays a key role, since it can lead to a bottleneck in

scalability, when it comes to developing implementation solutions and clients. In particular, as

of now, the invocation of the majority of the Web APIs requires the manual implementation of

custom-tailored clients for each individual API. This is mainly due to the following reasons:

• Heterogeneity of the Web APIs’ idiosyncrasies, technical characteristics and messaging

formats (for example, different approaches to implementing the interfaces – based on

resources or operations);

• Underspecification of the interfaces (for example, missing HTTP method or missing datatype

definition for the input parameters);

• Mixing of data-payload details with properties determining the implementation solution

(for example, determining the output format – XML, JSON, etc., via an input parameter).

These issues can be directly observed in our analysis of the current state of Web APIs presented

in Chapter 6. Despite the fact that considerable advances have been made towards provid-

ing support for enriching the HTML documentation of Web APIs with semantic annotations

and exploiting these annotations for the identification and advanced discovery of Web APIs

([SGL07, KGV08, MPD09a, PLM+10]), supporting the automated invocation of Web APIs is

yet to be addressed comprehensively. This is, in particular, due to the fact that automated service

invocation has not been prominently addressed by semantic Web service research because the

invocation of “traditional” Web services is directly enabled through WSDL. Invocation done on

the level of WSDL and SOAP is well supported by a variety of frameworks and implementa-

tions (see Chapter 4). Invocation based on semantically annotated WSDL files is handled with

the help of lifting and lowering transformations and the main concern in this case is the data

transformation. In contrast, supporting the invocation of Web APIs generically presents a num-

ber of outstanding and somewhat unexpected challenges, resulting from the lack of a generally

established interface description language (IDL), as described in more detail in Section 8.3.

This chapter is structured as follows: Section 8.2 presents an example that demonstrates the

difficulties of performing Web API invocation. In Section 8.3 we systematically derive the re-

quirements for designing a model capable of supporting automated Web API invocation and we

present the resulting Web API Grounding Model in Section 8.4. Section 8.5 presents the invo-

cation engine, while Section 8.6 completes the chapter by summarising the presented solution.

Supporting the Automated Web API Invocation 147

8.2 Motivating Example

In this section we present a simple example based on the previously introduced Last.fm1 API.

The example lets us demonstrate some of the main challenges related to invocation. There-

fore, we use it throughout this chapter for illustrating the annotation approach and showing the

resulting descriptions.

FIGURE 8.1: Extract from the Last.fm API

Figure 8.1 shows the HTML description of an operation for getting the details for a particular

artist. This short description represents the only documentation available about the operation,

implicating that developers have to manually go through it and determine the used parameters

and the way of passing the input in an actual call. At first glance, it is not directly apparent that

the provided description is missing key information, necessary for invoking the artist.getInfo

operation. First, the HTTP method to be used is not explicitly stated but it has to be assumed

that it is GET. As already pointed out in Chapter 6, the HTTP method is missing in 40% of

the APIs [MPD10a]. Second, there is no information about the datatype of the inputs (as is

the case for 70% of the APIs). For example, is the mbid a String or an Integer, can the artist

name contain only one word or can it be a concatenation of words. In the case of an optional

parameter value, how are the results computed if no input is provided (lang is not required, so

which value is taken if the user does not provide an input). There is also no information on

how the format of the output can be specified (are there any other options, besides XML?). In

general, underspecification of interfaces described in HTML is very common [MPD10a] and

the Last.fm example clearly demonstrates that. This situation is aggravated by the fact that the

Last.fm interface is one of the best documented and structured APIs.
1http://www.last.fm/api

http://www.last.fm/api

Supporting the Automated Web API Invocation 148

Furthermore, as seen in Chapter 6, only some APIs are invocable directly via a parameterised

URI, while other APIs require the custom construction of the complete HTTP request, specify-

ing in detail the HTTP body. In addition, some APIs are resource-based (i.e. RESTful services),

while others are defined in terms of operations, that sometimes even contradict the semantics

of the HTTP method used, as in the cased with hybrid APIs (for example, calling a getNews

operation via HTTP PUT).

In summary some of the most common challenges related to invocation are:

1. Missing information that needs to be compensated by making assumptions or by trial and

error;

2. Different ways of transmitting the input;

3. Interweaving of data-payload and invocation relevant details (for example, specifying the

format of the input together with how it is transmitted to the server).

Some of these challenges have already been addressed as part of existing invocation solutions,

which were discussed in more detail in Chapter 4 and which are analysed in terms of the invo-

cation support that they provide in Section 8.3.

8.3 Requirements

Since currently the majority of the Web API documentation is provided in a human-oriented

form as webpages, API users have to invest a lot of manual effort into finding services, in-

terpreting their descriptions and developing hard-wired implementations. The importance of

invocation support has already been recognised by some API providers, who deliver custom

client libraries in order to ease the use of individual APIs or a particular type of API, such as

strictly RESTful ones. However, even with these, further implementation work would still be re-

quired and the resulting clients support only individual APIs. This situation is aggravated by the

fact that, as already mentioned, Web APIs are characterised by heterogeneity and underspecifi-

cation of documentation [MPD10a]. The here proposed approach for supporting the invocation

of Web APIs builds on existing HTML documentation, where service properties are marked and

enhanced with semantic annotations.

In this section we focus on deriving the requirements (marked with ‘R’) for a semantic model,

capable of supporting the automated invocation, so that given a description, the API can directly

be invoked by our invocation engine, without further implementation efforts or completion of

manual tasks. In particular, this includes the automated generation of the HTTP request message,

Supporting the Automated Web API Invocation 149

encompassing the input data transformations, creation of the invocation URL and composition of

HTTP body, the sending of the request and the subsequent processing of the response message.

In the context of developing invocation support, we aim to cover the majority of the Web APIs,

thus providing a general solution and widely applicable support. In practice, there is nothing

that makes the Web API invocation a particularly challenging task. In fact, implementation-

wise Web API invocation is equivalent to sending an HTTP request and processing an HTTP

response. Therefore, no matter what the underlying technology is, manual invocation by the

user or via an implemented solution, the invocation of an API comprises the following three

steps:

1. Construct HTTP request – Identify the HTTP Method, construct the invocation URI, pre-

pare the input data, construct the HTTP body and header, craft the HTTP request message.

2. Actual invocation – Send the prepared HTTP message and receive the Web API server

response.

3. Process the HTTP response – Response handling (parse the response data, response

codes, headers, body), process the output data, present the output, error handling.

FIGURE 8.2: Invoking a Web API

As visualised in Figure 8.2 the focus is on determining the information relevant for support-

ing the automation of three main tasks. Following is a detailed analysis of the resulting re-

quirements, based on a decomposition of the identified steps, starting with preparing the HTTP

request.

• R1: The HTTP method should be explicitly specified as part of the API description.

One of the key elements that determine how the HTTP request is sent is the HTTP method.

However, as detailed in Chapter 6, we found out that currently about 40% of the APIs do

not state the HTTP method to be used [MPD10a]. This is possibly because providers

assume that the method to use is GET, especially for APIs that can be invoked directly

through parameterising the URI. Still, this means that the existing API documentation

needs to be interpreted by the developer and the correct functioning of the communication

Supporting the Automated Web API Invocation 150

with the server needs to be determined on a trial-and-error basis. Existing approaches

for semantically describing APIs, such as MicroWSMO and SA-REST already include

the HTTP method as an annotation element. Similarly, XML-based interface description

languages such as WSDL and WADL also specify the HTTP method.

• R2: The description model should support parameterised URIs. The lack of a unified

approach for describing APIs directly influences the way of constructing the invocation

URI because some APIs require composing a URI by filling in specific parameter values,

while others specify the input as part of the HTTP body. The situation is aggravated by

the fact that sometimes key information, such as the input datatypes2, is missing. This

requirement is directly deduced from the observation that currently a big portion of the

APIs is based on invocation over a parameterised URI (almost 80%, see Chapter 6).

• R3: The description model should support the definition of an invocation address.

Web APIs cannot be called, without knowing where the endpoint is available. Therefore,

specifying where the Web API can be invoked is crucial.

The requirements regarding the HTTP method (R1) and the Web API endpoint (R3) show some

overlap with the ones defined while developing MSM. The reasons for this are twofold. First,

we aim to develop a description model that captures all the Web API characteristics that are

relevant for invocation. Second, we want to enable the reusability of the model, independently

of whether it is used in conjunction with MSM or with any other service conceptualisation.

• R4: The relationship between the input parts and the HTTP requests should be
specified. An important part of creating the HTTP request is constructing the HTTP

body and header. Even though, many APIs transmit the input data directly as part of the

invocation URI, it is also very common, especially in the cases were new resources are

created or published, that the data payload is sent as part of the HTTP body. Similarly,

some input values, such as authentication credentials, are transmitted directly as part of

the HTTP header. In fact, about one third of the APIs require the construction of the

complete HTTP request, while the rest can be called only by passing input directly via the

URI (see Chapter 6). Therefore, it is necessary to be able to specify the parts of the HTTP

requests that are used to transmit the input.

• R5: The input data transformations should be defined. The preparation of the input

data is one of the most challenging tasks related to invocation. Providers commonly use

parameters with optional values, default values, alternative values (for example: 1, 2 or

3) and coded values (’en’ instead of ’English’). In addition, more than two thirds of
2Datatypes are relevant in order to be able to determine the correct format of the input data. It is relevant if the

input is, for example, an integer, a range, e.g., 0-1, or a decimal. Similarly, for example, with dates, it is relevant
whether only the month or the month and the year are taken as input. The correct formatting and structuring of the
input is important for providing invocation support.

Supporting the Automated Web API Invocation 151

the APIs do not explicitly state the datatype of the input, leaving it to the developer to

experiment and guess the correct one. In order to avoid having to process data on the

syntactic level, but more importantly, to be able to benefit from the automation support

provided by describing the APIs and their inputs and outputs semantically, we handle the

preparation of the input data with the help of lowering schema mappings. The lowering

schema (see Chapter 3) defines how to transform the semantic input into the parameters

used in the invocation HTTP message. This approach, which is also adopted by both

SA-REST and MicroWSMO, enables the handling of input and output data based on

its semantics, not having to deal with the particular format and structure, such as XML

or JSON. Therefore, the definition of input data transformations, in terms of lowering

schemas, is necessary.

• R6: Web API characteristics that directly determine how invocation is done should
be captured. More than half of the APIs use optional parameters, which means that the

invocation can be completed even if no input values for these parameters are provided.

Similarly, despite the fact that according to the REST principles, the output format should

be determined via content negotiation, a big number of the APIs do this via an input

parameter (for example, http://my.aip.com/getInformation?format=xml). Therefore, the

capturing of characteristics that have a direct impact on invocation, such as optional values

or output-format parameters, is essential.

• R7: The description model should support capturing the input as a whole, as well as
its individual parts. The previous requirement leads to the need to be able to describe

not only the input and output as a whole but also parts of the message individually. SA-

REST introduces the Parameter class for this purpose, while MicroWSMO supports

only annotations directly on input and output message level. However, it is necessary to

support the description of the complete messages as well as the explicit annotation of their

message parts, especially because in the context of invocation, some parts of the input

modify the actual process of invocation, while others are simply part of the transmitted

data payload.

HTTP method Protocol

HTTP Body

HTTP Header

Input Data

Path

FIGURE 8.3: Composed HTTP Request

Supporting the Automated Web API Invocation 152

Figure 8.3 shows how the crafted HTTP request can look like, with all the necessary input,

including the HTTP method, the invocation URI (consisting of the used protocol, the host and

the actual path), the HTTP header and body. The content-length would have an actual value,

depending on the transmitted strings. The so constructed request message can then be sent to

the API server.

Once the HTTP method, the invocation URI, the HTTP body and header, and the input data are

prepared, the actual HTTP message can be constructed (Figure 8.3). The Web API invocation

itself, including sending the HTTP request and receiving the response, is realised as part of the

system implementing the invocation engine (see Section 8.5.1) and does not result in any direct

requirements for the Web API description model.

• R8: The output data transformations should be defined. Once the HTTP response is

received, the actual output, which is sent as part of the body, needs to be extracted. There

are a number of possible formats for the output, such as HTML, RSS, and CSV, however,

providing support for the use of XML and JSON would cover the majority of the APIs

(see Chapter 6). Since we are basing our approach on the use of lightweight semantics,

the definition and inclusion of a lifting schema mapping is required.

Figure 8.4 shows a sample response, with the corresponding response code and the output data

that needs to be extracted and lifted to RDF.

FIGURE 8.4: HTTP Response Handling

• R9: The output data transformations should be able to handle custom errors. If the

API invocation runs smoothly, the output is extracted and lifted to RDF that can be pre-

sented to the end-user (Figure 8.4), or as an alternative, be used as an input for another

API, which is part of a service composition. However, if the invocation fails, an appro-

priate mechanism for error handling needs to be implemented. Ideally, the API should

use the standard HTTP error codes in order to indicate what went wrong. However, as we

found out, a big portion of the APIs use custom errors, which are transmitted in the HTTP

body, instead of the expected output data, while the client receives an HTTP “200 OK”

status code from the server. In that case, the lifting schema mapping needs to be able to

process custom errors and transform them to RDF that can be presented to the user or the

client application.

Supporting the Automated Web API Invocation 153

In summary, we have identified the main steps for completing the invocation process and have

derived the resulting requirements. As visualised in Table 8.1, currently none of the existing de-

scription approaches cover all of the necessary details. The percentages are based on the results

of the first Web API survey (see Chapter 6 for more details). WSDL and WADL, in combina-

tion with the support for adding metadata provided by SAWSDL, could be one possible solution.

However, as clearly demonstrate by the results of the two Web API surveys, neither WSDL nor

WADL is widely adopted. In fact, none of the APIs that we analysed had a documentation based

on one of the description forms.

The two main gaps that we have identified are in providing means to specify the data grounding,

i.e. which parts of the input are transmitted via which parts of the HTTP request (in the URI, in

the HTTP body or in the HTTP header), and enabling the description of individual input parts.

In particular, currently it is not possible to differentiate between input that is simply transmitted

as part of the request and input that actually influences the way, in which the invocation is

performed, such as output format or authentication credentials parameters.

TABLE 8.1: Requirements Coverage

Description R1: HTTP R2: Param. R3: Invoc. R4: Input R5: Lo
Method URI URI Address Mapping

HTML Doc. 60.4% 77.3%1 96.4% 100% N/A
WADL Yes Yes Yes Yes via SAWSDL
WSDL 2.0 Yes Yes Yes Yes via SAWSDL
MicroWSMO Yes Yes Yes No Yes
SA-REST Yes Yes Yes No Yes

R6: Opt. Param R7: Msg. R8: Li R9: Custom
& Further Parts Mapping Errors

HTML Doc. 61%-opt. param N/A N/A ∼50%
WADL Yes Yes No No2

WSDL 2.0 Yes Yes No No2

MicroWSMO No No Yes Yes
SA-REST No No Yes No

1 Percentage of APIs where the URI uses query parameters, numbers from the second Web API survey;
2 No support for custom errors.

Therefore, existing lightweight semantic approaches enable the creation of very basic anno-

tations that lack some details that are key for supporting invocation, such as data grounding,

parameterised URIs and output format selection. Our goal is to provide a common basis for

overcoming the current API heterogeneity by devising a unified invocation solution, which also

encourages less underspecification by defining concrete guidelines for the details that an API de-

scription needs to include. In the following section we design a model, satisfying the description

requirements derived in this section.

Supporting the Automated Web API Invocation 154

8.4 Web API Grounding Model

In this section we introduce the Web API Grounding Model. In particular, we explain the design

decisions that we have made and focus on describing the main parts of the model, which were

especially introduced in order to support Web API invocation. It is important to point out that in

this chapter we focus solely on service properties required for constructing the HTTP request and

processing the HTTP response, assuming that authentication is handled separately. We handle

the modelling of commonly used authentication approaches in the following chapter, advocating

a solution that is based on modularity and extensibility. Since we follow an approach based on

enhancing and reusing previous work, we implement the invocation support by extending the

Minimal Service Model, described in the previous chapter.

8.4.1 Design Decisions

Based on the results of the analysis conducted in the previous section and taking into consid-

eration existing service description approaches, we aggregate the collected data and devise an

invocation model, which enables the creation of semantic Web API annotations capable of sup-

porting the automated invocation of the majority of the APIs. The process of defining the model

was guided by a number of design decisions. In particular, as discussed in the previous chap-

ter, we follow the already described ontology engineering approach and, furthermore, advocate

clarity, coherence, extensibility, minimal encoding bias and minimal ontological commitment.

Furthermore, the development process was lead by a number of competency questions used

to determine the concepts and their relationships, which are to be captured by the model. We

started by identifying the main service properties that are important in the context of invocation.

Relevant information in this respect is: “What are the main elements required for invocation?”,

“Are there relationships between them?”. These questions can be refined: “What are the ad-

dresses for service X?”, “What are the addresses for operation X?”, “What are the relationships

between a service address and an operation address?”, “What are the HTTP methods of oper-

ation X?”. In terms of the input details we can specify “What are the different parts of input

X?”, “What are the relationships between the input parts?”, “How is the input data transfor-

mation for input/input part X done?”, “What is the content type of input/input part X?”, and

similarly for the output – “What are the different parts of output X?”, “What are the relation-

ships between the output parts?”, “How is the output data transformation for output/output part

X done?”, “What is the content type of output/output part X?”. Further details related to the

input include “Which part of the HTTP message is used to send input/input part X?”. We also

capture error details in terms of “What are the errors that can occur before the calling of oper-

ation X?”, “What are the errors that can occur after the calling of operation X?” In addition to

Supporting the Automated Web API Invocation 155

the competency questions, used for identifying the information that needs to be captured by the

Web API Grounding Model, we adopted some complementary design decision.

In particular, we take an operation-based view on the interface definition, as opposed to a

resource-based one. Even though, RESTful services and Web APIs are often used as synonyms,

actually only about a third of the APIs have RESTful interfaces [MPD10a]. Since we do not

have access to the actual implementation of the APIs, we are not able to determine what portion

of these APIs is truly RESTful. Therefore, the percentage is most probably lower, or equal at

best. As already pointed out, currently APIs can be classified into three different types: REST-

ful, RPC-style and Hybrid [RR07] and despite the fact that the proliferation of Web APIs is

frequently attributed to the application of the REST paradigm [Fie00], the majority of the APIs

(67%) are described in terms of operations. Therefore, in order to ensure wide coverage3, the

developed description model is based on defining the API in terms of service and operation

elements (as opposed to resources).

Another design decision is related to the way of describing the address. In particular, we have ob-

served that it is common for one API to have a number of operations, that share the same domain

as part of the invocation URI. For example, the Last.fm operations artist.getInfo http://ws.

audioscrobbler.com/2.0/?method=artist.getinfo and album.getInfo http:

//ws.audioscrobbler.com/2.0/?method=album.getinfo share the same service

URL http://ws.audioscrobbler.com/2.0/. Therefore, we should assign an address

to the service, so that it can be overwritten or further specialised by the definition of individual

operation addresses. This idea is exemplified in Listing 8.1, where the common Last.fm part of

the URI is further specialised by adding the corresponding operation address part.

1 Last.fm service address = http://ws.audioscrobbler.com/2.0/
2 −artist.getInfo operation address = ?method=artist.getinfo&artist=Cher&api_key=xxx
3 −album.getInfo operation address = ?method=album.getinfo&api_key=xxx

LISTING 8.1: Service and Operation Definition

Finally, we also take into consideration design decisions that support the reusability of the de-

veloped solution. For instance, the model should be extensible to cover further characteristics.

Furthermore, the model should be easy to interpret and use while generating annotations and,

finally, the conceptualisation of the invocation relevant information should be designed indepen-

dently of the implementation solution in the form of an invocation engine.

The competency questions and the identified requirements (Section 8.3) ensure that the resulting

ontology can capture the service properties and their relationships, which are especially relevant

for supporting invocation. In the next section we describe the Web API Grounding Model in

detail.
3Similarly to MSM, in the context of the Web API Grounding Model, we define “wide coverage” as being able

to describe at least 80% of the Web APIs.

http://ws.audioscrobbler.com/2.0/?method=artist.getinfo
http://ws.audioscrobbler.com/2.0/?method=artist.getinfo
http://ws.audioscrobbler.com/2.0/?method=album.getinfo
http://ws.audioscrobbler.com/2.0/?method=album.getinfo
http://ws.audioscrobbler.com/2.0/

Supporting the Automated Web API Invocation 156

8.4.2 Extending MSM with Invocation Support

The Minimal Service Model (MSM) aims to capture the core semantics of services, thus being

able to provide basic support for handling Web APIs and traditional Web services in a unified

way. However, MSM is not particularly designed to support invocation and in its first version,

this task was only approached in a simplistic manner, covering only APIs that are directly in-

vocable over the URI, with matching parameters, and input explicitly via the parameter names.

In this section, we describe how we have extended MSM in order to support the automated

invocation of the majority of the Web APIs.

FIGURE 8.5: Web API Grounding Model

The Web API Grounding Model is kept very simple and the main extensions are realised as part

of the rest: namespace, as visualised in Figure 8.5. We have designed the model by providing a

strict decoupling between the parts that capture the core service properties (shown in the figure

within the msm namespace) and the specific extensions for supporting invocation (within the

rest: namespace). Figure 8.5 provides a general overview of the Web API Grounding Model,

consisting of the msm namespace elements4, including Service, Operation, MessageContent

and optional or mandatory MessagePart (see Chapter 7 for further details on MSM), and the

rest namespace elements5 that represent the main extensions to the model in order to support

invocation. In particular, we have included three main extensions in order to better facilitate

invocation:
4http://purl.org/msm
5http://purl.org/hRESTS/

http://purl.org/msm
http://purl.org/hRESTS/

Supporting the Automated Web API Invocation 157

1. Definition of isGroundedIn property for specifying how the input parameters are trans-

mitted.

2. Definition of the service and operation addresses in terms of URI templates, in order to

enable the grounding of inputs as part of the URI but also to facilitate the definition of a

common service URI and its specialisation through individual operation URIs.

3. Definition of acceptsContentType and producesContentType properties for specifying the

input and output formats of the service.

isGroundedIn. The isGroundedIn property is used to define, in which part of the HTTP re-

quest the input is transmitted. We differentiate between three options for specifying the in-

put grounding – as part of the URI, in the HTTP body or as an HTTP header parameter.

Therefore, msm:MessageContent and msm:MessagePart can have rest:isGroundedIn linking to

a rdfs:Resource, where the grounding of a parameter is identified through the HTTP vocabulary

[Con11] (http:Body or an instance of http:HeaderName) or a literal String (name of a parameter

in URI template). The need to transmit parameters via the HTTP header occurs only very rarely,

such as in cases where the authentication credentials are defined and sent as part of the input.

We include this option for data grounding in order to ensure completeness. In contrast, sending

input through parameter values in the URI is very common and requires linking the address URI

template values to the particular message content or message part definition. This approach is

usually used in APIs that enable the querying and retrieval of data. On the other hand, posting

content or sending a complex object such as XML or JSON is commonly done by sending it in

the HTTP body.

Listings 8.2 and 8.3 provide two API operation descriptions that exemplify how input can be

passed in the URI (Listing 8.2, see Lines 9, 13, and 15) or in the HTTP body (Listing 8.3, see

Lines 9 and 11). In summary, the HTTP vocabulary allows the isGroundedIn property to identify

that the result of the lowering transformation of the input becomes the value of a particular HTTP

header, or of the HTTP body. If the isGroundedIn property has a literal value, it names the URI

parameter that will contain the value of the lowering transformation.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
4 @prefix msm: <http://purl.org/msm#>.
5 @prefix rest: <http://purl.org/hRESTS#>.
6

7 :ArtistGetInfo a msm:Operation;
8 msm:hasInput :ArtistGetInfoInput;
9 rest:hasAddress "method=artist.getinfo&artist={p1} &api_key={p2}"^^rest:URITemplate.

10 :ArtistGetInfoInput a msm:MessageContent;
11 msm:hasPart :artist, :api_key.
12 :artist a msm:MessagePart;
13 rest:isGroundedIn "p1"^^rdf:PlainLiteral.
14 :api_key a msm:MessagePart;
15 rest:isGroundedIn "p2"^^rdf:PlainLiteral.

LISTING 8.2: Example of Input Data Grounding I

Supporting the Automated Web API Invocation 158

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
4 @prefix http: <http://www.w3.org/2008/http−methods#>.
5 @prefix msm: <http://purl.org/msm#>.
6 @prefix rest: <http://purl.org/hRESTS#>.
7

8 :ArtistGetInfo a msm:Operation;
9 msm:hasInput :ArtistGetInfoInput;

10 rest:hasAddress "method=artist.getinfo"^^rest:URITemplate.
11 :ArtistGetInfoInput a msm:MessageContent;
12 rest:isGroundedIn http:body.

LISTING 8.3: Example of Input Data Grounding II

Similarly to the approaches presented in the previous chapter, related to employing MSM for

creating semantic Web API descriptions, the Web API Grounding Model can either be used

directly to create a description (such as the one visualised in Listing 8.2) or it can be used in a

bottom-up manner. In this case, existing HTML documentation is structured with the help of

tags that represent the grounding model via a mapping on the syntactic level. Similarly to MSM,

here again we use hRESTS tags, based on the grounding model.

Given the webpage describing an API, the input grounding needs to be defined already on the

level of HTML markup, which can then subsequently be extracted to RDF. Therefore, we also

define some extensions to the hRESTS elements inserted within the HTML documentation.

Listing 8.4 shows how the description of input that is transmitted via the “loc” URI parameter

and input that is sent as part of the HTTP body looks like. A complete list of the hRESTS

extensions for the Web API Grounding Model is given in the Appendix in Section A.2.

1 Input in URI parameter:
2 Input in HTTP body:

LISTING 8.4: Input Data Grounding through hRESTS

URI Templates. The definition of the service address in terms of URI templates was already

introduced in the first version of hRESTS. We build on this solution in order to enable the

specification not only of the service address but also the operation address with the help of URI

templates. Moreover, we enable the extension and overwriting of the service address through the

specification of individual operation addresses. In this way we not only support the definition

of a common API domain address for the service but also directly support the grounding of

the input data by enabling the linking of URI template individual parameters to separate input

content parts. Listing 8.5 visualises how the usage of URI templates is applied in defining the

API addresses.

The usage of URI templates for defining the service and operation addresses does not require

the definition of new hRESTS elements used to markup the HTML documentation. This is done

through the usage of the address class (

Supporting the Automated Web API Invocation 159

http://unl.myurl). Still it is up to the available user support in terms of an-

notation tools, such as SWEET (see Chapter 10.2), to ease the creation of the URI template, for

example, by automatically adding the defined input parameters.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
4 @prefix msm: <http://purl.org/msm#>.
5 @prefix rest: <http://purl.org/hRESTS#>.
6

7 :LastFMService a msm:Service;
8 msm:hasOperation :ArtistGetInfo;
9 rest:hasAddress "http://ws.audioscrobbler.com/2.0/?"^^rest:URITemplate.

10 :ArtistGetInfo a msm:Operation;
11 rest:hasMethod "GET";
12 rest:hasAddress "method=artist.getinfo&artist={p1}&api_key={p2}"^^rest:URITemplate.

LISTING 8.5: Using URI Templates

acceptsContentType and producesContentType. These two properties were introduced in

order to be able to specify the input and the output of a service. Given the input RDF data, the

lowering schema mapping must lower the RDF data to a format supported by the actual Web

API, for example JSON or XML. Similarly, the response message body needs to be lifted to RDF

using a lifting schema mapping that supports its actual format. In other words, this information

is required in order to be able to select a lifting schema mapping that supports the content type

of the particular response message. Therefore, additional metadata is provided on lowering and

lifting schema mappings:

• For lowering mapping, the content type that the mapping produces (using the property

producesContentType) is described;

• For lifting mapping, the content type that it can process (acceptsContentType) is de-

scribed.

Both properties point to a literal String that names a MIME media type. Listing 8.6 exempli-

fies how the type resulting from the input transformation and the type required for the output

transformation can be specified. In this case both types are defined as application/xml.

1 :ArtistGetInfoInput a msm:MessageContent;
2 msm:hasPart :part1.
3 :part1 a msm:MessagePart ;
4 rest:isGroundedIn http:body ;
5 sawsdl:loweringSchemaMapping "http://example.com/lowering.xsparql" .
6 "http://example.com/lowering.xsparql" rest:producesContentType "application/xml"^^rest:MediaType .
7

8 :ArtistGetInfoOutput a msm:MessageContent;
9 sawsdl:liftingSchemaMapping "http://example.com/lifting.xsparql" .

10 "http://example.com/lifting.xsparql" rest:acceptsContentType "application/xml"^^rest:MediaType .

LISTING 8.6: Example for Produces and Accepts Content Type

Supporting the Automated Web API Invocation 160

In addition, since lifting and lowering schema definitions can be assigned to both the message

content, as well as its individual parts, the accepted and produced content types can be used

on the same level of granularity. Therefore, we can define the input and output formatting on

the same level (e.g. message content or message part) as the transformation schema definition.

We also provide hRESTS extensions for including the corresponding markup within the HTML

documentation. Listing 8.7 provides an example for specifying the expected output format of

the lowering transformation, so that the input is accepted by the API and the invocation can take

place.

1
2
3
4

LISTING 8.7: hRESTS Extensions for Produces and Accepts Content Type

The here listed three main extensions to MSM represent the core enhancements for enabling Web

API invocation. However, we have also implemented a number of auxiliary annotation options

that aim to capture further invocation-relevant details. In particular, we differentiate between

input parameters that represent actual service data payload and parameters that determine how

the API is called (specified in R7). Two main types of input parameters that pose restrictions

on the way the HTTP request is crafted are authentication credentials (discussed in detail in the

following chapter) and output format parameters (input parameters that are used to specify the

format of the output). Therefore, we provide hRESTS extensions for capturing output format

parameters within the HTML documentation, with the possibility to also extract them as part of

the resulting semantic Web API description.

1 param1

LISTING 8.8: hRESTS Extensions for Output Format

Listing 8.8 shows the new class for describing the input parameters, while Listing 8.9 visualises

the resulting RDF.

1 :param1 a msm:MessagePart, rest:OutputFormatParameter .

LISTING 8.9: Resulting RDF for Output Format

Restrictions on Message Parts and Grounding Definitions. With the introduction of the Mes-

sageContent and MessagePart classes in MSM (Chapter 7) the description of the API’s inputs

and outputs becomes much more flexible. However, this flexibility brings a certain level of

complexity when it comes to processing the individual grounding definitions and lifting and

lowering transformations, in the context of invocation. In order to better facilitate their process-

ing but also to ensure that the descriptions are complete and consistent, we define the following

restrictions:

Supporting the Automated Web API Invocation 161

• Multiple lowering (lifting) schema definitions can be defined for one MessagePart or

MessageContent instance. Multiple lowerings (liftings) per MessagePart/MessageContent

are used for providing alternatives (for example, for supporting different output formats).

• At least one lowering transformation should be defined per isGroundedIn on Mes-

sagePart/MessageContent. No lowering is allowed on MessagePart/MessageContent with-

out isGroundedIn element assigned to it.

• Grounding and lowering (lifting) is allowed either on MessageContent or on all its direct

MessageParts. This is necessary in order to avoid situations, where overlapping ground-

ings or transformations (both on the level of message content and parts) are defined and it

is not clear, which ones should be used.

These restrictions are not necessary for using the Web API Grounding Model for creating seman-

tic Web API descriptions that support automated invocation but rather ensure that the processing

by the invocation engine, introduced in the next section, goes smoothly. In particular, they are

meant to ensure that all data transformations are properly defined and that all grounded inputs

can also be lowered.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
4 @prefix msm: <http://purl.org/msm#>.
5 @prefix rest: <http://purl.org/hRESTS#>.
6 :LastFMService a msm:Service;
7 msm:hasOperation :ArtistGetInfo;
8 rest:hasAddress "http://ws.audioscrobbler.com/2.0/?"^^rest:URITemplate.
9 :ArtistGetInfo a msm:Operation;

10 msm:hasInput :ArtistGetInfoInput;
11 msm:hasOutput :ArtistGetInfoOutput;
12 rest:hasMethod "GET";
13 rest:hasAddress "method=artist.getinfo&artist={p1}&api_key={p2}"^^rest:URITemplate.
14 :ArtistGetInfoInput a msm:MessageContent;
15 msm:hasPart :artist, :api_key.
16 :artist a msm:MessagePart;
17 sawsdl:loweringSchemaMapping "http://iserve.kmi.open.ac.uk/lilo/ArtistLowering.txt";
18 sawsdl:modelReference "http://purl.org/ontology/mo/MusicArtist";
19 rest:isGroundedIn "p1"^^rdf:PlainLiteral.
20 :api_key a msm:MessagePart;
21 sawsdl:loweringSchemaMapping "http://iserve.kmi.open.ac.uk/lilo/APIKeyLowering.txt";
22 sawsdl:modelReference "http://purl.oclc.org/NET/WebApiAuthentication#API_Key";
23 rest:isGroundedIn "p2"^^rdf:PlainLiteral.
24 :ArtistGetInfoOutput a msm:MessageContent;
25 sawsdl:liftingSchemaMapping "http://iserve.kmi.open.ac.uk/lilo/ArtistGetInfoLifting.txt".

LISTING 8.10: Example RDF Service Description

Listing 8.10 shows the semantic description of the Last.fm6 artist.getInfo operation, which is

created based on its HTML documentation. The description is created with the help of the

annotation tool SWEET (see Chapter 10.2) [MKP09] that supports the creation of semantic

Web API descriptions. The LastFMService contains an ArtistGetInfo operation with input
6http://www.last.fm/api/show?service=267

http://www.last.fm/api/show?service=267

Supporting the Automated Web API Invocation 162

ArtistGetInfoInput. The input contains message parts artist, api_key, and more importantly

their links to external ontology entities, i.e. to Music Ontology, as well as the links to low-

eringSchemaMapping and liftingSchemaMapping scripts, which are in the form of XSPARQL

queries [AKKP08]7. The input data grounding is realised through the definition of the operation

address as a parameterised URI Template, where each of the message parts has an isGroundedIn

property specifying its place in the URI.

In summary, the main enhancements that we have introduced in order to enable automated Web

API invocation through the Web API Grounding Model are support for data grounding, URI

template definition and overloading, and fine-grain and type-sensitive data transformations. The

model is defined in a modular way so that the extensions realised as part of the rest: namespace

and the core msm: can be used independently or in combination with further service description

models. For example, the underlying service model can be exchanged and the hRESTS exten-

sions can be used on their own. In addition, WSMO-Lite can be used on top of the Web API

Grounding Model to specify functional and non-functional semantics, as well as conditions and

effects.

8.5 Implementation

In this section we show how semantic Web API descriptions based on MSM and the Web API

Grounding Model can be used to support the automated invocation of services. In particular, we

present a design and implementation of an invocation engine – OmniVoke [LPK+11], that given

a semantic Web API description, completes the invocation process automatically.

8.5.1 OmniVoke

We show the practical applicability of the developed Web API Grounding Model by demonstrat-

ing how Web API descriptions, expressed in its terms, can automatically be invoked through an

actual invocation engine. In particular, the contribution described here represents a general in-

vocation engine – OmniVoke [LPK+11], that provides a “meta” API that serves as common

invocation point for the majority of the APIs. OmniVoke is not one of the contributions of this

thesis but is rather used as a proof-of-concept implementation. The invocation engine is ex-

posed as a RESTful API, which can be called to invoke a particular Web API, given its semantic

description and the data payload in RDF. Therefore, OmniVoke turns every API into an RDF

consuming and producing service. This builds the foundations for enabling the direct integration

with Linked Data, where the input can be a LD source and the output can be fed into the LD
7XSPARQL, see http://xsparql.deri.org

http://xsparql.deri.org

Supporting the Automated Web API Invocation 163

cloud as well, thus contributing directly towards achieving the vision of Open Services on the

Web.

