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Abstract—3-D electromagnetic methods are fundamental tools
for the analysis and design of high-speed systems. These methods
often generate large systems of equations and model order
reduction (MOR) methods are used to reduce such a high
complexity. When the geometric dimensions become electrically
large or signal waveform rise times decrease, time delays must
be included in the modeling.

Design space optimization and exploration are usually per-
formed during a typical design process that consequently requires
repeated simulations for different design parameter values. Effi-
cient performing of these design activities call for parameterized
model order reduction (PMOR) methods, which are able to
reduce large systems of equations with respect to frequency and
other design parameters of the circuit, such as layout or substrate
features.

We propose a novel PMOR method for neutral delayed
differential systems, which is based on an efficient and reliable
combination of univariate model order reduction methods, a
procedure to find scaling and frequency shifting coefficients
and positive interpolation schemes. The proposed scaling and
frequency shifting coefficients enhance and improve the modeling
capability of standard positive interpolation schemes and allow
accurate modeling of highly dynamic systems with a limited
amount of initial univariate models in the design space. The
proposed method is able to provide parameterized reduced order
models passive by construction over the design space of interest.
Pertinent numerical examples validate the proposed PMOR
approach.

Index Terms—Delayed systems, Interpolation, Parameterized
model order reduction (PMOR), Partial Element Equivalent
Circuit method (PEEC).

I. INTRODUCTION

Complex high-speed systems require 3-D electromagnetic
(EM) methods [1]–[3] as analysis and design tools. Large
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systems of equations are usually generated by the use of
these methods and model order reduction (MOR) techniques
are crucial to reduce the complexity of EM models and the
computational cost of the simulations, while retaining the
important physical features of the original system [4]–[7].
Over the last years, the development of methods to build
reduced order models (ROMs) of EM systems has been
intensively investigated, with applications to interconnects,
vias and high-speed packages [8]–[11]. Among all EM meth-
ods, the Partial Element Equivalent Circuit (PEEC) method
[2] has been found particularly useful for modeling PCBs,
interconnects, and power systems. The PEEC method uses a
circuit interpretation of the Electric Field Integral Equation
(EFIE) [12] and it is especially suitable to problems involving
both electromagnetic fields and circuits [2], [13], [14]. PEEC
equivalent circuits are usually connected to nonlinear circuit
devices such as drivers and receivers using a time domain
circuit simulator (e.g. SPICE [15]). Complex systems can
result in PEEC models where the number of circuit elements
can be in the tens of thousands, and therefore the inclusion of
these PEEC models directly into a circuit simulator may be
computationally intractable.

When signal waveform rise times decrease and the corre-
sponding frequency content increases or the geometric dimen-
sions become electrically large, time delays must be taken into
account and included in the modeling. A PEEC formulation
that includes delay elements, called τPEEC method [16],
becomes necessary and leads to systems of neutral delayed
differential equations (NDDE) [17] with constant coefficients
and constant delay times in the time domain and to com-
plex algebraic systems of equations with frequency-dependent
matrices in the frequency domain. Simply using quasi-static
PEEC models can result in significant errors and artifacts in
the modeling [18].

Over the years, some techniques for the reduction of NDDE
systems have been proposed [19]–[24]. In [21], an equiva-
lent first order system is computed by means of a Taylor
expansion, and then MOR Krylov subspace methods [6], [7]
are applied. The reduction process does not preserve the
NDDE formulation. In [24], an equivalent first order system
is computed using a single point Taylor expansion [21] and
a corresponding orthogonal projection matrix is computed
using a block Arnoldi algorithm [7]. Then, an orthogonal
projection matrix for the original NDDE system is extracted
and a reduced NDDE system is obtained. All these previous
techniques cannot efficiently handle the reduction of electri-
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cally large structures, where delays among coupled elements
cannot be neglected or easily approximated by rational basis
functions. Recently, a novel MOR method for NDDE systems
with large delays has been proposed [25]. It is based on an
adaptive multipoint expansion and MOR of equivalent first
order systems [24].

Traditional MOR techniques perform model reduction only
with respect to frequency. However, during the circuit syn-
thesis of large-scale digital or analog applications, it is also
important to predict the response of the circuit under study
as a function of design parameters, such as geometrical and
substrate features. A typical design process includes optimiza-
tion and design space exploration, and thus requires repeated
simulations for different design parameter values. Such de-
sign activities call for parameterized model order reduction
(PMOR) methods that can reduce large systems of equations
with respect to frequency and other design parameters of the
circuit, such as geometrical layout or substrate characteristics.

