13,812 research outputs found

    Interpolation-based parameterized model order reduction of delayed systems

    Get PDF
    Three-dimensional electromagnetic methods are fundamental tools for the analysis and design of high-speed systems. These methods often generate large systems of equations, and model order reduction (MOR) methods are used to reduce such a high complexity. When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. Design space optimization and exploration are usually performed during a typical design process that consequently requires repeated simulations for different design parameter values. Efficient performing of these design activities calls for parameterized model order reduction (PMOR) methods, which are able to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as layout or substrate features. We propose a novel PMOR method for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, a procedure to find scaling and frequency shifting coefficients and positive interpolation schemes. The proposed scaling and frequency shifting coefficients enhance and improve the modeling capability of standard positive interpolation schemes and allow accurate modeling of highly dynamic systems with a limited amount of initial univariate models in the design space. The proposed method is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Parameterized model order reduction of delayed systems using an interpolation approach with amplitude and frequency scaling coefficients

    Get PDF
    When the geometric dimensions become electrically large or signal waveform rise times decrease, time delays must be included in the modeling. We present an innovative PMOR technique for neutral delayed differential systems, which is based on an efficient and reliable combination of univariate model order reduction methods, amplitude and frequency scaling coefficients and positive interpolation schemes. It is able to provide parameterized reduced order models passive by construction over the design space of interest. Pertinent numerical examples validate the proposed PMOR approach

    Study on Product Knowledge Management for Product Development

    Get PDF

    Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    Get PDF
    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Information archival and reuse: drawing conclusions from the past

    Get PDF
    Over the last few decades design researchers have put forward theories and proposed methodologies that increase the chance that a design team will reliably arrive at the optimal solution to a given design problem. Studies, however, bear out that theories and methodologies alone will not guarantee an optimal or even good design solution. Instead, a breadth of knowledge across multiple engineering domains and the time and tools to thoroughly evaluate the design space are as important as any prescriptive design method. This work presents a set of underlying engineering technologies to define, archive and reuse product design knowledge to provide a breadth of domain knowledge for designers and to leverage artificial intelligence approaches to thoroughly, if not exhaustively, search the design space. Specifically, a database schema and entry application for a prototype design repository of product design knowledge is formulated and implemented. A real-time, knowledge basedriven, function-based conceptual design algorithm known as the morphological search is formulated to extract information from the design repository and support a thorough exploration of the design space for solutions. Currently, the Design Engineering Lab\u27s prototype Design Repository contains design knowledge for over 125 products and has over 300 user accounts representing 17 different countries. With the foundational repository elements in place, artificial intelligence methods are employed to generate a natural language to formal component naming terms thesaurus as part of a novel form-initiated concept generation approach. The approach, known as Form Follows Form, automatically generates a functional model based upon an initial component solution seed to a design problem. With a functional model in hand, established automated concept generation algorithms are employed to return more complete and varied solutions following a thorough search of the design space --Abstract, page iv

    Functional and Behavioral Product Information Representation and Consistency Validation for Collaboration in Product Lifecycle Activities

    Get PDF
    Information models that represent the function, assembly and behavior of artifacts are critical in the conceptual development of a product and its evaluation. Much research has been conducted in this area; however, existing models do not relate function, behavior and structure in a comprehensive and consistent way. In this work, NIST\u27s Core Product Model (CPM) and the Open Assembly Model (OAM) are extended to integrate product information including function and behavior, with an emphasis on assembly, throughout all phases of product development. For function and flow classification, the NIST functional taxonomy is used to maintain consistency with the literature. The consistency validation of product information, and the verification of modified product information are discussed; these processes ensure that the product information has no contradictions and allows tracing through associations without any deficiency or disconnection. In other words, the information model has to be complete in terms of traceability of function, behavior, spatial relationships, etc., in order to support all information exchange activities. The product information representation provides a mechanism for capturing product information and storing it in a database. This representation schema also provides necessary information for any future decision making activities in the End of Life (EOL) environment, such as the replacement or reuse of any part or subassembly. When there is a need to replace one artifact with another, one must consider all of the associations of the existing artifact with other artifacts and the environment, not just functional and space requirements, and the relevant modification(s) of the associated objects has to verified. So one can manage product lifecycle activities in different perspectives by knowing how the product information is interconnected in various domains and how its characteristics affect each other
    • …
    corecore