The main goal of OmniVoke is to provide an entry point for the invocation of Web APIs through

their semantic descriptions, thus enabling the automation of this service task. Furthermore,

since the API inputs and outputs are semantically described, and with data sources on the Web

undergoing a developing trend towards Linked Data [BHBL09], the invocation engine is a step

in the direction of supporting the integration of APIs with Linked Data.

FIGURE 8.6: OmniVoke Architecture

Figure 8.6 visualises OmniVoke’s architecture, which is aligned with the process of completing

an HTTP request and processing an HTTP response (as described in Section 8.3). OmniVoke

comprises a number of components, including the Request Handler, which is triggered when

an invocation request is received and carries out the tasks of validating and de-capsulating the

invocation request. Initially the service description is retrieved via the service UID. After that

the Lowering component undertakes the task of transforming the RDF input data to the format

supported by the actual API. It works by executing the lowering scripts designed for each input

that requires lowering. If there are more than one transformation definitions, the correct script is

matched to the correct format via the acceptsContentType property values. XSLT8 together with

SPARQL9 have been used widely within the community [Bis12]. Lately, XSPARQL [AKKP08],

which combines XQuery10 and SPARQL, has been recognised as a more effective language

due to its advantages of being able to load the RDF and use SPARQL to retrieve the values
8http://www.w3.org/TR/xslt/
9http://www.w3.org/TR/rdf-sparql-query/

10http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xslt/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/xquery/

Supporting the Automated Web API Invocation 164

needed, thus avoiding having to create XSLT scripts that can deal with every possible RDF

serialisation [AKKP08].

After the input data is prepared and using information given in the service description, a valid

HTTP request for invoking the actual Web API can be constructed by the Request Composer.

The created HTTP message is subsequently sent to the Web API server. Once the response

message is returned, the Response Handler is triggered to extract the output information (mainly

status code and response data) out of the response header and body, and to decide whether

lifting is required for each output, with the help of the information in the service description.

The Lifting component carries out the execution of the data transformation scripts attached to the

output that requires lifting, as annotated in the service description. Similarly to lowerings, lifting

scripts can be written in XSPARQL. Finally, after the output is lifted to RDF, a new response,

comprising only RDF data, is constructed by the Response Composer and returned to the client

as the final response to the initial invocation request.

As can be seen, the internal design of OmniVoke is very much aligned with the process of

completing and actual Web API invocation. The main enhancements are that it takes RDF data

as input and returns RDF data as output and is capable of directly completing all invocation

steps only based on the details available in the semantic service description and without any

additional implementation or manual work. Therefore, OmniVoke allows seeing any Web API

as RDF consumer and producer, thus supporting the direct integration of Web APIs and Linked

Data. For instance, the Web API input can be provided with the help of SPARQL queries

ran against an existing data repository or alternatively, an appropriate user-interaction interface

can be used to allow the user to specify the input. As a result, OmniVoke contributes towards

improving the overall integration potential of APIs, in the context of creating mashups and

building applications, since Linked Data has proven to be an adequate technology for sharing

and integrating data in distributed settings.

Every invocation request to a Web API is raised to OmniVoke through a homogeneous interface,

via a URI that contains the identity of the API semantic description. The invocation of individual

operations of services is done by passing the ID of the semantic Web API description, based on

the Web API Grounding Model, and the name of the particular operation, which is to be called.

Given the invocation URI, the request data is sent to the invocation engine in the HTTP body via

POST, since the calling of the invocation API represents the creation of a new request resource.

Given the Last.fm description in Listing 8.10, the API can directly be invoked by OmniVoke.

Listing 8.11 shows a sample RDF input that can be posted in the HTTP body, in order to call the

Last.fm ArtistGetInfo operation.

Supporting the Automated Web API Invocation 165

1 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
2 xmlns:waa="http://purl.oclc.org/NET/WebApiAuthentication#"
3 xmlns:mo="http://purl.org/ontology/mo/"
4 xmlns:foaf="http://xmlns.com/foaf/0.1"
5 xmlns:sioc="http://rdfs.org/sioc/ns#">
6 <mo:MusicArtist rdf:about="#artist1">
7 <foaf:name>Cher</foaf:name>
8 </mo:MusicArtist>
9 <sioc:UserAccount rdf:about="#usr0">

10 <waa:API_Key>b25b959554ed76058ac220b7b2e0a026
11 </waa:API_Key>
12 </sioc:UserAccount>
13 </rdf:RDF>

LISTING 8.11: Example RDF Input Data

This RDF input is then lowered to the actual format of the input expected by the API, with the

help of XSPARQL transformations given in Listing 8.12.

1 declare namespace waa = "http://purl.oclc.org/NET/WebApiAuthentication#";
2 declare namespace sioc = "http://rdfs.org/sioc/ns#";
3 { for $apikey $user from <file:StaticInputFile>
4 where { $user a sioc:UserAccount;
5 waa:API_Key $apikey.}
6 return {$apikey}}
7

8 declare namespace foaf = "http://xmlns.com/foaf/0.1";
9 declare namespace mo = "http://purl.org/ontology/mo/";

10 { for $artist_name $artist from <file:StaticInputFile>
11 where { $artist a mo:MusicArtist;
12 foaf:name $artist_name.}
13 return {$artist_name}}

LISTING 8.12: Input Lowering Transformation

When the invocation is completed and the HTTP response message is processed, the actual

output of the API is lifted to RDF by using the transformation defined in Listing 8.13.

1 declare namespace foaf="http://xmlns.com/foaf/0.1";
2 declare namespace mo="http://purl.org/ontology/mo/";
3 let $doc :=doc("OriginalOutputFile")
4 for $listing in $doc//artist
5 let $name := $listing/name
6 let $id := $listing/mbid
7 let $url := $listing/url
8 let $image := $listing/image[@size=’medium’]
9

10 construct
11 { _:p a mo:Artist;
12 foaf:name {data($name)};
13 mo:musicbrainz_guid {data($id)};
14 mo:homepage {data($url)};
15 mo:image {data($image)}; }

LISTING 8.13: Output Lifting Transformation

In summary, given the semantic API description and RDF input data, OmniVoke can automati-

cally complete the invocation process without any further implementation work or manual tasks.

Therefore, the invocation engine is a way of demonstrating the practical applicability and use of

the Web API Grounding Model, in the context of supporting the automated invocation of Web

Supporting the Automated Web API Invocation 166

APIs based on lightweight semantics11. By using a unified declarative way of describing APIs

and with the support of a general purpose invocation engine, any API is available through a

singe interface (that of OmniVoke) and can be directly supplied with the required RDF input, as

specified in its semantic description. Therefore, the here presented invocation engine serves as

the basis for quickly and dynamically developing Web Applications on top of Web APIs.

For instance, the API descriptions have already been successfully used to create the

SOA4All Real Estate Finder iPhone and iPad app, which is a user friendly mobile

client for finding real estate. A screencast of the SOA4All Real Estate Finder is

available under http://people.kmi.open.ac.uk/jacek/soa4re-screencast/

soa4re-video-black.mp4. More details about this application and further use-case sce-

narios, built with the help of the here presented Web API semantic model and implementation

technology, are given in Section 11.4.1.

8.6 Summary

This chapter describes the Web API Grounding Model, which serves as the basis for creating

semantic Web API descriptions that support the automated completion of the invocation process.

We start with a motivating example that clearly demonstrates some of the challenges related to

invocation, which result from current common documentation forms. We continue to derive a

set of requirements for designing a model capable of supporting invocation, based on a thorough

analysis of the individual steps and pieces of data required for completing client-server based

communication. Taking into consideration the gathered input, we present the resulting Web

API Grounding Model and explain in detail each of the defined extensions, which can be used

independently or in conjunction with MSM.

The Web API Grounding Model is realised by carefully analysing and gathering the details that

are relevant for supporting automated invocation. This is especially important in the context of

determining the support provided by the implementation solution and the coverage that it has.

As a result, the model captures all invocation-relevant characteristics and gives the means for

creating annotations and semantic Web API descriptions that overcome heterogeneity, thus en-

abling the handling of APIs in a unified way. In addition, it serves as the basis for counteracting

underspecification, since it can be used as a reference point by providers in order to determine,

which details need to be included as part of the documentation.

We also demonstrate how the Web API Grounding Model is implemented as part of the Om-

niVoke invocation engine. In summary, the Web API Grounding Model, in combination with

MSM, contributes directly towards achieving the vision of Open Services on the Web.

11Evaluation results on tested services are given in the evaluation chapter, Section 11.2.3.

http://people.kmi.open.ac.uk/jacek/soa4re-screencast/soa4re-video-black.mp4
http://people.kmi.open.ac.uk/jacek/soa4re-screencast/soa4re-video-black.mp4

Chapter 9

Automating the Authentication of Web
APIs

In this chapter we introduce the extensions to the core service model that were especially derived

in order to better support the automation of the Web API authentication task. As already pointed

out, we follow an approach based on modularity and extensibility by defining MSM, which

is then enhanced with further extensions that are particularly targeted at supporting individual

tasks. In the previous chapter we focused on invocation, handling authentication more or less

as a black box. In this section we describe our work on authentication in detail. In particular,

the defined extensions consist of properties that enable the capturing of credentials, the way

that they are transmitted and whether a particular authentication protocol is used. The Web API

descriptions, created with the help of the Web API Authentication (WAA) model [MPD+10b],

enable the automated completion of the authentication task, as a prerequisite to the invocation

process. This is realised with the help of a simple authentication engine, which prompts the user

for the necessary credentials and performs the remaining steps of the authentication process,

without further user involvement.

9.1 Introduction

As previously emphasised and shown by the study of the current state of APIs on the Web (see

Chapter 6), there is a wide range of used authentication approaches, which need to be completed

before being able to perform invocation. Authentication is defined as the act of verifying that

someone is, in fact, who he/she claims to be. In the context of using Web APIs, authentication

involves a number of different mechanisms and types of credentials (see Chapter 4), used for

confirming the identity of the user but also focusing on verifying that he/she is allowed to access

the service. Therefore, when it comes to Web APIs, the user credentials are simultaneously

167

Automating the Authentication of Web APIs 168

used for both authentication and authorisation. That is why in this chapter, when talking about

authentication, we also discuss access control.

Currently more than 80% of the Web APIs require some form of authentication (see Chapter 6).

Still, up to date, the importance of authentication as part of the invocation process has been

overlooked. As our two Web API surveys point out, the majority of the Web APIs require

some form of authentication but none of the existing formalisms and annotation approaches deal

with this. Moreover, none of the available tools, which provide developer support for creating

mashups, such as Yahoo Pipes1 and DERI Pipes2, handle authentication in an integrated way

and it still needs to be addressed separately. As a result, the invocation of individual Web APIs

and their use within mashups, requires additional manual development work, independently

of whether the used APIs have semantic descriptions or not. In particular, this involves the

implementation of individual clients or API wrappers, that take care of the authentication before

the API can be used.

In this chapter we focus on providing a solution towards supporting automated authentication as

part of the Web API invocation process. We build on the work on invocation, presented in the

previous chapter, and aim to enhance it by providing support for handling authentication details

as well. In particular, we propose an extension to MSM, which can be used in conjunction

with the Web API Grounding Model, in order to integrate authentication support as part of

invocation. We determine the most commonly used authentication approaches by analysing

the data collected during the two Web API studies. In the light of these results, we propose

an ontology for the semantic annotation of Web API authentication information and show how

it can be used to enrich semantic Web API descriptions with authentication details. We also

demonstrate the applicability of our approach by providing a prototype implementation, which

uses authentication annotations as the basis for automated service invocation, and by covering a

range of authentication approaches through exiting Web API examples.

This chapter is structured as follows: Section 9.2 provides a motivating example that illustrates

the challenges related to Web API authentication. In Section 9.3 we systematically derive the

requirements for designing a model capable of capturing authentication information based on

an analysis of common Web API authentication approaches (see Chapter 4). We present the

resulting Web API Authentication Model in Section 9.4. Section 9.5 includes a description of

the implementation for supporting the automated authentication, by using lightweight semantic

annotations, while Section 9.6 completes the chapter by summarising the presented solution.
1http://pipes.yahoo.com/pipes/
2http://pipes.deri.org/

http://pipes.yahoo.com/pipes/
 http://pipes.deri.org/

Automating the Authentication of Web APIs 169

9.2 Motivating Example

In this section we reintroduce the example used in the previous chapter in order to demonstrate

the necessity of authentication information during the invocation of Web APIs. In particular, we

describe one of the operations of the Last.fm API3.

FIGURE 9.1: Extract from the Last.fm API

Figure 9.1 shows the Web API operation for getting the details for a particular artist. The

provided data can be used directly or as part of a mashup, where artists’ details are combined

with latest charts news, for example. As can be seen, the API expects an authentication API key

(api_key – the last required parameter), without which the API cannot be called.

We analyse common authentication mechanisms and develop an approach for capturing authen-

tication details as part of semantic Web API descriptions. The approach, which we propose

differs from WebID, Web-key, XAuth and other authentication mechanisms (see Chapter 4) be-

cause we are not suggesting to alter the current Web API authentication landscape by introducing

a common standard. Instead, based on a study of current Web API authentication mechanisms,

we provide a lightweight model and approach for the annotation of APIs with the corresponding,

mechanism-specific, information.

9.3 Requirements

In this section we focus on deriving the requirements (marked with ‘R’) for a Web API Authenti-

cation Model. In particular, we aim to cover the majority of the Web APIs4, not narrowing-down
3http://www.last.fm/api
4Similarly to MSM and the Web API Grounding Model, in the context of the Web API Authentication Model, we

define “the majority” as being able to describe at least 80% of the Web APIs.

http://www.last.fm/api

Automating the Authentication of Web APIs 170

to one particular type of used credentials, such as the API key, or to a particular authentication

mechanism. Therefore, the goal is to enhance the previously developed approach for automat-

ing the invocation of Web APIs with authentication support, by developing a description model

capable of capturing common authentication characteristics.

The overview of common authentication approaches serves as the foundation for identifying

three main characteristics for describing each of the approaches: 1) the required credentials,

2) the used authentication protocol, and 3) the way of sending the authentication information.

Therefore, we aim to capture these characteristics as part of the authentication model by deriving

the following requirements:

• R1: The used credentials should be specified.

• R2: The used authentication protocol should be specified.

• R3: The way of sending the authentication information should be specified.

Furthermore, we use the data collected during the Web API studies, which leads us to the fol-

lowing conclusions regarding authentication:

1. More than 80% of Web APIs require authentication for at least an operation. Therefore,

authentication is a vital part of the invocation process and any approach disregarding

authentication information has very limited support.

2. Only about 25% of the Web APIs use an authentication approach, which protects the user

credentials and/or the content of the message.

3. The currently used authentication approaches are very heterogeneous and there is no com-

mon widely accepted way for addressing Web API authentication.

In order to be able to deal with the current heterogeneity:

• R4: The most commonly used authentication approaches should be covered. This

includes API key-based, HTTP Basic, username and password-based, HTTP Digest and

OAuth. Naturally, the goal is to provide a wide coverage, however, if it is not possible to

provide support for all authentication approaches, at least the most commonly used ones

should be covered. It is important to find a balance in the tradeoff between complexity of

the model and the provided coverage. Therefore, we focus on covering the most common

approaches and enable the support for additional ones through the definition of extensions.

The same holds for frequently used credentials and ways of transmitting these credentials.

Automating the Authentication of Web APIs 171

• R5: The most commonly used credentials should be covered.

• R6: The most commonly used ways of sending the authentication information should
be covered.

Since 70% of the Web APIs send authentication information directly in the URI, while less

than one third require that the HTTP header is constructed, initially providing support only for

authentication via the URI might be sufficient.

The here described requirements will enable us to design a model capable of capturing com-

monly used authentication approaches as part of semantic Web API descriptions.

9.4 Web API Authentication Model

In this section we introduce the Web API Authentication (WAA) Model. In particular, we ex-

plain the design decisions that we have made and focus on describing the main parts of the

model, which were introduced in order to support Web API authentication.

9.4.1 Design Decisions

In order to overcome the current heterogeneity of the authentication approaches and to provide

a means for the automatic recognition and processing of authentication details, we introduce the

Web API Authentication (WAA) Model.

The process of defining this ontology was guided by a number of competency questions. First,

we started by identifying the cases, in which authentication is required, and the information

that is needed. Relevant information in this respect is: “Does the service require authentica-

tion?”, “Which operations require authentication?”, “What kind of authentication is used?”,

and “What is the required information to complete the authentication?”. As we concluded,

based on the analysis of common authentication approaches, authentication has three main char-

acteristic, including the required credentials, the used authentication protocol, and the way of

sending the authentication information. Therefore, we can identify the information necessary

for supporting a particular authentication mechanism by determining: “What are the required

credentials?”, “What is the used authentication protocol?” and “How is the authentication

information transmitted?”.

In addition to the competency questions, used for identifying the information that needs to be

captured by the authentication ontology, we also followed some complementary design deci-

sions. In particular, we advocate clarity, coherence, extensibility, minimal encoding bias and

Automating the Authentication of Web APIs 172

minimal ontological commitment. We also take into consideration design decisions that sup-

port the reusability of the developed solution. For instance, the model should be modifiable to

cover further authentication-relevant details. In addition, the model should be easy to interpret

and use while generating annotations and, finally, the conceptualisation of the authentication

information should be designed independently of the implementation solution in the form of an

authentication engine.

In this way we ensure that the resulting ontology can capture the input authentication informa-

tion, the way that is processed, and the way in which it is transmitted. In the following section

we describe the Web API Authentication Model in detail.

9.4.2 Extending MSM with Authentication Support

In this section we describe the Web API Authentication (WAA) Model, providing details on

each of the defined classes and properties. Furthermore, we provide annotation examples that

demonstrate the use of WAA as part of semantic Web API descriptions. Figure 9.2 depicts the

Web API Authentication Model with namespace waa (Web API Authentication), which consists

of three main classes – AuthenticationMechanism, Credentials and Service Authentication5.

FIGURE 9.2: Web API Authentication Model

5The ontology is available at http://purl.org/waa/

http://purl.org/waa/

Automating the Authentication of Web APIs 173

The AuthenticationMechanism class is used to describe the way, in which the authentication is

performed, including an implicit definition of the underlying protocols. It has six subclasses6,

corresponding to common authentication protocols, where the Direct subclass is used to describe

approaches, which rely on using only credential details and employ no authentication protocol.

The HTTPBasic and HTTPDigest classes prescribe not only the authentication mechanism but

also indicate the subsequent communication for exchanging and confirming credentials, as pre-

scribed by each of the protocols. The same applies to the OAuth class. In order to be able to

indicate, which is the specific operation used for performing the authentication, we have intro-

duced the hasAuthenticationOperation property of the WebAPIOperation class. It points directly

to the operation URI. Finally, the SessionBased class is used to describe authentication based on

the session information. This usually does not result in additional client-server communication,

but its specification is important since this means that the communication with the API does not

happen in a stateless manner. The list of authentication mechanism classes can be modified in

order to include newly established approaches, such as Web-key, for example.

The Credentials class is used to capture the authentication credentials for performing the au-

thentication. It has a number of subclasses including APIKey, Username, Password, OAuthCon-

sumerKey, OAuthConsumerSecret, OAuthToken and OAuthTokenSecret, which can be combined

(waa:composedOf) to produce composite credentials, such as authentication via username and

password. These are predefined and included in the model because they are commonly used.

Naturally, the list of credentials can be extended to cover further details, such as telephone

number and pin, or email and password, or security token. Each credential, has a name and a

value, which are used to capture the exact name of the credential, as used by the API, and the

corresponding input value for performing the authentication. In addition, credentials have an

isGroundedIn property that specifies the particular part of the HTTP request where the creden-

tials are transmitted. This property has the same function as the rest:isGroundedIn but instead

of using it on input data, we use it on authentication credentials. It is important to point out that

this is not required for describing the type of authentication that the API uses but is necessary

for completing the actual invocation by an invocation engine, e.g., OmniVoke. This is espe-

cially relevant, since we want to avoid defining lifting and lowering mapping for authentication

credentials (for more details see Section 9.5.1).

The AuthenticationMechanism has a property realm that is used to define the scope or the part

of the API, for which the authentication mechanism is applicable. This is done based on a URI

definition. It is important to point out that rdfs:isDefinedBy (on msm:Service, not visualised in

the figure), rest:hasAddress (on msm:Service and msm:Operation, not visualised in the figure)

and waa:realm can all point to different URIs, since the API description URI is not necessarily

the same as the invocation URI (the address). Similarly an API can have a series of invocation
6For the subclasses of both AuthenticationMechanism and Credentials we used different colour-coding.

Automating the Authentication of Web APIs 174

URIs, while using the same authentication for all of them, which is specified through the defi-

nition of a common realm of the authentication mechanism (see Listing 9.1 for an example that

demonstrates the necessity to explicitly define the different API URIs).

In addition, the AuthenticationMechanism has a property wayOfSendingInformation, which de-

scribes the part of the HTTP request, where the authentication details are sent. They can be

sent as part of the URI, in the HTTP body or as an HTTP header parameter. Therefore, the

wayOfSendingInformation points to rdfs:Resource, which can be an instance of the HTTP vo-

cabulary [Con11] (http:Body or an instance of http:HeaderName) or a literal String (name of

parameter in URI template). The two most common ways of sending credentials are via the

HTTP header and via the URI, the HTTP body option is included for completeness. Further-

more, the authentication mechanism can be defined for each operation individually or for the ser-

vice as a whole (hasAuthenticationMechanism). Some APIs require authentication only for the

operations that perform data manipulation, while others use a uniform authentication approach

throughout the service. In the case where both the service and the operation have authentication

mechanisms defined, the operation definition overwrites the service one.

The Service class has a relationship to the ServiceAuthentication class, which has three instances

including All, Some and None that are used to point out that the service requires authentication

for all its operations for only some of them or for none of them. Theses instances can be assigned

by the user but can also the deduced by using reasoning, based on the individual operation

annotations.

The Service and Operation classes are currently marked with the msm namespace, however,

they serve as placeholders that can be replaced by the service and operation elements of any

service model may it be semantic, such as MSM and MicroWSMO/SA-REST, or not. In this

way, the ontology provides flexibility and can be used as an extension to existing formalisms or

independently from them. In the context of our work on supporting the automated invocation of

Web APIs, we use it in conjunction with MSM and the previously defined Web API Grounding

Model, in order to support the invocation of services, which require authentication.

Currently the Web API Authentication Model is in its second revision7. The first version of

waa was published in [MPD+10b] and is available under http://purl.oclc.org/NET/

WebApiAuthentication. The main changes include, the removal of the Transmission-

Medium class, the addition of the realm property to the authentication mechanism, as well and

the definition of isGroundedIn, hasName and hasValue properties on the Credentials.

In order to show how the authentication ontology can be used to annotate Web APIs, we have

taken the Last.fm motivating example from Section 9.2 and provide its semantic descriptions

(Listing 9.1). In the example we use the msm (http://purl.org/msm) namespace for
7http://purl.org/waa

http://purl.oclc.org/NET/WebApiAuthentication
http://purl.oclc.org/NET/WebApiAuthentication
http://purl.org/msm
http://purl.org/waa

Automating the Authentication of Web APIs 175

the Minimal Service Model, as the underlying service model. Listing 9.1 shows the semantic

description of the Last.fm API, including the authentication information. The Web API re-

quires authentication for all its operations (Line 11) and has authentication information for the

artist.getInfo operation reflected in Line 16. In particular the instance of the Authentication-

Mechanism class contains details about the operation requiring an API key, which is sent in

the URI without the use of any authentication protocols. As can be seen, capturing authentica-

tion information with the provided Web API authentication ontology is very simple and easy to

apply.

1 @prefix : <http :// iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf : <http :// www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http :// www.w3.org/2000/01/rdf−schema#> .
4 @prefix msm: <http://purl .org/msm#> .
5 @prefix rest: <http :// purl .org/hRESTS#> .
6 @prefix waa: <http:// purl .org/waa#> .
7

8 : lastfmService a msm:Service ;
9 rdfs :isDefinedBy <http :// www.last.fm/api/show?service=267> ;

10 rest :hasAddress "method=artist.getinfo&artist={p1} &api_key={p2}"^^rest:URITemplate ;
11 waa:requiresAuthentication waa:All ;
12 msm:hasOperation :ArtistGetInfo .
13 : ArtistGetInfo a msm:Operation ;
14 msm:hasInput :ArtistGetInfoInput ;
15 rest :hasAddress "http://ws.audioscrobbler.com/2.0/?"^^rest:URITemplate ;
16 waa:hasAuthenticationMechanism :lastfmAuth .
17 : lastfmAuth a waa:Direct ;
18 waa:realm <http://www.last.fm/api/> ;
19 waa:hasInputCredentials :api_key ;
20 waa:wayOfSendingInformation waa:ViaURI .
21 :api_key a waa:APIKey ;
22 waa:isGroundedIn "p2" ^^rdf:PlainLiteral .
23 : ArtistGetInfoInput a msm:MessageContent ;
24 msm:hasPart :artist .
25 : artist a msm:MessagePart ;
26 rest : isGroundedIn "p1"^^rdf: PlainLiteral .

LISTING 9.1: Example Service Description with Authentication Details

Similarly to MSM and the Web API Grounding Model, we also provide support for including the

corresponding WAA model markup within the HTML documentation. We do this by including

model references and not explicitly defining new hRESTS/MicroWSMO tags (see Appendix,

Section A.3). In this way, the semantic descriptions do not have to be created directly, but

instead can be generated in a bottom-up manner, by starting with the existing HTML documen-

tation and syntactically structuring and enhancing it with the help of markup. Listing 9.2 shows

the annotated HTML of the Last.fm API. The Web API requires authentication for all its op-

erations (Line 2) and has authentication information for the artist.getInfo operation reflected in

Line 4. The model reference contains a URI pointing to a particular instance of the Authentica-

tionMechanism class, which contains details about the operation requiring an API key, which is

sent in the URI without the use of any authentication protocols.

Automating the Authentication of Web APIs 176

1 <div class="service" id="service1"><h1>Last.fm Web Services</h1>
2
3 <div class="operation" id="op1"><h2>artist.getInfo</h2>
4
5 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo...
6 <div class="input" id="input1 ">...</ div>
7 <div class="output" id="output1">Artist</div></div></div>

LISTING 9.2: Annotating Authentication Information in the HTML Documentation

Listing 9.3 shows how this instance of the AuthenticationMechanism class looks like.

1 @prefix rdf : <http :// www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http :// purl .oclc.org/NET/WebApiAuthentication#> .
3 <http :// purl .oclc.org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
4 waa:realm <http://www.last.fm/api/> ;
5 waa:hasInputCredentials <http://purl .oclc.org/NET/WebApiAuthentication/LastFmAPIKey> ;
6 waa:wayOfSendingInformation waa:ViaURI .

LISTING 9.3: Example Instance of the AuthenticationMechanism Class

Finally, listing 9.4 shows how example authentication waa:APIKey credentials can look like.

1 @prefix rdf : <http :// www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http :// purl .oclc.org/NET/WebApiAuthentication#> .
3 <http :// purl .oclc.org/NET/WebApiAuthentication/LastFmAPIKey> rdf:type waa:APIKey ;
4 waa:hasName "Last.fm API Key" ;
5 waa:hasValue "myAPIKey29813719823918273" .

LISTING 9.4: Example Credentials for APIKey

We differentiate between the API description instances published in a semantic Web service

repository, such as iServe ([PLM+10]), and the ones used at invocation runtime. In particular,

the HTML annotations would not include the values for the authentication instances. However,

at runtime the description needs to actually include the authentication credentials as values in

order to enable their processing by OmniVoke, as part of the invocation process. For example,

the APIKey instance in line 20 (Listing 9.1) would have and actual key value attached via the

hasValue properly (:api_key a waa:APIKey; waa:hasValue "myAPIKey29813719823918273".).

Furthermore, we handle the lowering of the authentication credentials implicitly through the

use of the isGroundedIn property, thus directly binding the input value to the part of the HTTP

request where it is transmitted. Therefore, there is no need for defining extra lowering map-

pings for individual credentials. The remaining processing logic that is required for completing

authentication as part of the invocation process is directly implemented in the invocation engine.

The Web API Authentication Model enables the orthogonal handling of the authentication cre-

dentials and the input. This is achieved by using the authentication model as an extension to

service-description ontologies, by simply attaching it to the service and operation elements.

This is important since one API can have a number of authentication options or an API might

change the used authentication mechanism, while the underlying service description remains

Automating the Authentication of Web APIs 177

the same. In order to be able to modify or exchange authentication-relevant parts of the descrip-

tion, without having to touch the remainder of the service description, we completely detach the

definition of authentication-relevant details under the waa namespace.

9.5 Implementation

The Web API Authentication Model has been used in two invocation engines. These implemen-

tations are described in detail in the following section and exemplifying the usage of WAA as

part of the API invocation process.

9.5.1 Authentication Engine Implementation

The Web API Authentication Model was initially used in SPICES8 [AMG+10] (Semantic Plat-

form for the Interaction and Consumption of Enriched Services). SPICES is developed by

Guillermo Álvaro, Ivan Martínez from Intelligent Software Components (iSOCO) in Madrid,

Spain, within the scope of the SOA4All project9. This implementation shows how the model

can be successfully used to support the automated invocation of services. SPICES is a platform

that enables the easy consumption of both WSDL-based services as well as Web APIs, by using

their semantic descriptions. In particular, SPICES supports both the end-user interaction with

services and the invocation process itself, via the generation of appropriate user interfaces. Typ-

ically, the user is presented with a set of fields, which must be completed to allow the service to

execute, and these fields cover input parameters as well as authentication credentials.

Dealing with the different types of credentials and the way they have to be used, is the purpose of

an Authentication Engine, which is part of SPICES and is developed as a REST service, capable

of handling the storage and retrieval of credentials for different Web APIs. This engine has

the necessary logic to support the user in his/her interaction with services. In particular, if the

engine has the credentials for a given service, thanks to the authentication annotations described

previously, it is able to create a suitable request including the credentials. If the authentication

credentials are not available yet, based on the authentication annotations, the authentication

engine is aware of the missing credentials and will prompt the user to provide them. Figure 9.3

shows how the authentication engine prompts the user for the Last.fm API key, based on the

API annotation, during the process of invoking the artist.getInfo operation. In this way the

authentication engine can collect the required credentials and compose an API request, which

together with the provided input information, supports the automated Web API invocation.
8http://soa4all.isoco.net/spices
9http://cordis.europa.eu/project/rcn/85536_en.html

http://soa4all.isoco.net/spices
http://cordis.europa.eu/project/rcn/85536_en.html

Automating the Authentication of Web APIs 178

FIGURE 9.3: Invoking the Last.fm API

Currently, the authentication engine plays the role of a trusted party, since it accesses and stores

all user credentials. However, SPICES is only a prototype application, with the main focus

on supporting the invocation of Web APIs, and the authentication engine represents only an

initial implementation of our approach. Therefore, some issues such as appropriately storing

and managing user credentials, still need to be addressed.

SPICES used the first version of the Web API Authentication Model [MPD+10b]. Therefore,

it serves as a proof-of-concept of enabling the integration of authentication as part of the auto-

mated invocation process. However, it had some limitations, since it relied on the direct mapping

between the names of the input parameters and the invocation URL, and input data and authenti-

cation credentials were handled in the same way. More advanced support, based on the currently

revised WAA model, is provided by OmniVoke [LMKD11].

As already mentioned, even if authentication is an almost indispensable part of the Web APIs in-

vocation, when modelling, it has been intentionally kept separate from other API service proper-

ties such as the input description. However, when it comes to the practical implementation of the

devised approach, the separation is not always apparent. As exemplified by the Last.fm API with

invocation address http://ws.audioscrobbler.com/2.0/?method=artist.

getevents&artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026,

the API Key credential is used in the same way as other input parameters, such as the artist.

OmniVoke explicitly treats input data and credentials separately, since the way these are sup-

plied, in order to invoke the actual Web API, is usually different. OmniVoke exploits semantic

descriptions of service properties, including the data being processed by the service. Therefore,

the input data passed to OmniVoke is in a semantic representation format, such as RDF, which

could, for instance, be obtained dynamically from the Linked Data cloud via SPARQL queries.

In contrast, authentication credentials are confidential and user-specific, usually provided man-

ually by the user at invocation time, or stored in dedicated secure infrastructure. In addition,

some authentication mechanisms require the completion of negotiation and verification protocol

http://ws.audioscrobbler.com/2.0/?method=artist.getevents&artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026
http://ws.audioscrobbler.com/2.0/?method=artist.getevents&artist=Cher&api_key=b25b959554ed76058ac220b7b2e0a026

Automating the Authentication of Web APIs 179

steps. In order to facilitate this, OmniVoke uses the authentication part of the semantic descrip-

tion in order to provide an adequate user interface for acquiring the necessary credentials. In

some cases, such as OAuth, this includes bringing up a web browser for accessing the service

provider’s authorisation page.

In summary, OmniVoke has the necessary logic to support the user in his/her interaction with

services, including the processing of authentication. Given the Web API semantic description,

OmniVoke is able to create an authenticated request to the actual Web API. In particular, if the

authentication credentials are not available, based on the authentication annotations, OmniVoke

will prompt the user to provide them.

Currently, OmniVoke’s main focus is on supporting the invocation of Web APIs. Similarly to

SPICES, the handling of authentication credentials by OmniVoke raises issues such as appro-

priately storing and managing user credentials. However, since more than 70% of the authen-

tication approaches do not protect the user credentials (for example, through encryption of the

password or key), this issue is not that crucial. Nevertheless, possible solutions include that the

user credentials are only cached for the duration of the invocation, in order to guarantee their

privacy and validity. As an alternative, OmniVoke could implement its own OAuth service so

that the sent credentials are protected. Both SPICES and OmniVoke demonstrate that the task

of providing a unified support for handling authentication as part of invocation is a challenging

one. Still they also prove the practical applicability of the Web API Authentication Model.

9.6 Summary

In the context of Web APIs and in contrast to traditional Web services, security is essentially

limited to authentication. Currently none of the existing approaches for describing Web APIs

support the automated authentication as part of the Web API invocation process. As a result,

developers are required to manually retrieve and interpret the HTML Web API documentation,

to signup with API providers, in order to receive access credentials, and to implement support

for the different authentication protocols. In addition, none of the existing frameworks for sup-

porting the creation of mashups, such as Yahoo Pipes and DERI Pipes, enable the handling of

authentication in an integrated way, and it has to be addressed with additional manual effort.

Our Web API studies show that more than 80% of the APIs require authentication for invoking

an operation, which makes it a vital part of the invocation process and any invocation approach

disregarding authentication information has very limited support. Therefore, we propose the

annotation of authentication information by using the Web API Authentication Model, which

overcomes Web API description heterogeneity and provides the basis for its automated handling

as part of the invocation process. We base the annotation approach on a thorough study of current

Automating the Authentication of Web APIs 180

Web API authentication mechanisms and have determined the most commonly used ones. We

determine their characteristics, in order to be able to describe them, and compose a set of design

principles and requirements. Based on this analysis, we develop a Web API Authentication

Model (WAA) that is capable of capturing the necessary details for supporting authentication as

part of the invocation process.

Chapter 10

Supporting the Creation of Semantic
Web API Descriptions

The previous chapters introduced means for modelling, annotating and invoking Web APIs by

providing a description model and specific extensions that capture common service character-

istics and lay the foundation for automating API use, especially by focusing on invocation and

authentication support. However, in order to ease the adoption of the devised solutions it is nec-

essary to provide at least some level of support for developers. Therefore, this chapter describes

in detail the support for adopting the introduced contributions towards a more automated Web

API use in terms of tools, as well as guidelines on how to create Web API descriptions, incor-

porating automation of some of the commonly performed annotation tasks such as determining

the type of service.