Several PMOR techniques have been proposed over the
years. Concerning rational systems, multiparameter moment-
matching methods presented in [26]–[28] use a subspace pro-
jection approach to provide parameterized ROMs, while simi-
lar approaches are described in [29]–[31] for NDDE systems.
However, the structure of such methods may present some
computational problems, and the resulting reduced models
usually suffer from oversize when the number of moments to
match is high, either because high accuracy (order) is required
or because the number of parameters is large. The selection of
the multidimensional expansion points and the number of mul-
tiparameter moments need to be addressed in these methods.
The technique presented in [32] combines traditional passivity-
preserving model order reduction methods and interpolation
schemes based on a class of positive interpolation operators.
A PMOR method based on a parameterization process of
matrices generated by EM methods and projection subspaces
is proposed in [33]. Overall passivity of parameterized ROMs
is guaranteed over the design space of interest in [32], [33].

This paper proposes a PMOR method for NDDE systems,
which is based on an efficient and reliable combination of
univariate model order reduction methods, a procedure to
find scaling and frequency shifting coefficients and positive
interpolation schemes [34]. The PMOR method proposed in
this paper starts by computing a set of reduced order τPEEC
models (τROMs) using the MOR algorithm [25] for different
design parameters values. We note that the MOR method [25]
is able to perform reduction only with respect to frequency.
Then, a set of scaling and frequency shifting coefficients is
computed for the set of τPEEC reduced models, which are
finally interpolated to build a parameterized reduced model.
In [32], a set of reduced models is interpolated to build a
parameterized reduced model using standard positive inter-
polation schemes. The new proposed scaling and frequency
shifting coefficients enhance and improve the modeling ca-
pability of standard positive interpolation schemes [32] and
allow accurate modeling of highly dynamic systems with
a limited amount of initial univariate models in the design
space. The new proposed method does not have to deal with
multiparameter moment computations and related issues. The

expansion points are chosen only along the frequency axis
for the τROMs using an adaptive algorithm [25]. Under the
assumptions that the original τPEEC models are passive and
the MOR method used to provide the τROMs is passivity-
preserving, the proposed PMOR method is able to build
parameterized reduced models that are passive over the entire
design space of interest.

The paper is organized as follows. Section II describes
the modified nodal analysis (MNA) equations of the τPEEC
method. Section III describes the proposed PMOR method for
NDDE systems. Finally, some pertinent numerical examples
based on τPEEC models validate the proposed technique in
Section IV.

II. τPEEC FORMULATION

The PEEC method [2] stems from the integral equation form
of Maxwell’s equations. With respect to other EM methods,
it is worth pointing out its capability to provide a circuit
interpretation of the EFIE equation, thus allowing it to handle
complex problems involving both circuits and electromagnetic
fields.

In the standard approach, volumes and surfaces are dis-
cretized into elementary regions, hexahedra and patches re-
spectively [16] over which the current and charge densities
are expanded into a series of basis functions.

Following the standard Galerkin’s testing procedure, topo-
logical elements, namely nodes and branches, are generated
and electrical lumped elements are identified modeling both
the magnetic and electric field coupling.

Conductors are modeled by their ohmic resistance, while
dielectrics require modeling the polarization charge due to
the dielectric polarization [35]. Magnetic and electric field
coupling are modeled by partial inductances and coefficients
of potential, respectively.

An example of τPEEC circuit for a conductor elementary
cell is illustrated, in the Laplace domain, in Fig. 1 where
the current controlled voltage sources sLp,ijIj and the charge
controlled current sources sQi model the magnetic and electric
field couplings, respectively.
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Fig. 1. Illustration of τPEEC circuit electrical quantities for a conductor
elementary cell.

Let us assume that the meshing process of conductors and
dielectrics has generated ni volume cells where currents flow
and nn surface cells where charge is located; the resultant
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number of elementary cells of conductors and dielectrics
is nc and nd, respectively and that of electrical nodes is
nn. Furthermore, let us assume to be interested in gener-
ating an admittance representation Y(s) having np output
currents ip(t) under voltage excitation vp(t). If the MNA
approach [36] is used, the global number of unknowns is
nu = ni + nd + nn + np and an admittance representation
of the PEEC circuit is obtained [25]

C (τ )
dx(t)

dt
= −G (τ )x(t) +Bu(t) (1a)

ip(t) = LTx(t) (1b)

where x(t) ∈ ℜnu×1 and τ ∈ ℜnτ×1 contains all nτ delays
{τk}nτ

k=1, which denote the center-to-center delay matrices for
the magnetic and electric field coupling. Since this is an np-
port formulation, whereby the only sources are the voltage
sources at the np-port nodes, B = L where B ∈ ℜnu×np .
Each delayed entry of matrices C (τ ) and G (τ ) act as a delay
operator for the corresponding entry of vector x(t). Hence, (1)
can be rewritten in the Laplace domain as:

sC(s)X(s) = −G(s)X(s) +BVp(s) (2)
Ip(s) = LTX(s) (3)

C(s) = C0 +

nτ∑
k=1

Cke
−sτk (4)

G(s) = G0 +

nτ∑
k=1

Gke
−sτk (5)

which corresponds to the admittance transfer function

Y(s) = LT (sC(s) +G(s))−1B (6)

The matrices C0,G0 denote the quasi-static contribution.

