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ABSTRACT 

Over the last few decades design researchers have put forward theories and 

proposed methodologies that increase the chance that a design team will reliably arrive 

at the optimal solution to a given design problem.  Studies, however, bear out that 

theories and methodologies alone will not guarantee an optimal or even good design 

solution.  Instead, a breadth of knowledge across multiple engineering domains and the 

time and tools to thoroughly evaluate the design space are as important as any 

prescriptive design method.  This work presents a set of underlying engineering 

technologies to define, archive and reuse product design knowledge to provide a 

breadth of domain knowledge for designers and to leverage artificial intelligence 

approaches to thoroughly, if not exhaustively, search the design space.  Specifically, a 

database schema and entry application for a prototype design repository of product 

design knowledge is formulated and implemented.  A real-time, knowledge base-

driven, function-based conceptual design algorithm known as the morphological search 

is formulated to extract information from the design repository and support a thorough 

exploration of the design space for solutions.  Currently, the Design Engineering Lab’s 

prototype Design Repository contains design knowledge for over 125 products and has 

over 300 user accounts representing 17 different countries. 

With the foundational repository elements in place, artificial intelligence 

methods are employed to generate a natural language to formal component naming 

terms thesaurus as part of a novel form-initiated concept generation approach.  The 

approach, known as Form Follows Form, automatically generates a functional model 

based upon an initial component solution seed to a design problem.  With a functional 

model in hand, established automated concept generation algorithms are employed to 

return more complete and varied solutions following a thorough search of the design 

space. 
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1. INTRODUCTION 

1.1 PHILOSOPHICAL STATEMENT 
The broad vision of this research is to capture existing or expert design 

knowledge and build tools that allow the novice, student, or less experienced designer 

access to expert information in an intuitive and easy to use manner.  Design knowledge 

capture has taken form in connected database schema and design repository and the 

tools provide foundations in automated concept generation and reasoning.  This 

dissertation seeks to answer the hypothesis that computational intelligence (i.e., product 

design knowledge archival and reuse and AI algorithms) can be applied in the early 

phases of design to increase the quantity, quality, and breadth of concept variants 

produced during the design of a product. � 

1.2 PROBLEM SCOPE 
This research aims to link expert knowledge from not only the fields of 

mechanical engineering and engineering design, but also engineering and science in 

general.  To support today’s complex products, processes, and needs it is import to 

bridge the gaps that sometimes exists between traditional domains of study.  The field of 

engineering is almost synonymous with design.  Arguably, the essence of engineering is 

applying the theories and principles of the sciences to serve the needs of humankind.  

Stated more succinctly, engineering is focused on designing solutions to observed needs.  

Within engineering many fields exist to support those activities and engineering design 

is the one field that is concerned with the principles, theories and methodologies of 

design that transcend all disciplinary engineering fields.  Often this field of study finds 

its academic home in mechanical engineering even though it is an interdisciplinary 

activity cutting across all of engineering. 

The basic process of engineering design can generally be described as four 

phases that 1) clarify a problem; 2) generate conceptual solutions; 3) embody the chosen 



 

 

2 

concept; and finally 4) detail out the design for production.  The input to this four phase 

process of design is an unmet societal need and the ultimate output is a product meeting 

the societal need.  While depicted in Figure 1.1 as a sequential process, the process is 

invariable a iterative activity within each phase and between phases.  

 

Figure 1.1. Overview of the design process (left side).  Early advances in automating 
the early phases of design (upper right quadrant) and one major focus of the current 

research on moving to a form-initiated, computational thinking-based concept 
generation approach (lower right quadrant) 

Specific to the hypothesis under consideration here, the scope of this research 

encompasses some latter stage activities of the clarify problem phase and most of the 

generate concept phase.  In recent years, researchers have made progress at automating 

portions of the generate concept phase by introducing algorithms that transform a 
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functional description of the societal (or product) need into form - expressed as concept 

variants.  The fundamental steps of this process are shown in the upper right quadrant 

of Figure 1.1.  This advance relies on design knowledge archival methods (some of 

which is covered in this dissertation) and supports a more thorough, if not exhaustive, 

search of the solution space.  One of the keys to successful operation of these algorithms 

is the development of the functional description of the product under consideration.  In 

this work, that required input will be referred to as a functional model or function 

structure.  Experience shows that abstracting the product need to a functional model is a 

difficult process for engineering designers.  A significant portion of this research is 

involved with moving toward a form-initiated design approach, outlined in the lower 

right quadrant of Figure 1.1, that will overcome this last major stumbling block.   

1.3 THE SUPERVAC - A MOTIVATIONAL CASE 
Looking ahead to the potential impact of a new form-initiated approach, consider 

how a typical design experience in the future, informed by an approach that boosts a 

designer’s creativity and accessible by any engineer, might play out.  Audrey and Zeke 

work for ACME AirGas, a company that makes industrial grade vacuums and blowers.  

They have an identified requirement to redesign their “SuperVac” model so that it is less 

noisy.  They are assigned to the manufacturing division and typically do not “do 

design.”  However, the design division is swamped with a new product launch and they 

are tasked with the redesign.  The customer need of “less noise” is easily associated with 

an automobile muffler component by Audrey and Zeke as shown in Figure 1(a).  It is, of 

course, not feasible to install an automotive muffler on even the industrial SuperVac 

model.  However, by using their new form-initiated computational design tool, the 

vacuum’s original components plus the imagined muffler are input.  The underlying 

functionality of the components is determined (shown in Figure 1(b)) and component 

solutions for the functionality are returned from a query to existing function-initiated 

concept generation algorithms (depicted in Figure 1(c)).  Based on the ability to start 
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with a specific, yet infeasible, component, more feasible concept models are recalled 

from the repository and presented to stimulate further creative modifications as 

represented in Figure 1(d).  As a result of using the new form inspired automated 

concept generation, both Audrey and Zeke are able to find useful and creative ways to 

solve the product’s noise issue (Figure 1.2).  In such new product research and 

development scenarios, several alternatives can be pursued throughout detailed design.  

 
 

Figure 1.2. A schematic of a future form-initiated computational design tool 

1.4 STATE OF THE ART 
In this section a brief review of related works is presented.  The topics presented 

include design information archival as well as manual and automated concept 

generation techniques.  

 



 

 

5 

1.4.1 NIST Repository Initiative  
The most similar system to UMR’s repository schema takes form in the NIST 

Design Repository representation model [1-5]. Through their repository initiative, NIST 

set out to define basic guidelines of a Design Repository and how archived design 

information could be useful to designers.  The NIST Design Repository representation 

model is a basic framework to help guide what type of product information is collected 

and how the elements of information are related to each other. NIST has also developed 

a mapping from this representational framework into an XML (eXtensible Markup 

Language) data format.  While portions of the NIST initiative overlaps with design 

representation standards such as STEP (Standard for the Exchange of Product model 

data), the breadth and scope of implementation differ greatly.  Like certain STEP 

protocols, the NIST framework provides for geometric and process information storage 

but also expands them to a higher-level domain of design information storage.  

The NIST initiative proposes a set of information models to be used for modeling 

product knowledge at varying levels of detail.  There are several data entities which 

allow for a variety of aspects of a product description to be represented. The classes 

specified in the NIST Core Product Model include: Artifact, Function, Transfer Function, 

Flow, Form, Geometry, Material, Behavior, Specification, Configuration, Relationship, 

Requirement, Reference and Constraint. 