10.1 Introduction

MSM, together with the Web API Grounding Model and the Web API Authentication Model,

can be used as a basis for making HTML service documentation machine-interpretable and

enable the adding of semantic information, thus providing the means for creating semantic de-

scriptions of Web APIs. However, without supporting tools and guidelines, developers would

have to modify and enhance the documentation manually by using a simple text/HTML editor.

In addition, the complete annotation process would have to be done manually, if there are no

tools, which enable the search for suitable domain ontologies or the reuse of annotations of pre-

viously semantically described services. In order to address these challenges and to facilitate

the easier adoption of the models for semantically describing Web APIs, we introduce SWEET:

Semantic Web sErvices Editing Tool1, and provide two approaches for automating one of the
1http://sweet.kmi.open.ac.uk

181

http://sweet.kmi.open.ac.uk

Supporting the Creation of Semantic Web API Descriptions 182

most frequently performed and used annotation types – determining the kind of functionality

that the service provides.

SWEET is developed as a Web application, that can be launched in a common Web browser

and does not require any installation or additional configuration. It provides key functionalities

for modifying the HTML Web API documentation in order to include markup that identifies

the different parts of the API, such as operations, inputs and outputs, and also supports adding

semantic annotations by linking the different service parts to semantic entities. As a result,

SWEET enables the creation of complete semantic Web API descriptions, based on the pre-

viously introduced models, given only the existing HTML documentation. More importantly,

the tool hides formalism and annotation complexities from the user by simply visualising and

highlighting the parts of the API that are already annotated and produces HTML documentation

that is visually equivalent to the original one but is enhanced with metadata that captures the

syntactical and semantic details of the API. The resulting HTML documentation also serves as

the basis for extracting an RDF-based semantic Web API description, which can be published

and shared in a service repository, such as iServe [PLM+10], enabling service browsing and

search. In the following sections we introduce the different consecutive versions of SWEET,

which vary in the level of annotation support that they provide and use models with different

level of expressivity.

Still, even with the help of SWEET, the creation of semantic Web API descriptions remains

a somewhat effort consuming task, especially in the context of finding suitable ontologies and

annotations for enhancing the API. Therefore, in order to ease the process of providing semantic

service metadata, this chapter describes a number of simple approaches that target the automa-

tion of some of the key tasks such as ontology search and API functionality classification. In

particular, we provide an integrated way for directly retrieving a list of suitable domain ontolo-

gies and include two classification approaches, one of which addresses the multi-lingual context

of the API documentation. Since Web APIs are commonly described in human-oriented doc-

umentation such as webpages, they are not necessarily in English, therefore, it is important to

be able to determine the type of service, independently of the original language of the descrip-

tion. The tool, as well as the supporting annotation task automation approaches, is thoroughly

evaluated.

This Chapter is structured as follows: Section 10.2 introduces SWEET, describing its main func-

tionalities, the provided annotation support as well as the development of the tool in its different

versions. Section 10.3 focuses on the solutions that provide automation to individual annotation

tasks, thus contributing to the semi-automated creation of semantic Web API descriptions. These

include ontology and annotation search support as well as classification of the APIs, based on

the functionality that they provide. Finally, Section 10.4 concludes this chapter. The evaluation

of the tool and the corresponding approaches in presented in Chapter 11.

Supporting the Creation of Semantic Web API Descriptions 183

10.2 SWEET

SWEET is the first tool developed for supporting users in creating semantic Web API descrip-

tions by structuring the HTML documentation and associating semantic annotations. SWEET2

is a Web application developed using JavaScript and ExtGWT3. It is part of a fully-fledged

framework, developed within the scope of the SOA4All European project (SOA4All EU project

FP7 - 215219, http://cordis.europa.eu/project/rcn/85536_en.html), for

supporting the lifecycle of services, particularly targeted at enabling the creation of semantic

Web API descriptions. SWEET takes as input an HTML Web page documenting a Web API

and offers functionalities for annotating service properties and linking semantic information to

them. The annotations can be created by the API providers or anyone interested in enhancing

the documentation with metadata.

SWEET uses the hRESTS-based microformat HTML tags for the creation of machine-readable

service descriptions and supports the semantic annotation of service properties, as specified in

the semantic models introduced in this thesis. A current version of the tool can be found un-

der http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html,

while all code, including previous and latest releases, are in GitHub4 under https://

github.com/kmi/SWEET-ExtGWT.

10.2.1 Design and Architecture

As introduced earlier, the vast majority of available Web APIs are described in HTML, directly

as part of webpages. Therefore, we advocate using microformats for structuring service docu-

mentations and for attaching semantic annotations to them. This is a lightweight non-invasive

approach that does not require the creation of complex API descriptions from scratch but rather

enhances the already existing documentation and relies on employing a few semantic annota-

tions for supporting the automation of commonly performed service tasks, instead of providing

extensive reasoning and deduction support. This approach is reflected in the previously de-

scribed models and is also implemented in SWEET.

With the help of SWEET, API providers and developers alike can just navigate to the Web

API documentation and annotate it. Providers can replace the documentation with the enriched

version and share it, easing subsequent processing and implementation. Developers can keep

the annotated documentation locally or share it on a dedicate repository, where it can be reused

by other developers.
2http://sweet.kmi.open.ac.uk
3http://extjs.com/products/gxt/
4https://github.com

http://cordis.europa.eu/project/rcn/85536_en.html
http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html
https://github.com/kmi/SWEET-ExtGWT
https://github.com/kmi/SWEET-ExtGWT
http://sweet.kmi.open.ac.uk
http://extjs.com/products/gxt/
https://github.com

Supporting the Creation of Semantic Web API Descriptions 184

FIGURE 10.1: Semantic Annotation of Web APIs

The creation of semantic Web API descriptions is based on a 3-step process visualised in Fig-

ure 10.1, which is also the way, in which SWEET supports API annotation. First, the un-

structured text documentation of the Web API, in the form of HTML content, is extended with

hRESTS tags, such as the ones defined via mappings to MSM, the Web API Grounding Model

and the Web API Authentication Model, marking all service properties. The resulting service

structure is enriched with semantic annotations by adding links pointing to semantic entities, by

adopting the SAWSDL approach for adding model references. Finally, the annotated HTML can

be saved and republished, or it can be used to extract RDF-based semantic descriptions. The user

is supported in completing each of these steps by SWEET, which guides him/her in the process

of creating annotations and hides formalism complexities behind an easy-to use interface.

FIGURE 10.2: SWEET Architecture

SWEET is designed as a classical three-layered Web application. As can be seen in Figure 10.2,

the architecture of SWEET consists of three main components, including the visualisation com-

ponent, the data preprocessing component and the annotations recommender. The visualisation

component is based on a model-view-controller (MVC) [GHJV94] architecture design pattern,

where the model implements an internal representation of the annotated Web API, in accordance

with the elements foreseen by the semantic formalisms detailed in the previous chapters. In this

way, every time the user adds a new annotation via the interface, the model representation of

the Web API description is automatically updated. Similarly, when parts of the model repre-

sentation are altered or deleted, the highlighting and visualisation in the user interface is also

Supporting the Creation of Semantic Web API Descriptions 185

adjusted. When the annotation process is completed, the resulting HTML and RDF Web API

descriptions are generated based on the produced internal model.

The GUI of the visualisation component is shown in Figure 10.3 and it has three main panels.

The HTML of the Web API is loaded in the Navigator panel. Based on this, the HTML DOM

of the APIs can freely be manipulated by using functionalities of the Annotation Editor panel.

The current status of the annotation is visualised in the form of a tree structure in the Semantic

Description panel, which is implemented by automatically synchronising the visualisation of

the service annotation with an internal model representation, every time the user manipulates it.

FIGURE 10.3: SWEET: Inserting hRESTS Tags

The annotations recommender component assists the user in annotating a service, by suggest-

ing suitable annotations for the service as a whole (domain ontology recommendation) and for

its individual properties. This component includes two main functionalities, namely, support

for ontology search and classification of the type of Web API. These are discussed in more de-

tail in Section 10.3. Finally, the data preprocessing component implements functionalities for

data preparation for the visualisation component, caching mechanisms and simple rule-based

analysis.

All components include points of extensibility. Overall, SWEET effectively supports users in

creating semantic Web API descriptions by marking service properties, searching for suitable

ontologies, and linking semantic information. MSM is already fully supported by the current

version of SWEET. The existing annotation process can be further automated by extending the

recommender with additional support.

When the user completes the semantic annotation of the HTML documentation, the annotated

HTML can be saved and republished on the Web, representing an instance of a semantic Web

Supporting the Creation of Semantic Web API Descriptions 186

API. Similarly, the resulting HTML can also be transformed into an RDF-based description,

which can be used as the basis for performing common tasks such as search, composition and

invocation. Currently, all created descriptions can be directly posted to iServe, where they can be

browsed and searched alongside previously annotated Web APIs but also together with semantic

WSDL-based descriptions.

10.2.2 SWEET Bookmarklet

SWEET’s development underwent a number of versions, each one featuring extended function-

alities and updates in accordance with the changes to the semantic service models. Therefore,

the development of the tool and of the semantic formalisms happened in an iterative way, where

new elements in the models resulted in adding the corresponding support in SWEET, while

user-feedback of the tool resulted in some cases in necessary adjustments to the models.

The first version of SWEET is in the form of a bookmarklet, which can be loaded on top of any

webpage, and, in particular, on top of the HTML Web API documentation. It is a JavaScript

Web application, which requires no installation and has the form of a vertical widget, which

appears on top of the currently browsed webpage. This tool overcomes a number of difficulties

associated with the annotation of Web APIs, including the fact that the HTML documentation is

viewed through a browser and that the user who wants to annotate the service webpage, usually

does not have access to manipulate or change the HTML.

FIGURE 10.4: SWEET: hRESTS Annotation

Figure 10.4 shows a screenshot of the SWEET bookmarklet. The first version of SWEET sticks

strictly to the defined hRESTS tags, while the following versions include extensions based on

Supporting the Creation of Semantic Web API Descriptions 187

MSM, the Grounding Model and WAA. In particular the use of microformats facilitate the trans-

lation of the HTML tag structure into objects and properties. Therefore, the visualisation of

the HTML documentation remains unchanged, while the microformat uses class and rel

XHTML attributes to mark key service properties. The hRESTS tags can simply be inserted

by selecting the relevant part of the HTML and clicking on the corresponding class node in the

hRESTS panel of SWEET. In this way, the hRESTS annotation process is less error-prone, less

time-consuming and much simpler for the user. The result is an annotated copy of the original

HTML, which can easily be converted into RDF (“Export” button), by using an implemented

XSLT stylesheet.

1 <div class="service" id="svc">
2 <h1>Send SMS Service</h1>
3 <p>This is a Short Message Service (SMS).<p>
4 Example usage
5 http://my.test.serv.com/SendSMS.php?recipient=
6 tel :447712345678&message=messagetext&sender=User&title=TheMessage
7 <div class="operation" id="op1">
8 <h2><code class="label">SendSMS Method</code></h2>
9

10 recipient<p>List of recipient phone numbers in the format "tel :"
11 followed by an international phone number</p>

12 message<p>Content of the message.</p>

13 <h2>The result is a sent SMS.
14 </h2></div></div>
15

LISTING 10.1: Example Web API Description with hRESTS Tags

Listing 10.1 shows a simple description example, annotated with hRESTS by using the SWEET

bookmarklet. It visualises the usage of the microformat annotations, as well as the structure

restrictions, which exist for the different classes. The complete API description is marked by

the service class. The service may have a label, which can be used to mark the human-

readable name of the service. A machine readable description can be created, even if there is no

service class inserted. It is sufficient that the HTML description contains at least one operation,

which is marked with the operation class. The operation description itself includes the

address where it can be executed and the HTTP method.

The final two elements are input and output. They are used on block markup and indicate

the operation’s input and output. These two elements serve as the basis for extensions given

by microformats, which provide additional semantic information or details about the particular

datatype and schema information. Finally, user-oriented labels can be attached to the service,

operation, input or output classes.

The microformat markup that can be generated with the help of the first version of SWEET

sticks strictly to the original hRESTS specification. Therefore, the resulting syntactic structur-

ing of the HTML documentation provides relatively limited support for using Web APIs, for

example, because parts of the input and output cannot be specified, while the invocation address

and the grounding of the parameters in the different HTTP message parts is missing completely.

Supporting the Creation of Semantic Web API Descriptions 188

Therefore, the produced descriptions enable, to a certain extent, the completion of tasks such

as search based on the inputs and outputs. However, they are not suitable for composing and

invoking Web APIs, since key information such as the individual input and output parts, which

are necessary in order to realise the data transformation between two consecutive APIs, or iden-

tifying parameters transmitted as part of the URL, which is needed for completing an API call,

are simply not captured.

The HTML, with the inserted hRESTS microformat tags, can be enriched with semantic meta-

data by adopting the SAWSDL approach. SAWSDL specifies three XML attributes with

equivalent RDF properties, including modelReference, liftingSchemaMapping and

loweringSchemaMapping. The first version of SWEET supports only adding model ref-

erences, while the links to lifting and lowering schema definitions need to be added manually,

directly in the generated HTML file.

The task of associating semantic content with the Web API properties is even more time- and

effort-demanding than the insertion of hRESTS tags. Therefore, SWEET supports users in

searching for suitable domain ontologies and in making semantic annotations. Whenever, a

user wants to add semantics to a particular service property, for example, an input parame-

ter, he/she has to select it and click on the “magic wand” symbol, which sends a request to

Watson [dSM+08]. Watson is a search engine, which retrieves relevant ontologies based on

keyword search.

FIGURE 10.5: SWEET: Semantic Annotation

The results are presented in the Service Properties panel visualised in Figure 10.5. The searched

for property is the root of the tree, populated with nodes that represent the found matches.

Supporting the Creation of Semantic Web API Descriptions 189

In the example, recipient was found to be a property (“P”) in an ontology located at http:

//protege.stanford.edu. If the user needs additional information in order to decide

whether the particular semantic annotation is suitable or not, he/she can switch to the Domain

Ontologies panel, which provides a list of all concepts and the corresponding property matches.

The user can make a semantic annotation by simply selecting the property instance and clicking

on one of the semantic matches in the Service Properties panel. The result is an annotated HTML

document, including hRESTS tags and model references, and it can be saved in a repository

(button “Save”) or be converted into RDF (button “Export”).

Listing 10.2 shows the example Web API documentation annotated with the first version of

SWEET. Line 4 uses the model relation to indicate that the service sends SMS, while line 12

associates the input parameter recipient with the class Recipient. The lowering schema for the

recipient is also provided in line 13 but this link has to be added manually and is not supported

by the initial version of the tool.

1 <div class="service" id="svc">
2 <h1>Send SMS Service</h1>
3 <p>This is a
4
5 Short Message Service (SMS).<p>
6 Example usage
7 http://my.test.serv.com/SendSMS.php?recipient=
8 tel :447712345678&message=messagetext&sender=User&title=TheMessage
9 <div class="operation" id="op1">

10 <h2><code class="label">SendSMS Method</code></h2>
11
12
13 recipient (
14 lowering)<p>List of recipient phone numbers in the format "tel:"
15 followed by an international phone number</p>
</div></div>

LISTING 10.2: Example Web API Description with Model References

In summary, the SWEET bookmarklet provides support for three main actions – adding hRESTS

tags, integrated ontology search, and adding model references. It offers the basic functionalities

required for annotating Web APIs and represents the first contribution towards supporting the

creation of semantic Web API descriptions. Based on the gathered experience as well as the user

input, the bookmarklet was reimplemented as a stand-alone Web application described in more

detail in the next section.

10.2.3 SWEET Web Application

The initial concept of loading a tool on top of the webpage describing the Web API had to

be adjusted for two main reasons. First, if the tool takes the form of a widget, the size of the

user interface has to be relatively small so that the underlying API documentation is not covered.

This means that all the annotation functionalities have to be visualised in a relatively constrained

area, resulting in a lot of tabs or panels that make the user interface of the bookmarklet cluttered

http://protege.stanford.edu
http://protege.stanford.edu

Supporting the Creation of Semantic Web API Descriptions 190

and confusing. Second, the technology used to implement the bookmarklet is based on cross-

domain communication, so that requests through the original HTML documentation website are

redirected through the tool. This presents an insecure way of handing client-server communi-

cation and had to be abandoned as a solution approach. As a result, a new version of SWEET

was implemented, which takes the form of a web application, where the HTML documentation

is simply loaded into one of the interface panels.

The web application version of SWEET benefits from the user experience and feedback gath-

ered through the bookmarklet release and enables the completion of the annotation process in a

step-by-step manner. In particular, it is based on a set of simple requirements that were deter-

mined based on the needs, resulting from tasks involved in the creation of semantic Web API

descriptions, but also taking into consideration the gathered user input. These requirements are

as follows:

• R1: Each of the annotation tasks should be presented in an individual visualisation
unit, such as a tab or a panel, that can be hidden once the particular task is completed.

• R2: Functionalities, needed for the different annotation tasks, should not be inter-
twined, both implementation- and visualisation-wise.

• R3: It should be clearly visible what annotations are already made and how far along

the annotation process the user has come.

• R4: Sufficient browsing options need to be presented, so that there is enough informa-

tion in order to be able to decide if a semantic entity is suitable to be used as an annotation

or not.

• R5: Work in progress should be saveable and retrievable for later completion.

• R6: The goal of the tool is to guide the user but not to validate all the annotation steps

that are made.

Requirements 1 and 2 mainly relate to the way the implementation and the user interface are re-

alised. They are important in order to provide clear presentation and separation of the individual

functionalities. As can be seen in Figure ?? this was achieved with the help of stacked panels,

where each one can be shown or hidden, from top to bottom, while creating hRESTS annotation,

searching for suitable ontologies, etc. Requirement 3 resulted in the Semantic Description panel

that shows the parts of the description that have already been created. This is combined with

corresponding borders and shading in the loaded HTML documentation. Requirement 4 was

indirectly satisfied by enabling the saving of enhanced HTML documentation at any point of the

annotation process and supporting its loading back into the tool. Therefore, it is recommended

that only complete descriptions are posted to iServe, while work in progress is stored locally.

Supporting the Creation of Semantic Web API Descriptions 191

Regarding the last point, we found out that it is easiest to create semantic Web API descriptions

in a step-by-step manner. Therefore, SWEET takes as input the Web API HTML webpage,

which is loaded in the central panel, and returns a semantically annotated version of the HTML

or a RDF semantic description. In order to do this the user needs to complete the following four

mains steps:

1. Identify service properties (service, operation, address, HTTP method, input, output and

label).

2. Search for domain ontologies suitable for annotating the service properties.

3. Annotate service properties with semantic information.

4. Save or export the annotated Web API.

The first step can easily be completed by simply selecting the part of the HTML, which describes

a particular service property, and clicking on the corresponding tag in the insert hTags pane. The

new feature here is that at the beginning, only the Service node of the hRESTS tree is enabled.

After the user marks the body of the service, additional tags, such as Operation and Method, are

enabled. In this way, the user is guided through the process of structuring the service description

and is prevented from making annotation mistakes. The marking of HTML content with a

particular hRESTS tag results in the insertion of a corresponding class HTML attribute. The

formalism complexity is hidden from the user, and instead, he/she only sees the current status

of the annotations, reflected in the Semantic Description panel. In addition, each inserted tag is

highlighted by a custom cascading style sheet (CSS), which visualises the annotations the user

has made.

FIGURE 10.6: SWEET: Searching for Suitable Ontologies

Supporting the Creation of Semantic Web API Descriptions 192

After the user structures the HTML documentation and identifies all service properties, the

adding of semantic information can begin. The new version of SWEET, just like the book-

marklet, supports users in searching for suitable domain ontologies by providing an integrated

search with Watson [dSM+08]. The search is done by selecting a service property and sending

it as a search request to Watson. The result is a set of ontology entities, matching the service

property search, which are displayed in the Service Properties panel visualised in Figure 10.6.

The main difference here is that there are more options for browsing and exploring the returned

results, so that the user can decide, which annotation is most suitable to use. For shorter re-

sponse times, only the first 20 matches are retrieved. If the first set of ontology results is insuf-

ficient, the user can search for more results by clicking on view more. In addition, the search is

session-based and the user preserves his/her ontology search while annotating different service

descriptions.

The implementation of the Service Properties and Domain Ontologies panels supports the user

in choosing a suitable ontology for annotating the individual service properties or the complete

Web API. These supporting functionalities are visualised in Figure 10.7. The user can view the

URI of each of the matching concepts, properties or instances and the corresponding ontology.

Additional information is available in the Domain Ontologies panel, which shows all service

properties that can be annotated with one particular ontology as well as a list of all concepts.

The entries of both panels can be expanded or collapsed in order to ease the navigation.

FIGURE 10.7: SWEET: Exploring Domain Ontologies

Once the user has decided, which ontology to use for the service property annotation, he/she

can do an annotation by selecting a part of the service HTML description and clicking on Se-

mantic Annotation in the Service Properties context menu. This results in inserting a model

attribute and a reference pointing to the URI, of the linked semantic entity. MicroWSMO also

contains elements for lifting and lowering, which point to links for lifting and lowering

transformations. These can be added by inserting the URIs of the transformation files.

Supporting the Creation of Semantic Web API Descriptions 193

The result is a semantically annotated HTML description, with inserted model and href tags

marking the association of the particular HTML elements with the semantic entities. A summary

of the already made annotations is given in the Annotations panel. These annotations can be

removed by choosing Delete from the context menu. In this way, the user can remove incorrect

annotations and substitute them with new ones, without having to reload the tool and start the

annotation process from the very beginning. An example of an annotated Web API description

is given in the Appendix in Section A.1.

The web application version of SWEET also provides options for customising the way service

descriptions are viewed. First, if the Navigator panel displays HTML service documentation,

which already contain annotation elements, these elements will be recognised and automatically

highlighted so that the user can manipulate them and integrate them in his/her own annotation of

the Web API. Second, the way the service properties and semantic information is highlighted can

be modified by simply substituting the current CSS file with a new one, which uses a different

style. In addition, this version of SWEET implements the following new functionalities:

1. Renaming of service properties in the Semantic Description panel.

2. Deleting of service properties in the Semantic Description panel.

3. Adding of model references directly to different service parts.

4. Adding of lifting and lowering schema.

5. Definition of parameters as part of inputs and outputs.

Detailed descriptions of how to use SWEET, in its different versions, as well as short screen

casts are available in Appendix B and at http://sweet.kmi.open.ac.uk/download.

html and http://sweet.kmi.open.ac.uk/demo.html correspondingly. The tool

was also used in a number to training sessions and tutorials5. Relevant publications in-

clude [MKP09, MPD09b] and [MGPD09]. The following section described the approaches

used to evaluate SWEET.

10.3 Automating the Creation of Semantic Web API Descriptions

While SWEET enables the creation of semantic Web API descriptions based on the existing

HTML documentation, the annotation process still requires quite some amount of manual work.

In addition to marking service properties, users are also required to choose appropriate semantic
5The training materials available are at http://www.slideshare.net/mmaleshkova/automating-the-use-of-web-apis-

through-lightweight-semantics, http://www.slideshare.net/mmaleshkova/handson-automating-the-use-of-web-apis-
through-lightweight-semantics

http://sweet.kmi.open.ac.uk/download.html
http://sweet.kmi.open.ac.uk/download.html
http://sweet.kmi.open.ac.uk/demo.html

Supporting the Creation of Semantic Web API Descriptions 194

annotations. While SWEET provides much more support than a simple text editor would, there

is still potential for automating some of the annotation tasks, thus enabling a semi-automated

process of creating semantic Web API descriptions.

In this section, we describe the suggested approaches for adding automation support to SWEET.

In particular, we describe how the search for suitable ontologies used to semantically enhance

Web APIs is realised and how the type of functionality that the API provides is automatically

determined. The focus of the automation support is precisely on these two tasks because they

play a substantial role during the process of creating semantic Web API descriptions. In par-

ticular, very few of SWEET’s users would directly know, exactly which semantic entities they

want to use to annotate the individual service properties. Therefore, instead of having to rely

on external search tools or ontology directories, ontology search is provided as part of SWEET

in an integrated way. Furthermore, including the type of functionality that the Web API pro-

vides as part of the semantic description is key for supporting common tasks such as discovery

and composition, which are predominantly based on finding and using an API with the required

support.

The following sections describe in more detail the contributions towards providing semi-

automated support for creating semantic Web API descriptions, focusing in particular on an-

notation search and functionality classification solutions.

10.3.1 Annotation Search

Finding and determining the correct semantic entity that is to be used for making an annota-

tion can be a difficult and time-consuming task, especially for someone not particularly familiar

with a specific domain or with using semantic metadata in general. In order to assist users of

SWEET in completing this task, the tool provides an integrated ontology search through Wat-

son [dSM+08, dM11]. Watson has three main functions: collecting the available semantic con-

tent on the Web, analysing it to extract useful metadata and indexes, and, finally, enabling search

over the gathered semantic content. In the context of supporting the semi-automated annotation

of Web APIs, the search functionalities provided by Watson are a key feature, especially since

they are accessible directly over an API. Given a keyword, or a set of keywords, Watson returns

a lists of semantic entities, including classes, properties and instances that match the search cri-

teria. The resulting set, includes the URIs of the corresponding ontologies, so that they can also

be retrieved and explored. This is especially useful in the context of creating annotations, since

an overview of the complete ontology enables users to better decide if a certain semantic entity

is suitable for making an annotation or not.

SWEET’s architecture foresees an API for accessing ontology data (Figure 10.2). One imple-

mentation of this API is through using Watson for semantic search. In particular, the user can

Supporting the Creation of Semantic Web API Descriptions 195

select any keyword in the Web API HTML documentation, such as the input or output labels,

and click on a button that completes the search. SWEET’s implementation is not limited only

to using Watson. In fact, other alternatives were tested, however, they returned only matching

triples and no direct links to complete ontologies. Based on the gained experience with using

SWEET, we found out that Watson and the option to directly retrieve and explore complete on-

tologies, in addition to the matching semantic entities, currently provides the best annotation

search support. Still SWEET’s API gives the possibility for integration with further semantic

search providers, such as Sindice6.

It is important to point out that currently SWEET relies strictly on the ranking of the results as

provided by Watson. The only modification that is done on top of the results dataset is to include

pagination. Therefore, future work in this respect will include ranking and possible filtering

of the results. Still, the current implementation of SWEET, with the help of the integrated

search support provided by Watson, significantly assists users in creating semantic Web API

descriptions by taking away the extra effort necessary for finding suitable semantic entities.

The support in terms of assisting the user in annotating Web APIs can be taken one step further

not only by enabling integrated search but also by directly suggesting suitable annotations. Such

recommendations can be made for individual service parts or for the service as a whole. Some

of the most commonly performed service tasks are based on the type of functionality that the

service provides. The following section introduces an approach for automatically classifying

Web APIs based on their HTML documentation and including this information as part of the

service annotation.

10.3.2 Web API Classification Support

An important part of adding automation to the manual process of creating semantic descriptions

of Web APIs is realised through supporting the functional classification of the APIs. In particu-

lar, determining the type of functionality of the service and its domain are one of the main tasks

that need to be completed, when doing annotations recommendation. Knowing the type of a

service eases not only the discovery and selection of services but also aids in determining the

domain of the Web API and thus contributes towards selecting an appropriate domain ontology

for making annotations. In this context, this section introduces two classification approaches – a

three-step solution based on API HTML documentation in English and a multilingual classifica-

tion approach that maps API documentation written in different languages to the same category.

The first classification solution foresees a three-step process and is an adaptation of a combi-

nation of previously developed and commonly applied classification algorithms [CD07]. Given

the URL of the API documentation, the developed approach suggests a set of 5 ranked classes,
6http://sindice.com/

 http://sindice.com/

Supporting the Creation of Semantic Web API Descriptions 196

in accordance with the functionality types as defined by the ProgrammableWeb’s directory7.

The second classification solution takes into consideration the fact that currently providers pub-

lish the Web API documentation in any form and any language that they see fit and as a result

not all descriptions are provided in English. Therefore, it is also important to be able to make

classification recommendations for Web API descriptions that are given in a variety of different

languages. For this purpose we present an approach that makes use of Cross-lingual Explicit

Semantic Analysis [SC08] to classify and annotate APIs. As a result, once the semantic Web

API descriptions are created with the help of SWEET, common service tasks can be performed

based on the available metadata, such as the provided functionality type, and not solely based

on the original, possibly non-English, textual documentation.

10.3.2.1 HTML-based Classification

The first classification solution is an adaptation of well-known previously developed classifica-

tion algorithms [CD07]. Since it is based on a word-vector representation [Suz03] of the docu-

ments to be classified, it indirectly assumes that all documents are in the same language. Given

the URL of an API documentation, the API’s HTML page as well as a number of related pages

(adjustable via a variable) are downloaded and processed. The processing includes pruning of

the HTML, removing HTML tags, so that plain text can be extracted. Based on the retrieved text

documentation, word-frequency weights and word stemming are performed [RNBY99]. As a

result, the documents are converted in word-vector representations. In the final step, the so pre-

pared input is processed with the k-nearest neighbour algorithm (KNN) [CD07] for classifying

the API. A number of alternative classification algorithms were also used but KNN was chosen

in the end because of delivering the best results. Algorithm 1 summaries the main steps of the

classification solution.

Algorithm 1 HTML-based Classification
Require: webAPIDescriptionURL, n, classificationTaxonomy, backgroundCollection

htmlDocument← download_html(webAPIDescriptionURL);
htmlRelatedDocuments← download_realted_html(webAPIDescriptionURL);
prunedDocuments← prune_html(htmlDocument, htmlRelatedDocuments);
wordVectorDocument← convert_to_wordVector(prunedDocuments);
results ← compute_knn(wordVectorDocument, classificationTaxonomy, backgroundCollec-
tion);
return topN(results, n);

Our approach is very similar to kNN-based classification solutions, devoting extra effort to the

preparation and processing of the Web API documentation. First, the pruning step includes

removal of HTML-specific tags, as well as words that are very frequently used in the API con-

text and carry no importance for determining the type of functionality of the service, such as

’API’, ’parameter’ and ’method’. Furthermore, individual words are weighted depending on
7The Programmable Web API directory http://www.programmableweb.com/apis/directory.

http://www.programmableweb.com/apis/directory

Supporting the Creation of Semantic Web API Descriptions 197

their positioning within the HTML. For example, words occurring in headings are assigned

higher weights. As a result the kNN classification is applied on a word-vector representation of

the original documentation that has lower level of noise-words and higher ranking for individual

words that might be indicative for the type of API. The experiments conducted as part of the

evaluation, which are described in the next chapter (see Section 11.4.2), actually point out that

such pre-processing of the input is very beneficial.

Initially, the background collection (also referred to as the training set) was based only on API

documentations and their classification as provided by ProgrammableWeb. However, this di-

rectory contains relatively few services per category for most categories8, which is not optimal

for training the classifier. Therefore, as an alternative training set, the Open Directory Project

(ODP)9 was used. The Open Directory Project is a manually created and managed directory of

Web sites. It is maintained by volunteers who list web pages belonging to specific categories.

4,700,000 web pages are listed in almost 1,000,000 categories, and the data is freely and publicly

available. The use of ODP was realised by creating a mapping between ProgrammableWeb’s

classification taxonomy and the one used by ODP. The developed classification recommenda-

tion approach was simplified and implemented within the scope of a master thesis [Ren10]. The

classifier was realised with the help of Weka10 and its implementation of the nearest neigh-

bour algorithm. Following is a detailed description of the implementation of the classification

approach.

Implementation. The classification approach is implemented in the form of a Service Classifier

component. It is important to point out that since the approach is based on textual documen-

tation, it can also easily be applied on WSDL-based services, in case that they have text-based

descriptions in addition to the WSDL-files.

The Service Classifier architecture is shown on Figure 10.8. The workflow starts with the Down-

loader component. Its task is to fetch a webpage given its URL, return the content and report

encountered fetch errors. The fetched pages are processed and cached for better performance to

avoid fetching the same page multiple times.

When the main page describing the service is fetched and cached, it is sent to the Parser-

Sanitizer component. The Sanitizer removes unnecessary elements from the HTML page,

mainly JavaScript elements and flash objects (if any). The Parser analyses the different links of

the page and requests related pages from the downloader. Based on experiments, fetching 5 of

the sub-pages linked from the main page increases the accuracy by 10%. Therefore, retrieving

related pages, in addition to the main service page, has an important effect on the accuracy of

the component results.
8ProgrammableWeb API directory available at http://www.programmableweb.com/apis/

directory
9http://www.dmoz.org/

10http://www.cs.waikato.ac.nz/ml/weka/

http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory
http://www.dmoz.org/
http://www.cs.waikato.ac.nz/ml/weka/

Supporting the Creation of Semantic Web API Descriptions 198

FIGURE 10.8: Service Classifier Component

Once a document and the set of related pages are collected and sanitised, they are given to the

voting processor, which converts the different HTML pages to a weighted list of phrases and

sentences. The type of HTML tags wrapping the text parts contribute to determining the weight

of each phrase. The goal of this step is to convert a nested structure (a set of HTML pages) to a

flatter list of 2-tuples, each one composed by a part of the document and its associated weight.

The next step is to split the phrases and sentences into single words, and compute the weighted

term frequency of each word. This list can potentially be very large and is thus pruned to

accurately describe the set of documents: too-common and too-uncommon words are removed

from the list.
The Tokenizer provides a list of words and their weighted frequencies. This list is given by the

document storage component for persistent caching: the URLs and raw webpages are already

stored, and the corresponding weighted term frequencies are attached to them. The frequencies

are cached for performance reasons, because when the classifier processes a document, it needs

to compare it to others, and the computation of the weighted list of term frequencies is an

expensive task.

The communication between the individual components of the Service Classifier is visualised

in Figure 10.9. In the final processing step, the Classifier component takes the tokenised text

and determines the best matching category, out of a predefined list of categories, based on the

data it has been trained with. This is done by calculating the distances between the document to

classify, i.e., the Web API description, and the different documents as already classified in the

background collection.

Supporting the Creation of Semantic Web API Descriptions 199

FIGURE 10.9: Service Classifier Component Communication

The classification step is potentially very computationally intensive – if a new document has

to be compared to each existing document, this can be a problem especially in a large test

collection. Therefore, a “typical document” is generated for each category – with one typical

document per category, the number of operations will not grow with the number of classified

documents. When a document is classified in a category, the “typical document” for this cate-

gory is recomputed in order to take the new document into account.

1 public String classify (URL url);
2 public String [] classify (URL url, int matches);

LISTING 10.3: Service Classifier API

Once fully trained and setup, the classifier has a very simple API, as shown in Listing 10.3.

The Service Classifier does not have its own user interface, but uses the visualisation tool pro-

vided by Weka11 in order to show the different steps involved in the classification process. As

already mentioned, the service classification task requires some pre-processing work. Currently,

all the steps preceding the actual classification are implemented in a standalone Java package

that is able to crawl the web and output data in a format that can be used by the classifier. The to-

kenization is done by Lucene12 and the pages are processed and sanitised using HtmlCleaner13.

The classifier is implemented by Weka – the tokenizer outputs its data in a file that can be

loaded by Weka to train and validate the classifier. The advantage of using Weka is that different

classifiers and different options can be tested and compared before implementing the best one

as a standalone component.
11http://www.cs.waikato.ac.nz/ml/weka/
12http://lucene.apache.org/java/docs/index.html
13http://htmlcleaner.sourceforge.net

 http://www.cs.waikato.ac.nz/ml/weka/
http://lucene.apache.org/java/docs/index.html
http://htmlcleaner.sourceforge.net

Supporting the Creation of Semantic Web API Descriptions 200

FIGURE 10.10: Classification Workflow

The experiment setup in Figure 10.10 shows how the classification is done:

1. Each Web API entry in ProgrammableWeb is crawled and passed through the tokenization

component, which creates a file that is used as input to Weka.