III. PARAMETERIZED MODEL ORDER REDUCTION

Considering the influence of the design parameters g =
(g(1), ..., g(N)) such as layout and substrate features, the MNA
formulation (1a)-(1b) becomes

C(τ , g)
dx(t, g)

dt
= −G(τ , g)x(t, g) +B(g)u(t) (7a)

ip(t, g) = L(g)Tx(t, g) (7b)

while (6) becomes

Y(s, g) = L(g)
T
(sC(s, g) +G(s, g))−1B(g) (8)

In this section, we describe a PMOR algorithm that is able
to include, in addition to frequency, N design parameters g =
(g(1), ..., g(N)) in the reduced order model. The main objective
of this PMOR method is to accurately approximate the original
scalable system (having a high complexity) with a reduced
scalable system (having a low complexity) by capturing the
behaviour of the original system with respect to frequency
and other design parameters.

The proposed algorithm guarantees passivity of the parame-
terized reduced models over the entire design space of interest,

under the assumptions that the original τPEEC models are
passive and the MOR method used to provide the τROMs is
passivity-preserving. A flowchart that describes the different
steps of the proposed PMOR method is shown in Fig. 2.

Fig. 2. Flowchart of the proposed PMOR method.

A. τROMs

The proposed PMOR technique starts by computing a
set of reduced order models of the PEEC admittance ma-
trix Y(s, g) = LT (g)(sC(s, g) + G(s, g))−1B(g), called
τROMs, using the MOR method described in [25] for a
set of points in the design space, which we call estimation
design space grid. The design space D(g) is considered as
the parameter space P(s, g) without frequency. The parameter
space P(s, g) contains all parameters (s, g). If the parameter
space is N-dimensional, the design space is (N-1)-dimensional.
Two design space grids are used in the modeling process: an
estimation grid and a validation grid. The first grid is utilized
to build the τROMs. The second grid is utilized to assess
the capability of parameterized reduced models of describing
the system under study in a set of points of the design space
previously not used for the construction of the τROMs. To
clarify the use of these two design space grids, we show in
Fig. 3 a possible estimation and validation design space grid in
the case of two design parameters g = (g(1), g(2)). A τROM
is built for each red cross (x) point in the design space. The
set of τROMs is interpolated, as explained in what follows,
to build a parameterized reduced model that is evaluated and
compared with original τPEEC models related to the blue
circle (o) design space points. We note that these blue circle
(o) points are not used for the generation of the τROMs.
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Fig. 3. An example of estimation and validation design space grid.

N-dimensional and scattered design space grids can also be
treated by the proposed PMOR technique that does not impose
any constraint on the number of design parameters and the
distribution of τROMs in the design space.

B. Scaling and Frequency Shifting Coefficients

After the computation of the τROMs, the next step is
combining them together and building a multivariate rep-
resentation R(s, g). The design space is divided into cells
using hyperrectangles (regular grids) [37] or simplices (regular
and scattered grids) [38]. We note that the proposed PMOR
technique can handle regular and scattered design space grids.

Once the design space is divided into cells, a local param-
eterized model is associated to every cell that is a subdomain
of the entire design space. We indicate a cell region of the
design space as Ωi, i = 1, ..., P (shown in Fig. 4) and the
corresponding vertices as g Ωi

k , k = 1, ..., Q.
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Fig. 4. An example of a design space cell Ωi.

We note that each vertex corresponds to a τROM
R(s, g Ωi

k ). For each cell, an optimization procedure is used

to find the scaling and frequency shifting system coeffi-
cients that make each vertex an accurate approximant of
the other cell vertices. For each vertex R(s, g Ωi

k ), a set of
scaling α1,k(g

Ωi
j ), j = 1, . . . , Q and frequency shifting

α2,k(g
Ωi
j ), j = 1, . . . , Q real coefficients are found, such

that

α1,k(g
Ωi
j )R(sα2,k(g

Ωi
j ), g Ωi

k ) ≃ R(s, g Ωi
j ), j ̸= k (9)

α1,k(g
Ωi
j ) = α2,k(g

Ωi
j ) = 1, j = k (10)

This optimization problem can be solved using, for example,
the Matlab [39] routines fmincon and fminsearchbnd with
α1,k(g