1.4.2 PDM Systems 
In recent years product data management (PDM) systems have emerged to help 

store and retrieve product and part data.  PDM systems allow for part hierarchy storage 

as well as process data and project management elements.  Svensson and Malmqvist [6] 

explore a PDM system and demonstrate many uses of such a system.  The PDM system 

demonstrated collects requirement, function, concept and part structures as well as 

property models.  Additionally a PDM system stores the entire product structure, 

variants, revisions and finally documentation and CAD models.  Although function 
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structures and property models can be stored within a PDM system, they are not capable 

of storing the detailed function based information we desire and integrating it into 

useful design tools without heavy modification.  A PDM system is a highly effective tool 

for use in the manufacturing side of emerging products and parts but is fundamentally 

different from a repository system.   

1.4.3 The Design Repository 
The objective of a Design Repository is to allow designers to store and retrieve 

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function.  Currently the 

Missouri S&T Design Repository contains design information for over 125 consumer 

based electro-mechanical products.  Design information captured by the repository can 

be divided into seven main categories including: artifact-, function-, failure-, physical-, 

performance-, sensory- and media-related information types.  The different levels of 

abstraction and types of design information provide innovative ways to approach 

design.  With a well populated repository, emerging concept generator algorithms take, 

as input, basic product functionality or component information and instantaneously 

develop, filter and rank concepts to use as baselines for further product development.  

While the possibilities design repositories offer are diverse and helpful to designers, the 

implementation of such repositories are crucial to their overall success and usefulness.   

Realizing the potential impact of an operational Design Repository, researchers at 

Missouri S&T, The University of Texas at Austin and the National Institute of Standards 

and Technology (NIST) began gathering artifact information in 1999 [7-9].  Since that 

time, the process in which artifact data is gathered and recorded has changed 

significantly.  Initially, artifact design information was recorded in spreadsheets and 

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM), 

and Design Structure Matrices (DSM).  While this type of information was useful, it was 

also limited in scope and the required matrix multiplications were quite cumbersome.  A 
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prior Design Repository initiative by NIST helped to guide the Design Repository 

project at Missouri S&T to a more mature state.  To enhance data integrity, design 

information was migrated from spreadsheet form to a relational database.  A web-based 

repository navigator including search and design tool generation features was created 

along with a repository entry application.  

More recently, Missouri S&T has further partnered with UT-Austin [10, 11], Penn 

State [12], Virginia Tech, Bucknell [13], University of Buffalo and Texas A&M to expand 

the types of design information and breadth of design tool features within the repository.  

The Design Repository serves as a hub for designers for information exchange and 

design generation tools and is heavily utilized in the current VOICE project.  

Information entry and retrieval occurs within a standalone application [14] (available at 

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs 

over the Internet through the Design Repository’s web portal 

(http://repository.designengineeringlab.org/).  The infrastructure supporting these two 

applications is the Design Repository database and schema [12].  The database schema 

establishes what types of design information can be stored, the relationship of those 

elements and the extensibility of including new and additional types of design 

information.  

1.4.5 Concept Generation Techniques 
A variety of concept generation methods exist for application to engineering 

design problems – from those that are common practice within the field of design to the 

more modern computer aided concept generation methods.  Many researchers have 

sought to formalize the conceptual design phase.  Antonsson and Cagan concisely define 

the notion of 'formal' as “...computable, structured, and rigorous, not ad hoc” [15].  

Furthermore, by founding concept generation techniques on functionality, solution-

independent design descriptions can be built [16].  Such methods generally rely on a 

form of functional decomposition of the overall problem to initiate the search for 
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physical design solutions during conceptual design.  Whether driven in this function-

based manner or otherwise, much variability is exhibited in just how this search is 

carried out depending on the method chosen.  This reflects the variety of perspectives 

that have been suggested for addressing the conceptual design problem and a sampling 

of the major themes is reviewed next.  

1.4.5.1 C-Sketch/6-3-5 Method 
The 6-3-5 method is a generic technique that supports innovative thinking [17].  

In 6-3-5, members of an engineering design team (optimally 6-8 members) generate, 

interpret, and modify the individual ideas of other team members by first brainstorming 

and sketching individually on three ideas for various aspects of the product, then 

passing their ideas to the next team-member who adds additional ideas and sketches.  C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and 

refrain from communicating verbally when passing ideas to the next member [18].  

Passing only sketches allows other team members the opportunity to interpret the 

concepts in a different manner than the original author, thereby increasing design 

diversity. 

1.4.5.2 The Catalog Design Method 
Another approach, referred to as catalog design, is based on a catalog of physical 

elements (components, assemblies, etc.) that can be browsed for solutions that match 

required performance specifications.  The data for design catalogs are limited to some 

degree insofar as these design catalogs are generally a subset of previously designed 

systems, which leads to the issue of potential novelty restrictions.  However, a major 

benefit of catalog design is the ability to utilize design knowledge that falls outside 

human memory [19-21]  

1.4.5.3 Design by Analogy 
In Design by Analogy, a functional model is created of the product being 

designed.  Examining analogous products or components that perform the same 

function generates solutions to the present design problem.  The designer then evaluates 
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these similar components for appropriateness in solving the given design problem [22].  

One Design by Analogy method widely recognized in the engineering design 

community is the Theory of Inventive Problem Solving, or simply TRIZ.  TRIZ was 

developed by Altshuller during the 1940-50’s period and was based on the examination 

of large numbers of existing patents [23].  The end result of this effort is an engineering 

design approach that identifies a set of conflicts that occur in design along with a set of 

principles that can be applied to generate solutions that solve these conflicts.   

1.4.5.4 Morphological Matrix Method 
The morphological matrix introduced by Zwicky is now a classic technique for 

use in conceptual design [24].  This method provides the design engineer with a simple, 

albeit manual, means for bookkeeping potential physical solutions and their 

corresponding functionality. 

1.4.6 Foundations in Automated Concept Generation  
The front end of the conceptual design process has seen few attempts at 

automation, perhaps due in part to the evolving strategies and methodologies that exist 

for this phase of design. However, over the past decade, several methodologies have 

coalesced around the functional decomposition and partial solution manipulation 

techniques originally introduced by Pahl and Beitz [25], e.g., [26-35]. These 

methodologies take a designer through a set of steps to help decompose a design 

problem and build conceptual solutions based on the functionality that a product needs 

to exhibit. Function modeling methods abstract the functionality that a solution must 

fulfill from the established customer needs, ideally removing designer biases that may 

be introduced by focusing on specific solutions too early in the design process. This 

abstraction helps a designer generate more complete conceptual solutions and balance 

design choices between different components with the same functionality [25].  

Research into the benefits of structured design methods (e.g., [36]) coupled with 

research into designers’ reluctance to use them (e.g., [37, 38]) seem to point toward the 
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need for the seemingly tedious stages of systematic design to employ some level of 

automation to help integrate the benefits of a structured method with the more natural 

activities of a designer – a need that is most evident during the early phases of 

conceptual development.  

Computational tools for conceptual design do exist, yet these tools often address 

areas that support aspects such as initial requirements gathering (e.g., organizational 

tools such as the TikiWiki project [39], the creation of function structures (e.g., the 

function grammar tool developed by Sridharan and Campbell [40]), or optimization of 

well-established concepts (e.g., [41]) rather than the translation of functional 

requirements into creative solutions). 

1.4.7 The State of the Art in Automated Concept Generation 
Computerized concept generation techniques, spanning the broad AI topics of 

knowledge representation and reasoning, promise engineers a faster realization of 

potential design solutions based upon previously known products and implementations.  

While the area of automated concept generation has made great strides in recent years, 

most methods still require the user to indicate desired functionality.  Using functional 

descriptions has been shown to help engineers stray away from pre-trained ideas of how 

a product or device would look and operate, although can cause confusion for engineers 

and scientists who have not been trained to describe product functionality.  Two of the 

automated concept generation methods under development today rely solely on the 

user’s ability to develop functional descriptions of their desired product.  Both of these 

methods make use of a repository of design information including component 

connection information and component functionality.  