2. The input data is pre-processed by Weka and the tokens are transformed to a “word vector”

representation. In addition, each “word vector” is assigned a category, as already classified

by ProgrammableWeb.

3. The classifier is setup to do 10-fold cross-validation of the classifier, i.e. the data set is

split into ten separate folds and each fold is used to validate a classifier trained with the

nine other folds. The advantage of cross-validation is that the risk of overfitting is much

lower.

4. The training and validation sets are assigned to a classifier. The different classifiers can

be swapped and the results of each run are stored.

As already mentioned, the training is done based on the background collection of already cate-

gorised data from the Open Directory Project14 and ProgrammableWeb . The component is able

to collect a list of links of ProgrammableWeb’s API or an Open Directory Project data dump.

Once the links are collected, they are processed by the Downloader, Parser-Sanitizer compo-

nents and the resulting text is serialised into an ARFF15 file. The ARFF file can be used as input

to Weka, and is then loaded and processed as training data for the classifier.

The advantage of having such a setup is twofold. First, the training of the classifier can be done

offline and independently of the actual classification during the Web API annotation process.
14http://www.dmoz.org/about.html
15http://weka.wikispaces.com/Creating+an+ARFF+file

http://www.dmoz.org/about.html
http://weka.wikispaces.com/Creating+an+ARFF+file

Supporting the Creation of Semantic Web API Descriptions 201

Second, by using the data collected during each test run, the different classifiers can be compared

and the influence of the individual parameter setting can be observed. As a result, the best

performing one can be chosen for the actual Service Classifier component implementation. The

so realised Service Classifier is available through a simple API, which has the service URL as

input and a list of categories as output (Listing 10.3).

In summary, the here introduced classifier directly assists users in the process of adding semantic

annotations to Web services. It is important to point out that the classifier is not restricted

in particular to Web APIs, since it is based on analysing the textual content of the webpages

describing the services, which can be both WSDL-based and RESTful. Given the URL to the

documentation, it is able to suggest a category by using instance-based learning techniques.

Experiments conducted using test data collected from ProgrammableWeb and training data from

the Open Directory Project show that the service classifier component is able to determine the

correct category among five different classes with more than 70% accuracy (see Chapter 11 for

more details on evaluation).

10.3.2.2 Cross-Lingual Classification

The second classification solution employs a cross-lingual approach. In order to deal with the

fact that not all Web API descriptions are in English and to be able to automatically determine the

type of functionality that they provide, we present an approach that makes use of Cross-lingual

Explicit Semantic Analysis [SC08]. Given a textual description and a background collection

of APIs, the approach classifies the input API according to a predefined set of classes, indepen-

dently of the language of the documentation. In particular, since Cross-lingual Explicit Semantic

Analysis uses Wikipedia concepts to represent documents in a multilingual shared vector space,

the approach is applicable to the majority of the languages.

Our approach towards Web API classification [MZKP11] is based on comparing the documen-

tation of an API, which is to be classified, with a set of APIs, already classified according to a

given taxonomy. The specific implementation is based on the ProgrammableWeb’s taxonomy16.

We refer to the set of pre-classified services as the Background Collection. In particular, we

determine a number of representative service descriptions for each class in the taxonomy, while

the actual classification process is not based on the textual documentation in the background

collection but rather on the pre-computed Explicit Semantic Analysis (ESA) [GAS11] vector

representations, where a word is represented as a column vector in the term frequency-inverse

document frequency matrix (tf-idf matrix), having Wikipedia as a text corpus. A document is

represented as a collection of the vectors representing its words. The ESA vectors are computed

for each of the representative APIs, thus saving computation time at runtime.
16http://www.programmableweb.com/apis/directory

http://www.programmableweb.com/apis/directory

Supporting the Creation of Semantic Web API Descriptions 202

In addition, during the initial trial experiments, it was noticed that the Web API documentations

use very limited vocabulary for describing the format of data and also for describing the be-

haviour of the Web API. For this reason, a stop-word file must be built to prevent the Explicit

Semantic Analysis from focusing on the features of Web API descriptions that do not differen-

tiate the services into classes. The stop-word list serves as an input for the pre-processing step

of the Explicit Semantic Analysis (see Algorithm 2).

Algorithm 2 formally describes the proposed API classification approach. In particular, the de-

vised method includes the following steps. First the language, in which the Web API description

is written, is determined. This does not represent a challenge and can be done easily by com-

paring the word distribution of the Web API description to average word distributions of other

languages, or using an existing solution in the form of a Web API17. Second, the Web API spe-

cific stop-words are removed and the Web API documentation is projected into the concept space

given by the particular language version of Wikipedia. After that the vector is projected into the

English Wikipedia concept space, to facilitate its comparison with our Web API background.

The following step iterates over each document in the background collection and records its

similarity with the previously determined vector of the input Web API documentation. Finally,

for each category, the acquired similarity measures are summed up and divided by the total num-

ber of examples for the given category. This is done in order to derive a normalised similarity

measure, which is not influenced by the number of representative services. The output is a list

of categories, sorted according to their score.

Algorithm 2 Assigning Class Labels to a Web API Description
Require: webAPIDescription, backgroundCollection
Ensure: Scored class suggestions

language← recognize_language(webAPIDescription);
esa_vector← esa_analyze(language, webAPIDescription);
esa_vector_en← esa_map_vector(esa_vector, language, “en”);
category_score← new Map();
category_cnt← new Map();
for 〈background_api_vector, category〉 ∈ backgroundCollection do

doc_score← vector_similarity(esa_vector_en, background_api_vector);
category_score[category]← category_score[category] + doc_score;
category_cnt[category]← category_cnt[category] + 1;

end for
for category, score ∈ category_score do

result[category]← score / category_cnt[category];
end for
sort(result);
return result

17http://code.google.com/apis/language/translate/v1/using_rest_langdetect.
html

http://code.google.com/apis/language/translate/v1/using_rest_langdetect.html
http://code.google.com/apis/language/translate/v1/using_rest_langdetect.html

Supporting the Creation of Semantic Web API Descriptions 203

With Algorithm 2, Web API descriptions can be classified within the same category, indepen-

dently of the language of the original documentation. Previous approaches base classification on

word matches or word stemming/similarity and are, therefore, not applicable to a multi-lingual

context.

The presented multi-lingual classification approach can be adapted in order to compute the cen-

tral concepts of a given Web API documentation, based on the ESA vector representation. In

particular, Algorithm 2 is extended with the computation of the similarity measure between the

ESA vector of the API and the background collection. It is assumed that two APIs can be de-

scribed with the same central concepts if their descriptions are semantically similar (i.e. their

semantic relatedness measure is above some threshold). Our approach towards detecting the

Central Concepts of a non-English Web API documentation is to find similar documentations

in a repository of English-based APIs (in this approach serving as background collection), and

re-use their central concepts (see Algorithm 3).

Algorithm 3 Determining the Central Concepts for a Web API Description
Require: webAPIDescription, backgroundCollection

language← recognize_language(webAPIDescription);
esa_vector← esa_analyze(language, webAPIDescription);
esa_vector_en← esa_map_vector(esa_vector, language, “en”);
for 〈background_api_vector, central_concepts〉 ∈ backgroundCollection do

score← cosine_similarity(esa_vector_en, background_api_vector);
results[score]← central_concepts;

end for
return max(results)

The benefits of extending the classification approach in order to determine the central concepts

for an API description are multifold. First, they can be used directly as tags for the Web API.

These tags can be employed to enhance search within directories or as complementary informa-

tion presented to the user as part of the API description. However, with some further processing,

the central concepts can serve as the basis for determining semantic annotations for separate

service parts, such as inputs and outputs, or for extrapolating the domain of the service. In par-

ticular, it would be useful to input the computed words into Watson [dSM+08] or Sindice18 and

to use the results as suggestions for semantic entities suitable for annotating the API.

Implementation. The implementation of the cross-lingual Web API classification solution con-

sists of three main parts. The first one is the background builder, which prepares the background

collection for further classification. The second one implements the actual cross-lingual clas-

sifier based on the already introduced algorithm, while the third one performs central concepts

18http://sindice.com

http://sindice.com

Supporting the Creation of Semantic Web API Descriptions 204

detection. As background for the Explicit Semantic Analysis, we use different language ver-

sions of Wikipedia. The text analysis and its projection into ESA concepts space are done by

our Java library, created by adapting the code from the Wikiprep ESA implementation19.

The Web API background collection is built by getting APIs and categories from Pro-

grammableWeb. Five APIs are taken as an example for each category. Information about each

API is saved to a database and after that the webpages describing each API are harvested. Sub-

sequently, the HTML mark-up is removed and the text is normalised by removing stop-words

and stemming. Then, the ESA vector is computed and stored in the database. Additionally,

central concepts for each API in the background collection can be automatically determined by

the AlchemyAPI20. Before putting the Web API documentation into the AlchemyAPI engine,

we remove the API-specific stop-words.

Both, the classification and the central concept detection are implemented and operate similarly.

In fact they differ only in the last step. They start with projecting the input API documentation

into the corresponding language Wikipedia concept space. Then, the resulting language-specific

ESA vector is mapped to an English ESA vector, using the concept mapping from Wikipedia.

Afterwards, the ESA vector is compared with each API documentation ESA vector from the

API background collection. The differing final step is as follows:

• In case of classification, the results are aggregated and the best categories are suggested

as candidates.

• Concept detection does not summarise the results but rather suggests the central concepts

of the first few most semantically similar Web APIs as concept suggestions.

The so computed results can be presented to the user as annotation suggestions, aiding the

process of creating semantic Web API descriptions. In the case of the classification of the

service functionality, the top 3 results, for example, can be automatically assigned to the API

and the annotator would only need to validate them.

10.4 Summary

The benefits that come with a lightweight semantic service model cannot be fully used if the

creation of the corresponding descriptions is too time- and effort-consuming. Therefore, this

chapters introduces SWEET – a tool that supports users in annotating HTML API documenta-

tion and automatically generates RDF conforming to the MSM, which can directly be stored and
19http://github.com/faraday/wikiprep-esa
20http://www.alchemyapi.com

http://github.com/faraday/wikiprep-esa
http://www.alchemyapi.com

Supporting the Creation of Semantic Web API Descriptions 205

browsed in a service repository or be published as part of the provider’s documentation. SWEET

hides formalism complexity from the user and guides him/her through the process of marking

the individual service properties and subsequently enhancing these with semantic metadata. The

HTML documentation of the Web API is loaded in the tool, which provides functionalities for

embedding microformat tags for syntactically structuring the description but also for linking to

semantic entities. The resulting HTML can directly be published on the Web or can be used

to extract RDF-based Web API descriptions. Without SWEET the user would have to revert

to using a simple text editor and modify the HTML directly, which is a time-consuming and

error-prone process.

Still, creating semantic Web API descriptions remains a challenging task, even with tool support

in the form of SWEET. Therefore, we also introduce a number of solutions aiming towards sup-

porting a semi-automated process of creating Web API descriptions. In particular, this includes

integrated semantic entity search via Watson and via a customisable search API, as well as two

classification approaches based on the type of functionally that the service provides. These solu-

tions contribute towards automating common API annotation tasks, reducing the manual effort

and, at the same time, lowering the adoption barrier.

Part IV

Evaluation and Conclusions

207

Chapter 11

Evaluation

In this chapter we present the evaluation of the Minimal Service Model, the Web API Grounding

Model and the Web API Authentication Model. After having introduced each of the models in

the previous chapters, here we determine how well they conform with the defined design re-

quirements, what coverage they provide, given the heterogeneity of the Web API landscape, and

what is the level of support in terms of enabling the automation of the invocation and authentica-

tion tasks. In particular, we revisit the characteristics that we specified and that the models need

to fulfil, and use the data gathered by the two Web API surveys is order to determine, which

common service properties are covered and which are not. We also provide an overview of

the results of the evaluation of supporting tools and approaches for creating Web API descrip-

tions. In particular we present the evaluation of SWEET and the two Web API classification

approaches.

This chapter is structured as follows: Section 11.1 describes how MSM was evaluated, includ-

ing the used criteria and a summary of the results. Section 11.2 covers the evaluation of the

Web API Grounding Model in terms of conformity with the defined design requirements, the

coverage that the model provides, and its level of support. Section 11.3 is structured in a similar

way to Section 11.2 and presents the evaluation results of the Web API Authentication Model.

Section 11.4.1 describes the evaluation of the supporting tools and approaches, which were de-

veloped in order to ease the creation of semantic Web API descriptions. This section includes

evaluation of SWEET and of the two Web API classification approaches. We conclude the

chapter with a summary given in Section 11.5.

11.1 Evaluation of the Core Service Model

In this section we describe the evaluation that was conducted on MSM. In particular, we evaluate

the model in terms of its conformity to the requirements that we identified as prerequisites for

209

Evaluation 210

the developed solution. In addition, we also determine the coverage that MSM provides, given

the current heterogeneity of the Web API landscape. We take into consideration established

methods used for ontology evaluation [Vra10, PZ09]. Given the fact that MSM consist of only

a few concepts and was developed following common ontology design principles, we do not

follow all the evaluation steps as prescribed by [Vra10]. Still we consider the proper naming

of elements, use of comments and labels, use of language tags, and checking of competency

questions against results. Further evaluation methods, such as checking for superfluous blank

nodes or inconsistency with rules, we omit because they simply do not apply in the context of

MSM.

11.1.1 Requirements Coverage

During the requirements analysis discussed in Section 7.4, we identified the following require-

ments for developing MSM:

• R1: The model should be able to describe the majority (80% or more) of the APIs on the

Web.

• R2: The core service model should take an operation-based view.

• R3: The core service model should be able to describe input and output data of the APIs’

operations.

R3.1: The core service model should be able to describe individual operation param-

eters but also the complete inputs and outputs as a whole.

R3.2: The core service model should be able to describe optional and mandatory

input parts.

• R4: The core service model should be able to describe the used HTTP method.

• R5: The core service model should be able to describe the endpoint URI.

The requirement related to the coverage of the model (R1) is a crucial one, not only for MSM but

also for the Web API Grounding Model and the Web API Authentication Model, since without

sufficient coverage, the models would not really be applicable. Furthermore, we tried to support

as many of the Web API characteristics identified through the Web API surveys as possible,

however, still keeping in mind that the model should enable the easy creation of annotations.

Trying to find a balance between the level of detail and the level of complexity, we aimed for a

coverage of at least 80%. This number was determined by identifying that about two thirds of

the APIs have interfaces based on operations, and, in addition to that, we wanted to support at

Evaluation 211

least a half of the remaining APIs (resulting to a total of about 82%). As we demonstrate in the

following section, we actually cover a larger percentage.

Overall, since currently there is no description model that is recognised to cover the majority

of the existing APIs, based on capturing the characteristics provided in the documentation, it

is very difficult to determine a baseline for comparing our results. In fact, none of the existing

models discuss model coverage or provide corresponding measures and results.

Regarding the remaining requirements, MSM is based on the definition of a service that has a

number of operations, which satisfies (R2). Furthermore, each operation has a MessageContent,

which can be used to describe the input and the output (R3). The MessageContent can have

individual message parts, for capturing input parameters, for example. As a result, both inputs

and outputs can be described based on the complete data payload or based on its individual parts

(R3.1). Furthermore, these individual parts can be defined as optional or mandatory (R3.2).

Finally, MSM is capable of describing the used HTTP method (R4) and the endpoint URI (R5)

through two properties defined within the rest: namespace1. The reason why these properties

are not directly included in MSM is that, despite the fact that they do represent two common

Web API characteristics, they are relevant only for certain service tasks, specifically invocation.

In contrast, discovery, composition, mediation, ranking and selection do not really rely on the

provisioning of these details. Therefore, we internationally defined them within a different

namespace, as an extension to MSM. In fact, these two elements play a key role in the Web API

Grounding Model, also evaluated in the following sections. Following, is a discussion of the

coverage provided by MSM, in the context of the heterogeneous Web API landscape.

11.1.2 Model Coverage

In this section we determine the coverage of MSM in terms of satisfying the competency ques-

tions and in terms of supporting the description of the majority (80% or more) of the APIs on

the Web (R1 from the previous section).

In the process of designing the service model, we identified a number of competency ques-

tions related to the main service properties, which need to be captured, including their specific

characteristics. We wanted to cover relevant information regarding

• What are the main service elements?

• What are the relationships between them?
1http://purl.org/hRESTS

http://purl.org/hRESTS

Evaluation 212

MSM captures a service in terms of Service, Operation, MessageContent and MessagePart. The

relationships between the service elements are refined with further questions:

• What are the operations of service X?

MSM captures the operations of a service via the hasOperation property. A Service X

hasOperation Y, where Y is of type Operation.

• What are the inputs and outputs of operation X?

The inputs and outputs of an operation are captured via the hasInput and hasOutput prop-

erties, correspondingly. An Operation X hasInput Y, where Y is of type MessageContent.

An Operation X hasOutput Y, where Y is of type MessageContent.

• What are the error messages of operation X?

The error messages of an operation are captured via the hasInputFault and hasOutputFault

properties. An Operation X hasInputFault Y, where Y is of type MessageContent. An

Operation X hasOutputFault Y, where Y is of type MessageContent.

• What are the different parts of input X?

• What are the different parts of output X?

Both the parts of the input and the output can be captured via the MessagePart class.

Whether the MessageContent is an input or output is determined implicitly through the

property that connects it to the operation (hasInput or hasOutput).

• What are the relationships between the parts of input/output X?

MSM captures the relationships between parts of the input or output via the hasPart prop-

erty. A MessageContent X hasPart Y, where Y is of type MessagePart.

• What are the different types of input/output parts?

The different types of input and output parts are specified by defining two subproperties

of the hasPart property (instead of defining subclasses of the MessagePart class). A Mes-

sageContent X hasOptionalPart Y, where Y is of type MessagePart. A MessageContent

X hasMandatoryPart Y, where Y is of type MessagePart.

The operation endpoints and the HTTP method, which can be used to call it, are defined as part

of the Web API Grounding Model, since they are especially relevant for invocation. These can

be imported in MSM. We modelled this by reflecting on:

• What are the HTTP methods of operation X?

The HTTP method of an operation is captured via the hasMethod property and Method

class, defined in the Web API Grounding Model. An Operation X hasMethod Y, where Y

is of type Method.

Evaluation 213

• What are the endpoints/addresses for operation X?

The address of an operation is captured via the hasAddress property and URITemplate

class, defined in the Web API Grounding Model. An Operation X hasAddress Y, where

Y is of type URITemplate.

Therefore, we can conclude that MSM covers all the identified competency questions. We

also evaluate MSM in terms of the general coverage that it provides. In particular, given the

diversity of the Web API description forms and structures, as reflected in Chapter 6.3, it is

important to evaluate MSM based on the coverage that it provides in terms of capturing API

characteristics. In particular, we determine the overall percentage of coverage, depending on

different API characteristics.

Characteristic % of APIs Model Support Model Part
by MSM

Type of Web API:
Operation-Based Descr. 63.4 all msm:Operation
Resource-Based Descr. 36.6 derived operation msm:Operation

Input Details:
Input and Output Parts >55.21 all msm:MessagePart
No Input and Output Parts <44.81 all msm:MessageContent
Optional Parameters 55.2 all msm:hasOptionalPart
No Optional Parameters 44.8 all msm:hasPart
Required Parameters 55.2 all msm:hasMandatoryPart
No Required Parameters 44.8 all msm:hasPart
Alternative Param. Values 63.9 - sawsdl:loweringSchemaMapping
No Alternative Param. Values 36.1 - sawsdl:loweringSchemaMapping
Default Parameter Values 51.7 - sawsdl:loweringSchemaMapping
No Default Parameter Values 48.3 - sawsdl:loweringSchemaMapping
Coded Parameter Values 34.9 - sawsdl:loweringSchemaMapping
No Coded Parameter Values 65.1 - sawsdl:loweringSchemaMapping
Boolean Parameters 33.7 - sawsdl:loweringSchemaMapping
No Boolean Parameters 66.3 - sawsdl:loweringSchemaMapping
State Parameter Datatype 27.9 - sawsdl:loweringSchemaMapping
Do Not State Parameter Datatype 72.1 - sawsdl:loweringSchemaMapping

+ manual testing

Output Formats:
XML or JSON Output >85.6 - sawsdl:liftingSchemaMapping
Other Output Format >14.4 - sawsdl:liftingSchemaMapping

+ additional implementation

Invocation Details:
Provide HTTP Method 59.3 - Web API Grounding Model
Do Not Provide HTTP Method 40.7 - Web API Grounding Model

+ manual testing
Provide Endpoint URI 89.5 - Web API Grounding Model
Do Not Provide Endpoint URI 10.5 - Web API Grounding Model

+ manual testing

TABLE 11.1: Coverage Provided by MSM

1Based on the use of optional parameters, used as an indicator for the need to have input parts.

Evaluation 214

Table 11.1 visualises a list of the characteristics used as a basis for the analysis, which are

derived directly from the characteristics for capturing the current state of APIs on the Web. The

table also gives the percentages of Web APIs2, to which these criteria are applicable, whether

and to what extent they are supported by MSM, and if they are supported, specifically by which

part of the model.

As can be seen, MSM supports the description of all operation-based Web APIs, while about a

third of the APIs require deriving the operation, by combing the particular HTTP method and

resource (see Chapter 7 Section 7.5.3.4). We identify the number of Web APIs that require the

definition of input parts, based on the number of APIs that used optional parameters. This is done

because we have not collected specific data about what percentage of the APIs use more than

two parameters and, therefore, might require the differentiation between the input as a whole and

its individual elements. We describe the handling of alternative parameters, default parameters,

coded parameters, boolean parameters and the input and output data transformations in general,

in the following section while discussing the coverage provided by the Web API Grounding

Model.

The percentage values for the different Web API characteristics are an indication of how fre-

quently the particular characteristic is present in the documentation, i.e., how crucial it is that it

is covered by the model. The higher the numbers, the more important it is that we provide sup-

port for it. Since we aim to cover the majority of the APIs, 80% or more, we can disregard any

characteristic that is present in 20% of the cases or less. Overall, we cover all the listed charac-

teristics (marked with ‘all’), providing coverage of 100%. The only exception is the combination

of resources and methods to derive operations, in the case of APIs that are resource-based.

It is important to point out that Table 11.1 does not provide a list of all Web API characteristics,

but rather only the ones that were identified as relevant for MSM. Further, characteristics and

their coverage by the models are given in Tables 11.3 and 11.5. In particular, we discuss the

features relevant for invocation and authentication in the following sections.

In summary, the data clearly demonstrates that MSM captures all common Web API character-

istics and the coverage that it provides is very high, given the diversity in the context of Web

APIs. However, there are two issues that need to be mentioned. First, MSM does not support

the description of resource-based services directly, but rather requires the definition of the cor-

responding operations in terms of combining the resource and the used HTTP method. Second,

in the cases where the particular element is not described as part of the documentation, which is

frequently true for the endpoint URI or the method, the corresponding MSM property can still

be captured but would require some manual effort. However, in such situations MSM can be
2The numbers are based on the results of the second Web API survey. The percentages are used to indicate how

important a certain characteristic is, based on how often it is present in current documentations. Since the results
of the two survey are very similar (never more than 10% apart), we chose the data from the second survey, it being
more up to date.

Evaluation 215

used as the basis for reducing underspecification, by serving as a guideline for providers, stating

what is the minimum of description details that they need to include in the documentation. In the

cases of missing details in the HTML documentation, tools such as SWEET (see Chapter 10.2)

can be used to insert the missing properties.

11.2 Evaluation of the Web API Grounding Model

In this section we describe the evaluation results of the Web API Grounding Model. In particular,

we conduct evaluation in terms of conformity with the defined design requirements, the coverage

that the model provides, and the level of support, based on a number of Web APIs reflecting

different invocation-relevant characteristics.

11.2.1 Requirements Coverage

We shortly revisit the model requirements for the Web API Grounding Model (Chapter 8) and

discuss how well they have been fulfilled. Following is a summary of the requirements for

developing the grounding model:

• R1: The HTTP method should be explicitly specified as part of the API description.

• R2: The description model should support parameterised URIs.

• R3: The description model should support the definition of an invocation address.

• R4: The relationship between the input parts and the HTTP requests should be specified.

• R5: The input data transformations should be defined.

• R6: Web API characteristics that directly determine how invocation is done should be

captured.

• R7: The description model should support capturing the input as a whole, as well as its

individual parts.

• R8: The output data transformations should be defined.

• R9: The output data transformations should be able to handle custom errors.

The design requirements for the Web API Grounding Model are derived directly based on the

steps needed for creating, sending and processing HTTP messages, which are the basis for com-

pleting API invocation. Table 11.2 visualises the requirements and their realisation as part of

Evaluation 216

the model. In particular, the model captures the HTTP method (R1) and is based on defining

the service and operation address (R3) in terms of URI templates that support the parameteri-

sation of the URI (R2). The model also provides means for specifying data grounding via the

isGroundedIn property, in particular defining whether the input values are transmitted as part of

the HTTP body, header, or the URI (R4).

Requirement Covered by Model Part
R1: HTTP method rest:hasMethod
R2: Parameterised URIs rest:URITemplate
R3: Invocation address rest:hasAddress
R4: Input mapping to HTTP request rest:isGroundedIn
R5: Input data transformations sawsdl:loweringSchemaMapping
R6: Optional/required parameters and further msm:hasOptionalPart/msm:hasMandatoryPart
R7: Input and input parts msm:MessageContent and msm:MessagePart
R8: Output data transformations sawsdl:liftingSchemaMapping
R9: Output data transformations for msm:hasOutputFault
custom errors + sawsdl:liftingSchemaMapping

TABLE 11.2: Fulfilment of the Design Requirements for the Web API Grounding Model

Lifting and lowering schema mappings (R5 and R8) can be associated with the inputs and out-

puts as a whole, i.e. MessageContent, but also with individual message parts (R7). In particular,

we allow for fine-grain definition of the inputs and outputs (R7) that can have optional or manda-

tory parts (R6). In its original version, hRESTS expected a single lowering transformation that

would apply to the whole input message, without distinguishing between different parameters

of the URI, HTTP headers and the HTTP request message body. In our extension, we allow

finer-grained (and thus more reusable) lowering transformations on individual message parts.

Errors are handled via the definition of output faults and as part of the lifting transformation,

which can be adjusted to deal with custom errors (R9).

11.2.2 Model Coverage

Similarly to MSM, we determine the coverage of the Web API Grounding Model in terms of

satisfying the competency questions and in terms of covering the posed design requirements.

We identified a number of competency questions related to service elements, which need to be

captured as part of the Web API Grounding Model in order to support invocation. In particular,

we wanted to cover relevant information regarding:

• What are the main elements required for invocation?

• Are there relationships between them?

The Web API Grounding Model uses the core service model provided by MSM and captures

invocation-relevant elements in terms of URITemplate, Method, MediaType. The relationships

between the service elements are refined with further questions:

Evaluation 217

• What are the addresses for service X?

The Web API Grounding Model captures the address of a service via the hasAddress

property and the URITemplate class. A Service X hasAddress Y, where Y is of type

URITemplate.

• What are the addresses for operation X?

Similarly to the address of a service, the address of an operation is captured via the hasAd-

dress property and the URITemplate class.

• What are the relationships between a service address and an operation address?

The instance of the URITemplate assigned to the service, can be further specified of over-

written by the URI associated with the operation. This is not modelled explicitly as part of

the Web API Grounding Model but is rather realised by using the URI template properties.

• What are the HTTP methods of operation X?

The HTTP methods are captured via the hasMethod property and the Method class. An

Operation X hasMethod Y, where Y is of type Method.

• What are the different parts of input/output X?

The parts of the input and the output can be captured via the MessagePart class defined in

MSM. Whether the MessageContent is an input or output is determined implicitly through

the property that connects it to the operation (hasInput or hasOutput).

• What are the relationships between the input parts?

The relationships between the input and its parts are captured in MSM with the help of

the hasOptionalPart, hasMandatoryPart and hasPart properties. Mandatory and optional

input parts have a direct influence on invocation (R6) and this is why we revisit them here.

• How is the input data transformation for input/input part X done?

The input transformations are defined by using the SAWSDL property loweringSchemaMap-

ping. A MessageContent/MessagePart has loweringSchemaMapping.

• What is the content type of input/input part X?

The type of content that is produced by the lowering transformation is specified with the

producesContentType property and the MediaType class.

• What are the relationships between the output parts?

Similarly to the input, the output parts and their relationships are defined with the help of

the properties defined in MSM.

• How is the output data transformation for output/output part X done?

The output transformations are defined by using the SAWSDL property liftingSchemaMap-

ping. A MessageContent/MessagePart has liftingSchemaMapping.

Evaluation 218

• What is the content type of output/output part X?

The type of content that is expected by the lifting transformation is specified with the

acceptsContentType property and the MediaType class.

• Which part of the HTTP message is used to send input/input part X?

The Web API Grounding Model determines the part of the HTTP message used for trans-

mitting the input via the isGroundedIn property. A MessageContent/MessagePart X is-

GroundedIn Y, where Y is http:Body, an instance of http:HeaderName, or a literal.

• What are the errors that can occur before the calling of operation X?

Errors are specified with the help of properties defined in MSM. We revisit them here

because of their relevance for invocation (R9). Errors that can occur before the calling of

an operation are described via the hasInputFault property. An Operation X hasInputFault

Y, where Y is of type MessageContent.

• What are the errors that can occur after the calling of operation X?

Similarly to input faults, errors that can occur after the calling of an operation are de-

scribed via the hasOutputFault property. An Operation X hasOutputFault Y, where Y is

of type MessageContent.

Given the current heterogeneity of the Web API landscape, as reflected in Chapter 6, it is im-

portant to evaluate the Web API Grounding Model based on the coverage that it provides. In

particular, we determine the overall percentage of coverage, depending on different API char-

acteristics. Table 11.3 gives a list of the characteristics used as a basis for the analysis, which

are derived directly from the characteristics for capturing the current state of APIs on the Web3.

The table also provides the percentage of Web APIs, to which these criteria are applicable,

whether and to what extent they are supported by the Web API Grounding Model, and if they

are supported, specifically by which part of the model.

Table 11.3 is divided into five sections. The first three sections were already presented as part

of determining the coverage of MSM (see Section 11.1) but are also relevant in the context of

supporting invocation. Therefore, for the purposes of completeness, we have also included them

here, since they are important also in terms of capturing all the API properties that are required

for performing the invocation task.

3Similarly, to determining the coverage of MSM, the numbers are based on the results of the second Web API
survey.

Evaluation 219

Characteristic % of APIs Model Model Part
Support by
Grounding

Model
Type of Web API:
Operation-Based Descr. 63.4 - msm:Operation
Resource-Based Descr. 36.6 - msm:Operation

Input Details:
Input and Output Parts >55.21 - msm:MessagePart
No Input and Output Parts <44.81 - msm:MessageContent
Optional Parameters 55.2 - msm:hasOptionalPart
No Optional Parameters 44.8 - msm:hasPart
Required Parameters 55.2 - msm:hasMandatoryPart
No Required Parameters 44.8 - msm:hasPart
Alternative Param. Values 63.9 - sawsdl:loweringSchemaMapping
No Alternative Param. Values 36.1 - sawsdl:loweringSchemaMapping
Default Parameter Values 51.7 - sawsdl:loweringSchemaMapping
No Default Parameter Values 48.3 - sawsdl:loweringSchemaMapping
Coded Parameter Values 34.9 - sawsdl:loweringSchemaMapping
No Coded Parameter Values 65.1 - sawsdl:loweringSchemaMapping
Boolean Parameters 33.7 - sawsdl:loweringSchemaMapping
No Boolean Parameters 66.3 - sawsdl:loweringSchemaMapping
State Parameter Datatype 27.9 - sawsdl:loweringSchemaMapping
Do Not State Parameter Datatype 72.1 - sawsdl:loweringSchemaMapping

+ manual testing

Output Formats:
XML or JSON Output >85.6 - sawsdl:liftingSchemaMapping
Other Output Format >14.4 - sawsdl:liftingSchemaMapping

+ additional implementation

Invocation Details:
Provide HTTP Method 59.3 all rest:hasMethod + rest:Method
Do Not Provide HTTP Method 40.7 - manual testing
Provide Endpoint URI 89.5 all rest:hasAddress + rest:URITemplate
Do Not Provide Endpoint URI 10.5 - manual testing
Invoc. URI with URI templates 70.3 all rest:hasAddress + rest:URITemplate
Invoc. URI without URI templates 29.7 all rest:hasAddress + rest:URITemplate
Invoc. URI uses query parameters 77.3 all rest:URITemplate + rest:isGroundedIn
Invoc. URI without query parameters 32.7 all rest:hasAddress + rest:URITemplate
Input values in URI 78.5 all rest:URITemplate + rest:isGroundedIn
Input values in HTTP Header 0.6 all rest:isGroundedIn
Input values in HTTP Body 18.6 all rest:isGroundedIn
Input values - mixed 1.7 all rest:URITemplate + rest:isGroundedIn
Require Construction >29.22 all Complete Grounding Model
of HTTP Request + through rest:isGroundedIn
Invocable via URL ∼ 703 all rest:URITemplate + rest:isGroundedIn

Description of Errors:
APIs without description of Errors 45.4 - manual testing
APIs with description of Errors 54.6 - msm:hasInput/OutputFault +

msm:MessageContent
APIs with Custom Errors 29.1 - sawsdl:liftingSchemaMapping

+ additional implementation
APIs with standard HTTP Errors 25.5 - sawsdl:liftingSchemaMapping

TABLE 11.3: Coverage Provided by the Web API Grounding Model

Evaluation 220

1Based on the use of optional parameters, used as an indicator for the need to have input parts.

2Based on the percentage of APIs that require the construction of the HTTP Header or Body, for transmitting input

or authentication credentials.

3Based on the percentage of APIs that do not require the construction of the HTTP Header or Body.

This includes in particular, handing the different types of parameters, including alternative pa-

rameters (1, 2, or 3), default parameters, coded parameters (’en’ instead of ’english’) or boolean

parameters (’true’ or ’false’, ’yes’ or ’no’). In general, the proper transformation of the data and

the determining of the specific values are handled as part of the data lowering, thus enabling the

actual processing on the level of semantic data. However, the practical implementation of the

particular mappings might require more than a simple script that converts the input from one

format (e.g. RDF) into another (e.g. String values). This is for instance true of encoded values,

where the determining of the proper format of the input is based on a list of all possible abbrevi-

ations or codes for the values (for example, all country codes or all language codes). The proper

processing in this case would require additional implementation efforts. However, such more

complex cases can be solved by sharing the data transformations with potential client applica-

tion developers, so that they can reuse the solution. On the level of providing coverage through

the Web API Grounding Model, input and output data transformations are actually handled as

part of the SAWSDL lifting and lowering schema mappings.

In the remaining two sections, we cover characteristics that are especially relevant for creating

and processing the HTTP requests and responses. As can be seen, the invocation details are

all supported, expect in the cases where the information is simply not provided as part of the

documentation (for example, APIs that do not provide the HTTP method). In this case, the

processing of the documentation would require additional effort in the form of test invocations.

As can be seen, about one third of the APIs require the construction of the complete HTTP re-

quest, while about 70% of the APIs can be invoked through parameterised URLs. The unified

handling of both types of invocation is only possible through the definition of the service and

operation addresses in terms of URI templates, where the parameter can be assigned the appro-

priate input value, and through the use of the isGroundedIn property that specifies how the input

is transmitted. The descriptions of errors are captured as part of MSM, where custom errors

might present a challenge since each possible error occurrence needs to be captured as part of

the lifting transformation (instead of relying on the use of standard HTTP errors).

We aim to provide wide coverage – supporting at least 80% of existing APIs. As can be seen in

the table, the coverage provided by the Web API Grounding Model is indeed very high (hindered

to a certain extent by missing information). Still, it needs to be pointed out that the lifting and

lowering data transformations need to be provided in order to enable the automated completion

of the invocation process. Depending on the used parameters and errors, these might require

Evaluation 221

additional implementation work that can be relieved to a certain extent by sharing and reusing

data processing solutions.