Ωi
j ) = 1, α2,k(g

Ωi
j ) = 1, j = 1, ..., Q, j ̸= k as initial

guess. These routines are able to impose some constraints on
the optimized coefficients, which is important to guarantee the
passivity of parameterized reduced order models as explained
in what follows. If the response of the system under modeling
needs to be computed in a specific design space point ĝ, a
subdomain that contains ĝ is to be found. For each vertex
τROM of the found subdomain, the corresponding sets of scal-
ing and frequency shifting coefficients α1,k(g

Ωi
j ), α2,k(g

Ωi
j )

are interpolated in ĝ and a model α̂1,kR(sα̂2,k, g
Ωi

k ) is built,
where α̂1,k = α1,k(ĝ) and α̂2,k = α2,k(ĝ). Finally, the
set of modified τROMs α̂1,kR(sα̂2,k, g

Ωi

k ), k = 1, ..., Q, is
interpolated at an input/output level as described in [32]. We
note that if a generic τROM R(s, g Ωi

k ) has the admittance
representation

L(g Ωi

k )T (sC(s, g Ωi

k ) +G(s, g Ωi

k ))−1B(g Ωi

k ) (11)

then a corresponding scaled and frequency shifted version
α̂1,kR(sα̂2,k, g

Ωi

k ) has the admittance representation

L̃(g Ωi

k )T (sC̃(s, g Ωi

k ) + G̃(s, g Ωi

k ))−1B̃(g Ωi

k ) (12)

with

C̃(s, g Ωi

k ) = C(sα̂2,k, g
Ωi

k )

G̃(s, g Ωi

k ) = (α̂2,k)
−1G(sα̂2,k, g

Ωi

k )

B̃(g Ωi

k ) = B(g Ωi

k )

L̃(g Ωi

k ) = α̂1,k(α̂2,k)
−1L(g Ωi

k )

(13)

The scaling coefficients α1,k(g
Ωi
j ) can be extended to

scaling matrices Γ1,k(g
Ωi
j ) such that a modified τROM

Γ̂T
1,kR(sα̂2,k, g

Ωi

k )Γ̂1,k is obtained with

C̃(s, g Ωi

k ) = C(sα̂2,k, g
Ωi

k )

G̃(s, g Ωi

k ) = (α̂2,k)
−1G(sα̂2,k, g

Ωi

k )

B̃(g Ωi

k ) = B(g Ωi

k )Γ̂1,k

L̃(g Ωi

k ) = (α̂2,k)
−1L(g Ωi

k )Γ̂1,k

(14)
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where superscript “T ” is the transpose operator. Even if the
use of scaling matrices can provide more flexibility in the
optimization step, we verified that the use of simple scaling
coefficients leads to good results in terms of accuracy, while
making the optimization faster and independent from the
number of ports. In the numerical examples, scalar scaling
and frequency shifting coefficients will be used.

C. Multivariate Interpolation

Passivity is crucial when the reduced model is utilized in a
circuit simulator for transient analysis. Passive systems cannot
generate more energy than they absorb through their electrical
ports. When the system is terminated on any arbitrary passive
loads, none of them will cause the system to become unstable.
A linear network described by admittance matrix Y(s) is
passive if [40]:

1) Y(s∗) = Y∗(s) for all s, where “∗” is the complex
conjugate operator.

2) Y(s) is analytic in ℜe(s) > 0.
3) Y(s) is a positive-real matrix, i.e. :

z∗T
(
YT (s∗) +Y(s)

)
z ≥ 0 ; ∀s : ℜe(s) > 0 and any

arbitrary vector z.
Similar results are valid for a linear network described by
impedance matrix Z(s). The interpolated scaling and fre-
quency shifting real coefficients α1,k(g), α2,k(g) have to
satisfy the following conditions

α1,k(g) ≥ 0 (15a)
α2,k(g) > 0 (15b)

to preserve the passivity of the corresponding scaled and
frequency shifted τROM. If scaling matrices Γ1,k(g) are
used instead of scaling coefficients α1,k(g), no particular
condition has to be satisfied by Γ1,k(g). Multivariate inter-
polation schemes based on a class of positive interpolation
operators [41] are used to parameterize α1,k(g), α2,k(g).
These schemes are able to guarantee the passivity of each
scaled and frequency shifted τROM by satisfying the proper-
ties (15a)-(15b). The same positive multivariate interpolation
schemes are used to interpolate the set of modified τROMs
α̂1,kR(sα̂2,k, g

Ωi

k ), k = 1, ..., Q at an input/output level,
which results in a parameterized reduced model passive over
the entire design space.

Multivariate interpolation can be realized by means of tensor
product [42] or tessellation [38] methods. Any interpolation
scheme based on a class of positive interpolation operators
can be used.