The recent foundations for concept generation through computational reasoning 

have been developed based on formalisms for describing function or purpose in 

engineering design largely led by members of our research team [42, 43].  Some of the 

results of this research include the development of a design repository to allow 
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designers to store and retrieve design knowledge at various levels of abstraction, from 

form (components, sub-assemblies and assemblies) to configurations to function.  

Offering a fully functional and intuitive way to record product design information has 

been key to the acceptance of repositories as an important concept generation tool for 

designers.  A prototype design repository framework by NIST guided the design 

repository (discussed further in Section 2.4) project to a more mature state.   

The bank of empirical knowledge relating components to functions leads to the 

development of relational matrices [10, 11] and graph grammar rules [44, 45] that, when 

combined with a search mechanism, automatically creates conceptual designs.  Aiding 

the methods set forth by Bryant and Kurtoglu [46, 47] is a component naming taxonomy 

spanning 140 different component classifications.  With the open-endedness or large 

degree of variability in conceptual design, numerous solutions are created through the 

search mechanisms (on the order of thousands).  Presenting these thousands of solutions 

to the user is similar to an Internet search that produces thousands of results.  It is 

overwhelming to the user and impractical to expect that such a large number of 

alternatives will be useful to the designer.  Furthermore, the results showed that subtle 

challenges in a given design problem may not always be captured in the specification of 

initial function, and thus many results were not relevant to the user’s needs [48, 49].  As 

a result, the proof of concept Designer Preference Modeler [50, 51] was created to find 

within the large set of results which concepts were most meaningful to the designer.  By 

ranking select concepts, the search mechanism learns what aspects of the concept the 

user prefers, and seeks solutions that maximize the predicted preference.  Initial results 

for this method are promising, but the impact they have on the design process is still 

unclear. 
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1.5 HOW TO USE THIS DISSERTATION 
The remainder of this dissertation consists of five publications spanning the 

scope of the engineering design problem outlined above.  Combined together the 

included papers provide tools to aid in the conceptual level of the engineering design 

process.  A repository system is implemented to capture design information regarding 

the final description of a design and use that information to clarify a project and/or 

generate concepts.  The first paper, “Introduction of a Data Schema to Support a Design 

Repository,” specifically outlines the underlying database and relationships necessary to 

support product design information archival.  With a framework for information 

archival established, the second paper, “An Open Source Application for Archiving 

Product Design Information,” details an application used for recording product design 

information.  Specifically this paper details information archival from the standpoint of a 

user and discusses the implementations of an operational repository system.  The 

remaining three papers utilize the operational repository and the data stored within to 

develop methods that aid in the conceptual stage of design. 

The third paper, “Using a Design Repository to Drive Concept Generation,” 

illustrates the first concept generation tool built using data stored in the design 

repository.  Concept generation is simple and takes the form of a morphological function 

based search that returns possible solution components.  Repository data is utilized once 

again in, “A Natural Language to Component Term Methodology: Towards a Form 

Based Concept Generation Tool,” to develop a list of natural language terms to augment 

an existing component basis taxonomy.  Finally, “Form Follows Form – Is a New 

Paradigm Needed?” again utilizes repository data and natural language component 

terms to introduce a form-based conceptual design tool.  
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ABSTRACT 
This paper presents the data schema required to capture fundamental elements 

of design information in a heterogeneous repository supporting design reuse.  Design 

information captured by the repository can be divided into seven main categories of 

artifact-, function-, failure-, physical-, performance-, sensory- and media-related 

information types.  Each of the seven types of design information is described in detail.  

The repository schema is specific to a relational database system driving the 

implemented Design Repository; however, the types of design information recorded are 

applicable to any implementation of a design repository.  The aim of this paper is to fully 

describe the data schema such that it could be recreated or specialized for industrial or 

research applications.  The result is a complete description of fundamental design 

knowledge to support design reuse and a data schema specification. The data schema 

has been vetted with the implemented Design Repository that contains design 

information for over 100 consumer electro-mechanical products 
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1 INTRODUCTION 
The objective of a design repository is to allow designers to store and retrieve 

design knowledge at various levels of abstraction – from form (components, sub-

assemblies and assemblies as well as historical performance and failure data) to 

architecture to function.  The different levels of abstraction and types of design 

information provide innovative ways to approach design.  A design by analogy 

approach, for example, uses a functional or product architecture description to find 

other existing products which are similar to it, thus providing a starting point for a form 

solution.  A risk conscious approach, for example, uses conceptual level functionality to 

find related failure information to determine values for risk likelihood and consequence.  

With a well populated repository, emerging concept generator algorithms take, as input, 

basic product functionality and synthesize, filter and rank concepts to use as baselines 

for further product development.  While the possibilities design repositories offer are 

diverse and helpful to designers, the implementation of such repositories are crucial to 

their overall success and usefulness.   

Realizing the potential impact of an operational design repository, researchers at 

UMR, the University of Texas at Austin and the National Institute of Standards and 

Technology (NIST) began gathering artifact information in 1999 [1].  Since that time, the 

process in which artifact data is gathered and recorded has changed significantly.  

Initially, artifact design information was recorded in spreadsheets and mainly took the 

form of Bills of Materials (BOM), Function Component Matrices (FCM), and Design 

Structure Matrices (DSM).  While this type of information was useful, it was also limited 

in scope and the required manipulations to compute with the data were cumbersome.  A 

prior Design Repository Project initiative by NIST helped to guide the design repository 

project hosted at UMR to a more mature state.  To enhance data integrity, design 

information was migrated from various independent file formats to a relational 

database.  A web-based repository navigator including search and design tool 
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generation features was created along with a repository entry application creating the 

user interface for the new repository, dubbed the UMR Design Repository (also referred 

to as simply the Design Repository in this article). 

More recently, UMR has further partnered with UT-Austin [2, 3], Penn State, 

Virginia Tech and Bucknell [4] to expand the types of design information and breadth of 

design tool features within the repository.  Currently, the Design Repository serves as a 

hub for designers for information exchange and design generation tools.  Information 

entry and retrieval occurs within a standalone application (available at 

http://function.basiceng.umr.edu/repositoryEntry) while information retrieval occurs 

over the Internet through the Design Repository’s web portal 

(http://function.basiceng.umr.edu/repository).  The infrastructure supporting these 

two applications is the Design Repository database and more specifically the database 

schema.  The database schema establishes what types of design information can be 

stored, the relationship of those elements and the extensibility of including new and 

additional types of design information.   

The objective of this paper is to fully describe the database schema, currently at 

version 2.0, powering the repository.  This paper reports on research efforts to 1) identify 

pieces of fundamental design information that support designer activities, 2) segment 

and classify the pieces of design information, 3) define relationships between the 

disparate pieces of design information, 4) develop ways to standardize design 

information representation, and 5) deliver a functional database schema.  Sections 3 and 

4 provide implementation level details, Section 5 presents the larger context of 

repository operations and Section 6 summarizes conclusions prior to future work in 

Section 7.  

2 BACKGROUND 
Several types of applications have been created to record pieces of product or 

process information.  This niche of design-based applications includes the NIST 
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Repository initiative, PDM (Product Data Management) systems, and CAD based 

repositories.  The NIST Repository initiative set forth guidelines for categorizing 

function-centric design information.  PDM systems allow for part hierarchy storage as 

well as process data and project management elements.  CAD based design repositories 

store numerous artifact CAD files and rely on feature descriptions and recognition 

capabilities.  In this section an overview of the NIST Repository Initiative, PDM, and 

CAD based storing systems is presented.   