The percentage values per API characteristic can be used to indicate how important a certain

characteristics is, based on how often it is present in documentations. Therefore, in theory, we

could omit characteristics with lower significance, such as for example, boolean parameters.

As previously pointed out, Web APIs are commonly underspecified, as is the case with 40%

of the APIs that do not state the HTTP method or 72% that do not give the datatypes of the

parameters. In this context, the grounding model can be seen as a way for counteracting un-

derspecification, since it states all the service properties that need to be part of the description

in order to guarantee the invocability of the API, thus encouraging providers to include this

information.

Overall, based on the evaluation, we can conclude that the Web API Grounding Model appro-

priately facilitates the description and use of heterogeneous services by sharing the semantics

of services through formal machine-processable descriptions as well as using a common syntax

for representing these descriptions and the exchanged data.

11.2.3 Suitability for Purpose

Finally, based on a number of examples, we show that the model is suitable for annotating a wide

range of Web API description types and forms, thus providing support for the majority of the

APIs on the Web. In particular, we evaluate the Web API Grounding Model by annotating actual

Web APIs and testing their invocability. The chosen APIs cover a range of different description

forms and characteristics, in order to determine the variety of APIs that are practically invocable

by OmniVoke.

Table 11.4 shows some of our test API examples4 that represent different types of APIs, each

posing individual requirements on the invocation model. As can be seen, we evaluated the cov-

erage of each requirement multiple times and all resulting semantic descriptions were invocable

by the invocation engine. We also tried to cover all the possible different alternatives within a

requirement. One alternative that we did not cover was the passing of input parameters via the

HTTP header, which occurs in less then 1% of the cases. Similarly, we did not cover HTTP

DELETE. This HTTP method can easily be modelled by the Web API Grounding Model, but it

is unfortunately still not supported by OmniVoke.
4All examples are available at http://purl.org/hRESTS/

http://purl.org/hRESTS/

Evaluation 222

Web API R1: HTTP R2: Parameterised R3: Invocation R4: Input
Method URI Address Grounding

Nestoria searchListings GET1 Yes Yes in URI parameter
Ribbit sendSMS POST Yes Yes in HTTP Body
Ribbit uploadMedia POST Yes Yes in HTTP Body
GeoNames getCountryCode GET1 Yes Yes in URI parameter
Last.fm getArtistInfo GET1 Yes Yes in URI parameter

R5: Input R6: Opt. R7: Msg. R8: Output R9: Custom
Transformation Param Parts Transformation Errors

Nestoria searchListings Yes Yes Yes Yes N/A
Ribbit sendSMS Yes Yes Yes Yes N/A
Ribbit uploadMedia Yes Yes Yes Yes N/A
GeoNames getCountryCode Yes Yes Yes Yes Yes
Last.fm getArtistInfo Yes Yes Yes Yes Yes

TABLE 11.4: Test Web API Invocation Descriptions

‘Yes’ indicates that a certain requirement is covered by the example.

1The HTTP method was not explicitly stated as part of the documentation and we had to do a test invocation in order

to be sure that it is GET.

In the case of the telecommunication Ribbit service, the operation needed to be derived based

on combining the resource with the corresponding method, in order to create an operation-based

semantic description. This was necessary since the particular interface is based on resources,

instead of operations. In the cases where some details were missing, such as the HTTP method

or the input parameter types, these needed to be determined via trial and error, and added to the

semantic description. This was the case with the Nestoria, GeoNames and Last.fm APIs, which

are affected by some underspecification. Still, we can say that we have evaluated our approach

by creating annotations that cover all of the defined requirements and have successfully used

them to perform invocation.

11.3 Evaluation of the Web API Authentication Model

The Web API Authentication Model is evaluated based on the same criteria as the Web API

Grounding Model – conformity to competency questions and design requirements, coverage of

the model, and suitability for purpose.

11.3.1 Requirements Coverage

Similarly to MSM and the Web API Grounding model, we evaluate the Web API Authentication

(WAA) model in terms of satisfying the competency questions and in terms of covering all the

requirements, which were identified while designing the model.

Evaluation 223

The process of defining WAA was guided by a number of competency questions. We determine

how well they are actually covered by the resulting model. Relevant information to identifying

when authentication is required and the information that is needed is:

• Does the service require authentication?

The WAA captures whether a service requires authentication or not via the requiresAuthen-

tication property. A msm:Service X requiresAuthentication Y, where Y is of type Ser-

viceAuthentication. The ServiceAuthentication class has three instances – All, Some, and

None that are used to indicate if authentication is required for all operations, only for some

or for none of the operations.

• Which operations require authentication?

Operations that required authentication are described via the hasAuthenticationMecha-

nism property.

• What kind of authentication is used?

The particular kind of authentication that is used is captured via the AuthenticationMech-

anism class. A msm:Service/msm:Operation X hasAuthenticationMechanism Y, where Y

is of type AuthenticationMechanism.

• What is the required information to complete the authentication?

Authentication has three main characteristics, including the credentials, the authentica-

tion protocol, and the way of sending the authentication information. These are captured

with the help of the Credentials class, the AuthenticationMechanism class, and the way-

OfSendingInformation property.

We can refine the information necessary for supporting a particular authentication mechanism

by determining:

• What are the required credentials?

WAA captures credentials via the Credentials class. An AuthenticationMechanism X has-

InputCredentials Y, where Y is of type Credentials. The Credentials can be further refined

by using seven subclasses – APIKey, Username, Password, OAuthConsumerKey, OAuth-

ConsumerSecret, OAuthToken, and OAuthTokenSecret.

• What is the used authentication protocol?

The authentication protocol is captured with the help of the AuthenticationMechanism

class. A msm:Service/msm:Operation X hasAuthenticationMechanism Y, where Y is

of type AuthenticationMechanism. The AuthenticationMechanism can be further refined

by using six subclasses – HTTPBasic, HTTPDigest, OAuth, WebAPIOperation, Session-

Based, and Direct.

Evaluation 224

• How is the authentication information transmitted?

The way of transmitting the authentication information is captured via the wayOfSending-

Information property. The way that credentials are sent as part of the HTTP messages is

described with the help of isGroundedIn, hasValue, and hasName properties.

We shortly revisit the model requirements for the Web API Authentication Model (Chapter 9)

and discuss how well they have been fulfilled. Following is a summary of the requirements for

developing the grounding model:

• R1: The used credentials should be specified.

• R2: The used authentication protocol should be specified.

• R3: The way of sending the authentication information should be specified.

• R4: The most commonly used authentication approaches should be covered.

• R5: The most commonly used credentials should be covered.

• R6: The most commonly used ways of sending the authentication information should be

covered.

The design requirements for the Web API Authentication Model are derived directly based

on the analysis of currently existing authentication approaches and the data collected on com-

monly used credentials and protocols. The model captures the authentication credentials through

the waa:Credentials class (R1) and also provides subclasses for the most commonly used

credential types (R5) (waa:APIKey, waa:Username, waa:Password, waa:OAuthConsumerKey,

waa:OAuthConsumerSecret, waa:OAuthToken, waa:OAuthTokenSecret). Similarly, it defines

the waa:AuthenticationMechanism class for describing the underlying protocols (R2) and in-

dividual subclasses for the frequently used ones (R4) (waa:HTTPBasic, waa:HTTPDigest,

waa:OAuth, waa:WebAPIOperation, waa:SessionBased, waa:Direct). Finally, WAA also in-

cludes a property for the way for sending authentication information (R3) and takes into con-

sideration the most commonly used ways of sending authentication credentials by including

the waa:isGroundedIn property for specifying credentials, their values, and the way they are

transmitted (R6).

11.3.2 Model Coverage

Table 11.55 visualises the most common authentication approaches, the corresponding percent-

age distributions, to what extent they are supported by WAA and by which specific parts. Here
5The numbers are based on the results of the second Web API survey.

Evaluation 225

again, the percentages are an indication of how relevant a certain approach is, based on its fre-

quency of use.

Characteristic % of APIs Model Support Model Part
by WAA

Authentication Details:
Require Authentication 79.7 all Web API Authentication Model
No Authentication 20.3 N/A N/A

Required Authentication:
Authentication for All Operations 85.5 all waa:requiresAuthentication +

<http://purl.org/waa#All>
Auth. Only for Data Modification 4.6 all waa:requiresAuthentication +
or Some Operations <http://purl.org/waa#Some>
Offer Alternative 20.3 all waa:hasAuthenticationMechanism +
Authentication Mechanisms waa:AuthenticationMechanism

Authentication Mechanisms:
API Key 30.8 all waa:Direct + waa:APIKey
HTTP Basic 21.5 all waa:HTTPBasic

+ waa:Username + waa:Password
Username and Password 7.5 all waa:Direct + waa:Username

+ waa:Password
OAuth 12.8 all waa:OAuth

+ waa:OAuthConsumerKey
+ waa:OAuthConsumerSecret

+ waa:OAuthToken
+ waa:OAuthTokenSecret

Web API Operation 4.6 all waa:WebAPIOperation
HTTP Digest 5.8 all waa:HTTPDigest

+ waa:Username + waa:Password
API Key in Combination 11.6 all waa:Direct + waa:APIKey
with Other Credentials + credentials
Session Based 1.7 all waa:SessionBased
Other 0.6 - -

Way of Transmitting
Credentials:
URI 69.3 all waa:isGroundedIn
HTTP Header 23.4 all waa:isGroundedIn
HTTP Body 5.8 all waa:isGroundedIn

TABLE 11.5: Coverage provided by the Web Authentication Model

The Web API Authentication Model covers APIs, which use an API Key, via the waa:Direct

authentication mechanism and waa:APIKey. In addition, the HTTP Basic and Digest protocols

are covered as well. Authentication only via credentials, which is described as waa:Direct,

is covered to the most part via predefined classes for credentials. In the case of ‘API Key

in Combination with Other Credentials’, if the needed credentials are not already defined as

subclasses, the waa:Credentials class can be used directly. Finally, OAuth, authentication done

over an especially dedicated operation, as well as session-based authentication are supported via

corresponding authentication mechanisms.

In summary, the Web API Authentication Model does not cover directly only the 1% of ‘Other’

authentication mechanisms. Therefore, based on the collected data, we can conclude that WAA

supports close to a 100% of the APIs that require some form of authentication, thus providing

Evaluation 226

the aimed for wide coverage. It is important, to keep the high level of support by updating and

extending the model with the newest and most relevant authentication approaches.

11.3.3 Suitability for Purpose

Finally, we evaluate the Web API Authentication Model by annotating actual Web APIs and

testing their invocability. The chosen APIs cover a range of different authentication approaches,

in order to determine the range of APIs that are practically invocable by OmniVoke. In particular,

we cover each of the identified six authentication mechanisms at least once and also include APIs

requiring a variety of credentials.

Web API Direct HTTPBasic HTTPDigest OAuth APIOp Session
Eventful Yes Yes Yes - - -
Flickr - - Yes - - -
GeoNames getCountryCode Yes - - - - -
Last.fm getArtistInfo Yes - - - - -
ClearForest Yes - - - - -
Semantic Web Services1
Basecamp - Yes - - - -
Daylife - - Yes - - -
Adobe Share - - - - - Yes
Docstoc - - - - Yes -
Yelp - - - Yes - -

TABLE 11.6: Test Web API Authentication Descriptions

‘Yes’ indicates that a certain requirement is covered by the example.

Table 11.6 shows some of our test API examples that represent different types of APIs, each

posing individual requirements on the authentication model6. As can be seen, we covered all

authentication mechanisms for the Web API Authentication Model. In addition, we test different

credentials that can be used for one and the same authentication mechanism, such as API key or

username and password for Direct authentication.

The only APIs that presented somewhat of a challenge were the ones based on authentication

through individual API operations7, since this implies that an additional request needs to be

made before the API can actually be called. In summary, we have evaluated our approach by

creating annotations that cover all of the authentication mechanisms and a set of credentials, and

have successfully used them to perform authentication as part of the invocation process.
6All examples are available at http://purl.org/waa/
7For example, Docstoc – http://platform.docstoc.com

http://purl.org/waa/
http://platform.docstoc.com

Evaluation 227

11.4 Evaluation of Supporting Tools and Approaches

In this section we present the evaluation results of SWEET and of the two Web API classification

approaches.

11.4.1 Evaluation of SWEET

When it comes to evaluating SWEET, there were a number of different approaches used, not

focusing strictly on gathering feedback about the provided user interface but also on evaluating

the available functionalities. In particular, the benefits of SWEET were determined in four

main ways. First, the tool was used in a number of project use cases in order to annotate

Web APIs from particular domains (music domain and geocoding domain). Second, it was

used as part of hands-on sessions and tutorials, where direct feedback was gathered. Third, a

questionary was used in order to determine the tool’s weaknesses and strengths and finally, all

user actions were anonymously recorded, in order to determine, which are the most commonly

performed annotation tasks, which activities take the longest and which are the areas of possible

improvement. Each of these evaluation strategies provides facets of different insights about

SWEET and points out issues that need more attention or better handling.

Project Use Cases. The Web application version of SWEET was developed as part of a suite

of tools targeted as supporting tasks along the lifecycle of services, within the scope of the

SOA4All8 European project (FP7 - 215219). The tool was used in one of the three project use

cases in the context of telecommunication services. It was used in two scenarios – creating a

mashup for event booking and search, and developing a mobile app for web-based messaging.

In this context SWEET enabled the creation of semantic Web API descriptions, which were

subsequently integrated as part of service compositions. The development of SWEET within

the scope of the project is documented in a number of deliverables9, the main ones being the

ones on the service provisioning platform, which encompasses components that support the

creation of service descriptions, including Web APIs and traditional Web services.

The work on providing a tool that supports users in creating semantic service description was

done in parallel to the efforts towards defining a formalism for the semantic description of Web

APIs. More importantly, SWEET’s development was directly influenced by the feedback and

requirements resulting from the use cases, which provided grounds for testing and improving

the practical applicability of the tool. In addition to creating the descriptions used as part of the
8http://cordis.europa.eu/project/rcn/85536_en.html
9http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/

D2-1-3-SERVICE-PROVISIONING-PLATFORM-FIRST-PROTOTYPE.pdf,
http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/
001-D214SERVICEPROVISIONINGPLATFORM2NDPROTOTYPE.pdf

http://cordis.europa.eu/project/rcn/85536_en.html
http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/D2-1-3-SERVICE-PROVISIONING-PLATFORM-FIRST-PROTOTYPE.pdf
http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/D2-1-3-SERVICE-PROVISIONING-PLATFORM-FIRST-PROTOTYPE.pdf
http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/001-D214SERVICEPROVISIONINGPLATFORM2NDPROTOTYPE.pdf
http://cordis.europa.eu/docs/projects/cnect/9/215219/080/deliverables/001-D214SERVICEPROVISIONINGPLATFORM2NDPROTOTYPE.pdf

Evaluation 228

composition scenarios, SWEET was also one of the main tools presented as part of a hands-

on session demonstrating results of the project. Therefore, the work done within the scope of

the project provided a good basis for evaluating the suitability of the tool’s functionalities for

supporting actual use cases and contributing to solving existing challenges in the context of

particular industry domains, such as telecommunications.

Training Sessions and Tutorials. SWEET was used in a number of tutorials and training ses-

sions, demonstrating the practical applicability and benefits of the semantic Web API models.

In particular, the first version of the Web application tool was part of hands-on sessions in two

summer schools (The Summer School on Service and Software Architectures, Infrastructures

and Engineering 2009 (SSAIE Summer School) – about 30 participants, and the 1st Karlsruhe

Summer School on Service Research – about 20 participants). These sessions demonstrated the

usability of the tool, when it comes to creating semantic descriptions of Web APIs, but also

provided valuable feedback about the user experience and pointed out some deficiencies. The

tutorials were used to evaluate the current prototype and determine necessary extensions and

further required functionalities. The main comments were related to the need for more flexibil-

ity in making the annotations, in particular when it comes to correcting mistakes. Therefore,

functionalities such as deletion, renaming and updating were in the focus of the implementa-

tion work done as part of the following prototypes of SWEET (R1 for the extended version of

SWEET).

This led to the development of the extended version of SWEET, which was used in the The

Summer School on Service and Software Architectures, Infrastructures and Engineering 2010

(SSAIE Summer School) in a tutorial on Linked Services with about 30 participants, and sub-

sequently in a tutorial on Automating the Use of Web APIs through Lightweight Semantics

at the International Conference on Web Engineering (ICWE 2011) with about 15 participants.

Overall, the gathered feedback was quite positive, since SWEET enables the annotation of Web

APIs, which would otherwise have to be done with the help of applications such as a simple text

editor. Therefore, the majority of the tutorial participants found the tool useful. There were also

some useful suggestions when it comes to improving the user interface. In order to be able to

properly gather feedback on SWEET, a short survey was conducted after each training session.

The survey layout as well as the main input is described in more detail in the following section.

User Survey. The gathering of feedback and recommendations, and implementing these in sub-

sequent versions of the tool, is an important part of improving SWEET based on user require-

ments. For this purpose, a simple survey was designed, which was distributed to the training

session participants. The first section gathers some information about the background of the

users. This includes questions on previous experience with Web services, semantics and mak-

ing annotations. The second section includes specific questions regarding the functionality and

Evaluation 229

support provided by SWEET, including estimating the level of difficulty of the individual anno-

tation tasks, the effort required for creating the semantic description and the intuitive use of the

tool. The final section includes a set of questions that can be answered with free text. These are

targeted at collecting recommendations and making improvement suggestions.

Even though during the past three years SWEET was used in more than six training sessions,

the survey was completely only by a total of 17 participants. The majority of the participants

were PhD students with some previous experience in services and knowledge of semantics.

Here we summarise some of the main findings of the survey. First, all participants said that

having a tool such as SWEET is very helpful in doing annotations, since without it this has to

be done is a simple text editor directly editing the HTML. The majority of the participants said

that the most useful functionality is the integrated search for semantic entities, since without

previous knowledge in a particular domain finding suitable annotations is a time-consuming

task. Finally, some participants found it difficult to identify the different service parts that needed

to be annotated. This points out that some initial training is required before SWEET can be

successfully used.

Overall, the task of annotating an API was not perceived as difficult and neither was the effort

required for completing it. Regarding the general comments and suggestions, one participant

said that it would be useful to implement the annotation process in a step-by-step manner, so

that, for example, no semantic model references can be added before the insertion of hRESTS

tags. This would provide for a more controlled and guided use of SWEET in creating semantic

Web API descriptions. All the comments were taken into consideration in each of the subsequent

versions of the tool.

Annotation Action Logging. SWEET was also evaluated implicitly by anonymously logging

the individual annotation steps completed by the user. This was done by recording all the actions

that are performed and storing them in a triplestore. Listing 11.1 shows the simple schema used

for the Logger repository. Each LogEnty has a date-time stamp, a session id, and a number of

actions. An Action has a set of subclasses that determine the specific task that was performed.

All action subclasses start with the Item prefix. For example, an ItemSave instance is created

when the user clicks on the Save button and stores the created annotation locally, while Item-

SaveToRepository is used when the semantic description is posted directly to iServe. The benefit

of logging the user actions is twofold. Not only do the logs deliver important details about the

time needed to complete each annotation task but they can also be used for debugging purposes.

Since we do not know the user identity, we based the logging on the browser session. Therefore,

all the action items belonging to one session are considered as done by the same user, as part of

one annotation process.

Evaluation 230

1 s:LogEntry
2 s:Action
3 s:ItemSave
4 s:ItemExport
5 s:ItemSaveToRepository
6 s:ItemCreation
7 s:ItemSearchWatson
8 s:ItemHTMLAnnotation
9 s:ItemSemanticAnnotation

10 s:ItemCallProxy
11 s:ItemDeleteSemAnnotation
12 s:ItemDeleteHTMLAnnotation

LISTING 11.1: Actions Logging Schema

The goal of collecting this data is to be able to determine, which are the most commonly per-

formed actions, how long does an annotation process take and which actions takes the longest.

Therefore, if we are able to identify frequent and time-consuming tasks, we can focus on en-

hancing SWEET’s functionality for supporting these particular tasks. Since most of the data

was collected during the training sessions, all the tasks from those events had the same dura-

tions. Therefore, the identification of individual outliers was difficult. In some of the cases the

session was lost and a new one was automatically created. We use the session to group the per-

formed annotation tasks done by one user, therefore, tasks belonging to the same annotation log

were recorded in two individual ones instead. Overall, we found out that the most commonly

performed task was ItemHTMLAnnotation, while the deletion actions were recorded the fewest

times, probably because users made corrections instead of deleting the particular annotation.

This implies that the focus of improving SWEET’s functionalities should be on supporting the

creation of annotations, in particular, of hRESTS and semantic annotations. Therefore, a simple

and intuitive user interface is very important in this context.

Tool Uptake. In order to be able to follow the uptake and popularity of use of SWEET, we

registered it with Google Analytics10. Google Analytics collects data about the number of site

visits, geographical distribution of the visitors, number of unique visitors, used browser, etc.,

and provides different overviews and chart summaries as means for exploring the aggregated

data. SWEET, both the tool website (http://sweet.kmi.open.ac.uk), as well as the

demo (http://sweetdemo.kmi.open.ac.uk) were registered in mid-July 2009 with

the launch of the first Web application version. The results presented here are for the actual

deployment of the tool and demonstrate how often SWEET was used.

Figure 11.1 shows the monthly distribution of the number of visitors. As can be seen, the two

peaks are during October/November 2009 and the summer of 2010 when most of the training

sessions, as part of summer schools, took place. Even though the overall number of visitors is

not that high (590), it is important to point out that about one third of those are returning visitors,

who have used SWEET a number of times, accounting for a total of 411 unique visitors.
10http://www.google.com/analytics/

http://sweet.kmi.open.ac.uk
http://sweetdemo.kmi.open.ac.uk
http://www.google.com/analytics/

Evaluation 231

FIGURE 11.1: SWEET Analytics – Overview

FIGURE 11.2: SWEET Analytics – Country Distribution

Figure 11.2 shows the top ten countries, from which SWEET was accessed. The United King-

dom is number one, which is not surprising, however, it is followed by Italy, Spain and Germany.

These results are more insightful when combined with the list of the top domains used to call the

tool (Figure 11.3). These results are very interesting, since they confirm the trend that even if

overall there are not that many visitors of SWEET, there are a number of reoccurring ones who

used the tool a number of times. This can also be seen as an indication that SWEET managed

to gain a certain level of popularity and is continuously used by the same group of people. This

data, combined with the fact that one third of the users are returning visitors, points to an overall

good uptake of the tool.

The uptake of SWEET is not only reflected by the data collected by Google Analytics but is also

evident by the fact that there were continuous requests about the tool via email. For example,

Evaluation 232

FIGURE 11.3: SWEET Analytics – Frequent Visitors

SWEET was used in Sean Kennedy’s11 PhD thesis on Leveraging the Semantic Web to Auto-

mate the Mapping of SOAP Web Services to RESTful HTTP Format and is going to appear as

part of a journal article in the Future Internet journal. Furthermore, there were requests from

the Database and Information System Group of the University of Brescia, Italy, the Department

of Computer Science at the University of Bath, and Atos Origin, Spain to reuse SWEET and

include it as part of existing and future work. There were also some requests for developer

support and messages from people who looked at the tool. Overall this is very encouraging

because it points out that SWEET is of interest for people working in the service area. The few

publications and tutorials have already raised some interest in the research community, while

the annotation functionalities of the tool seem to adequately address the need for user support in

the context of creating semantic Web API descriptions.

11.4.2 Evaluation of Web API Classification Support

Including the type of functionality that the Web API provides as part of the semantic descrip-

tion is key for supporting common tasks such as service discovery and composition, which are

predominantly based on finding and using an API with the required support. To this end, in

this section we describe the evaluation of the approaches developed for classifying Web APIs.

In particular we evaluate the classification solution based on the API HTML documentation

in English and a multilingual classification approach that maps API documentation written in

different languages to the same category.
11Athlone Institute of Technology, Ireland. <SKennedy@AIT.IE>

Evaluation 233

11.4.2.1 Evaluation of HTML-based Classification

The evaluation of the HTML-based Service Classifier, which uses the API’s HTML page as

well as a number of related pages12, was done based on standard precision and recall met-

rics13 [GK89]. Table 11.7 shows the results of the classification experiments. As can be seen,

by returning a list of five possible classes, with training done only with ProgrammableWeb

(cross-validated classifier), there is a 72.5% possibility of returning the correct API category.

The results for using the Open Directory Project (OPD classifier) for training show lower accu-

racy. Despite the fact that usually more training data results in better classification results, this

is not the case with the OPD classifier. The main reason behind that is probably the need to do

a mapping between the Open Directory classed and the ones done by ProgrammableWeb. OPD

has a very rich and hierarchical classification structure that needs to be converted to the rather

simple and not so expressive classification taxonomy of ProgrammableWeb. With some further

fine-tuning of the classification mappings, the experiment results can probably be improved.

Number of Classes Returned Cross-validated Classifier (%) ODP Classifier (%)
1 24.3 9.8
2 39.2 22.0
3 50.4 32.7
4 60.8 44.4
5 72.5 51.5
6 78.5 59.9

TABLE 11.7: Results for Classification Based on the k-Nearest Neighbour

Similarly, the results of the cross-validated classifier, using only data from ProgrammableWeb,

are based on assigning a service to only one category, while actually one API can belong to a

number of categories. For example, a service for online shopping can be classified as a shop-

ping service but also as an internet service. As a result some correct classifications are in fact

considered as incorrect by the evaluation. Therefore, it needs to be further investigated to what

extent the current results can be improved by allowing classification to multiple categories. Fur-

thermore, the classification can also be improved by providing better training data, which is

validated and contains no misclassifications. The foundation for work in this direction has al-

ready been laid by the second Web API survey, which gathers user input about the functionally

of the APIs, allowing for selecting multiple classification types, thus creating a validated training

set.
12All of the analysed documents are in English.
13We did not do any ROC analysis [Faw06] in order to be able to make founded statements how our classifier

compares to a random one. This should definitively be considered for future evaluations.

Evaluation 234

In summary, experiments conducted using test data collected from ProgrammableWeb and train-

ing data from the Open Directory Project show that the service classifier component is able to

determine the correct category among five different classes with more than 70% accuracy.

11.4.2.2 Evaluation of Cross-Lingual Classification

The cross-lingual classification solution has only some preliminary evaluation and tests, which

were mainly done in order to investigate the applicability of the approach and to identify points

for potential improvements. In particular, the concept detection system was tested on APIs from

the geocoding domain. The first phase, which identifies the most similar services, worked quite

well, and was able to determine relevant similar Web APIs. Therefore, the classification task

was completed successfully. This evaluation needs to be extended to cover further domains, in

order to be able to make statements about the precision of the classification approach in general.

Our previous experiments with CL-ESA reported in [KZZ11] suggest that the method is able to

detect semantically comparable text across languages with high precision (about 0.7 precision

at top50) from a 3.5 million large corpus. Given the fact that the size of ProgrammableWeb is

smaller and we are classifying only into 54 classes, better results can be expected.

The evaluation tests were very helpful, since they lead to identifying some potential points of

improvement. First of all, as is the case with the first classification solution, ProgrammableWeb

assigns each API to only one category, while in fact an API can provide functionalities that

map to multiple classes. This influences the precision metrics of the evaluation but also distorts

the complete classification process, since it is also used to build the background collection.

If the background collection is based on missing classification or misclassified services, the

classification results will be influenced by that. Therefore, it is important to take steps in order

to improve the quality of the data used to train and evaluate the classifier. In particular, this can

be done by manually verifying the classes assigned to the APIs and allowing for multiple classes

per API.

The second main challenge that became evident through the initial tests was the fact that the

documentation URL listed in the directory often does not point to the actual description website

but rather to the homepage of the provider, to a common entry page or to an overview page

that has very little information about the service. Since this data is not manually validated,

the classification is then sometimes based on text that is falsely assumed to be the actual API

documentation. Therefore, in order to accurately evaluate the here presented solution, it is

important to ensure that the input for the classification is, in fact, the URL that points to the

Web API documentation. A final possible point of improvement would be adjusting the list of

stop-words, to cover a wide range of works that are API-specific but are not characteristic for

the individual API.

Evaluation 235

Initial evaluation was also done on determining the central concepts, in order to support the

annotation of APIs. In contrast to the results for the classification approach, the acquired data

for the concept extraction phase indicated that it must be further refined, especially since the

returned central concepts were not always relevant. The main reason for this is again the quality

of the background collection. Misclassified APIs in the dataset or classification of APIs based

on URL not pointing to the actual documentation influence significantly the determining of the

central concepts. These limitations can be overcome by hand-picking the representative APIs

per category or by ensuring that URLs pointing to the API documentation are correct. Even if

improvements still remain to be done, the initial results show that the approach, especially in the

context of the classification task, is quite promising.

11.5 Summary

One of the most important features of MSM, the Web API Grounding Model and WAA is that

they provide wide coverage, given the heterogeneity of the Web API documentation, in terms

of the included information and given details. This ensures that they are widely applicable and

not being restricted to a particular sub-group such as, for example, APIs invocable only directly

via the URI. We started with a target coverage of 80% and based on the evaluation show that

the actual numbers are much higher. Therefore, we can claim that our models for semantically

describing Web APIs can support the description of the majority of the APIs.

In the case of the grounding model and WAA, it is also essential to capture all the information

that is required for supporting the automation of the corresponding tasks. Therefore, in this

chapter we focused on showing that each of the models conforms to the competency questions

and the defined design requirements. Furthermore, we revisited the characteristics that we spec-

ified and the models need to fulfil, and use the data gathered by the Web API surveys is order

to determine, which common service properties are covered and which not. For the Web API

Grounding Model and for the Web API Authentication Model, we demonstrated their practical

applicability by creating example annotations for Web APIs with different service properties and

determining how well they are supported in terms of describing them with each of the models.

Therefore, we were able to practically test the models and make sure that they can be used by

the authentication and invocation engines.

Finally, we also evaluate the support that we provide for creating semantic Web API descriptions,

in terms of the annotation tool and the functionality classification approaches. We evaluate

SWEET by showing its usability as part of project use cases and directly using it in hands-on

sessions and tutorials. In addition, we log common user actions, in order to determine, which

are the most frequently performed annotation tasks, and provide statistics about the numbers

and distribution of SWEET’s users. We also give evaluation of the approaches developed for

Evaluation 236

classifying Web APIs. In particular we evaluate the classification solution based on the API

HTML documentation and a multilingual classification approach that maps API documentation

written in different languages to the same category.

Chapter 12

Conclusions and Future Work

Currently the world of services on the Web is marked by the increased use and popularity of

Web APIs. Web APIs are characterised by relative simplicity [PZL08], in comparison to tradi-

tional Web services, and a natural suitability for the Web, relying on the interaction primitives

provided by the HTTP protocol, with data payloads transmitted directly as part of the HTTP

requests and responses. The result is a simpler approach for developing and exposing applica-

tion interfaces, moving away from the rather complex WS-*specification stack [MSZ01] and

returning to adopting the original design principles of the World Wide Web [BL99]. Therefore,

Web APIs offer an easy-to-use alternative for simple programmable access to resources, thus

enabling third-parties to combine and reuse heterogeneous data coming from diverse services

in data-oriented service compositions called mashups. This trend is especially supported by

popular social platforms and applications, such as Facebook, Google, Flickr and Twitter, which

enable access through Web APIs to some of the resources they hold.

Despite their popularity, as demonstrated throughout this thesis, Web APIs still face a number of

challenges. In particular, Web API development is rather autonomous and not guided by stan-

dards or guidelines, which results in a wide variety of documentation forms, structures and level

of detail, since providers are free to implement and document APIs in any way that they see fit.

Furthermore, the majority of the Web APIs are described directly in text as part of HTML pages,

which are not meant for automated machine interpretation (in contrast to XML, for example).

As a result, currently, Web API use requires extensive manual effort, and client developers have

to search through directories, read and interpret the documentation and implement custom so-

lutions that are rarely reusable. Such an approach is time and effort-consuming and will not

scale in the context of the growing number of available Web APIs [MPD10a]. Finally, despite

some initial efforts [VKVF08] to enable the unified handling of both “traditional” Web services

and Web APIs, still the two types of services are stored in separate directories, commonly use

different task automation approaches and are rarely deployed in integrated solutions.

237

Conclusions and Future Work 238

The goal of this thesis is to address these challenges and to contribute towards enabling Open

Services on the Web, where Web services, APIs, data and Web content can be seamlessly com-

bined and interlinked, without having to differentiate between the separate data sources or the

specific technology implementations. In order to achieve this goal we investigated the following

four research questions:

• RQ1: What are the common Web API characteristics?

• RQ2: How to describe Web APIs?

• RQ3: How to enable a more automated Web API use?

• RQ4: How to support the adoption of the new service model?

We addressed the first question by conducting two thorough studies of the current state of Web

APIs (see Chapter 6). The results provide insights about common features and characteristics,

establishing trends and the extent of the heterogeneity of the API landscape. The collected

data serves as a basis for gaining a deeper understanding of how APIs are exposed on the Web

and lays the foundation for developing approaches and solutions towards supporting the use of

Web APIs. In particular, the analysis of the studies serves directly as input for answering the

second research question, which is tackled in detail in Chapter 7. We take into consideration the

data gathered, existing description approaches and present a set of requirements for designing a

model, capable of capturing the majority of the existing APIs. The result is the Minimal Service

Model (MSM), which represents an operation-based approach towards describing APIs.

Two extensions of MSM are described in Chapters 8 and 9, which provide answers to the ques-

tion of how a more automated Web API use can be enabled (RQ3). In particular, we focus on

invocation and authentication, by defining a set of requirements that need to be met by a model

that supports a more automated completion of the corresponding task. In addition, we give

details about the two formalisms, provide examples on how they can be applied and evaluate

them based on the coverage that they provide and in terms of their use as part of actual working

implementations – OmniVoke and two authentication engines.

The final part of the thesis is devoted to the fourth research question and describes SWEET

and the solutions provided towards automating some of the annotation tasks, in order to enable a

semi-automated process of creating semantic Web API descriptions. In particular, given the here

introduced core service model, developers need to be supported by tools that make the creation

of Web API descriptions easier. This need is addressed by SWEET and the introduced ontology

search and classification solutions.

The following section describes the contributions that were achieved by providing answers to

each of the research questions.

Conclusions and Future Work 239

12.1 Summary of the Contributions

This section describes our main contributions to the state of the art, in the context of enabling

Open Services on the Web through supporting the use of Web APIs.

Contribution 1: We provide an unprecedented in depth analysis of Web APIs and their
characteristics, thus contributing towards a clear picture of the actual real world state of
APIs on the Web.

A clear understanding of current Web API practices is fundamental for being able to develop

improvement solutions with significant impact and take-up. This is crucial for clearly identifying

deficiencies and figuring out how existing limitations can be overcome. Therefore, we describe

the analysis of the current state of Web APIs, which captures the types of descriptions, how they

are exposed, how rich they are and what details they provide. In particular, we give details on:

1.1 Common Web API characteristic and features. The results of the two Web API surveys

directly contribute to understanding existing challenges and are a basis for devising solutions

and supporting mechanisms. In particular, we collected details and values of different service

properties and features, which were used as input for the developed formal description models.

Furthermore, the analysis of the current state of Web APIs lays the foundation for the definition

of a common description model and served as an input for deriving the properties of the MSM.

1.2 Conclusions on common practices and technologies. Furthermore, we were able to iden-

tify trends and frequently used design and solution approaches. For example, we found out

that still the majority of the Web APIs are based on the RPC oriented interfaces, as opposed to

resource-oriented ones, and this influenced some of the design decisions that were made while

defining the description models.