In the bivariate case (s, g), each interpolated function T(g),
being in turn α1,k(g), α2,k(g),R(s, g), can be written as

T(g) =

K1∑
k=1

Tgkℓk(g) (16)

where K1 represents the number of τROMs vertices of a
specific subdomain and each interpolation kernel ℓk(g) is a
scalar function satisfying the following constraints

ℓk(g) ≥ 0, (17)
ℓk(gi) = δk,i, (18)

A possible choice is to select ℓk(g) as in piecewise linear
interpolation.

In the general multivariate case, multivariate interpolation
methods that belong to the general class of positive interpo-
lation operators can be used, e.g., the piecewise multilinear
and multivariate simplicial methods [37]. We note that the
interpolation kernel functions of these methods only depend
on the design space grid points and their computation does not
require the solution of a linear system to impose an interpola-
tion constraint. These positive interpolation schemes have been
already used in [32]. In the proposed new PMOR technique, a
powerful novelty is introduced by the interpolation process of a
set of scaling and frequency shifting system coefficients, which
increase the modeling capability of the proposed algorithm
with respect to [32], where the interpolation process were only
applied to the ROMs treated as input-output systems.

D. Passivity Preserving Interpolation
Under the assumptions that the original τPEEC models are

passive and the MOR method used to provide the τROMs is
passivity-preserving, the proposed PMOR method is able to
build parameterized reduced models that are passive over the
entire design space of interest.

A scaling coefficient α1 or matrix Γ1 is applied at the
input/output level of the system, while a frequency shifting
coefficient α2 is a compression or expansion term for the
Laplace variable s. Considering admittance and impedance
representations, if α1, α2 satisfy (15a)-(15b), passivity is pre-
served when these coefficients are applied to a passive system.
It is straightforward to prove that if a nonnegative scalar
coefficient is applied to a passive system, it preserves the three
passivity conditions. A positive frequency shifting coefficient
is a compression or expansion term for the Laplace variable s
and therefore if a system is passive in the s-domain, it is also
passive in a compressed or expanded s-domain.

Once a set of scaled and frequency shifted τROMs
α̂1,kR(sα̂2,k, g

Ωi), k = 1, . . . , Q, which are passive, is built
for each cell in the estimation design space grid, the next
step of the proposed PMOR method is focused on combining
together these τROMs by a multivariate interpolation scheme
to obtain a parameterized ROM R(s, g) with overall passivity.
Conditions 1)-2) are preserved in (16) and corresponding
multivariate extensions, as they are weighted sums with real
nonnegative weights of systems respecting these two condi-
tions. Concerning Condition 3), we refer to the following
theorem [43]:

Theorem 1: Any nonnegative linear combination of positive
real matrices is a positive real matrix.

Since (16) and the multivariate extensions are weighted
sums with real nonnegative weights of passive systems, con-
dition 3) is satisfied by construction over the entire design
space of interest. We have proven that all the three passivity
conditions for admittance (and impedance) representations are
preserved in our PMOR algorithm.
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E. Method complexity and parallelization

As shown in Fig. 2, the proposed method is composed of
four steps with a related complexity:

1) the construction of the τROMs is performed using the
MOR method [25];

2) the computation of scaling and frequency shifting coeffi-
cients is performed using optimization routines. We recall
that using scalar scaling and frequency shifting coeffi-
cients leads to a good accuracy of parameterized ROMs,
while keeping the optimization process computationally
cheap and fast;

3) the multivariate interpolation of scaling and frequency
shifting coefficients uses positive local interpolation
methods with interpolation kernel functions that only
depend on the estimation grid points;

4) comments similar to those of the previous point are valid
for the multivariate interpolation of scaled and shifted
τROMs. We recall that the estimation design space grid
is divided into cells using hyperrectangles (regular grids)
[37] or simplices (regular and scattered grids) [38]. Each
cell is defined by a specific number of vertices that are
used to perform interpolation in the cell itself.

All four steps of the proposed technique have a certain degree
of parallelism:

1) since each τROM is independent from the others, the
construction of a single τROM can be performed in
parallel with the others;

2) the computation of scaling and frequency shifting coeffi-
cients can be parallelized cell by cell;

3) a parallelization cell by cell is also feasible for the mul-
tivariate interpolation of scaling and frequency shifting
coefficients;

4) comments similar to those of the previous point are valid
for the multivariate interpolation of scaled and shifted
τROMs.

IV. NUMERICAL RESULTS

This section presents two numerical examples that validate
the proposed PMOR method. Let us define the weighted RMS-
error as:

Err(g) =

=

√√√√∑NiNo

i=1

∑Ks

k=1

∣∣∣wYi(sk, g)
(
Yr,i(sk, g)− Yi(sk, g)

)∣∣∣2
NiNoKs

(19)

with

wYi(s, g) = |(Yi(s, g))
−1| (20)

where Ni,No are the number of input and output system ports
and Ks is the number of frequency samples. The worst case
RMS-error over the validation grid is chosen to assess the
accuracy and the quality of parameterized ROMs

gmax = argmax
g

Err(g), g ∈ validation grid (21)

Errmax = Err(gmax) (22)

and it is used in the numerical examples. The proposed PMOR
algorithm was implemented in Matlab R2009A [39] and all
experiments were carried out on Windows platform equipped
with Intel Core2 Extreme CPU Q9300 2.53GHz and 8GB
RAM.