2.1 NIST Repository Initiative  
The most similar system to UMR’s repository schema takes form in the NIST 

Design Repository representation model [5-10].  Through their repository initiative, 

NIST set out to define basic guidelines of a Design Repository and how archived design 

information could be useful to designers.  The NIST Design Repository representation 

model is a basic framework to help guide what type of product information is collected 

and how the elements of information are related to each other. NIST has also developed 

a mapping from this representational framework into an XML (eXtensible Markup 

Language) data format.  While portions of the NIST initiative overlaps with design 

representation standards such as STEP (Standard for the Exchange of Product model 

data), the breadth and scope of implementation differ greatly.  Like certain STEP 

protocols, the NIST framework provides for geometric and process information storage 

but also expands them to a higher-level domain of design information storage.  

The NIST initiative proposes a set of information models to be used for modeling 

product knowledge at varying levels of detail.  There are several data entities which 

allow for a variety of aspects of a product description to be represented. The classes 

specified in the NIST Core Product Model include: Artifact, Function, Transfer Function, 

Flow, Form, Geometry, Material, Behavior, Specification, Configuration, Relationship, 

Requirement, Reference and Constraint. 
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While the UMR schema contains elements similar to that of the NIST schema but 

is distinguished by allowing design information regarding customer needs, component 

basis designations, manufacturer, failure modes and sensory level information to be 

stored.  Also, the NIST schema is only exemplary and has not been implemented in a 

distributable, publicly accessible and operational system. 

2.2 PDM Systems 
In recent years product data management (PDM) systems have emerged to help 

store and retrieve product and part data.  PDM systems allow for part hierarchy storage 

as well as process data and project management elements.  Svensson and Malmqvist [11] 

explore a PDM system and demonstrate many uses of such a system.  The PDM system 

demonstrated collects requirement, function, concept and part structures as well as 

property models.  Additionally a PDM system stores the entire product structure, 

variants, revisions and finally documentation and CAD models.  Although function 

structures and property models can be stored within a PDM system, they are not capable 

of storing the detailed function based information we desire and integrating it into 

useful design tools without heavy modification.  A PDM system is a highly effective tool 

for use in the manufacturing side of emerging products and parts but is fundamentally 

different from a repository system.  Within the UMR repository, similar pieces of design 

knowledge, such as CAD models and part hierarchies, are stored; however, the main 

focus is the mapping between functions and components and the compatibility of 

components to connect together as a system 

2.3 CAD-based Systems 
Regli [12] in partnership with NIST and the National Science Foundation (NSF) 

has also developed a CAD-based design repository.  The focus of Regli’s work includes 

collaboration in the field of CAD, engineering design, manufacturing process planning, 

and feature recognition.  The design repository contains mostly CAD, solid models, and 

assemblies along with some supporting documentation such as cost and assembly plans. 
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3 UMR DESIGN REPOSITORY CONVENTIONS 
The UMR Design Repository is an artifact-centric repository, meaning that for a 

design attribute to exist, it must be linked to an artifact.  Other information classes 

contained in the Design Repository, such as manufacturing and physical parameters for 

example, describe additional design attributes while still relating to their artifact hub.  

Because the Design Repository is artifact-centric, understanding the artifact table and 

associated relationships is key to understanding the data handling capabilities of the 

repository.   

The repository schema is built and served by a PostgreSQL (a SQL variant) 

database [13].  In general, the database contains tables that have clusters of similar types 

of information.  Database tables are then connected to other tables within the database to 

form data relationships.  In this paper there are two types of database tables: 1) a 

database table description, which detail the fields and associated data types that define a 

database table (alternatively, for non-computer scientists, table descriptions describe the 

structure and connectedness of the data), and 2) a database table that details the set of 

data entries in the database (alternatively, the actual data that is entered into the 

repository – in this case, the product data).  Note, every database table has an associated 

database table description.  The term row will be used to describe an entry in a database 

table and the term field will be used to describe an object in the database table 

description.  Table 1 shows the artifact table description in the repository database 

schema. 

All table descriptions throughout this paper are presented in the same format as 

Table 1.  The first column represents the field name, the second column specifies the data 

type, the third column denotes whether or not a piece of information is mandatory, and 

the fourth column describes any default values, if applicable.  The fifth column describes 

the type of key that might exist for a particular field.  Only one primary key can exist per 

table and is used to develop a unique reference to the particular entry in that database 
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table.  Having a foreign key designation means that the particular field references the 

primary key of another database table.  All database tables in the UMR Design 

Repository begin with an id column that is a serial integer, mandatory for any 

information entry with no default value and designated as the database table’s primary 

key. 

 Table 1. Artifact table description 

artifact 

field name data type mandatory default value key type 
id serial yes N/A primary 
name varchar yes N/A N/A 
child_of_artifact int no N/A foreign 
basis_name int no N/A foreign 
serial_id_number varchar no N/A N/A 
assembly boolean yes FALSE N/A 
description varchar no N/A N/A 
quantity int yes 1 N/A 
system int yes N/A foreign 
manufacturer varchar no N/A N/A 
trademark varchar no N/A N/A 
artifact_release_date date no N/A N/A 
entry_date date yes N/A N/A 
modification_date date no N/A N/A 
creator_info int yes N/A foreign 

Within the UMR Design Repository, there are two main categories of tables—

those that store artifact-specific design data information and those that store taxonomies 

and bases to classify design information.  The Design Repository makes use of several 

taxonomies and bases to describe information such as functionality, failure modes, 

manufacturing processes, materials and color.  While several different taxonomies exists 

to describe these types of information, ones chosen for use within the repository could 

alternatively be replaced for specific repository implementations.  The tables that store 

taxonomies and bases are denoted with _type after the table name.  Figure 1 shows all 41 
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of the repository database tables with the 13 database storing tables highlighted. 

Taxonomy and basis storing tables do not reference design data storing tables; however, 

they may reference themselves in order to establish hierarchies.  Shown in Table 2 is a 

prime example of a basis-storing database table: the subfunction_type table description. 

As with all other database table descriptions in the repository, the 

subfunction_type table begins with a serial id that establishes a primary key.  The second 

field of the database table is where the actual Functional Basis term is stored.  Tier is 

used to denote whether the particular Functional Basis term is in the primary, secondary, 

or tertiary level [14].  Child of subfunction establishes a hierarchy of the Functional Basis 

terms and the definition field is used to hold the definition of the particular function.  

 
Figure 1. Graphical view of repository database tables 
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Table 2. Subfunction_type table description 

subfunction_type 
field name data type mandatory default value key type 

id serial yes N/A primary 
subfunction varchar yes N/A foreign 
tier int yes N/A N/A 
child_of_subfunction int no N/A foreign 
definition varchar no N/A N/A 

 

4 UMR DESIGN REPOSITORY DATA GROUPS 
The design information captured by the Design Repository data schema can be 

broken up into seven main classes: artifact-, function-, failure-, physical-, performance-, 

sensory- and media-related information types.  All seven of these categories are 

represented in different database tables but are all brought together by the use of 

database table relationships, found in the database table descriptions for each database 

table.  In this section, each of the seven data classes are reviewed along with the specific 

pieces of information they hold.  Section 5 details how these elements are connected 

together to create a cohesive Design Repository.   