1.3 A web-based survey system. Since the results of the here presented Web API studies have

proven to be very useful, we designed and implemented a system that can be customised by

other interested parties to gather Web API related details. This is especially relevant with the

growing number of APIs, where the analysis task has to be crowd-sourced, in order to cover a

larger percentage of the currently available APIs.

Contribution 2: A formal definition of a Web API. Currently there is no commonly accepted

definition of a Web API and frequently it is not clear what the underlying principles or technolo-

gies are. In order to be able to have a unified and shared understanding of Web APIs, we provide

a simple definition. The definition is based on the analysis of common Web API characteristics

and serves as the foundation for developing the here introduced formal description models.

Contribution 3: A core service model, in the form of MSM, which enables capturing common

API characteristics and providing a foundation for supporting the automation of typical service

Conclusions and Future Work 240

tasks. The developed model is based on the results of the Web API analysis and provides a

shared overlay over the heterogeneous Web API landscape, therefore, laying common grounds

for the development of Web API-based solutions and approaches. In addition, the description

model can be applied on top of existing HTML documentation, via mappings to hRESTS tags,

and does not necessarily require the creation of new descriptions from scratch, thus conforming

with the current trend of providing documentation as part of webpages. Finally, the Web API

description model also enables the reuse and adaptation of the wealth of research done in the

context of Web services and Semantic Web Services. The core service model is based on the

previously defined model as part of hRESTS and was developed in collaboration with a few

co-researchers1. Still the research carried out in the context of this thesis strongly contributed to

improving and consolidating it.

Contribution 4: Web service model extensions for supporting automated invocation and
authentication. The core service model is extended with elements that aim to support the au-

tomation of specific service tasks, namely invocation and authentication. Therefore, we provide

two additional Web API description models:

4.1 The Web API Grounding Model. Invocation is a crucial task in the context of Web API use.

Therefore, we developed the Web API Grounding Model as means to enabling its automation.

4.2 The Web API Authentication Model. Authentication is commonly neglected in current

Web API approaches. However, it represents a key part in the process of accessing and retrieving

API resources. Therefore, we defined authentication-relevant extensions to MSM as part of the

Web API Authentication Model.

Both models are based on the analysis of the current state of Web APIs and can be used in com-

bination with MSM or independently of it. In addition, they can be extended to accommodate

further properties that might be necessary for certain use cases.

Contribution 5: Support for creating Web API descriptions, in the form of an annotation tool

and task-assisting solutions, such as annotation recommendation mechanisms. In particular, we

presented:

5.1 SWEET. This is a web application tool that takes as input the HTML documentation of a

Web API and provides functionalities for making annotations that conform to MSM and hREST-

S/MicroWSMO. The results are the original HTML, enhanced with syntactic and semantic de-

tails, and an RDF semantic Web API description.
1Carlos Pedrinaci, Dave Lambert, Dong Liu, Jacek Kopecky, Tomas Vitvar, Karthik Gomadam

Conclusions and Future Work 241

5.2 Two Web API Classification Approaches. The Web API annotation process can be made

easier by automatically completing some tasks that need to be performed frequently. In partic-

ular, we focused on determining the type of functionality that the API provides and developed

two classification approaches that return a list of possible functionality classes.

In the following section we focus on summarising the conclusions that we reached, based on the

conducted work and the achieved contributions.

12.2 Conclusions

In this section we detail our conclusions, which are organised around the four main topics intro-

duced by the research questions.

The general conclusion of our work is that indeed semantic technologies can be used as a ba-

sis for contributing to a more integrated Web, where services, data and Web content can be

seamlessly combined and interlinked. It particular, they enable the resolving of many of the

challenges faced by Web APIs, including the heterogeneity of the API types, implementations

and documentation, the lack of machine-interpretable descriptions, and the high degree of man-

ual processing required. A key contribution, therefore, is the development of a formal model for

describing Web APIs, which enables the unified handling of the diverse APIs and Web services,

alike. Still, there is quite some work to be done before the vision of Open Services on the Web

can be practically achieved.

In the remaining of the section we detail our conclusions regarding the current state of Web

APIs, the core service model, the specific extensions for providing invocation and authentication

support, as well as the tools and approaches developed for enabling the creation of semantic Web

API descriptions.

12.2.1 The Current State of Web APIs

The results of the two Web API surveys were very useful in terms of gaining an overview of

current characteristics, common practices, and trends. Simply by browsing through the docu-

mentation of popular Web APIs, it becomes evident that the diversity in the used documentation

forms and structure, as well as the level of provided detail, vary greatly from API to API. The

collected data confirmed this impression and provided concrete insights indicating the signifi-

cance of some of the characteristics and the related issues, at the same time also highlighting

important features, which were not recognised initially (such as authentication). Therefore, be-

fore any substantial progress and improvement can be made towards supporting and automating

the use of Web APIs, we need to reach a deeper understanding of how APIs are developed and

Conclusions and Future Work 242

exposed, what kind of documentations are available, how they are represented and how rich

these are.

The conducted surveys contribute directly to this goal, by investigating six groups of main fea-

tures including – general information, type of Web API, input details, output details, invocation

details and complementary documentation. We show that currently Web APIs documenta-
tion is solely human-oriented and not meant for supporting automated API processing. The

results of the studies, especially the first one, demonstrate that REST principles and resource-
oriented interfaces are not the driving force behind the current Web API proliferation
and that Web API documentation is characterised by under-specification, where important

information, such as the datatype and the HTTP methods, is commonly missing.

Simplicity and the trend towards opening data seem to be driving this proliferation, which re-

sults in the world of services on the Web being increasingly dominated by Web applications and

APIs. These initial observations are confirmed by the second study that also shows that the Web
API environment is very dynamic with existing APIs being taken offline and new ones being

offered. Moreover, by reflecting on the results of the initial survey, we were able to refine the

analysed features towards gathering further details and deriving requirements for designing a

description model capable of supporting more automated Web API use.

In summary, the impact of the API surveys is twofold:

1. They determine the details that need to be captured by the description model, such as

the different types of input parameters or in which part of the HTTP request they are

transmitted.

2. Second, they guide decisions on whether certain features should be included or not and in

what form, in order to ensure a greater coverage of the model (such as for example, taking

a resource or operation-based approach towards describing Web APIs).

12.2.2 The Core Service Model

Regarding the core service model, we can conclude that providing a unified view on Web
APIs is a crucial step towards overcoming the current heterogeneity of the description forms,

characteristics and level of detail, and paving the way towards a more integrated use of services

and data on the Web. We use the results of the Web API studies and take into consideration

previous work on describing Web APIs, in order to provide a definition of what a Web API

is, as used in the context of this thesis. The goal here is to provide a common framework for

analysing, describing and using Web APIs.

To this end, we introduce MSM, containing four main classes – Services, Operations, Message-

Content and MessageParts. The model is intentionally simple but still enables capturing the

Conclusions and Future Work 243

main service elements, which can be used to add further semantic annotations, by linking service

properties to semantic entities. MSM can be used in conjunction with WSMO-Lite, for giving

specific semantics to the annotations, or in combination with the Web API Grounding Model

and Web API Authentication Model, for providing invocation and authentication support. The

core service model, realised through MSM, represents a major milestone towards enabling
the unified handling of Web APIs and lays the foundation to providing a higher level of task

automation.

12.2.3 Towards Automated Web API Invocation and Authentication

Our approach towards enabling more automated Web API use is based on the development of

two models – the Web API Grounding Model and the Web API Authentication Model.

The Web API Grounding Model is realised by carefully analysing and gathering the details that

are relevant for supporting automated invocation. This is especially important in the context of

determining the support provided by the implementation solution and the coverage that it has. As

a result, the model captures invocation-relevant characteristics and can help to counteract
underspecification, since it can be used as a reference point by providers in order to determine,

which details need to be included as part of the documentation.

The provided invocation support is enhanced with means for capturing authentication details. As

demonstrated by the results of the surveys, more than 80% of the APIs require authentication,

which makes it a vital part of the invocation process. Therefore, we propose the annotation

of authentication information by using the Web API Authentication Model, which overcomes

the heterogeneity of authentication approaches and credentials, and provides the basis for its
automated handling as part of the invocation process.

Both models are practically applicable and have been exploited as part of the OmniVoke invoca-

tion and authentication engine. Overall, the Web API Grounding Model and the Web API Au-

thentication Model, in combination with MSM, contribute directly towards establishing guide-

lines and best practices for creating Web APIs and providing complete documentation. They

represent a comprehensive solution for describing Web APIs and enabling more automated
Web APIs use.

12.2.4 Supporting the Creation of Semantic Web API Descriptions

SWEET represents a major milestone towards supporting the adoption of the description models.

In particular, the benefits that come with a lightweight semantic service model cannot be fully

used if the creation of the corresponding descriptions is too time- and effort-consuming.

Conclusions and Future Work 244

One of the main features of SWEET is that it hides formalism complexity from the user
and guides him/her through the process of marking the individual service properties and sub-

sequently enhancing these with semantic metadata. As a result, the annotator does not need to

be concerned with the model or language specifics and can instead focus on identifying individ-

ual properties and linking them to semantic entities. Furthermore, the annotated HTML can
directly be published on the Web, including the hRESTS/MicroWSMO tags, or can be used

to extract a RDF-based description. Without SWEET the user would have to revert to using a

text editor and modify the HTML directly, which is a complex, time-consuming and error-prone

process.

Still, as highlighted by the user evaluation activities that we carried out, creating semantic Web

API descriptions remains a challenging task, even with tool support in the form of SWEET.

Therefore, we also introduce a number of solutions aiming towards supporting a semi-automated

process of creating Web API descriptions. In particular, this includes integrated semantic entity

search via Watson and via customisable search API, as well as two classification approaches

based on the type of functionality that the service provides. These solutions contribute towards

easing frequently performed API annotation tasks, reducing the manual effort and at the same

time lowering the adoption barrier.

12.3 Future Work

In this thesis we have presented three formal models for the semantic description of Web APIs,

accompanied by a supporting tool and approaches for automating common annotation tasks,

with the ultimate goal of enabling Web API use. However, even if we covered a wide range of

issues on this topic, we realise that important research still has to be done in the context of:

• Continued and extended analysis of the current state of APIs on the Web;

• Extension of the invocation work targeted towards supporting the automation of compo-

sitions and processes;

• Contributing towards adopting a shared authentication approach;

• Extending SWEET with further annotation support.

This section describes possible future work centred around these four main areas.

Conclusions and Future Work 245

12.3.1 Continued Analysis of the State of APIs on the Web

As clearly demonstrated by the results of the two Web API surveys, it is very important to be able

to comprehensively grasp the current state of APIs on the Web. Without details about common

practices and shared characteristics, any solution would have only limited applicability and its

level of practical application can only be estimated or guessed. In this respect we suggest the

following lines for future research.

Conducting the survey on a larger scale
In order to continue to gather data on the current state of Web APIs, it would be necessary to

conduct the study on a greater scale. There are a number of different options. First, it is possible

to release a number of topic-specific surveys, consisting only of a limited number of questions,

to a larger group of people. In order to ensure a greater accuracy of the results, the same API

should be assessed by a number of participants in order to identify “correct” answers through

agreement. In this context, the Web API survey application enables the crowd-sourcing of the

surveys, since it is web-based and highly configurable, in terms of the list of questions. Second,

a few topic-specific surveys, such as one gathering details on authentication information or the

type of API, can be aggregated in order to gain a broader view on the state of the API landscape.

The continuous gathering of further results is crucial not only because this will help us to validate

our findings but also to gather insights about new trends and developments. It is important to

recognise current solution approaches followed by providers, in order to be able to take them

into consideration in the context of improving the here presented solutions.

Analyse the characteristics of the most popular Web APIs
Furthermore, it is important to gain insights by collecting data and analysing the characteris-

tics of the currently most popular Web APIs. These are the APIs, which according to Pro-

grammableWeb, are used most frequently to build mashups and applications. Therefore, they

can be considered as trendsetters in terms of the used description form, features and technolo-

gies. Furthermore, we can try to identify the common characteristics and the way, in which they

influence the usability of the particular API.

Use survey results for validation
Until now the results of the two Web API surveys have mainly been used as input for designing

the description models. However, they also represent data that can be used for evaluation pur-

poses. For example, the categorisation of the APIs can be used to evaluate the accuracy of the

classification approaches. This is also true for the manually assigned tags, which can be used to

determine the correctness of the automatically identified domain of the description.

Conclusions and Future Work 246

12.3.2 Supporting the Invocation of Compositions and Processes

A natural step in further developing our invocation approach is to investigate what details and

automation mechanisms are required in order to enable the invocation of compositions and not

only of individual APIs. This is an important challenge, since the added value of using multiple

sources of data becomes evident precisely through the combination, sorting and filtering of the

results of a number of Web APIs. By providing the appropriate extensions to the Web API

Grounding Model, OmniVoke can directly be used as an invocation engine for mashups and

Web API compositions. This also holds for investigating the possibilities of providing support

for process invocation.

12.3.3 Supporting the Adoption of a Shared Authentication Approach

Authentication is currently one topic that is commonly neglected in existing Web APIs ap-

proaches and research. Therefore, it is important that its significance is recognised as part of

future developments in the area.

Regular updates to the authentication model
Future work in the area of supporting authentication, as a vital part of automating the use of

APIs, should focus on updating and revising the Web API Authentication Model, including new

and relevant authentication approaches. These changes can be reflected in the implementation

solution – the OmniVoke authentication engine. This work is also important in the context

of supporting compositions and mashups, where users have to be prompted for the required

credentials and if necessary, be redirected to the provider’s or trusted party’s website.

Encouraging the wider adoption of OAuth
In addition, future work in the area of authentication can be targeted towards supporting the

wider use and acceptance of a shared authentication approach, such as OAuth. In particular,

the individual semantic Web API descriptions, enriched with annotations about authentication

details, can be wrapped and automatically processed to implement only one protocol. For exam-

ple, a general solution can be based on OAuth authentication against OmniVoke, which stores

the individually required credentials and manages them on behalf of the certified user, directly

communicating them to the API server upon invocation.

12.3.4 Extending SWEET

The possibilities for extending, improving and adapting SWEET are multifold, including im-

provements and adjustments of the user interface, options for accessing existing text processing

APIs in order to identify and highlight keywords and phrases in the HTML documentation, and

Appendices 247

more extended annotation support. Here we describe two main lines of work that might lead to

valuable results.

Including further support for automating annotation tasks
SWEET can be extended by providing support for a number of the annotation tasks that can

be automated and simply presenting the results to the user for validation. For example, the

HTML can be processed in order to directly recognise and highlight the service properties.

Furthermore, the corresponding domain can be determined and used to derive a set of ontologies

that would be suitable to make annotations. In addition, SWEET can easily be enhanced to

include recommendations of individual annotations, or be specifically adopted for a particular

domain.

Adapting SWEET to different use cases
The fact that SWEET has already been reused in a number of projects clearly demonstrates that

one possible future development is its adaptation to specific use cases. Since the basic func-

tionality of the tool is to annotate HTML and produce RDF, the possibilities for adjustment and

adaptation are multifold. It can be used to tag and annotate Website, HTML-based documents

or people profiles.

Part V

Appendices

249

Appendix A

Web API Models

In the appendix we provide more details, which were not included in the main part of the thesis.

In particular, we give example descriptions, the complete MSM, Web API Grounding and WAA

models in RDF, hRESTS mappings and how-to instructions for SWEET.

A.1 Details on the Minimal Service Model

In this section we give more details on the Minimal Service Model. We include the model

in RDF, mappings of the model to hRESTS elements, as well as examples of some semantic

descriptions.

251

Appendices 252

Listing A.1 gives the Minimal Service Model in RDF.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
2 @prefix msm: <http://purl.org/msm#>.
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
4 @prefix xml: <http://www.w3.org/XML/1998/namespace>.
5 @prefix owl: <http://www.w3.org/2002/07/owl#>.
6 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>.
7 @prefix dc: <http://purl.org/dc/terms/>.
8 msm:hasInput a rdf:Property;
9 rdfs:domain msm:Operation;

10 rdfs:isDefinedBy msm:;
11 rdfs:label "has Input"@en;
12 rdfs:range msm:MessageContent.
13 msm:hasInputFault a rdf:Property;
14 rdfs:domain msm:Operation;
15 rdfs:isDefinedBy msm:;
16 rdfs:label "has Input Fault"@en;
17 rdfs:range msm:MessageContent.
18 msm:hasMandatoryPart a rdf:Property;
19 rdfs:isDefinedBy msm:;
20 rdfs:label "has Mandatory Part"@en;
21 rdfs:subPropertyOf msm:hasPart.
22 msm:hasName a rdf:Property;
23 rdfs:domain msm:MessagePart;
24 rdfs:isDefinedBy msm:;
25 rdfs:label "has Name"@en;
26 rdfs:range rdf:Literal.
27 msm:hasOperation a rdf:Property;
28 rdfs:domain msm:Service;
29 rdfs:isDefinedBy msm:;
30 rdfs:label "has Operation"@en;
31 rdfs:range msm:Operation.
32 msm:hasOptionalPart a rdf:Property;
33 rdfs:isDefinedBy msm:;
34 rdfs:label "has Optional Part"@en;
35 rdfs:subPropertyOf msm:hasPart.
36 msm:hasOutput a rdf:Property;
37 rdfs:domain msm:Operation;
38 rdfs:isDefinedBy msm:;
39 rdfs:label "has Output"@en;
40 rdfs:range msm:MessageContent.
41 msm:hasOutputFault a rdf:Property;
42 rdfs:domain msm:Operation;
43 rdfs:isDefinedBy msm:;
44 rdfs:label "has Output Fault"@en;
45 rdfs:range msm:MessageContent.
46 msm:hasPart a rdf:Property;
47 rdfs:domain msm:MessagePart;
48 rdfs:isDefinedBy msm:;
49 rdfs:label "has Part"@en;
50 rdfs:range msm:MessagePart.
51 msm:MessageContent a rdfs:Class;
52 rdfs:isDefinedBy msm:;
53 rdfs:label "Message Content"@en;
54 rdfs:subClassOf msm:MessagePart.
55 msm:MessagePart a rdfs:Class;
56 rdfs:isDefinedBy msm:;
57 rdfs:label "Message Part"@en.
58 msm:Operation a rdfs:Class;
59 rdfs:isDefinedBy msm:;
60 rdfs:label "Operation"@en.
61 msm:Service a rdfs:Class;
62 rdfs:isDefinedBy msm:;
63 rdfs:label "Service"@en.
64 <http://purl.org/msm> dc:created "2010−03−10"^^xsd:date;
65 dc:creator <http://identifiers.kmi.open.ac.uk/people/carlos−pedrinaci/>,
66 <http://identifiers.kmi.open.ac.uk/people/maria−maleshkova/>,
67 <http://kmi.open.ac.uk/>;
68

Appendices 253

69 dc:description "This is a simple ontology that provides the core vocabulary
70 for capturing service properties"@en;
71 dc:modified "2011−12−03"^^xsd:date;
72 a owl:Ontology;
73 rdfs:comment "This is a description of the Minimal Service Model";
74 rdfs:label "Minimal Service Model"@en;
75 owl:imports <http://www.w3.org/ns/sawsdl>,
76 <http://www.wsmo.org/ns/wsmo−lite>;
77 owl:versionInfo "1.1".

LISTING A.1: Minimal Service Model in RDF

Figure A.1 visualises the Minimal Service Model.

Appendices 254

m
sm

:Service
m

sm
:O

peration
m

sm
:M

essage
C

ontent
m

sm
:hasO

peration

m
sm

:hasO
utput

m
sm

:hasO
utputFault

rest:
U

R
ITem

plate
rest:M

ethod

rest:hasAddress
rest:hasM

ethod

http:M
ethod

w
l:Functional

C
lassificationR

oot

w
l:N

onFunctional
Param

eter
w

l:C
ondition

w
l:Effect

rdf:R
esource

saw
sdl:lifting

Schem
aM

apping

ow
l:O

ntology

w
l:O

ntology

w
l:usesO

ntology

m
sm

:M
essage

Part

m
sm

:hasPart

m
sm

:hasM
andatoryPart

m
sm

:hasO
ptionalPart

saw
sdl:m

odel
R

eference

saw
sdl:m

odelR
eference

rdf:R
esource

rdfs:isD
efinedBy rdfs:seeAlso

rdf:Literal

m
sm

:hasN
am

e
saw

sdl:low
ering

Schem
aM

apping

m
sm

:hasInput
m

sm
:hasInputFault

N
am

espace A
bbreviations

xsd: http://w
w

w.w
3.org/2001/XM

LSchem
a

ow
l: http://w

w
w.w

3.org/2002/07/ow
l#

saw
sdl: http://w

w
w.w

3.org/ns/saw
sdl#

m
sm

: http://purl.org/m
sm

/
rest: http://purl.org/hR

ESTS/
http: http://w

w
w.w

3.org/2008/http-m
ethods

w
l: http://w

w
w.w

sm
o.org/ns/w

sm
o-lite#

F
IG

U
R

E
A

.1:
M

inim
alService

M
odel

Appendices 255

Table A.1 describes how MSM elements are mapped to hRESTS/MicroWSMO tags, thus en-

abling the creation of MSM-based service representations on the syntactic level. Given the

HTML documentation of an API, the hRESTS tags can be used to syntactically structure the

documentation, by creating the service, operation, etc., elements.

MSM Property/Concept hRESTS Element
msm:Service class attribute + ’service’ as a value
msm:hasOperation + msm:Operation class attribute + ’operation’ as a value
msm:hasInput + msm:MessageContent class attribute + ’input’ as a value
msm:hasOutput + msm:MessageContent class attribute + ’output’ as a value
msm:hasPart + msm:MessagePart class attribute + ’parameter’ as a value
msm:hasOptionalPart + msm:MessagePart class attribute + ’parameter’ as a value
msm:hasMandatoryPart + msm:MessagePart class attribute + ’parameter-mandatory’ as a value
msm:hasInputFault + msm:MessageContent not mapped to hRESTS
msm:hasOutputFault + msm:MessageContent not mapped to hRESTS
rest:hasAddress + rest:URITemplate class attribute + ’address’ as a value
rest:hasMethod + rest:Method class attribute + ’method’ as a value
msm:hasName + rdf:Literal class attribute + ’label’ as a value
rdfs:isDefinedBy + rdf:Resource not mapped to hRESTS
rdfs:seeAlso + rdf:Resource not mapped to hRESTS
sawsdl:modelReference + rdf:Resource rel attribute + ’model’ as a value

+ href to linked URI
not mapped to MSM class attribute + ’default-value’ as a value

TABLE A.1: Mapping MSM to hRESTS Elements

In needs to be pointed out that not all MSM elements need to be mapped to hRESTS and vice

versa. For instance the default-value is captured only as part of annotations within the HTML.

The default-value can be nested within a parameter element in order to denote its default value.

For example, in the ArtistGetInfo operation, the parameter used to specify the language in op-

tional and in many cases the default language is English (even though, not explicitly stated in the

example API documentation). In this case the parameter would be lang and the default-value

would be English (or, as frequently abbreviated, ’en’).

Listing A.2 gives the documentation of a telecommunications Web API that can be used to send

SMS messages1. The available resources are messages and outbox, while the set of proper-

ties that a message can have are – guid, recipients, body, title, sender. Some of the message

properties are required, while others, such as the title are optional.

1 HTTP Method: POST
2 Resource: /messages/<guid>/outbox
3 Response: (201) Message Location
4

5 Description: Select the outbox folder to send a SMS Message. The Message will be placed in the sent folder.
6

7 Message Properties:
8 Name Methods Value isRequired Description
9 guid GET, POST string required Global unique ID user

10 recipients GET, POST [<guid >,..] required Array of DeviceIds
11 body GET, POST string optional Message content
12 title GET, POST string optional Title of message
13 sender GET, POST <devid> required DeviceIds

LISTING A.2: Example of a Resource-based Web API - Send SMS

1All the used examples are based on the telecommunications use case from the SOA4All EU project, http:
//cordis.europa.eu/project/rcn/85536_en.html

http://cordis.europa.eu/project/rcn/85536_en.html
http://cordis.europa.eu/project/rcn/85536_en.html

Appendices 256

Listing A.3 shows a simplified example request, where a new message is sent by creating a new

message resource in the outbox. The sent message resource properties are in JSON and the used

HTTP method is POST. Therefore, based on the described approach for deriving the operation,

it will be defined by combining POST and message to result in ‘postMessage’. The label does

not really capture the semantics of the activity, however, the MSM-based description can still be

enhanced with, for instance, a classification annotation that states that this is an API for sending

SMS.

1 HTTP POST /rest/1.0/messages/9764e31d65bf4b2aa3f18b0cdad6e8d6/outbox
2 JSON in the HTTP body:
3 {" recipients ":[" tel :3035551212"], "body":"This is a sms body", " title ":" sms title "," sender":"3035551111"}

LISTING A.3: Resource-based Web API - Example Request

Listing A.4 shows a simplified example response, with the confirmation that the resource has

been created (Line 1) and a pointer to where it has been created (Line 3).

1 Response: 201 CREATED
2 Location:
3 /myhost.com/rest/1.0/messages/3464c32f54vf2d5fd9b71b0cngh1n3d2/sms:10652

LISTING A.4: Resource-based Web API - Example Response

Based on this example, we can use the provided details in order to create the following semantic

Web API description. Listing A.5 describes a service with a postMessage operation.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix msm: <http://purl.org/msm#> .
4 @prefix rest: <http://purl.org/hRESTS#> .
5

6 :service1 rdf:type msm:Service ;
7 rdfs:isDefinedBy "http://developer.ribbit.com/restviews?tid=162" ;
8 rest:hasAddress "http://rest.ribbit.com:/rest/1.0" ;
9 msm:hasOperation :postMessage .

10

11 :postMessage rdf:type msm:Operation ;
12 rdfs:label "sendSMS" ;
13 rest:hasAddress "/messages/{guid}/outbox" ;
14 rest:hasMethod "POST" ;
15 msm:hasInput input ;
16 msm:hasOutput output .
17

18 :input rdf:type msm:MessageContent ;
19 msm:hasMandatoryPart guid ;
20 msm:hasMandatoryPart recipient ;
21 msm:hasPart message .
22

23 :output rdf:type msm:MessageContent ;
24 msm:hasPart messageId .
25

26 :guid rdf:type msm:MessagePart ;
27 sawsdl:modelReference <http://purl.org/atom/ns#id> .
28 :recipient rdf:type msm:MessagePart ;
29 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_recipient> .
30 :message rdf:type msm:MessagePart ;
31 msm:hasOptionalPart :body ;
32 msm:hasOptionalPart :title ;
33 msm:hasMandatoryPart :sender .

Appendices 257

34

35 :body rdf:type msm:MessagePart ;
36 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Body> .
37 :title rdf:type msm:MessagePart ;
38 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Title> .
39 :sender rdf:type msm:MessagePart ;
40 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Sender> .
41

42 :messageId rdf:type msm:MessagePart ;
43 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Id> .

LISTING A.5: Example Semantic Web API Description - Send SMS

The operation has a method POST, an input and an output (Lines 14-16). The input consist of

three parts, two of which are mandatory (Line 18-21). The third message part contains further

parts, two of which are optional and the final one, the sender, is mandatory (Lines 30-33). As

exemplified, it is actually very easy to create the description.

We also provide an example based on using the HTTP GET method. Listing A.6 shows a short
documentation of the messages resource and how it can be used with HTTP GET. This listing
also demonstrates that in the previous example with HTTP POST, we could have used the folder
as an input parameter instead of using a directly fixed path in the address (i.e./messages/{guid}/
{folder} vs. /messages/{guid}/outbox). In general, it is up to the annotator to make this decision,
and since the initial description already used a fixed path in the address we decided to use it as
well.

1 HTTP Method: GET
2

3 Resource: /messages/<guid>/<folder>/<msgID>
4 Response: Message Resource
5

6 Description: Ribbit Get details for a specified Message
7

8 Message Properties:
9 Name Methods Value isRequired Description

10 guid GET, POST string required Global unique ID user
11 recipients GET, POST [<guid >,..] required Array of DeviceIds
12 body GET, POST string optional Message content
13 title GET, POST string optional Title of message
14 sender GET, POST <devid> required DeviceIds

LISTING A.6: Example of a Resource-based Web API - Get Message Details

Listing A.7 gives the semantic Web API description to retrieving the message resource with the

HTTP GET method, based on the brief documentation in the listing above. The service has

an operation getMessage with an input and an output (Lines 11-15). Here the naming of the

operation does not capture precisely the semantics of what it actually does. However, as already

mentioned, this can be improved by adding a reference to a classification ontology, explicitly

stating that this is an operation that gets message details. The input consists of three parts, all of

which are mandatory (Lines 17-20). These message parts are actually used to specify the values

in the address URI pattern (/messages/{guid}/{folder}/{msgID}).

Appendices 258

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix msm: <http://purl.org/msm#> .
4 @prefix rest: <http://purl.org/hRESTS#> .
5

6 :service1 rdf:type msm:Service ;
7 rdfs:isDefinedBy "http://developer.ribbit.com/restviews?tid=162" ;
8 rest:hasAddress "http://rest.ribbit.com:/rest/1.0" ;
9 msm:hasOperation :getMessage .

10

11 :getMessage rdf:type msm:Operation ;
12 rest:hasAddress "/messages/{guid}/{folder}/{msgID}" ;
13 rest:hasMethod "GET" ;
14 msm:hasInput input ;
15 msm:hasOutput output .
16

17 :input rdf:type msm:MessageContent ;
18 msm:hasMandatoryPart param1 ;
19 msm:hasMandatoryPart param2 ;
20 msm:hasMandatoryPart param3 .
21

22 :output rdf:type msm:MessageContent ;
23 msm:hasPart param4 .
24

25 :param1 rdf:type msm:MessagePart ;
26 sawsdl:modelReference <http://purl.org/atom/ns#id> .
27 :param2 rdf:type msm:MessagePart ;
28 sawsdl:modelReference < http://moguntia.ucd.ie/owl/Datatypes.owl#Folder> .
29 :param3 rdf:type msm:MessagePart ;
30 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message_Id> .
31

32 :param4 rdf:type msm:MessagePart ;
33 sawsdl:modelReference <http://www.w3.org/2004/02/wsa/MessageModel.owl#Message> .

LISTING A.7: Example Semantic Web API Description - Get Message Details

We could also define the message parts as optional, however, then the created description would

not fit the example documentation, since it would enable the retrieving of further resources (i.e.

folder) instead of only the message details to a given message Id. Finally, the operation has one

output, which is the actual message containing all the message details as well (as opposed to

only the message Id, as in the previous example).

A.2 Details on the Web API Grounding Model

In this section we give more details on the Web API Grounding Model. We include the model

in RDF and mappings of the model to hRESTS elements.

Appendices 259

Listing A.8 gives the Web API Grounding Model in RDF.

1 @prefix dc: <http://purl.org/dc/terms/>.
2 @prefix http: <http://www.w3.org/2008/http−methods#>.
3 @prefix msm: <http://purl.org/msm#>.
4 @prefix owl: <http://www.w3.org/2002/07/owl#>.
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
6 @prefix xml: <http://www.w3.org/XML/1998/namespace>.
7 @prefix rest: <http://purl.org/hRESTS#>.
8 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
9 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>.

10 rest:acceptsContentType a rdf:Property;
11 rdfs:isDefinedBy rest:;
12 rdfs:label "accepts Content Type"@en;
13 rdfs:range rest:MediaType.
14 rest:automaticallyExtractedDescription a rdf:Property;
15 rdfs:isDefinedBy rest:;
16 rdfs:label "automatically Extracted Description"@en;
17 rdfs:range rdf:Literal.
18 rest:hasAddress a rdf:Property;
19 rdfs:isDefinedBy rest:;
20 rdfs:label "has Address"@en;
21 rdfs:range rest:URITemplate.
22 rest:hasComment a rdf:Property;
23 rdfs:isDefinedBy rest:;
24 rdfs:label "has Comment"@en;
25 rdfs:subPropertyOf rdf:comment.
26 rest:hasMethod a rdf:Property;
27 rdfs:domain msm:Operation;
28 rdfs:isDefinedBy rest:;
29 rdfs:label "has Method"@en;
30 rdfs:range rest:Method.
31 rest:isGroundedIn a rdf:Property;
32 rdfs:domain msm:MessagePart;
33 rdfs:isDefinedBy rest:;
34 rdfs:label "is Grounded In"@en.
35 rest:MediaType a rdfs:Datatype;
36 rdfs:isDefinedBy rest:;
37 rdfs:label "Media Type"@en.
38 rest:OutputFormatParameter a rdfs:Class;
39 rdfs:description "an input parameter that is used to determine the format of the,
40 to use as sawsdl:modelReference on msm:MessagePart)"@en;
41 rdfs:isDefinedBy rest:;
42 rdfs:label "Output Format Parameter"@en.
43 rest:producesContentType a rdf:Property;
44 rdfs:isDefinedBy rest:;
45 rdfs:label "produces Content Type"@en;
46 rdfs:range rest:MediaType.
47 rest:URITemplate a rdfs:Class;
48 rdfs:isDefinedBy rest:;
49 rdfs:label "URI Template"@en.
50 http:Method a rdfs:Class;
51 rdfs:subClassOf rest:Method.
52 <http://purl.org/hRESTS> dc:created "2010−03−10"^^xsd:date;
53 dc:creator <http://identifiers.kmi.open.ac.uk/people/carlos−pedrinaci/>,
54 <http://identifiers.kmi.open.ac.uk/people/maria−maleshkova/>, <http://kmi.open.ac.uk/>;
55 dc:description "This is a description of the Web API Grounding Model,
56 a simple model for capturing Web API details relevant for invocation support"@en;
57 dc:modified "2011−12−03"^^xsd:date;
58 a owl:Ontology;
59 rdfs:label "Web API Grounding Model"@en;
60 owl:imports <http://purl.org/msm>, <http://www.w3.org/2011/http>, <http://www.w3.org/2011/http−methods>;
61 owl:versionInfo "1.1".

LISTING A.8: Web API Grounding Model in RDF

Figure A.2 visualises the Web API Grounding Model.

Appendices 260

F
IG

U
R

E
A

.2:
W

eb
A

PIG
rounding

M
odel

Appendices 261

Listing A.2 contains two additional elements, which were not previously discussed in details

– the OutputFormatParameter and the automaticallyExtractedDescription. These are used to

mark content directly within the HTML documentation. As the name suggests, the Output-

FormatParameter is used to mark parameters that are used to specify the format of the output

(XML, JSON, etc.). The automaticallyExtractedDescription property is used to mark parts of

the documentation, which have been automatically processed and annotated. This element is

introduced in order to support mechanisms that process the textual documentation and directly

enhance parts of it. Elements marked with this property might, for instance, need validation by

the annotator.

Table A.2 describes how the Web API Grounding Model elements are mapped to hRESTS tags.

Grounding Model Property/Concept hRESTS Element
rest:isGroundedIn + rdf:PlainLiteral class attribute + ’grounding’ as a value

title attribute + name of parameter as value
rest:isGroundedIn + http:body rel attribute + ’grounding’ as a value

href attribute + ’http://www.w3c.org/2006/http#body’ as a value
rest:isGroundedIn + http:HeaderName rel attribute + ’grounding’ as a value

href attribute + ’http://www.w3c.org/2006/http#HeaderName’
rest:hasAddress + rest:URITemplate class attribute + ’address’ as a value

rest:hasMethod + rest:Method class attribute + ’method’ as a value

rest:acceptsContentType + rest:MediaType class attribute + ’content-type’ as a value
title attribute + media type (e.g application/xml) as value

rest:producesContentType + rest:MediaType class attribute + ’content-type’ as a value
title attribute + media type (e.g JSON) as value

rest:OutputFormatParameter class attribute + ’parameter-output-format’ as a value

rest:automaticallyExtractedDescription class attribute + ’comment’ as a value

TABLE A.2: Mapping of the Web API Grounding Model to hRESTS Elements

A.3 Details on the Web API Authentication Model

In this section we give more details on the Web API Authentication Model. We include the

model in RDF, examples of how annotations can be made with WAA within the HTML and

some semantic descriptions of authentication mechanisms, credentials, and the API as a whole.