A. Three-port microstrip power-divider circuit

A three-port microstrip power-divider circuit [44], [45] has
been modeled in this example. The structure is shown in Fig.
5. The dimensions of the circuit are [20, 20, 0.5] mm in the
[x, y, z] directions and the width of the microstrips is equal to
0.8 mm. The relative dielectric constant is equal to ϵr = 2.2.
A bivariate τROM is built as a function of the length L in
addition to frequency. Their corresponding ranges are shown
in Table I.

P1

P3P2

L

w

x y

z

Fig. 5. Structure of the three-port microstrip power-divider circuit.

TABLE I
PARAMETERS OF THE THREE-PORT MICROSTRIP POWER-DIVIDER CIRCUIT.

Parameter Min Max
Frequency (freq) 100 kHz 10 GHz
Length (L) 6 mm 10 mm

The τPEEC method is used to compute the C,G,B,L
matrices in (1a)-(1b) for 11 values of L. Then, we have built
reduced models for 6 values of L by means of the MOR
algorithm described in [25]. Table II shows the order and the
number of delays of these 6 τPEEC models and corresponding
τROMs.

TABLE II
(ORDER,DELAYS) OF τPEEC MODELS AND τROMS.

τPEEC models τROMs
L1 (2667,732) (60,732)
L2 (2667,730) (60,730)
L3 (2667,727) (60,727)
L4 (2667,730) (60,730)
L5 (2667,742) (48,742)
L6 (2667,737) (60,737)
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A bivariate τROM is obtained using the proposed PMOR
method with the piecewise linear interpolation scheme. Fig.
6 shows the magnitude of the parameterized reduced model
of Y11(s, L). Fig. 7 shows the magnitude of Y11(s, L) and
Y12(s, L) for the length values L = {6.4, 8, 9.6} mm. These
specific L values have not been used in the τROMs generation
process, nevertheless an excellent agreement between reduced
and PEEC models can be observed. The worst case RMS-
error defined in (22) is equal to 0.08. As clearly seen, the
parameterized reduced model captures very accurately the
behavior of the system.

0 2 4 6 8 106
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11

| (
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)

Fig. 6. Magnitude of the bivariate τROM of Y11(s, L).

B. Three bends

Three bends over a ground plane with differential ports have
been modeled in this example. The structure is shown in Fig.
8. The width of the bends and the distance of the bends from
the ground plane are equal to 1 mm. A trivariate τROM is
built as a function of the length L and the spacing between
the conductors S in addition to frequency. Their corresponding
ranges are shown in Table III.

TABLE III
PARAMETERS OF THE THREE BENDS.

Parameter Min Max
Frequency (freq) 100 kHz 10 GHz
Length (L) 1 cm 1.3 cm
Spacing (S) 2.5 mm 3 mm

The τPEEC method is used to compute the C,G,B,L
matrices in (1a)-(1b) over the estimation grid (6 values of
L and 5 values of S) and the validation grid (5 values of L
and 4 values of S), as shown in Fig. 3. Then, we have built
τROMs in the estimation grid by means of the MOR algorithm
described in [25]. Table IV shows the order and the number of
delays of these 30 τPEEC models and corresponding τROMs.
A trivariate τROM is built by means of the presented PMOR
approach with the piecewise multilinear interpolation scheme.
Fig. 9 shows the magnitude of the parameterized reduced
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Fig. 7. Magnitude of the bivariate τROMs of Y11(s, L) and Y12(s, L)
(L = {6.4, 8, 9.6} mm).

L

S

S

S S

Fig. 8. Structure of the three bends.

model of Y11(s, L, S) for the spacing values S = {2.56, 2.97}
mm. Fig. 10 shows the magnitude of Y11(s, L, S) for the
length and spacing values L = {1.03, 1.15.1.27} mm, S =
2.69 mm and of Y14(s, L) for the length and spacing values
L = 1.15 mm, S = {2.56, 2.94} mm. Even if these specific L
and S values have not been used in the τROMs generation
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TABLE IV
(ORDER,DELAYS) OF τPEEC MODELS AND τROMS.