4.1 Artifact-related Design Knowledge 
As mentioned in Section 3, the artifact table serves as a central hub for the 

remaining six categories of data.  Although all design information typically references an 

artifact, there are a few pieces of design information that the artifact database table 

stores directly.  Each artifact comprises a row entry in the artifact table.  An artifact can 

be considered an entire product, a sub-assembly, or a single part when stored in the 

Design Repository.  To represent the artifacts of a product in the repository, the product 

is first identified as an artifact, and then all individual assemblies, sub-assemblies, and 

artifacts are grouped accordingly under that artifact.  The repository database has the 

capability of establishing parent-child relationships such that a product artifact 

hierarchy is created.  In order to keep a strict separation of different products within the 
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repository a system database table is used, the system database table description is 

shown in Table 3.   

Table 3. System table description 

system 
field name data type mandatory default value key type 

id serial yes N/A primary 
name varchar yes N/A N/A 
system_type int yes N/A foreign 
description varchar no N/A N/A 
contributing_institution varchar yes N/A N/A 

Looking back at the artifact database table description shown in Section 3 (see 

Table 1), there is a placeholder for a system reference for each artifact instance.  A unique 

system id is established for each new product that is added to the repository.   Every 

artifact belonging to the given system is then referenced to the system id.  In the system 

database table description (see Table 3), a system name, system description, and 

contributing institution are associated with the system.  For example there may be 30 

artifacts named ‘motor’ that are unique to different products because of the system 

designation.  The contributing_institution field in the system database table is used to 

track what institutions have recorded design information for a particular product.  The 

system database table also includes a system_type field.  The system_type field links to 

the system_type database table containing a list of different product categories.  Example 

product categories include consumer, industrial, commercial, automotive, space, etc. 

The artifact database table description (see Table 1) begins with a serial-based id 

number to establish a unique serial number for each artifact that resides in the database.  

Moving through the artifact table, data fields such as the artifact name, description, 

quantity, manufacturer, trademark, artifact release date, entry date and modification 
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date are present.  The child_of_artifact field is used to create an artifact hierarchy; this is 

accomplished by designating the field as a foreign key, which in this instance points to 

an artifact id.  

Next in the artifact database table, the basis_name field is used to associate a 

component basis name to a specific artifact [15].  For example an artifact denoted as a 

coffee cup would reference the component_basis_type table to establish that ‘reservoir’ 

is the corresponding component basis term.  Component basis naming is used to cluster 

similar artifacts. When an artifact is a grouping of several artifacts, the assembly field is 

used.  The assembly field Boolean value defaults to FALSE indicating that the artifact is a 

singular artifact.  For bookkeeping purposes, the creator_info field is used.  The 

creator_info field references the creator_info_type database table, which contains 

contributor information such as their name, email address, and affiliation.   

4.2 Function-related Design Knowledge 
Product functionality is highly important not only to conceptual design but also 

to other design and optimization methods that use function as a link to existing design 

information.  Since several aspects of design engineering and product design revolve 

around function, it is highly necessary to accurately represent artifact functionality 

digitally.   

The function_flow database table in the repository is used to allow portions of 

functional models to be associated with an artifact.  In order to accurately capture the 

material, energy, and signal flow through a product, it is necessary to have additional 

artifact connection information alongside the standard function and flow language.  

Capturing the function, flow, and artifact connection information is done by associating 

an input and output artifact and flow with each function.  Table 4 shows the 

function_flow database table description.   
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Table 4. Function flow table description 

function_flow 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_artifact int yes N/A foreign 
supporting boolean yes FALSE N/A 
input_artifact int yes N/A foreign 
input_flow int yes N/A foreign 
subfunction int yes N/A foreign 
output_flow int yes N/A foreign 
output_artifact int yes N/A foreign 

Similar to the artifact database table, the function_flow database table begins 

with a serial id number creating a unique primary key.  The primary key ensures that 

each set of function and flow descriptions are represented uniquely in the scope of the 

entire set of function-flow descriptions in the repository.  Each tuple containing the 

{input_artifact, input_flow, subfunction, output_flow, and output_artifact} is linked to a 

specific artifact by the describes_artifact field.  The supporting field is used to establish 

whether a particular function tuple is described as a supporting or conceptual function 

[16].  A conceptual function is a function that is required by customer needs where 

supporting functions describe the necessary functions required for the physical 

embodiment of the product.  The supporting field also has a default value of FALSE, 

which corresponds to a function being recorded as a conceptual function.  The 

input_artifact and output_artifact fields are both foreign keys that reference a specific 

artifact id number in the artifact table.  The subfunction field is also a foreign key and 

references a specific function id in the function_type table.  All of the data elements in 

the function_flow table are specified as mandatory in order to accurately represent 

functionality.  In cases where an artifact solves multiple functions the input and output 

artifact fields can be designated as ‘internal,’ representing that a particular flow stays 

within an artifact’s boundary.  If an input (or output) flow comes from (or goes to) more 
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than a single artifact, the flow can be designated as going to (or from) multiple sources 

using the ‘internal’ designation.  For example, when an artifact has an incoming flow of 

electrical energy from two specific sources both electrical energy flows would be 

transferred to the designated artifact with an output_artifact of ‘internal.’  Functionality 

of the artifact can then be recorded using ‘internal’ as the input flow.  When multiple 

artifacts are used in concert to solve a single function each artifact is denoted with the 

overall function.  All fields within the function_flow database table are set as mandatory.  

From a functional perspective, it would not make sense to list a function without also 

listing the incoming and outgoing flows or the destination.   

Table 5 shows the function_flow database table populated with sample data to 

demonstrate how function relationships are generated.  Reading across the table, the 

sample function and flow tuples describe artifact number 0000008.  In the row beginning 

with an id of 1, the input_artifact corresponds to ‘external’ and the output_artifact 

corresponds to 0000009.  If an input or output artifact is denoted as ‘external’ it means 

that a particular source or destination of a flow crosses the given product’s boundary.  

Both input_flow and output_flow reference id numbers in the flow_type table.  For this 

example, flow id of 16 corresponds to ‘electrical energy.’  The subfunction field in Table 5 

references an id number in the subfunction_type table, with an id of 12 representing the 

function ‘import.’  All of these designations for row id 1 correspond to ‘electrical energy’ 

being imported from an outside source with a destination of an artifact having an id of 

0000009.   

Moving on to row id 2 of Table 5, the artifact being described has an id number of 

0000009, an input artifact id of 0000008, input flow of id 16, subfunction id of 22, output 

flow id of 44, and a destination artifact id of 0000006.  Translating the id numbers, the 

row reads as having an input flow of ‘electrical energy,’ the subfunction ‘convert’ and an 

output flow of ‘rotational mechanical energy.’  Adding both of these rows together 

shows that two separate artifacts are being described: one that would take form as an 
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electric plug or wire (artifact id 0000008) and the other artifact taking form as some kind 

of electric motor (artifact id 0000009).  The input artifact for the electric cord is external 

while the output artifact is the motor.  The electric motor has a source artifact of the 

electric cord while the destination artifact, specified as artifact id 0000006, would likely 

be some kind of coupler, gear, or other artifact that can connect to an electric motor. A 

translated version of Table 5 is shown in Table 6.  For both Tables 5 and 6, the functions 

are described as conceptual functions, taking the value of FALSE in the supporting field 

[16]. 