Appendices 262

Listing A.9 gives the Web API Authentication model in RDF.

1 @prefix xml: <http://www.w3.org/XML/1998/namespace>.
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>.
3 @prefix waa: <http://purl.org/waa#>.
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>.
6 @prefix owl: <http://www.w3.org/2002/07/owl#>.
7 @prefix msm: <http://purl.org/msm#>.
8 @prefix dc: <http://purl.org/dc/terms/>.
9 waa:APIKey a rdfs:Class;

10 rdfs:isDefinedBy waa:;
11 rdfs:label "APIKey"@en;
12 rdfs:subClassOf waa:Credentials.
13 waa:AuthenticationMechanism a rdfs:Class;
14 rdfs:description "The mechanism used to perform authentication"@en;
15 rdfs:isDefinedBy waa:;
16 rdfs:label "AuthenticationMechanism"@en.
17 waa:composedOf a rdf:Property;
18 rdfs:domain waa:Credentials;
19 rdfs:isDefinedBy waa:;
20 rdfs:label "composedOf"@en;
21 rdfs:range waa:Credentials.
22 waa:Credentials a rdfs:Class;
23 rdfs:description "The credentials used to perform the authentication"@en;
24 rdfs:isDefinedBy waa:;
25 rdfs:label "Credentials"@en.
26 waa:Direct a rdfs:Class;
27 rdfs:isDefinedBy waa:;
28 rdfs:label "Direct"@en;
29 rdfs:subClassOf waa:AuthenticationMechanism.
30 waa:hasAuthenticationMechanism a rdf:Property;
31 rdfs:isDefinedBy waa:;
32 rdfs:label "hasAuthenticationMechanism"@en;
33 rdfs:range waa:AuthenticationMechanism.
34 waa:hasInputCredentials a rdf:Property;
35 rdfs:domain waa:AuthenticationMechanism;
36 rdfs:isDefinedBy waa:;
37 rdfs:label "hasInputCredentials"@en;
38 rdfs:range waa:Credentials.
39 waa:hasName a rdf:Property;
40 rdfs:domain waa:Credentials;
41 rdfs:isDefinedBy waa:;
42 rdfs:label "hasName"@en.
43 waa:hasValue a rdf:Property;
44 rdfs:domain waa:Credentials;
45 rdfs:isDefinedBy waa:;
46 rdfs:label "hasValue"@en.
47 waa:HTTPBasic a rdfs:Class;
48 rdfs:isDefinedBy waa:;
49 rdfs:label "HTTPBasic"@en;
50 rdfs:subClassOf waa:AuthenticationMechanism.
51 waa:HTTPDigest a rdfs:Class;
52 rdfs:isDefinedBy waa:;
53 rdfs:label "HTTPDigest"@en;
54 rdfs:subClassOf waa:AuthenticationMechanism.
55 waa:isGroundedIn a rdf:Property;
56 rdfs:domain waa:Credentials;
57 rdfs:isDefinedBy waa:;
58 rdfs:label "isGroundedIn"@en.
59 waa:OAuth a rdfs:Class;
60 rdfs:isDefinedBy waa:;
61 rdfs:label "OAuth"@en;
62 rdfs:subClassOf waa:AuthenticationMechanism.
63 waa:OAuthConsumerKey a rdfs:Class;
64 rdfs:isDefinedBy waa:;
65 rdfs:label "OAuthConsumerKey"@en;
66 rdfs:subClassOf waa:Credentials.
67

68

Appendices 263

69 waa:OAuthConsumerSecret a rdfs:Class;
70 rdfs:isDefinedBy waa:;
71 rdfs:label "OAuthConsumerSecret"@en;
72 rdfs:subClassOf waa:Credentials.
73 waa:OAuthToken a rdfs:Class;
74 rdfs:isDefinedBy waa:;
75 rdfs:label "OAuthToken"@en;
76 rdfs:subClassOf waa:Credentials.
77 waa:OAuthTokenSecret a rdfs:Class;
78 rdfs:isDefinedBy waa:;
79 rdfs:label "OAuthTokenSecret"@en;
80 rdfs:subClassOf waa:Credentials.
81 waa:Password a rdfs:Class;
82 rdfs:isDefinedBy waa:;
83 rdfs:label "Password"@en;
84 rdfs:subClassOf waa:Credentials.
85 waa:realm a rdf:Property;
86 rdfs:domain waa:AuthenticationMechanism;
87 rdfs:isDefinedBy waa:;
88 rdfs:label "realm"@en.
89 waa:requiresAuthentication a rdf:Property;
90 rdfs:domain msm:Service;
91 rdfs:isDefinedBy waa:;
92 rdfs:label "requiresAuthentication"@en;
93 rdfs:range waa:ServiceAuthentication.
94 waa:ServiceAuthentication a rdfs:Class;
95 rdfs:comment "Includes all, some, none as option. Assigned or automatically derived";
96 rdfs:isDefinedBy waa:;
97 rdfs:label "ServiceAuthentication"@en.
98 waa:SessionBased a rdfs:Class;
99 rdfs:isDefinedBy waa:;

100 rdfs:label "SessionBased"@en;
101 rdfs:subClassOf waa:AuthenticationMechanism.
102 waa:Username a rdfs:Class;
103 rdfs:isDefinedBy waa:;
104 rdfs:label "Username"@en;
105 rdfs:subClassOf waa:Credentials.
106 waa:wayOfSendingInformation a rdf:Property;
107 rdfs:domain waa:AuthenticationMechanism;
108 rdfs:isDefinedBy waa:;
109 rdfs:label "wayOfSendingInformation"@en.
110 waa:WebAPIOperation a rdfs:Class;
111 rdfs:label "WebAPIOperation"@en;
112 rdfs:subClassOf waa:AuthenticationMechanism.
113 <http://purl.org/waa#All> a waa:ServiceAuthentication.
114 <http://purl.org/waa#Some> a waa:ServiceAuthentication.
115 <http://purl.org/waa#None> a waa:ServiceAuthentication.
116 <http://purl.org/waa> dc:created "2010−05−10"^^xsd:date;
117 dc:creator <http://identifiers.kmi.open.ac.uk/people/carlos−pedrinaci/>,
118 <http://identifiers.kmi.open.ac.uk/people/maria−maleshkova/>,
119 <http://kmi.open.ac.uk/>;
120 dc:description "This is a description of the Web API Authentication model,
121 a simple model for capturing Web API−related authentication information"@en;
122 dc:modified "2011−12−03"^^xsd:date;
123 a owl:Ontology;
124 rdfs:label "Web API Authentication Model"@en;
125 owl:imports <http://purl.org/msm>;
126 owl:versionInfo "1.1".

LISTING A.9: Web API Authentication Model in RDF

Figure A.3 visualises the Web API Authentication Model.

Appendices 264

F
IG

U
R

E
A

.3:
W

eb
A

PIA
uthentication

M
odel

Appendices 265

Table A.3 describes how WAA-based annotations can be made within the HTML documenta-

tion. We use the model reference tag, as provided by SAWSDL. All of the mappings are based

on using model references and there are no newly introduced hRESTS tags.

Authentication Model Property/Concept hRESTS Element
waa:requiresAuthentication rel attribute + ’model’ as a value
+ waa:ServiceAuthentication href attribute + http://purl.oclc.org/waa#All

OR + http://purl.oclc.org/waa#Some
OR + http://purl.oclc.org/waa#None

waa:hasAuthenticationMechanism rel attribute + ’model’ as a value
+ waa:AuthenticationMechanism href attribute + URI to a AuthenticationMechanism instance

TABLE A.3: Mapping of the Web API Authentication Model to hRESTS Elements

Listing A.10 shows an example HTML documentation, with inserted authentication details.

1 <div class="service" id="service1"><h1>Last.fm Web Services</h1>
2
3 <div class="operation" id="op1"><h2>artist.getInfo</h2>
4
5 http://ws.audioscrobbler.com/2.0/?method=artist.getinfo...
6 <div class="input" id="input1">...</div>
7 <div class="output" id="output1">Artist</div></div></div>

LISTING A.10: Web API Authentication Information through hRESTS

Listing A.11 shows how this instance of the AuthenticationMechanism class looks like. As can

be seen, the capturing of authentication information with the provided Web API authentication

ontology is very simple and easy to apply.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http://purl.oclc.org/waa#> .
3 <http://purl.oclc.org/NET/WebApiAuthentication/LastFm> rdf:type waa:Direct ;
4 waa:realm <http://www.last.fm/api/> ;
5 waa:hasInputCredentials <http://purl.oclc.org/NET/WebApiAuthentication/LastFmAPIKey> ;
6 waa:wayOfSendingInformation waa:ViaURI .

LISTING A.11: Example Instance of the AuthenticationMechanism Class

Finally, listing A.12 shows how example authentication waa:APIKey credentials can look like.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix waa: <http://purl.oclc.org/waa#> .
3 <http://purl.oclc.org/NET/WebApiAuthentication/LastFmAPIKey> rdf:type waa:APIKey ;
4 waa:hasName "Last.fm API Key" ;
5 waa:hasValue "myAPIKey29813719823918273" .

LISTING A.12: Example Credentials for APIKey

Appendices 266

Listing A.13 shows a complete semantic Web API description with authentication information.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix msm: <http://purl.org/msm#> .
5 @prefix rest: <http://purl.org/hRESTS#> .
6 @prefix waa: <http://purl.org/waa#> .
7

8 :lastfmService a msm:Service ;
9 rdfs:isDefinedBy <http://www.last.fm/api/show?service=267> ;

10 rest:hasAddress "method=artist.getinfo&artist={p1} &api_key={p2}"^^rest:URITemplate ;
11 waa:requiresAuthentication waa:All ;
12 msm:hasOperation :ArtistGetInfo .
13 :ArtistGetInfo a msm:Operation ;
14 msm:hasInput :ArtistGetInfoInput ;
15 rest:hasAddress "http://ws.audioscrobbler.com/2.0/?"^^rest:URITemplate .
16 waa:hasAuthenticationMechanism :lastfmAuth .
17 :lastfmAuth a waa:Direct ;
18 waa:realm <http://www.last.fm/api/> ;
19 waa:hasInputCredentials :api_key ;
20 waa:wayOfSendingInformation waa:ViaURI .
21 :api_key a waa:APIKey ;
22 waa:isGroundedIn "p2" .
23 :ArtistGetInfoInput a msm:MessageContent ;
24 msm:hasPart :artist .
25 :artist a msm:MessagePart ;
26 rest:isGroundedIn "p1"^^rdf:PlainLiteral .

LISTING A.13: Example Authentication Details Annotation I

Listing A.14 shows some further examples.

1 @prefix : <http://iserve.kmi.open.ac.uk/resource/services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix msm: <http://purl.org/msm#> .
5 @prefix rest: <http://purl.org/hRESTS#> .
6 @prefix waa: <http://purl.org/waa#> .
7

8 :lastfmService a msm:Service ;
9 rdfs:isDefinedBy <http://www.last.fm/api/show?service=267> ;

10 rest:hasAddress "method=artist.getinfo&artist={p1}&api_key={p2}"^^rest:URITemplate;
11 waa:requiresAuthentication waa:All ;
12 msm:hasOperation :ArtistGetInfo .
13 :ArtistGetInfo a msm:Operation;
14 msm:hasInput :ArtistGetInfoInput;
15 rest:hasAddress "http://ws.audioscrobbler.com/2.0/?"^^rest:URITemplate.
16 waa:hasAuthenticationMechanism :lastfmAuth.
17

18 #credentials based on API key
19 :lastfmAuth a waa:Direct;
20 waa:realm <http://www.last.fm/api/> ;
21 waa:hasInputCredentials :api_key ;
22 waa:wayOfSendingInformation waa:ViaURI .
23 :api_key a waa:APIKey ;
24 waa:isGroundedIn "p2" .
25

26 #alternative for the credentials based on username and password
27 :lastfmAuth a waa:Direct;
28 waa:realm <http://www.last.fm/api/> ;
29 waa:hasInputCredentials :a, :b ;
30 waa:wayOfSendingInformation waa:ViaHTTPHeader.
31 :a a waa:Username;
32 waa:isGroundedIn "h1" .
33 :b a waa:Password;
34 waa:isGroundedIn "h2" .
35

Appendices 267

36 #OAuth example
37 :yelpAuth a waa:OAuth ;
38 waa:realm <http://www.ye.lp/> ;
39 waa:hasInputCredentials :consumer_key, :consumer_secret, :token, :token_secret .
40 :consumer_key a waa:OAuthConsumerKey .
41 :consumer_secret a waa:OAuthConsumerSecret .
42 :token a waa:OAuthToken .
43 :token_secret a waa:OAuthTokenSecret .

LISTING A.14: Example Authentication Details Annotation II

Appendix B

Supporting Tools

In this appendix we provide more details and how-to instructions for SWEET.

B.1 Using SWEET to Make Annotations

In this section we provide an example, as well as a sample hands-on session for SWEET.

Listing B.1 shows an example service description annotated with MicroWSMO by using SWEET.

Line 2 uses the model relation to indicate that the service searches for events, while line 10 as-

sociates the input parameter username with the class Username. The lowering schema for the

recipient is also provided in line 11.

1 <div class="service" id="s1"><h1>happenr API</h1>
2
3 Happenr has two main methods to call "getEvents" and ...
4 <p>All operations should be directed at http :// happenr.3scale.net/</p>
5 <h2>Example usage</h2>
6 http://happenr.3scale.ws/webservices/getEvents.php?user_key=xxx
7 <p>where the userkey is the key issues with the signup you made.</p>
8 <div class="operation" id="op1"><h2>getEvents Method</h2>
9

10 <h3>username
11 (lowering)</h3>
12 <p>Your username that you received from Happenr in order to query this webservice.</p>
13 <h3>password<a>
14 (lowering)</h3>
15 <p>Your password that you received from Happenr in order to query this webservice.</p>

LISTING B.1: Example Web API Description - Happenr

269

Appendices 270

B.1.1 Hands-on with SWEET

In this section we give a hands-on session, based on three tasks.

Hands-On Sessions Outline:

• Task 1 - Service Discovery

• Task 2 - Web API Semantic Annotation

• Task 3 - Semantics-based Web Service Search

Task 1: Service Discovery (Finding Web APIs and Web Services)

Imagine the following three scenarios and try to find suitable Web APIs and Web services on

the Web that could help you.

Scenario 1: Mapping/Geocoding API
The client is looking for a service that provides mapping (showing map, routes, directions) or

geocoding (resolving an address to a geographical location) functionalities.

Scenario 2: US Geocoding Request
The client is looking for a service to geocode US addresses (e.g. lookup the geographic location

of a postal addresses). The license status of services should be ignored for the search.

This service has the following inputs:

• US postal address of type address: A structured US postal address (street, house number,

city, state, five letter zip code). We assume that the client is able to provide the address in

unstructured format, too.

This service has the following outputs:

• Geographic location of type geographic point: Latitude and longitude of the given address

(or of the bounding box corresponding to the given address).

Scenario 3: US City Data Request
The client is looking for services that provide information about a given US location using city

and state as input. The client is most interested in the zip code(s), area code(s) and the geo-

graphic location. Should a city have multiple zip codes and area codes, all are requested. If the

three data items mentioned above are provided, the service is considered ideal, but even if none

of these are provided, the service should be considered relevant as long as some other informa-

tion about the city (map of the city, population, time zone, current events, traffic situation... the

more the better) is offered.

This service has the following inputs:

• US city name of type city: A valid US city name

• US state code of type province: The US state that the city is located in

Appendices 271

This service has the following outputs:

• Zip codes, list of type postal code: The 5-digit zip code(s) for the city

• Area code(s), list of type area code: The 3-digit area code(s) for the city

• Geographic location of type geographic area: The geographic location (lat/lng, either

point or bounding box) of the city

Task 2: Web API Semantic Annotation
With the help of SWEET try to annotate some of the Web APIs below:

• Geo Services (www.earthtools.org)

• Geocoder (nearby.org.uk)

• Geocoding API : Reverse Geocoding API : Cross Street Intersection Geocoding API

(geocoder.ca)

• Directions Web Service API (www.geosmart.co.nz)

• Point of Interest (POI) Web Service - Version 2 API Documentation (www.geosmart.co.nz)

• Geonames Web Services (www.geonames.org)

• Google Static Maps (code.google.com)

Step-by-step Guide for Annotating the GeoNames API Documentation
Open SWEET – http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html

Open GeoNames WebService documentation – http://www.geonames.org/export/web-services.html

1. Annotate the CountryCode operation

2. Create Service property

3. Rename it to "GeoNames"

4. Create Operation property

5. Rename it to "CountryCode"

6. Create Input

7. Create Output

8. Create Address

9. Rename address property (not the label itself) to http://api.geonames.org/countryCode

Appendices 272

10. Create HTTP Method

11. Rename method property (not the label itself) to "GET"

12. Create Parameter "lat"

13. Select the "lat" string then double-click on Parameter

14. Rename the parameter to "lat"

15. Create Parameter "long"

16. Create Parameter "username"

17. Create Parameter "soCode"

18. On Service – add model reference to:

– http://www.service-finder.eu/ontologies/ServiceCategories#Maps%20and%20Geography

– http://www.service-finder.eu/ontologies/ServiceOntology#Free

19. On Input – add model reference to:

– lat – http://www.w3.org/2003/01/geo/wgs84_pos#lat

– long – http://www.w3.org/2003/01/geo/wgs84_pos#long

– username – http://purl.oclc.org/NET/WebApiAuthentication#Username

20. On Output – add model reference to:

– isoCode – http://www.geonames.org/ontology#countryCode

21. Input lowering – http://people.kmi.open.ac.uk/ning/Schema/GeoNames/CountryCodeLowering.txt

22. Output lifting – http://people.kmi.open.ac.uk/ning/Schema/GeoNames/CountryCodeLifting.txt

23. Publish the Description:

– Look at the annotated HTML by saving it to your local machine

– Look at the generated RDF by exporting it to you local machine

24. Publish the description in the semantic Web service repository iServe http://iserve-dev.kmi.open.ac.uk/iserve

– credential to use: maria, maria

– Note the service ID

Task 3: Discovering Web APIs
Now that you have uploaded the annotated version of the Web APIs, try to use iServe to answer

the queries from Task 1. You are encouraged to use the SPARQL querying window in iServe

Browser to this end.

Look at you service description:

– http://iserve-dev.kmi.open.ac.uk/iserve/page/services/YOURSERVICEID

Appendices 273

– http://iserve-dev.kmi.open.ac.uk/iserve/page/services/db4b646a-4665-4337-9626-4669cc8bce56

Find it by using the taxonomy tree on the left.

Search directly with a SPARQL query, based on functionality (Listing B.2).

1 PREFIX rdfs:<http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
3 PREFIX rdf:<http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 PREFIX owl:<http://www.w3.org/2002/07/owl#>
5 PREFIX wsl:<http://www.wsmo.org/ns/wsmo−lite#>
6 PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
7 PREFIX msm:<http://cms−wg.sti2.org/ns/minimal−service−model#>
8

9 SELECT ?s WHERE {
10 ?s rdf:type msm:Service.
11 ?s sawsdl:modelReference ?modelref .
12 ?modelref rdfs:subClassOf <http://www.service−finder.eu/ontologies/ServiceCategories#Maps\%20and\%20Geography> .

LISTING B.2: Sample SPARLQ Query - Search Based on Functionality

Search for free services (Listing B.3).

1 PREFIX rdfs:<http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
3 PREFIX rdf:<http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 PREFIX owl:<http://www.w3.org/2002/07/owl#>
5 PREFIX wsl:<http://www.wsmo.org/ns/wsmo−lite#>
6 PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
7 PREFIX msm:<http://cms−wg.sti2.org/ns/minimal−service−model#>
8

9 SELECT ?s WHERE {
10 ?s rdf:type msm:Service.
11 ?s sawsdl:modelReference <http://www.service−finder.eu/ontologies/ServiceOntology#Free> . }

LISTING B.3: Sample SPARLQ Query - Search for Free Services

Look for a service with particular input (Listing B.4).

1 PREFIX rdfs:<http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
3 PREFIX rdf:<http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 PREFIX owl:<http://www.w3.org/2002/07/owl#>
5 PREFIX wsl:<http://www.wsmo.org/ns/wsmo−lite#>
6 PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
7 PREFIX msm:<http://cms−wg.sti2.org/ns/minimal−service−model#>
8

9 SELECT ?s WHERE {
10 ?s rdf:type msm:Service.
11 ?s msm:hasOperation ?op .
12 ?op msm:hasInput ?in .
13 ?in sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#long> .
14 ?op msm:hasInput ?in1 .
15 ?in1 sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#lat> .

Appendices 274

LISTING B.4: Sample SPARLQ Query - Search Based on Input

Look for a service with particular input/output (Listing B.5).

1 PREFIX rdfs:<http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
3 PREFIX rdf:<http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 PREFIX owl:<http://www.w3.org/2002/07/owl#>
5 PREFIX wsl:<http://www.wsmo.org/ns/wsmo−lite#>
6 PREFIX sawsdl:<http://www.w3.org/ns/sawsdl#>
7 PREFIX msm:<http://cms−wg.sti2.org/ns/minimal−service−model#>
8

9 SELECT ?s WHERE {
10 ?s rdf:type msm:Service.
11 ?s msm:hasOperation ?op .
12 ?op msm:hasInput ?in .
13 ?in sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#long> .
14 ?op msm:hasInput ?in1 .
15 ?in1 sawsdl:modelReference <http://www.w3.org/2003/01/geo/wgs84_pos#lat> .
16 ?op msm:hasOutput ?out.
17 ?out sawsdl:modelReference <http://www.geonames.org/ontology#countryCode> .

LISTING B.5: Sample SPARLQ Query - Search Based on Input and Output

Appendices 275

B.2 The Web API Survey System

The experience of the first study, where all the results were collected in a single spreadsheet,

raised the need for a supporting tool that would speed up the analysis process and let the survey

participant focus on the API documentation and not on how the collected inputs are stored

and structured. The presented system is implemented as a Web application that can be easily

configured and without redeployment be used to conduct different surveys in parallel. It enables

the crowdsourcing of

B.2.1 Survey Model and Setup

The Web API survey system was designed to ease the gathering of Web API details by enabling

people from distributed locations to provide input, thus supporting the crowd-sourcing of the

Web API analysis task. The precise formulation of the questions, the selection of available

answers as well as the provisioning of examples, enable easy completion of the survey, also

without much prior knowledge in the area of Web APIs.

The survey system implements all API characteristics used as part of the second survey, how-

ever, it can be configured to show only a desired subset in order to collect information about

a restricted number of features. For example, the system can be used to gather details related

only to classification or only to authentication. The result is a flexible and customisable Web

application that can be distributed to different groups of participants in order to serve a variety

of research interests.

The data collected by the survey system is stored in a triplestore in RDF [Hay04]. We use a

very simple underlying model, where each survey entry in an instance of the ServiceReposito-

rySurveyEntry class with namespace http://kmi.open.ac.uk/web-api. A survey entry has a set

of properties given in detail in Table B.1. The properties can be divided into seven groups, in-

cluding properties relating to API general information, input details, output details, invocation

details, type of API, additional documentation and survey details.

In particular, the survey properties are used for analysing the collected data. For example,

the scope determines as part of which survey the set of triples was created. It can be used to

distinguish between the data gathered as part of different surveys but that is stored by the same

system deployment in the same triplestore. Similarly, the debug can be used to see a summary

of the user input that has been submitted upon completing the survey. The following section

describes in detail how the system was implemented and how the here described survey model

was put into practice.

Appendices 276

ID Property Name ID Property Name
1 apiId 20 input-hasDatatype
2 api-name 21 input-hasSessionInfo
3 api-lastUpdated 22 input-hasCodedParams
4 api-desc 23 input-links
5 documentationUrl-isCorrect 24 input-hasRequiredParams
6 apiClasses 25 input-hasOptionalParams
7 tags 26 input-isGroundedIn
8 numberOfOperations 27 input-hasAltParams
9 survey-canBeCompleted 28 input-hasBoolParams
10 user 29 input-isObject
11 debug 30 output-format
12 scope 31 output-hasSchema
13 hasDateTime 32 auth-transMedium
14 webapi-type 33 authreq
15 desc-hasInvocUri 34 auth
16 isHttpMethodDefined 35 auth-example
17 uri-hasTemplates 36 err-has
18 uri-hasVersionInfo 37 err-useHttpErrs
19 uri-hasQueryParams 38 example-resp

39 example-req

TABLE B.1: Web API Survey Model

B.2.2 Survey System Implementation

The Web API survey system is realised in the form of a Web application and has a very tradi-

tional architecture, consisting of three main components – user interface, data processing and

data storage. The user interface is designed as a sequence of Web forms, which gather user input

and present information about the API that is being analysed1. There are no dynamic elements

used, however, the individual parts of the forms can be shown or not depending on the current

configuration. As a result the user interface implements visualisation of all Web API features

but the specific combination of features to use can be changed by setting particular parameter

values. Figure B.1 shows the first pages of the user interface.

The data processing component transforms the input gathered via the user interface and prepares

it for storage. Similarly, it also retrieves and transforms the general Web API information,

such as name, description, and URL to the documentation, and passes it to the UI. The actual

processing is very minimal and involves mostly data formatting and adjustment. Finally, the data

storage component includes two repositories. The first one implements the survey model as part

of a triplestore, where all the gathered input is collected. The second one stores data obtained

from the ProgrammableWeb website, including details about each API that are presented as

part of the survey, either as informative details or as features that need validation. We used a
1The presented general information is based on the ProgrammableWeb directory.

Appendices 277

FIGURE B.1: Web API Survey System - Form 1

Sesame server2 for the data storage. The Web application is based on JavaServer Pages (JSP) and

Java, while the user interface is implemented with Cascading Style Sheets (CSS) and HTML.

The complete code of the survey system project is available under https://github.com/

mmale/WebAPISurvey.

As already mentioned, the system can be easily configured to show or hide different parts of

the survey. Figure B.2 shows the second page of the Web application. Parts of this page, or the

complete page can be hidden by setting the corresponding values to the ’remove’ parameter –

rm. For example, ?rm=%23auth-fieldset hides the box containing authentication-relevant ques-

tions. The rm parameter needs to be set to the escape value of the IDs of the fields that need to
2http://www.openrdf.org/

https://github.com/mmale/WebAPISurvey
https://github.com/mmale/WebAPISurvey
http://www.openrdf.org/

Appendices 278

be hidden (remove #section1,#fieldsetQuery will be ?rm=%23section1%2C%23fieldsetQuery).

This is because hide/remove is realised with the help of a CSS jQuery selector.

FIGURE B.2: Web API Survey System - Form 2

Figure B.3 and Figure B.4 show the fields for collecting input and output details correspondingly.

However, there are three possible ways of determining for which API the survey should be

completed. First, the default setting can be used by loading the survey directly via the URL

without any parameters. In this case the next API, for which the survey has not been completed

yet, will automatically be selected and returned. In addition, it can be configured that each APIs

has a number of survey entries, for example, at least two, before moving on to the next API (i.e.,

at least two people have to complete the survey for one particular API). However, the value of

this parameter needs to be set before the survey system is deployed.

Second, the survey can be completed for a particular API, by passing the API ID in the dataset,

storing the data collected from ProgrammableWeb. For example, a specific value for the URI

would be ?URI=http://localhost:8080/lpw/resource/apis/aol-video.

Third, the particular API to use in the survey can be determined by directly calling it via the

index value (for example, ?index=6). The index is the sequence number of the API in the

repository, when all APIs are sorted in an ascending order. Since the index might change when

the collection of APIs is modified, it is best to retrieve a particular API over the URI ID. The

Appendices 279

FIGURE B.3: Web API Survey System - Form 3

FIGURE B.4: Web API Survey System - Form 4

option for explicitly selecting the APIs to participate in the survey is especially useful for cases

when only a specific subset needs to be analysed. For example, we used this option in order to

collect details about the APIs used in the first study, by creating a list based on the Excel table

from two years ago and completing the survey for one API after the other.
Finally, Figure B.5 shows the last page of the survey, which is used to submit the answers. The

user has no way of directly seeing what exactly is posted to the repository, however, in some

cases it might be necessary to verify that the stored details are correct. Therefore, we have

included the debug parameter, which if set to show, displays a summary of the user input (for

Appendices 280

FIGURE B.5: Web API Survey System - Form 5

example, ?URI=http://localhost:8080/lpw/resource/apis/aol-video&debug=show). This option

is useful when testing the system but also when a particular configuration of the system needs

to be verified. It is important to point out that in the cases where no value is set for a particular

property in the survey model, i.e., the question in the survey is not answered, the corresponding

tripe in the repository is not created. Therefore, a SurveyEntry instance resulting from complet-

ing only the classification section would have less property instances than one created as a result

of filling out the complete set of forms and questions. In order to avoid having to deal with

a very long parameterised URL, we recommend that it is stored as a PURL or an abbreviated

URL, so that it is easier to distribute it to the survey participants.

So far the Web API survey system has been used in two use cases. First, we used it to collect

the data during the second Web API survey. In fact, the system was developed especially in

order to enable the completion of that study. Second, we configured the system to collect only

classification-relevant details, which were used to reflect on the correctness of the classification

done by ProgrammableWeb but also to evaluate our Web API classification approach, based on

the HTML documentation, described in Chapter 10. Since the survey system is provided in the

form of a Web application, it is very easy to distribute the link to the survey to a large group of

people and use crowd-sourcing for analysing a large number of APIs. In the future we hope to

benefit from the potential of the survey system in a wider range of use cases.

Bibliography

[ABH+01] A. Ankolekar, M. H. Burstein, J. R. Hobbs, O. Lassila, et al. DAML-S: Semantic

markup for web services. In Semantic Web Working Symposium (SWWS), 2001.

[ABMP08] Ben Adida, Mark Birbeck, Shane McCarron, and Steve Pemberton. RDFa in

XHTML: Syntax and Processing, W3C Recommendation, 2008.

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts,

Architectures and Applications. Springer-Verlag, Berlin, 2004.

[ADG+09] José Luis Ambite, Sirish Darbha, Aman Goel, Craig A. Knoblock, Kristina

Lerman, Rahul Parundekar, and Thomas Russ. Automatically constructing

semantic web services from online sources. In The Semantic Web – ISWC 2009:

8th International Semantic Web Conference, Chantilly, VA, USA, pages 17–32,

2009.

[AFM+05] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagaraja, Marc-Thomas

Schmid, Amit Sheth, and Kunal Verma. Web Service Semantics - WSDL-S.

Technical report, World Wide Web Consortium,

http://www.w3.org/Submission/WSDL-S/, November 2005.

[AGDR03] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder. A method for semantically

enhancing the service discovery capabilities of UDDI. IIWeb, pages 87–92,

2003.

[AKKP08] Waseem Akhtar, Jacek Kopecky, Thomas Krennwallner, and Axel Polleres.

XSPARQL: Traveling between the XML and RDF worlds and avoiding the

XSLT pilgrimage. In Manfred Hauswirth, Manolis Koubarakis, and Sean

Bechhofer, editors, Proceedings of the 5th European Semantic Web Conference,

LNCS, Berlin, Heidelberg, June 2008. Springer Verlag.

[All11] Subbu Allamaraju. Describing RESTful applications. infoq, December 2011.

[AMG+10] G. Álvaro, I. Martínez, J.M. Gómez, F. Lecue, C. Pedrinaci, M. Villa, and G. Di

Matteo. Using SPICES for a better service consumption, 2010.

281

Bibliography 282

[AMQ08] E. Al-Masri and M. H. Qusay. Investigating Web Services on the World Wide

Web. In Proceedings of the 17th International Conference on World Wide Web

(WWW), pages 795–804, 2008.

[AW10] R. Alarcón and E. Wilde. RESTler: crawling RESTful services. In Michael

Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors,

Proceedings of the 19th international conference on World Wide Web, WWW

’10, pages 1051–1052. ACM, 2010.

[BAM08] Devis Bianchini, Valeria Antonellis, and Michele Melchiori. Flexible

semantic-based service matchmaking and discovery. In Proceedings

international conference on World Wide Web, volume 11, pages 227–251, 2008.

[BBB+05] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael

Gruninger, Richard Hull, Michael Kifer, David Martin, Sheila McIlraith,

Deborah McGuinness, Jianwen Su, and Said Tabet. Semantic Web Services

Language (SWSL). Member submission, W3C, 2005.

[BCG07] Christian Bizer, Richard Cyganiak, and Tobias Gauss. The RDF Book Mashup:

From Web APIs to a Web of Data. In 3rd Workshop on Scripting for the

Semantic Web, June 2007.

[BCH08] Chris Bizer, Richard Cyganiak, and Tom Heath. How to Publish Linked Data on

the Web, 2008.

[BCPS05] Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, and Rita

Scognamiglio. An approach to support web service classification and

annotation. In Proc. of IEEE International Conference on e-Technology,

e-Commerce and e-Service, pages 138–143. IEEE Press, 2005.

[BEH+02] Erol Bozsak, Marc Ehrig, Siegfried Handschuh, Andreas Hotho, Alexander

Maedche, Boris Motik, Daniel Oberle, Christoph Schmitz, Steffen Staab,

Ljiljana Stojanovic, Nenad Stojanovic, Rudi Studer, Gerd Stumme, York Sure,

Julien Tane, Raphael Volz, and Valentin Zacharias. KAON - towards a large

scale semantic web. In Kurt Bauknecht, A. Min Tjoa, and Gerald Quirchmayr,

editors, Proceedings of the Third International Conference on E-Commerce and

Web Technologies EC-Web 2002, Lecture Notes in Computer Science, pages

304–313. Springer, 2002.

[Bel08] Michael Bell. Introduction to service-oriented modeling. Service-Oriented

Modeling: Service Analysis, Design, and Architecture, page 3, 2008.

Bibliography 283

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So

Far. International Journal on Semantic Web and Information Systems (IJSWIS),

2009.

[Bis12] Stefan Bischof. Optimising XML-RDF data integration - a formal approach to

improve XSPARQL efficiency. In Elena Simperl, Philipp Cimiano, Axel

Polleres, Oscar Corcho, and Valentina Presutti, editors, ESWC, volume 7295 of

Lecture Notes in Computer Science, pages 838–843. Springer, 2012.

[BL99] T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.

[BlCC+06] Tim Berners-lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,

James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and

analyzing linked data on the semantic web. In Proceedings of the 3rd

International Semantic Web User Interaction Workshop, 2006.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource

Identifier (URI): Generic syntax. http://tools.ietf.org/html/rfc3986, 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American Magazine, 2001.

[Bre09] F. Breitling. A standard transformation from XML to RDF via XSLT. CoRR,

abs/0906.2291, 2009.

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, et al. OWL Web

Ontology Language Reference, W3C Recommendation, 2004.

[CD07] Pádraig Cunningham and Sarah Jane Delany. k-Nearest neighbour classifiers,

2007.

[CDM+04] Liliana Cabral, John Domingue, Enrico Motta, Terry R. Payne, and Farshad

Hakimpour. Approaches to semantic web services: an overview and

comparisons. In Christoph Bussler, John Davies, Dieter Fensel, and Rudi

Studer, editors, ESWS, volume 3053 of Lecture Notes in Computer Science,

pages 225–239. Springer, 2004.

[Cer02] Ethan Cerami. Web Services Essentials: Distributed Applications with

XML-RPC, SOAP, UDDI & WSDL. OŔeilly Media, February 2002.

[CFNO04] M. Champion, C. Ferris, E. Newcomer, and D. Orchard. Web Services

Architecture. W3C Working Draft, World Wide Web Consortium, 2004.

[CGK+03] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and

S. Weerawarana. Business Process Execution Language for Web Services,

Bibliography 284

Version 1.1. Standards proposal by BEA Systems, International Business

Machines Corporation, and Microsoft Corporation, 2003.