τPEEC models τROMs
(L1, S1) (2124,510) (64,510)
(L2, S1) (2124,508) (64,508)
(L3, S1) (2124,510) (64,510)
(L4, S1) (2124,511) (64,511)
(L5, S1) (2124,517) (64,517)
(L6, S1) (2124,519) (64,519)
(L1, S2) (2124,509) (64,509)
(L2, S2) (2124,511) (64,511)
(L3, S2) (2124,513) (64,513)
(L4, S2) (2124,512) (64,512)
(L5, S2) (2124,519) (64,519)
(L6, S2) (2124,520) (80,520)
(L1, S3) (2124,511) (64,511)
(L2, S3) (2124,514) (64,514)
(L3, S3) (2124,518) (64,518)
(L4, S3) (2124,515) (64,515)
(L5, S3) (2124,518) (64,518)
(L6, S3) (2124,522) (64,522)
(L1, S4) (2124,511) (64,511)
(L2, S4) (2124,512) (64,512)
(L3, S4) (2124,519) (64,519)
(L4, S4) (2124,519) (64,519)
(L5, S4) (2124,519) (64,519)
(L6, S4) (2124,527) (64,527)
(L1, S5) (2124,510) (64,510)
(L2, S5) (2124,513) (64,513)
(L3, S5) (2124,518) (64,518)
(L4, S5) (2124,520) (64,520)
(L5, S5) (2124,519) (80,519)
(L6, S5) (2124,524) (64,524)

process, the model accurately describes the system under
study in these design space points. The worst case RMS-
error defined in (22) is equal to 0.065. The parameterized
reduced model is able to accurately describe the parameterized
behavior of the system.

V. CONCLUSIONS

We have presented a new PMOR technique applicable
to NDDE systems. It is based on an efficient and reliable
combination of univariate model order reduction methods, a
procedure to find scaling and frequency shifting coefficients
and positive interpolation schemes. An innovative passivity-
preserving interpolation of reduced systems at an input-output
level is proposed, which allows accurately modeling of highly
dynamic systems. The proposed method does not have to deal
with multiparameter moment computation and related issues.
The expansion points are chosen only along the frequency
axis using an adaptive algorithm. Under the assumptions
that the original τPEEC models are passive and the MOR
method used to provide the τROMs is passivity-preserving,
the proposed PMOR method is able to build parameterized
reduced models that are passive over the entire design space
of interest. Numerical examples have validated the proposed
PMOR approach on practical application cases, showing that
it is able to build very accurate parameterized τROMs of
dynamic EM systems.
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Fig. 9. Magnitude of the trivariate τROM of Y11(s, L, S) for S = 2.56 mm
(top) and S = 2.94 mm (bottom).
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versità degli Studi dell’Aquila, L’Aquila, Italy, in
2007, and the Ph.D. degree in electrical engineering
from the University of Ghent, Ghent, Belgium, in
2011. He is currently a Post-Doctoral Research Fel-
low with the Department of Information Technology
(INTEC), Ghent University, Ghent, Belgium. His

research interests include parametric macromodeling, parameterized model
order reduction, electromagnetic compatibility numerical modeling, system
identification.

Michel S. Nakhla (S’73-M’75-SM’88-F’98) is a
Chancellor’s Professor of Electrical Engineering at
Carleton University. He received the Ph.D. degree in
Electrical Engineering from University of Waterloo,
Ontario, Canada, in 1975. From 1976-88 he was
with Bell-Northern Research, Ottawa, Canada, as
the senior manager of the computer-aided engineer-
ing group. In 1988, he joined Carleton University,
Ottawa, Canada as a professor and the holder of
the Computer-Aided Engineering Senior Industrial
Chair established by Bell-Northern Research and

the Natural Sciences and Engineering Research Council of Canada. He is
the founder of the high-speed CAD research group at Carleton University.
He is serving on various international committees, including the standing
committee of the IEEE International Signal Propagation on Interconnects
Workshop (SPI), the technical program committee of the IEEE International
Microwave Symposium (IMS), the technical program committee of the IEEE
Conference on Electrical Performance of Electronic Packaging (EPEP) and the
CAD committee (MTT-1) of the IEEE Microwave Theory and Techniques
Society. He is an Associate Editor of the IEEE Transactions on Advanced
Packaging and served as Associate Editor of the IEEE Transactions on
Circuits and Systems. He has also served as a member of many Canadian
and international government-sponsored research grants selection panels He
serves as a technical consultant for several industrial organizations and is
the principal investigator for several major sponsored research projects. His
research interests include modeling and simulation of high-speed circuits
and interconnects, nonlinear circuits, parallel processing, multidisciplinary
optimization and neural networks.