Table 5. Function flow database table with sample data 

function_flow 

id describes input_artifact input_flow subfunction output_flow output_artifact supporting 

1 OOOOOO8 external 16 12 16 OOOOOO9 FALSE 

2 OOOOOO9 OOOOOO8 16 22 44 OOOOOO6 FALSE 

3 xx xx xx xx xx xx xx 

4 xx xx xx xx xx xx xx 

5 xx xx xx xx xx xx xx 
 

Table 6. Function flow database table with translated sample 

function_flow 

id describes input_artifact input_flow subfunction output_flow output_artifact supporting 

1 
electric 

cord 
external 

electrical 
energy 

import 
electrical 
energy 

electric motor FALSE 

2 
electric 
motor 

electric cord 
electrical 
energy 

convert 
rotational 

mechanical 
energy 

OOOOOO6 FALSE 

3 xx xx xx xx xx xx xx 

4 xx xx xx xx xx xx xx 

5 xx xx xx xx xx xx xx 
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4.3 Failure-related Design Knowledge 
Failure information in this Design Repository is driven by efforts including the 

Function-Failure Design Method (FFDM) [17, 18], Risk-in-Early Design (RED) [19], and 

adaptations of modern Failure Modes and Effects Analysis (FMEA) [20] techniques.  

FFDM and RED are similar in purpose to generic FMEA methods but strive to provide 

risk and possible failure information at the conceptual level of design based solely on 

product functionality.  It is necessary to build an infrastructure such that designers and 

engineers can archive and easily access this critical information.  A failure mode 

taxonomy for mechanical and electrical components has been developed at UMR and is 

used as the reference taxonomy in this work [17, 18]. 

Like the function_flow database table description, the failure database table 

description shown in Table 7, begins with a serial id number and link to the particular 

artifact being described (describes_artifact).  It is necessary that the serial id and 

describes_artifact fields are present to establish a unique identifier for a given set of 

failure information and to properly link the failure information to a specific artifact.  

Next, the particular type of failure is recorded in the failure field.  Again, the failure field 

actually references the failure taxonomy, meaning that only the failure id number is 

actually entered in failure table. 

The next two fields in the failure database table are used to specify the severity 

and whether the failure mode is an actual or potential failure mode.  Typically a 1-5 scale 

is used to denote severity; however, the failure database table allows a float value to be 

entered in the severity field.  The float value is allowed because not all data 

contributions are rated on the same 1-5 severity scale.  It is necessary to specify whether 

a particular failure mode is an actual failure mode or is only noted that it ‘could’ happen.  

Actual failure modes are those that have been recorded historically where potential 

failure modes are those that are believed to be physically possible.  Because of this very 

distinct difference it is necessary to record the correct information.  The potential field in 
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the failure data table is a Boolean and has a default value of FALSE indicating that a 

failure mode is an actual failure mode.  In cases where a failure mode is denoted as an 

actual failure mode, it is necessary to record the number of occurrences, the sample size, 

and rating type.  

The default rating scale assumed in the repository is the 1-5 severity scale [20].  

In cases where an alternate failure rating scale is used, the rating_type field in the failure 

table can be used to reference the rating_type table.  The rating_type table can be 

populated with a list of failure mode rating types, a description of the rating system, and 

conversion values to the repository standard 1-5 rating scale.  When occurrence and 

sample size data is not available and only failure rate data is specified, the rate field is 

used to input a float value of the failure rate.  Ideally it is better to have occurrence and 

sample size failure data such that similar artifacts and functions can be clustered to 

present statistically valid failure likelihood and severity information. 

Table 7. Failure table description 

Failure 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_artifact int yes N/A foreign 
failure int yes N/A foreign 
severity float no N/A N/A 
potential boolean yes FALSE N/A 
occurences int no N/A N/A 
rating_type int yes 1 foreign 
sample_size int no N/A N/A 
rate float no N/A N/A 

When more accurate failure mode information is available through warranty or 

problem reporting databases for example, the failure_data_info database table 

description, shown in Table 8, can be used to record the additional information.  The 
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failure_data_info database table is used to supplement information in the failure 

database table by adding the data source, a report number for bookkeeping, the 

operational environment of the artifact at time of failure, date of incident, and a 

description.  Detailed failure information like this is highly important where human life 

is a factor in the operation of a device.  Unlike the failure data table, which references 

artifact id numbers, the failure_data_info table references a particular failure id number.  

Using this referencing scheme means additional failure_data_info information can only 

be associated with an existing failure mode entry.   

The driving force behind the failure_data_info comes from NASA, industry 

partners, and other academic institutions [21-23].   For safety and or economically critical 

subsystems it is necessary to accurately record not only the failure modes but also 

additional descriptions of the failure mode.  The data_source field in the 

failure_data_info table references a data_source_type table.  Data source types may take 

on the form of corporate-specific failure databases, warranty data, or NASA’s Problem 

Failure Reporting (PFR) database [24]. 

Table 8. Failure database info table description 

failure_data_info 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_failure int yes N/A foreign 
data_source int yes N/A foreign 
report_number varchar no N/A N/A 
oper_env int no N/A foreign 
date_of_incident date no N/A N/A 
description varchar no N/A N/A 
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4.4 Physical-related Design Knowledge 
There are several types of physical-related design information elements that can 

be used to describe artifacts.  This type of information originates from the form aspect of 

an artifact and can be used to search for components that meet certain manufacturing, 

material or size criteria.  Currently the repository records four main categories of 

physical design information elements: manufacturing information, artifact material, 

rough geometric bounding dimensions, and color.   

The manufacturing_process database table description, shown in Table 9, is used 

to denote specific manufacturing processes utilized in the manufacture of the referenced 

artifact.  Similar to most other database tables in the repository, the 

manufacturing_process database table begins with a serial id number and a reference to 

a specific artifact id (describes_artifact).  The manufac_process_type field in the 

manufacturing_process database table references an id of a specific type of 

manufacturing in the manufacturing_type table.  Examples of manufacturing types 

include casting, machining, injection molding, etc.  The manufacturing_process database 

table is used only to link a specific artifact to a type of manufacturing process; process 

data types are stored only in the manufacturing_type table.  It is not required to specify a 

manufacturing type when recording artifact information; however the repository can 

record multiple manufacturing processes for each artifact.  

Table 9. Manufacturing process table description 

manufacturing_process 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_artifact int yes N/A foreign 
manufac_process_type int yes N/A foreign 
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The material database table description, shown in Table 10, operates in the same 

manner as the manufacturing_process database table but is used to link an artifact to 

material types instead of manufacturing types.  Examples of material types in the 

material_type database table include ABS plastic, aluminum, stainless steel, etc.  Like the 

manufacturing_process database table, it is not required to specify material information 

when recording artifact data although multiple material types can be specified for each 

artifact.  

Table 10. Material table description 

Material 
field name data type mandatory default value key type 

id serial Yes N/A primary 
describes_artifact int Yes N/A foreign 
material int yes N/A foreign 

The color database table is similar to the manufacturing_process and material 

database table descriptions and is shown in Table 11.  Each instance of a color association 

is tracked by the serial id field and is then associated to a specific artifact id by the 

describes_artifact field.   The color field in the color database table references a color id 

in the color_type table.  Like the manufacturing_process and material database tables, 

multiple colors can be associated with a single artifact.   

The parameter database table description, see Table 12, is slightly more complex 

than the prior physical-related design information tables in the repository.  The 

complexity stems from the table’s ability to record several different types of information 

that are quantifiable aspects of the physical artifact.  Fields in the parameter database 

table begin with a serial id and a reference to a specific artifact id number.  Additional 

fields in the table are parameter_type, parameter_metric_type, and parameter_value.  
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The parameter_value field is where an actual numerical value for a specific parameter is 

recorded.  When specifying a parameter value it is not only mandatory to specify the 

type of parameter but also the metric used to measure the specific parameter.  