[Chi07] E. Chinthaka. REST and web services in WSDL 2.0.

http://www.ibm.com/developerworks/webservices/library/ws-rest1/, 2007.

[CHvRR04] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Spec

Technical Committee Draft 3.0.2. Oasis committee draft, OASIS, 2004.

[CLL+10] Y. Chen, J. Li, Y. Lv, H. Qin, and L. Zhang. DRWSC - to simplify dynamic

invocation for RESTful web services. In ICSES, IEEE Press, 2010.

[Clo08] T. Close. Web-key: Mashing with permission. In Proceedings of Web 2.0

Security and Privacy, 2008.

[Cod08] Codehaus. XFire. http://xfire.codehaus.org/, 2008.

[Con11] World Wide Web Consortium. HTTP vocabulary in RDF 1.0, working draft may

2011. http://www.w3.org/TR/HTTP-in-RDF10/M, 2011.

[CS03] J. Cardoso and A. Sheth. Semantic e-Workflow Composition. Journal of

Intelligent Information Systems, 21(3):191–225, November 2003.

[CSM02] Jorge Cardoso, Amit Sheth, and John Miller. Workflow Quality Of Service.

Technical report, LSDIS Lab, Computer Science, Universtity of Georgia, Athens

GA, USA, March 2002.

[Dai12] Robert Daigneau. Service design patterns: fundamental design solutions for

SOAP/WSDL and RESTful web services, volume 37. Addison-Wesley (E), 2012.

[Dav05] Mark Davydov. SOA adventures, Part 1: Ease Web services invocation with

dynamic decoupling.

http://www.ibm.com/developerworks/webservices/library/ws-soa-adventure1/,

April 2005.

[dBLK+05] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer,

and D. Fensel. The Web Service Modeling Language (WSML).

http://www.wsmo.org/TR/d16/d16.1/v0.2/, 2005.

[DCG+08] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Norton, and

C. Pedrinaci. IRS-III: A Broker-based Approach to Semantic Web Services.

Journal of Web Semantics, 2008.

[DM08] John Domingue and David Martin. Semantic Web Services. Tutorial on

Semantic Web Services colocated with the ISWC 2008, 2008.

Bibliography 285

[dM11] M. d’Aquin and E. Motta. Watson, more than a Semantic Web search engine.

Semantic Web Journal, 2011.

[DMD07] M. Dzbor, E. Motta, and J. Domingue. Magpie: Experiences in supporting

Semantic Web browsing. Web Semantics: Science, Services and Agents on the

WWW, 2007.

[dMD+08] Mathieu d’Aquin, Enrico Motta, Martin Dzbor, Laurian Gridinoc, Tom Heath,

and Marta Sabou. Collaborative semantic authoring. IEEE Intelligent Systems,

23(3):80–83, 2008.

[DMS+01] M. J. Duftler, N. K. Mukhi, A. Slominski, E. Slominski, and S. Weerawarana.

Web services invocation framework (WSIF). In OOPSLA Workshop on Object

Oriented Web Services, 2001.

[DSK+07] M. Dimitrov, A. Simov, M. Konstantinov, L. Cekov, and Momtchev V. WSMO

Studio - a semantic web services modelling environment for WSMO (system

description). In Proceedings of the 4th European Semantic Web Conference

(ESWC). Number 4519 in LNCS, 2007.

[dSM+08] M. d’Aquin, M. Sabou, E. Motta, S. Angeletou, L. Gridinoc, V. Lopez, and

F. Zablith. What can be done with the Semantic Web? an overview of

Watson-based applications. In 5th Workshop on Semantic Web Applications and

Perspectives, 2008.

[ELM03] Susana Eyheramendy, David D. Lewis, and David Madigan. On the Naive

Bayes model for text categorization, 2003.

[ERG02] Peter Werner Eklund, Nataliya Roberts, and Steve P. Green. OntoRama:

Browsing an RDF ontology using a hyperbolic-like browser. In The First

International Symposium on CyberWorlds (CW2002), Theory and Practices,

pages 405–411. IEEE press, 2002.

[Faw06] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861–874, 2006.

[FB96] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME) part

one: Format of internet message bodies, 1996.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1 (RFC 2616). Request

For Comments, 1999. Available at

http://www.ietf.org/rfc/rfc2616.txt, accessed 7 July 2006.

Bibliography 286

[FHBH99] J. Franks, P. Hallam-Baker, and J. Hostetler. HTTP authentication: Basic and

digest access authentication rfc2617. The Internet Society, 1999.

[Fie00] R. T. Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, 2000.

[FKZ08] D. Fensel, M. Kerrigan, and M. (eds.) Zaremba. Implementing Semantic Web

Services: the SESA Framework. Springer, 2008.

[FL07] J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema

(SAWSDL). W3C recommendation.

http://www.w3.org/TR/2007/REC-sawsdl-20070828/, August 2007.

[FLP+06] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and

J. Domigue. Enabling Semantic Web Services. The Web Service Modeling

Ontology. Springer, Berlin, Heidelberg, 2006.

[FN10] Florian F. Fischer and Barry Norton. D3.4.6 microWSMO v2 – defining the

second version of microWSMO as a systematic approach for rich tagging.

Soa4all project deliverable, 2010.

[GAS11] T. Gottron, M. Anderka, and B. Stein. Insights into explicit semantic analysis.

In Proceedings of the 20th ACM international conference on Information and

knowledge management, pages 1961–1964. ACM, 2011.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,

November 1994.

[GK89] Michael D. Gordon and Manfred Kochen. Recall-precision trade-off: A

derivation. JASIS, 40(3):145–151, 1989.

[Gom98] A. Gomez-Perez. Knowledge sharing and reuse. In J. Liebowitz, editor,

Handbook of Expert Systems. CRC, 1998.

[GRN+08] K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, and K. Verma. A faceted

classification based approach to search and rank Web APIs. In Proceedings of

the 2008 IEEE International Conference on Web Services, 2008.

[Gru93] T. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, pages 5(2):199–220, 1993.

[Gru95] T. R. Gruber. Towards principles for the design of ontologies used for

knowledge sharing. International Journal of Human and Computer Studies,

43(5/6):907–982, 1995.

Bibliography 287

[Gru07] Tom Gruber. Collective Knowledge System: Where the Social Web meets the

Semantic Web. Journal of Web Semantics, 6 (1):4–13, 2007.

[GSM+09] D. Gessler, G. Schiltz, G. May, S. Avraham, C. Town, D. Grant, and R. Nelson.

SSWAP: A simple semantic web architecture and protocol for semantic web

services. BMC Bioinformatics, 10:309, 2009.

[Had06] M. J. Hadley. Web application description language (WADL). Technical report,

Sun Microsystems. https://wadl.dev.java.net, November 2006.

[Hau09] Michael Hausenblas. Exploiting Linked Data to Build Web Applications. IEEE

Internet Computing, 13(4):68–73, 2009.

[Hay04] Patrick Hayes. RDF Semantics. Recommendation, World Wide Web

Consortium, February10 2004.

[HB11] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data

SpaceTheory and Technology, volume Volume 1. Morgan & Claypool

Publishers, 2011.

[HDM+04] F. Hakimpour, J. Domingue, E. Motta, L. Cabral, and Y. Lei. Integration of

OWL-S into IRS-III. In First AKT Workshop on Semantic Web Services, 2004.

[Hen97] J. Hendler. A Little Semantics Goes a Long Way, 1997.

[HJK04] A. Hess, E. Johnston, and N. Kushmerick. ASSAM: A tool for

semi-automatically annotating semantic web services. In Proceedings of the 3rd

International Semantic Web Conference (ISWC), 2004.

[HK03] Andreas Hess and Nicholas Kushmerick. Automatically attaching semantic

metadata to Web Services. In Proceedings of IIWeb, pages 111–116, 2003.

[HK04] A. Hess and N. Kushmerick. Machine Learning for Annotating Semantic Web

Services. In AAAI Spring Symposium on Semantic Web Services, March 2004.

[HLSE08] P. Hasse, H. Lewen, R. Studer, and M. Erdmann. The NeOn ontology

engineering toolkit. 2008.

[HS02] Siegfried Handschuh and Steffen Staab. Authoring and annotation of web pages

in CREAM. In WWW ’02: Proceedings of the 11th international conference on

World Wide Web, pages 462–473, New York, NY, USA, 2002. ACM.

[JMH+07] Robert Jaeschke, Ro Marinho, Andreas Hotho, Lars Schmidt-Thieme, and Gerd

Stumme. Tag recommendations in folksonomies. In PKDD, pages 506–514.

Springer, 2007.

Bibliography 288

[JSR03] JSR-101 Expert Group. Java API for XMLBased RPC, Version 1.1.

http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10, 2003.

[KAO02] KAON. http://kaon.semanticweb.org/, 2002.

[Kay07] Michael Kay. XSL transformations (xslt) version 2.0. World Wide Web

Consortium, Recommendation REC-xslt20-20070123, January 2007.

[KC06] R. Khare and T. Celik. Microformats: a pragmatic path to the semantic web

(poster). In Proceedings of the 15th international conference on World Wide

Web, 2006.

[KG05] B. Parsia A. Kalyanpur and J. Golbeck. SMORE - semantic markup, ontology,

and RDF editor, 2005.

[KG07] D. Kohlert and A. Gupta. Java API for XML-Based Web Services, Version 2.

http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html, 2007.

[KGV08] Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. hRESTS: an HTML

Microformat for Describing RESTful Web Services. In Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), 2008.

[KHL+07] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and

Eugenia Giannopoulou. Ontology visualization methods – a survey. ACM

Comput. Surv., 39(4):10, 2007.

[KKRKS07] Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern. DIANE: A

matchmaking-centered framework for automated service discovery,

composition, binding, and invocation on the Web. Int. J. Electron. Commerce,

12:41–68, December 2007.

[KKRM05] Michael Klein, Birgitta König-Ries, and Michael Mussig. What is needed for

semantic service descriptions: A proposal for suitable language constructs. Int.

J. Web Grid Serv., 1:328–364, December 2005.

[KMTF07] Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel. The Web

Service Modeling Toolkit - An integrated development environment for

semantic web services (system description). In Proc. of the 4th European

Semantic Web Conference (ESWC), pages 789–798, 2007.

[KNM10] Reto Krummenacher, Barry Norton, and Adrian Marte. Towards linked open

services and processes. In Arne-Jørgen Berre, Asunción Gómez-Pérez, Kurt

Tutschku, and Dieter Fensel, editors, Future Internet - FIS 2010 - Proceedings

of the Third Future Internet Symposium, Berlin, Germany, September 20-22,

Bibliography 289

2010, volume 6369 of Lecture Notes in Computer Science, pages 68–77.

Springer, 2010.

[KPS+04] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin, and K. Sycara.

Authorization and privacy for semantic web services. IEEE Intelligent Systems,

page 19:4, July 2004.

[KV07] Jacek Kopecky and Tomas Vitvar. D11v0.2 WSMO-Lite. Technical report,

WSMO Working Draft, 2007.

[KV08] J. Kopecky and T. Vitvar. MicroWSMO. CMS Working Draft.

http://www.wsmo.org/TR/d38/v0.1/20080219/, February 2008.

[KVF09] Jacek Kopecky, Tomas Vitvar, and Dieter Fensel. D3.4.3 MicroWSMO and

hRESTS. Deliverable for the SOA4All EU Project, March 2009.

[KVPM11] Jacek Kopecky, Tomas Vitvar, Carlos Pedrinaci, and Maria Maleshkova.

RESTful services with lightweight machine-readable descriptions and semantic

annotations. In Erik Wilde and Cesare Pautasso, editors, REST: From Research

to Practice, pages 473–506. Springer, 2011.

[KZZ11] P. Knoth, L. Zilka, and Z. Zdrahal. Using explicit semantic analysis for

cross-lingual link discovery. In Workshop: 5th International Workshop on Cross

Lingual Information Access: Computational Linguistics and the Information

Need of Multilingual Societies (CLIA) at The 5th International Joint Conference

on Natural Language Processing, 2011.

[L9́9] M. Mariano Fernández López. Overview of Methodologies for Building

Ontologies. In Proceedings of the IJCAI-99 Workshop on Ontologies and

Problem Solving Methods (KRR5) Stockholm, Sweden, August 2, 1999, 1999.

[LB07] Antonio Lopes and Luis Miguel Botelho. Executing Semantic Web Services

with a Context-Aware Service Execution Agent. In Jingshan Huang, Ryszard

Kowalczyk, Zakaria Maamar, David L. Martin, Ingo Muller, Suzette

Stoutenburg, and Katia P. Sycara, editors, SOCASE, volume 4504 of Lecture

Notes in Computer Science, pages 1–15. Springer, 2007.

[LC07] Sigma On Kee Lee and Andy Hon Wai Chun. Automatic tag recommendation

for the web 2.0 blogosphere using collaborative tagging and hybrid ANN

semantic structures. In ACOS’07: Proceedings of the 6th Conference on WSEAS

International Conference on Applied Computer Science, pages 88–93, 2007.

[LHPD12] Chenghua Lin, Yulan He, Carlos Pedrinaci, and John Domingue. Feature LDA:

A supervised topic model for automatic detection of Web API documentations

Bibliography 290

from the web. In Philippe Cudra-Mauroux, Jeff Heflin, Evren Sirin, Tania

Tudorache, Jerome Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim

Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors,

International Semantic Web Conference (1), volume 7649 of Lecture Notes in

Computer Science, pages 328–343. Springer, 2012.

[LJ10] D. Lambert and Domingue. J. Photorealistic semantic web service groundings:

unifying RESTful and XML-RPC groundings using rules, with an application to

flickr. In In the 4th International Web Rule Symposium (RULEML), 2010.

[LLZ+07] Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun. An exploratory study of web

services on the internet. In Proceedings of the 6th International Conference on

Semantic Web (ISWC), pages 380–387, 2007.

[LMK05] J. Luo, B. Montrose, and M. Kang. An approach for semantic query processing

with UDDI. OTM Workshops, pages 89–98, 2005.

[LMKD11] C. Li, N. andPedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue.

OmniVoke: A framework for automating the invocation of Web APIs. In

Proceedings of 5th IEEE International Conference on Semantic Computing,

2011.

[LMR07] Jonathan Douglas Lathem, John Miller, and Lakshmish Ramaswamy.

SA-REST: Bring the power of semantics to REST-based web services. Master’s

thesis, University of Georgia, August 2007.

[LPK+11] N. Li, C. Pedrinaci, J. Kopecky, M. Maleshkova, D. Liu, and J. Domingue.

Towards automated invocation of Web APIs, 2011.

[LRD09] P. Leitner, F. Rosenberg, and S. Dustdar. Daios: Efficient dynamic web service

invocation. In Presented at IEEE Internet Computing, 2009.

[LRPF04] R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of

WSMO and OWL-S. In Proceedings of the European Conference on Web

Services, 2004.

[MA10] et al M. Atwood. OAuth core 1.0 specification. http://oauth.net/core/1.0/, last

viewed June 2010.

[Mar04] D. Martin. OWL-S: Semantic Markup for Web Services. W3C member

submission, 22 November 2004. http://www.w3.org/Submission/OWL-S/, 2004.

[MBM+07] D. L. Martin, M. H. Burstein, D. V. McDermott, S. A. McIlraith, et al. Bringing

Semantics to Web Services with OWL-S. WWW Journal of Universal Computer

Science, pages 243–277, 2007.

Bibliography 291

[MGPD09] M. Maleshkova, L. Gridinoc, C. Pedrinaci, and J Domingue. Supporting the

semi-automatic acquisition of semantic RESTful service descriptions. In Poster

session of the European Semantic Web Conference, ESWC, 2009.

[MKP09] M. Maleshkova, J. Kopecky, and C. Pedrinaci. Adapting SAWSDL for semantic

annotations of RESTful services. In Beyond SAWSDL at OnTheMove Federated

Conferences and Workshops, 2009.

[MPD09a] M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantically annotating

RESTful services with SWEET. In Demo session at 8th International Semantic

Web Conference ISWC, 2009.

[MPD09b] M. Maleshkova, C. Pedrinaci, and J. Domingue. Supporting the creation of

semantic RESTful service descriptions. In Service Matchmaking and Resource

Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web

Conference, 2009.

[MPD10a] M. Maleshkova, C. Pedrinaci, and J. Domingue. Investigating Web APIs on the

World Wide Web. European Conference on Web Services (ECOWS), 2010.

[MPD+10b] M. Maleshkova, C. Pedrinaci, J. Domingue, G. Alvaro, and I. Martinez. Using

semantics for automating the authentication of Web APIs. International

Semantic Web Conference (ISWC), 2010. Shanghai, China.

[MPL+11] Maria Maleshkova, Carlos Pedrinaci, Ning Li, Jacek Kopecky, and John

Domingue. Lightweight semantics for automating the invocation of Web APIs.

In Kwei-Jay Lin, Christian Huemer, M. Brian Blake, and Boualem Benatallah,

editors, SOCA, pages 1–4. IEEE, 2011.

[MSZ01] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent

Systems, Special Issue on the Semantic Web, 16(2):46–53, 2001.

[MVD12] Jose Antonio Mateo, Valentin Valero, and Gregorio Diaz. BPEL-RF: A formal

framework for BPEL orchestrations integrating distributed resources. CoRR,

abs/1203.1760, 2012.

[MZKP11] Maria Maleshkova, Lukas Zilka, Petr Knoth, and Carlos Pedrinaci.

Cross-lingual Web API classification and annotation. In Elena Montiel-Ponsoda,

John McCrae, Paul Buitelaar, and Philipp Cimiano, editors, MSW, volume 775

of CEUR Workshop Proceedings, pages 1–12. CEUR-WS.org, 2011.

[NFM00] N.F. Noy, R.W. Fergerson, and M.A. Musen. The knowledge model of

Protégé-2000: Combining interoperability and flexibility. Lecture Notes in

Computer Science, 1937:69–82, 2000.

Bibliography 292

[NHOH04] Shinichi Nagano, Tetsuo Hasegawa, Akihiko Ohsuga, and Shinichi Honiden.

Dynamic invocation model of web services using subsumption relations. In

ICWS, pages 150–. IEEE Computer Society, 2004.

[NKMHB06] N. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web services security:

SOAP message security 1.1. WS-Security 2004, 2006.

[NPDZ08] B. Norton, C. Pedrinaci, J. Domingue, and M. Zaremba. Semantic execution

environments for semantics-enabled SOA. IT - Methods and Applications of

Informatics and Information Technology. Special Issue in Service-Oriented

Architectures, pages 118–121, 2008.

[NV04] R. Navigli and P. Velardi. Learning domain ontologies from document

warehouses and dedicated web sites. Computational Linguistics,

30(2):151–179, 2004.

[OHE03] Phillipa Oaks, Arthur H. M. Ter Hofstede, and David Edmond. Capabilities:

describing what services can do. In Proceedings of the 1st International

Conference on Service Oriented Computing, 15–18, 2003.

[O’R09] Tim O’Reilly. What is Web 2.0. O’Reilly Media, 2009.

[OTSV04] Nicole Oldham, Christopher Thomas, Amit Sheth, and Kunal Verma.

METEOR-S Web Service Annotation Framework with Machine Learning

Classification. In Proc. of the 1 st Int. Workshop on Semantic Web Services and

Web Process Composition (SWSWPC), 2004.

[PASS03] Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Katia P.

Sycara. The DAML-S virtual machine. In Dieter Fensel, Katia P. Sycara, and

John Mylopoulos, editors, International Semantic Web Conference, volume

2870 of Lecture Notes in Computer Science, pages 290–305. Springer, 2003.

[Pau09] C. Pautasso. RESTful web service composition with BPEL for REST. Data and

Knowledge Engineering journal, pages 68:851–866, 2009.

[PB07] Michael J. Pazzani and Daniel Billsus. Content-based recommendation systems.

In The Adaptive Web: Methods and Strategies of Web Personalization. Volume

4321 of Lecture Notes in Computer Science, pages 325–341. Springer-Verlag,

2007.

[PD10] C. Pedrinaci and J. Domingue. Toward the next wave of services: Linked

services for the web of data. Journal of Universal Computer Science, pages

1694–1719, 2010.

Bibliography 293

[PDS10] C. Pedrinaci, J. Domingue, and A. Sheth. Semantic Web Services. In John

Domingue and James A. Hendler, editors, Handbook of Semantic Web

Technologies, volume 2. Springer, 2010.

[PKPS02] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web

services capabilities. In First Int. Semantic Web Conf., 2002.

[PLM+10] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue.

iServe: a linked services publishing platform. Workshop: Ontology Repositories

and Editors for the Semantic Web at 7th Extended Semantic Web Conference,

2010.

[PMZP12] C. Pedrinaci, M. Maleshkova, M. Zaremba, and M. Panahiazar. Handbook of

service description: USDL and its methods, 2012.

[POSV04] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma.

METEOR-S web service annotation framework. In WWW ’04: Proceedings of

the 13th international conference on World Wide Web, pages 553–562, New

York, NY, USA, 2004. ACM Press.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.

W3C Recommendation, 2008.

[PSSN03] M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. Towards a semantic

choreography of web services: From WSDL to DAML-S. In First International

Conference on Web Services (ICWS’03), June 2003.

[PTDL08] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented

Computing: A research roadmap. International Journal of Cooperative

Information Systems, 17(2), 223-255, 2008.

[PZ09] Jinie Pak and Lina Zhou. A framework for ontology evaluation. In Raj

Sharman, H. Raghav Rao, and T. S. Raghu, editors, WEB, volume 52 of Lecture

Notes in Business Information Processing, pages 10–18. Springer, 2009.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful web

services vs. ”big“ web services: making the right architectural decision. In

WWW ’08: Proceeding of the 17th international conference on World Wide Web,

pages 805–814, New York, NY, USA, 2008. ACM.

[Ren10] Bruno Renie. Annotation recommendation for the semantic description of

RESTful web services. Master’s thesis, Ecole Nationale Superieure des Mines,

Saint Etienne and Knowledge Media Institute, The Open University, Milton

Keynes, 2010.

Bibliography 294

[Riv10] R. Rivest. The MD5 message-digest algorithm.

http://tools.ietf.org/html/rfc1321, last viewed June 2010.

[RKD+09] Florian Rosenberg, Rania Khalaf, Matthew J. Duftler, Francisco Curbera, and

Paula Austel. End-to-end security for enterprise mashups. In Luciano Baresi,

Chi-Hung Chi, and Jun Suzuki, editors, ICSOC/, volume 5900 of Lecture Notes

in Computer Science, pages 389–403, 2009.

[RKL+05] D. Roman, U. Keller, H. Lausen, J. Bruijn, R. Lara, M. Stollberg, A. Polleres,

C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied

Ontology, pages 1(1): 77 – 106, 2005.

[RNBY99] Berthier Ribeiro-Neto and Ricardo Baeza-Yates. Modern Information Retrieval.

ACM Press / Addison-Wesley, 1999.

[Rod08] Alex Rodriguez. RESTful Web services: The basics. IBM developerWorks,

November 2008.

[RR07] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, May 2007.

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition

methods. In Jorge Cardoso and Amit P. Sheth, editors, SWSWPC, volume 3387

of Lecture Notes in Computer Science, pages 43–54. Springer, 2004.

[RSK12] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s top RESTful

services and why they are not RESTful. In Xiaoyang Sean Wang, Isabel F. Cruz,

Alex Delis, and Guangyan Huang, editors, WISE, volume 7651 of Lecture Notes

in Computer Science, pages 354–367. Springer, 2012.

[S+97] David J. Schultz et al. IEEE standard for developing software life cycle

processes. IEEE std, IEEE, New York, USA, 1997.

[SAS02] York Sure, J"urgen Angele, and Steffen Staab. OntoEdit: Guiding ontology

development by methodology and inferencing. In CoopIS/DOA/ODBASE, pages

1205–1222, 2002.

[SBC10] Victor Saquicela, Luis Manuel Vilches Bláquez, and Oscar Corcho. Semantic

annotation of RESTful services using external resources. In Florian Daniel and

Federico Michele Facca, editors, ICWE Workshops, volume 6385 of Lecture

Notes in Computer Science, pages 266–276. Springer, 2010.

[SBC11] Victor Saquicela, Luis Manuel Vilches Blázquez, and Oscar Corcho.

Lightweight semantic annotation of geospatial RESTful services. In Grigoris

Antoniou, Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Parsia,

Bibliography 295

Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan, editors, ESWC (2),

volume 6644 of Lecture Notes in Computer Science, pages 330–344. Springer,

2011.

[SBC12] Victor Saquicela, Luis Manuel Vilches Blázquez, and Oscar Corcho. Adding

semantic annotations into (geospatial) RESTful services. In Int. J. Semantic Web

Inf. Syst., volume 8, pages 51–71, 2012.

[SC08] P. Sorg and P. Cimiano. Cross-lingual information retrieval with explicit

semantic analysis. In In Working Notes for the CLEF Workshop, 2008.

[SET09] Toby Segaran, Colin Evans, and Jamie Taylor. Programming the Semantic Web.

O’Reilly, Beijing, 2009.

[SGL07] A. P. Sheth, K. Gomadam, and J. Lathem. SA-REST: Semantically

interoperable and easier-to-use services and mashups. IEEE Internet

Computing, 11(6):91-94, 2007.

[SH07] Sanjay C. Sood and Kristian J. Hammond. TagAssist: Automatic Tag

Suggestion for Blog Posts. In In International Conference on Weblogs and

Social, 2007.

[SH10] S. Speiser and A. Harth. Taking the lids off data silos. In In I-SEMANTICS,

2010.

[SHBL06] N. Shadbolt, W. Hall, and T. Berners-Lee. The Semantic Web Revisited. IEEE

Intelligent Systems, 2006.

[She03] Amit Sheth. Semantic Web Process Lifecycle: Role of Semantics in Annotation,

Discovery, Composition and Orchestration. Invited Talk at WWW 2003

Workshop on E-Services and the Semantic Web, May 2003.

[SHJJ09] H. Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF+SSL: RESTful

authentication for the Social Web. In In SPOT2009 European Semantic Web

Conference, 2009.

[SIS+11] Manu Sporny, Toby Inkster, Henry Story, Bruno Harbulot, and Reto

Bachmann-Gmür. Web Identification and Discovery, February 2011.

[SMP10] Marta Sabou, Maria Maleshkova, and Jeff Pan. Semantically enabling web

service repositories, 2010.

[SMSV05] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, and Kunal Verma.

Framework for semantic web process composition, 2005.

Bibliography 296

[SP04] Evren Sirin and Bijan Parsia. The OWL-S Java API. In Proceedings of the Third

International Semantic Web Conference. 2004. References, 2004.

[SSS06] York Sure, Steffen Staab, and Rudi Studer. Ontology engineering

methodologies. In Semantic Web Technologies: Trends and Research in

Ontology-based Systems, 2006.

[Suz03] Satoshi Suzuki. Probabilistic word vector and similarity based on dictionaries.

In Alexander F. Gelbukh, editor, CICLing, volume 2588 of Lecture Notes in

Computer Science, pages 562–572. Springer, 2003.

[SVSM03] Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, and John Miller. Adding

semantics to web services standards. In Proceedings of the 2003 International

Conference on Web Services (ICWS’03), pages 395–401, Las Vegas, NV, June

2003.

[SWGS05] M. Sabou, C. Wroe, C. Goble, and H. Stuckenschmidt. Learning domain

ontologies for semantic web service descriptions. Journal of Web Semantics,

3(4), 2005.

[TDO07] Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving

the open linked data. In Proceedings of the International Semantic Web

Conference (ISWC), 2007.

[TH01] Loren Terveen and Will Hill. Beyond recommender systems: Helping people

help each other. In HCI in the New Millennium, pages 487–509.

Addison-Wesley, 2001.

[The12a] The Apache Software Foundation. Apache Axis 2. http://ws.apache.org/axis2/,

April 2012.

[The12b] The Apache Software Foundation. Apache CXF: An open source service

framework. http://incubator.apache.org/cxf/, 2012.

[TK01] S. Tong and D. Koller. Support vector machine active learning with applications

to text classification. Journal of Machine Learning Research, 2:45–66, 2001.

[TKSA12] Mohsen Taheriyan, Craig A. Knoblock, Pedro A. Szekely, and José Luis

Ambite. Rapidly integrating services into the linked data cloud. In Philippe

Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérome Euzenat,

Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,

Abraham Bernstein, and Eva Blomqvist, editors, International Semantic Web

Conference (1), volume 7649 of Lecture Notes in Computer Science, pages

559–574. Springer, 2012.

Bibliography 297

[VKVF08] T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel. WSMOLite annotations for

web services. 5th European Semantic Web Conference, ESWC 2008, In The

Semantic Web: Research and Applications:Springer, 2008.

[Vra10] Denny Vrandečić. Ontology Evaluation. PhD thesis, Karlsruhe Institute of

Technology, 2010.

[VSD+12] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Coppens,

Joaquim Gabarró Vallés, and Rik Van de Walle. Functional descriptions as the

bridge between hypermedia APIs and the Semantic Web. In Rosa Alarcón,

Cesare Pautasso, and Erik Wilde, editors, WS-REST, pages 33–40. ACM, 2012.

[W3C01] W3C WS Description Working Group. Web service description language

(WSDL) Version 1.1, W3C Note. http://www.w3.org/TR/wsdl, March 2001.

[W3C07a] W3C WS Description Working Group. Web service description language

(WSDL) Version 2.0, W3C proposed recommendation.

http://www.w3.org/TR/wsdl20-primer, May 2007.

[W3C07b] W3C WS XML Protocol Working Group. Simple Object Access Protocol

(SOAP) Version 1.2. http://www.w3.org/TR/soap/, April 2007.

[WL02] M. D. Wilkinson and M. Links. BioMOBY: An open source biological web

services proposal. Briefings in Bioinformatics, 3:331–341, 2002.

[Wor07] B. Worthen. Mashups sew data together: Mashup tools can cut costs, time for

linking information sources. The Wallstreet Journal, 31 July, 2007.

[ZN08] Amal Zouaq and Roger Nkambou. Building domain ontologies from text for

educational purposes. IEEE Transactions on Learning Technologies, 1:49–62,

2008.

	Preface
	Abstract
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Thesis Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Thesis Overview
	1.5 List of Publications

	2 Approach
	2.1 Introduction
	2.2 Methodology
	2.2.1 Analysis of the Current State of Web APIs
	2.2.2 Describing Web APIs
	2.2.3 Supporting the Creation of Web API Descriptions

	II Context and Related Work
	3 Web Services and Web APIs
	3.1 Web Services
	3.2 RESTful Services and Web APIs
	3.3 Description Models for Web APIs
	3.4 Semantic Descriptions of Web Services and Web APIs
	3.4.1 Semantic Web API Approaches

	3.5 Integrating Web Services and Linked Data
	3.6 Summary

	4 Invocation and Authentication Approaches
	4.1 Web API Invocation
	4.1.1 WSDL-based Web Service Invocation
	4.1.2 Semantic Web Service Invocation
	4.1.3 Web API Invocation

	4.2 Web API Authentication
	4.2.1 WS-Security
	4.2.2 Common Authentication Approaches
	4.2.3 Further Authentication Mechanisms

	4.3 Summary

	5 Annotation Approaches and Tools
	5.1 Annotation Approaches
	5.1.1 Automated Acquisition of Semantic Web Service Descriptions
	5.1.2 Annotation Recommendation

	5.2 Ontology Visualisation and Annotation Tools
	5.3 Summary

	III Supporting Open Services on the Web
	6 On the Current State of Service on the Web
	6.1 Introduction
	6.2 The Proliferation of Web APIs
	6.3 First Web API Survey
	6.3.1 Methodology
	6.3.2 General Web API Information
	6.3.3 Type of Web APIs
	6.3.4 Input Details
	6.3.5 Output Formats
	6.3.6 Invocation Details
	6.3.7 Authentication Details
	6.3.8 Additional Documentation
	6.3.9 Summary of Results
	6.3.10 Discussion

	6.4 Second Web API Survey
	6.4.1 Methodology
	6.4.2 General Web API Information
	6.4.3 Type of Web APIs
	6.4.4 Input Details
	6.4.5 Output Details
	6.4.6 Invocation Details
	6.4.7 Authentication Details
	6.4.8 Additional Documentation
	6.4.9 Summary of Results

	6.5 The Web API Survey System
	6.6 Summary

	7 Describing Web APIs
	7.1 Introduction
	7.2 Discussion
	7.3 Definition of a Web API
	7.4 Requirements
	7.5 Core Service Model
	7.5.1 Design Decisions
	7.5.2 Minimal Service Model
	7.5.3 Using MSM to Create Semantic Web API Descriptions
	7.5.3.1 Syntactic Structuring of Web API Documentation
	7.5.3.2 Enhancing Web API Documentation with Semantics
	7.5.3.3 MSM-based Semantic Web API Descriptions
	7.5.3.4 Describing Resource-Based APIs with MSM

	7.6 Summary

	8 Supporting the Automated Web API Invocation
	8.1 Introduction
	8.2 Motivating Example
	8.3 Requirements
	8.4 Web API Grounding Model
	8.4.1 Design Decisions
	8.4.2 Extending MSM with Invocation Support

	8.5 Implementation
	8.5.1 OmniVoke

	8.6 Summary

	9 Automating the Authentication of Web APIs
	9.1 Introduction
	9.2 Motivating Example
	9.3 Requirements
	9.4 Web API Authentication Model
	9.4.1 Design Decisions
	9.4.2 Extending MSM with Authentication Support

	9.5 Implementation
	9.5.1 Authentication Engine Implementation

	9.6 Summary

	10 Supporting the Creation of Semantic Web API Descriptions
	10.1 Introduction
	10.2 SWEET
	10.2.1 Design and Architecture
	10.2.2 SWEET Bookmarklet
	10.2.3 SWEET Web Application

	10.3 Automating the Creation of Semantic Web API Descriptions
	10.3.1 Annotation Search
	10.3.2 Web API Classification Support
	10.3.2.1 HTML-based Classification
	10.3.2.2 Cross-Lingual Classification

	10.4 Summary

	IV Evaluation and Conclusions
	11 Evaluation
	11.1 Evaluation of the Core Service Model
	11.1.1 Requirements Coverage
	11.1.2 Model Coverage

	11.2 Evaluation of the Web API Grounding Model
	11.2.1 Requirements Coverage
	11.2.2 Model Coverage
	11.2.3 Suitability for Purpose

	11.3 Evaluation of the Web API Authentication Model
	11.3.1 Requirements Coverage
	11.3.2 Model Coverage
	11.3.3 Suitability for Purpose

	11.4 Evaluation of Supporting Tools and Approaches
	11.4.1 Evaluation of SWEET
	11.4.2 Evaluation of Web API Classification Support
	11.4.2.1 Evaluation of HTML-based Classification
	11.4.2.2 Evaluation of Cross-Lingual Classification

	11.5 Summary

	12 Conclusions and Future Work
	12.1 Summary of the Contributions
	12.2 Conclusions
	12.2.1 The Current State of Web APIs
	12.2.2 The Core Service Model
	12.2.3 Towards Automated Web API Invocation and Authentication
	12.2.4 Supporting the Creation of Semantic Web API Descriptions

	12.3 Future Work
	12.3.1 Continued Analysis of the State of APIs on the Web
	12.3.2 Supporting the Invocation of Compositions and Processes
	12.3.3 Supporting the Adoption of a Shared Authentication Approach
	12.3.4 Extending SWEET

	V Appendices
	A Web API Models
	A.1 Details on the Minimal Service Model
	A.2 Details on the Web API Grounding Model
	A.3 Details on the Web API Authentication Model

	B Supporting Tools
	B.1 Using SWEET to Make Annotations
	B.1.1 Hands-on with SWEET

	B.2 The Web API Survey System
	B.2.1 Survey Model and Setup
	B.2.2 Survey System Implementation

	Bibliography