Giulio Antonini (M’94, SM’05) received his Laurea
degree (summa cum laude) in Electrical Engineering
in 1994 from the Università degli Studi dell’Aquila
and the Ph.D. degree in Electrical Engineering in
1998 from University of Rome ”La Sapienza”. Since
1998 he has been with the UAq EMC Laboratory,
Department of Electrical Engineering of the Uni-
versity of L’Aquila where he is currently Associate
Professor. His research interests focus on EMC
analysis, numerical modeling and in the field of
signal integrity for high-speed digital systems. He

has authored or co-authored more than 170 technical papers and 2 book
chapters. Furthermore, he has given keynote lectures and chaired several
special sessions at international conferences. He has been the recipient of
the IEEE Transactions on Electromagnetic Compatibility Best Paper Award
in 1997, the CST University Publication Award in 2004, the IBM Shared
University Research Award in 2004, 2005 and 2006, the IET-SMT Best Paper
Award in 2008. In 2006 he has received a Technical Achievement Award
from the IEEE EMC Society ”for innovative contributions to computational
electromagnetic on the Partial Element Equivalent Circuit (PEEC) technique
for EMC applications”. He holds one European Patent.

Tom Dhaene (SM’05) was born in Deinze, Belgium,
on June 25, 1966. He received the Ph.D. degree
in electrotechnical engineering from the University
of Ghent, Ghent, Belgium, in 1993. From 1989 to
1993, he was Research Assistant at the University of
Ghent, in the Department of Information Technol-
ogy, where his research focused on different aspects
of full-wave electro-magnetic circuit modeling, tran-
sient simulation, and time-domain characterization
of high-frequency and high-speed interconnections.
In 1993, he joined the EDA company Alphabit (now

part of Agilent). He was one of the key developers of the planar EM
simulator ADS Momentum. Since September 2000, he has been a Professor
in the Department of Mathematics and Computer Science at the University
of Antwerp, Antwerp, Belgium. Since October 2007, he is a Full Professor
in the Department of Information Technology (INTEC) at Ghent University,
Ghent, Belgium. As author or co-author, he has contributed to more than 150
peer-reviewed papers and abstracts in international conference proceedings,
journals and books. He is the holder of 3 US patents.

Luc Knockaert (SM’00) received the M. Sc. De-
gree in physical engineering, the M. Sc. Degree
in telecommunications engineering and the Ph. D.
Degree in electrical engineering from Ghent Uni-
versity, Belgium, in 1974, 1977 and 1987, re-
spectively. From 1979 to 1984 and from 1988 to
1995 he was working in North-South cooperation
and development projects at the Universities of the
Democratic Republic of the Congo and Burundi.
He is presently affiliated with the Interdisciplinary
Institute for BroadBand Technologies (www.ibbt.be)

and a professor at the Dept. of Information Technology, Ghent University
(www.intec.ugent.be). His current interests are the application of linear
algebra and adaptive methods in signal estimation, model order reduction and
computational electromagnetics. As author or co-author he has contributed
to more than 100 international journal and conference publications. He is a
member of MAA, SIAM and a senior member of IEEE.



F. FERRANTI et al.: INTERPOLATION-BASED PARAMETERIZED MODEL ORDER REDUCTION 11

Albert E. Ruehli (LF’03) received the Ph.D. de-
gree in electrical engineering from the University
of Vermont, Burlington, in 1972, and an honorary
doctorate from the Lulea University, Sweden, in
2007. He has been a member of various projects
with IBM including mathematical analysis, semi-
conductor circuits and devices modeling, and as
manager of a VLSI design and CAD group. Since
1972, he has been at IBM’s T. J. Watson Research
Center in Yorktown Heights, New York, where he
was a Research Staff Member in the Electromagnetic

Analysis Group. He is now an Emeritus of IBM Research and an adjunct
professor in the EMC area at the Missouri University of Science and
Technology. He is the editor of two books, Circuit Analysis, Simulation and
Design (New York: North Holland 1986, 1987) and he is an author or coauthor
of over 190 technical papers. Dr. Ruehli has served in numerous capacities
for the IEEE. In 1984 and 1985, he was the Technical and General Chairman,
respectively, of the ICCD International Conference. He has been a member
of the IEEE ADCOM for the Circuit and System Society and an Associate
Editor for the Transactions on Computer-Aided Design. He has given talks
at universities including keynote addresses and tutorials at conferences, and
has organized many sessions. He received IBM Research Division or IBM
Outstanding Contribution Awards in 1975, 1978, 1982, 1995, and 2000. In
1982, he received the Guillemin-Cauer Prize Award for his work on waveform
relaxation, and in 1999, he received a Golden Jubilee Medal, both from the
IEEE CAS Society. In 2001, he received a Certificate of Achievement from
the IEEE EMC Society for Inductance Concepts and the Partial Element
Equivalent Circuit (PEEC) method. He received the 2005 Richard R Stoddart
Award, and in 2007 he received the Honorary Life Member Award from
the IEEE Electromagnetic Compatibility Society for outstanding technical
performance. He is a member of SIAM.