Table 11. Color table description 

color 

field name data type mandatory default value key type 
id serial yes N/A primary 
describes_artifact int yes N/A foreign 
color int yes N/A foreign 

The parameter_type and parameter_metric_type fields both reference specific 

database tables.  A parameter type is typically classified as a measurement, which 

includes descriptors of length, width, height, diameter, etc.  The parameter table is also 

used to store artifact cost, where the type of ‘cost’ is denoted.  Once a specific parameter 

type is recorded it is necessary to also record the associated parameter type metric.  For 

the examples of measurement the metric may include inches, feet, centimeters, etc.  

Examples of the cost parameter metric type include US dollars, Canadian dollars, 

Japanese Yen, etc. 

Table 12. Parameter table description 

parameter 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_artifact int yes N/A foreign 
parameter_type int yes N/A foreign 
parameter_metric_type int yes N/A foreign 
parameter_value float yes N/A N/A 
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4.5 Performance-related Design Knowledge 
Performance-related design knowledge is captured with 'high level' 

characteristics that describe the overall functionality of the entire product.  These 

characteristics extend beyond the component level representation of functionality, 

helping translate product functionality into measurable quantities.  As defined in Table 

13, designers first specify the type of performance (e.g., power) and then the metrics that 

are used to define it (e.g., Watts).  These characteristics can be inherent to the product or 

be associated with a specific input or output.  If the performance characteristic is tied to 

a particular component within the product, then the designer can specify this association 

using the component basis [15].  The value of the characteristic must also be specified.   

The same unique primary key and artifact id referencing begin the 

performance_characterstics database table description, and the performance_type, 

performance_metric_type, and characterstic_type fields all reference their named type 

database tables.  Specific taxonomies are stored in the type database tables.  The 

component_basis_type field is used to reference the component basis taxonomy when 

the performance of a specific component of a more generic artifact is described.  For 

example, when a motor is entered (the higher level artifact) but a torque rating is given 

for the output shaft, the component basis specification should be used so that the 

characteristic is related to the motor but tied specifically to the output shaft.  Continuing 

this example, the electrical requirements for the motor could specify voltage and current, 

which would also be linked to the wire connectors for the motor. 

In addition to performance characteristics, customer needs are categorized as 

shown in Table 14.  Although customer needs do not always match the performance 

characteristics one-to-one, it is important to denote the desired performance or function 

when information is available.  Elements of the customer_needs database table 

description resemble the failure database table description in that occurrences, 

sample_size, and rate are specified fields.  Importance is also recorded in the 
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customer_needs database table.  When importance, occurrence, sample size and/or rate 

are specified, it is possible to evaluate product functionality and performance versus 

customer needs specifications [25, 26].  The customer_need_type table allows for a list of 

unique customer needs to be established and is referenced by the customer_need field.   

Table 13. Performance characteristics table description 

performance_characteristics 

field name data type mandatory default value key type 
id serial yes N/A primary 
describes_artifact int yes N/A foreign 
performance_type int yes N/A foreign 
performance_metric_type int yes N/A foreign 
characteristic_type int no N/A foreign 
component_basis_type int no N/A foreign 
performance_value float yes N/A N/A 

Table 14. Customer needs table description 

customer_needs 
field name data type mandatory default value key type 

id serial yes N/A primary 
describes_artifact int yes N/A foreign 
customer_need int yes N/A foreign 
importance int no N/A N/A 
occurences int no N/A N/A 
sample_size int no N/A N/A 
rate float no N/A N/A 

4.6 Sensory-related Design Knowledge 
The sensory database table captures additional product data related to the five 

senses as shown in Table 15.  Finish defines the visual sheen or luster that covers the 

largest area of the product and is typically one of three options: brilliant, glossy, or dull.  

Finish relates additional sight data beyond data organized into color and material.  

Meanwhile, texture relates to touch and specifies the feel of the product when held.  It 
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can be one of three options—smooth, rough, or coarse—based on the extent to which the 

customer interacts with the product through touch.  A product's dormant and 

operational smell can be specified using options such as strong, mild, or none.   

While smell may not be a concern for many products, some designers pay close 

attention to the smell of their products such as in the automotive industry when interior 

smell is an important aspect of their product offering (e.g., the 'new car smell').  

Likewise, a product's taste may be an important characteristic to record (e.g., for an 

electro-mechanical toothbrush); hence, gustatory (taste) data is included and specified 

using the four human tastes: salty, sour, sweet, and bitter.  Finally, the operational sound 

of the product can be specified using specific dB ratings or general terms such as loud, 

quiet, etc.  We assume that the dormant (non-operational) sound is quiet; therefore, it is 

not  included in the sensory data table. 

Table 15. Sensory table description 

sensory 

field name data type mandatory default value key type 
id serial yes N/A primary 
describes_artifact int yes N/A foreign 
finish int no N/A foreign 
texture int no N/A foreign 
dormant_smell int no N/A foreign 
operational_smell int no N/A foreign 
gustatorial int no N/A foreign 
operational_sound int no N/A foreign 

4.7 Media-related Design Information 
There are several types of media that can be associated with artifacts.  Media 

types can take the form of pictures, graphical functional models, graphical assembly 

models, 2D-CAD files, 3D-CAD files, stereo lithographic (.stl) files for rapid prototyping 

machines, and many others.  Note that all media types are stored as large objects (files) 
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within the database, thus any associated metadata is also stored.  All of the types of 

media, mentioned and unmentioned, reside in the media table of the repository, the table 

description of which is shown in Table 16.  Instances of media are unique and associated 

with an artifact, which is demonstrated by the id and describes_artifact field.  

Although a single media database table is used to hold all types of media for all 

of the artifacts, the media_type field allows for specification of the exact media type.  

The media_type field references an id number in the media_type table.  Examples of 

media types in the media_type table include .jpg, .gif, .stl, .dxf, and .pdf.  Having a type 

associated with a specific piece of media directs the repository software components 

how to handle and display a piece of media.  In cases of .jpg and .gif the repository web 

site will simply display the image.  For .stl, .dxf, and .pdf, the repository web site shows 

a link for file download and viewing in another application.   

Table 16. Media table description 

media 

field name data type mandatory default value key type 
id serial yes N/A primary 
describes_artifact int yes N/A foreign 
media_type int yes N/A foreign 
data large object yes N/A N/A 

5 DISCUSSION 
As discussed in the previous sections, the Design Repository consists of 

numerous data tables to store design information and relationships.  The operational 

Design Repository contains 41 data tables.  The 41 data tables do not include tables that 

are used to control user access, system authentication and other bookkeeping 

information.  All of the operational design tables and their top level referencing is 

described and shown in this section.  Along with the high-level review of the data 
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schema, features that are enabled by the particular data schema implementation are 

briefly discussed.   

5.1 A High Level Look at Database Tables 
To begin this section, the database tables are broken up into two separate 

categories: (1) those that directly store product information and (2) those that are 

referenced by product storing database tables.  There are 13 database tables that directly 

store product information and 28 supporting tables.  All of the 13 product information 

storing tables were discussed throughout Section 4.   

Figure 2 shows a snippet of the Design Repository schema (Figure 1) with sample 

data.  The boxes represent data tables and arrows represent data relationships.  The 

sample data shown represents only a small subset of design information that can be 

associated with an artifact.  For this example a “gear” is shown as an artifact along with 

associated media, functionality and failure information.  The arrows that connect the 

function_flow, failure, and media tables to the artifact table establish a relationship to the 

artifact “electric motor.”  The corresponding _type table relationships are also shown.  

For example, looking at the failure table, the failure is denoted as “28” and corresponds 

to an entry in the failure_type table as being “high cycle fatigue.”  

All 41 of the repository data tables are represented in Figure 1 with the 13 data 

storing tables highlighted.  A data table makes a reference to another table by an 

outbound arrow to a particular data table.  Looking at Figure 1, the failure table 

references the artifact, failure_type and failure_rating_type tables but is referenced by 

the failure_data_info table.  Tables 18 and 19 show a textual version of Figure 1.  The 

product information storage tables are listed in Table 17 while the product information 

support tables are listed in Table 18.  While most of these tables were referenced in 

Section 4, some of them were not directly discussed.  All of the tables listed in Table 17 

are referenced by the data tables listed in Table 18; however, some of the supporting 

tables are referenced by other supporting tables.  
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Figure 2. Repository schema snippet with sample data 
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Table 17. Database table listing 

  Database 
Table Name Description References 

1 artifact 
Used to record high level 
artifact information such as 
name, description, quantity 

system id, creator info 
type id, comp basis type 
id, artifact id 

2 color 
Used to record the color of an 
artifact 

artifact id, color type id 

3 customer 
needs 

Used to record customer 
needs, importance and the 
number of occurrences 

artifact id, customer 
needs type id 

4 failure 
Used to record artifact failure 
modes, severity and 
likelihood  

artifact id, failure type id, 
failure rating id 

5 failure data 
info 

Used to record additional 
artifact failure information 
such as data source and the 
operational environment 

failure id,  failure data 
source type id, oper env 
type id 

6 function flow 
Used to record artifact 
functionality 

artifact id, subfunction 
type id, flow type id 

7 manufacturing 
process 

Used to record manufacturing 
process associated with an 
artifact 

artifact id, manufacturing 
process type id 

8 material 
Used to record the material of 
an artifact 

artifact id, material type 
id 

9 media 
Used to store media such as 
photos, cad drawings and 
functional models of artifacts 

artifact id, media type id 

10 parameter 
Used to record physical 
measurements and artifact 
cost 

artifact id, parameter 
type id, parameter metric 
type id 

11 performance 
characteristics 

Used to record performance 
data such as voltage 
requirement and output 
torque 

artifact id, performance 
type id, performance 
metric type id, 
characteristic type id, 
comp basis type 

12 sensory 
Used to record items relating 
to the five sense such as 
sound, sight, etc. 

comp basis type id, 
texture type id, smell 
type id, finish type id, 
sound type id, gustatory 
type id, artifact id 

13 system 
Used to establish a unique 
product in the repository 

system type id, institution 
type id 
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Table 18. Database type table listing 

  
Database Table 

Name Description Referenced By 

1 
characteristic 
type 

Used to store the type of 
performance characteristic (input, 
output, inherent) 

performance 
characteristics 

2 color type Used to store a list of colors color 

3 comp basis type 
Used to store the taxonomy of 
general components 

artifact, performance 
characteristics, 
component basis corr 
type 

4 
component basis 
corr type 

Used to store synonyms to 
component basis terms 

  

5 creator info type 
Used to store information about an 
individual who creates a set of 
product information 

artifact 

6 
customer needs 
type 

Used to store a list of typical 
customer needs 

customer needs 

7 
failure data 
source type 

Used to store the list of failure 
data sources 

failure data info 

8 failure rating type 
Used to store the list of different 
failure rating scales and 
conversion factors 

failure 

9 failure type 
Used to store the electrical and 
mechanical failure taxonomies 

failure 

10 finish type 
Used to store a list of possible 
artifact finishes 

sensory 

11 flow corresp type 
Used to store synonyms of the 
flow words of the functional basis 

flow type 

12 flow type 
Used to store the flow words of 
the functional basis 

  

13 func corresp type 
Used to store synonyms of the 
function words of the functional 
basis 

  

14 gustatory type 
Used to store a list of possible 
artifact tastes 

sensory 

15 institution type 
Used to store a list of types of 
institutions (academic, industry, 
etc.) 

system 

16 
manufacturing 
process type 

Used to store a list of 
manufacturing processes 

manufacturing 
process 

17 material type 
Used to store a list of material 
types 

material 

18 media type 
Used to store a list of possible 
types of media associations and 
their required actions 

media 

19 oper env type 
Used to store a list of possible 
artifact operating environments 

failure data info 
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Table 18. Database type table listing (cont.) 

20 
parameter 
metric type 

Used to store metrics associated with 
physical artifact parameters (feet, 
inches, etc.) 

parameter 

21 parameter type 
Used to store a list of possible types of 
physical parameters (length, width, 
etc.) 

parameter 

22 
performance 
metric type 

Used to store units for possible 
performance parameters (dBa, ft-lbs 
etc.) 

performance 
characteristics 

23 
performance 
type 

Used to store a list of possible types of 
performance parameters (torque, 
power, etc.) 

performance 
characteristics 

24 smell type 
Used to store a list of possible types of 
artifact odors 

sensory 

25 sound type 
Used to store a list of possible artifact 
sounds 

sensory 

26 subfunction type 
Used to store the function words of the 
functional basis 

function flow 

27 system type 
Used to store a list of possible system 
types (consumer, industrial, etc.) 

system 

28 texture type 
Used to store a list of possible artifact 
textures 

sensory 

5.2 Engineering Design Applications Enabled by the Repository Schema 
The Design Repository serves as a hub for several engineering design methods 

and applications.  Emerging techniques in concept generation and preliminary risk 

assessment are two design methods that both utilize the design repository.   Currently 

the concept generator takes as input a list of desired functions.  The concept generator 

algorithm then queries the database to find existing components known to solve the 

desired functions.  As a second step the concept generator again queries the repository to 

then determine which of those components are known to physically connect to one 

another.  The final output is a set of concepts that could further be ranked on specific 

design criteria. 

Preliminary risk assessment is an effortless FMEA done at the conceptual level of 

design where only desired product/device functionality is known.  Like the concept 

generator application, the risk assessment tool also takes as input a list of desired 
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functions.  The repository is then quarried to return information regarding failure modes 

and failure mode severity.  Through some simple matrix based calculations the risk 

assessment tool then returns a Risk Fever Chart that maps functions and failure modes 

on a 0-5 likelihood and severity axes.  Both of these tools require very little information 

from the user and quickly return design relevant information.   

6 CONCLUSIONS 
The UMR Design Repository represents several years of development and has 

undergone multiple revisions and updates.  The current version of the repository 

schema, web portal and entry application demonstrate that design information can be 

archived and provide useful tools for designers.  Although the task of building and 

expanding systems to digitally represent design information will continue, the schema 

presented in this paper provides a roadmap to future revisions and supports design 

information storage and the associated repository connected applications.  The UMR 

Design Repository—and more specifically the types of design information recorded—

began with a somewhat limited set of design information: component-to-component 

connects, function-to-component connections, and basic artifact bills of materials.  The 

UMR schema has expanded on the initial data set to include failure and risk-based 

information, generic component naming, function and flow hierarchies, multiple types 

of media associations, and sensory-related artifact descriptions – potentially a 

fundamental set of design knowledge upon which future uses will be built. 

7 FUTURE WORK 
Future work of the UMR Design Repository includes allowing additional data 

types within the schema, increasing database accessibility and viewing options, and 

developing additional synthesis and analysis tools.  Schema expansion may include data 

tables and references to enable mathematical analysis, consumer product safety 

commission reports, and process modeling.   Database accessibility can be greatly 

enhanced by offering a connection API as well migrating the web portal to a Web 2.0 
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site.  Refinements to the existing concept generation and risk analysis tools along with 

developing easier and more efficient ways to populate repository data will increase 

repository usefulness. 

Schema additions include the integration of mathematical-based transfer 

functions, function and flow synonym lookup implementation, component naming 

synonym lookup implementation, further database optimization, work with 

standardization efforts, and further application development.  The desire to include 

mathematical-based transfer functions stems from work in concept generation.  By 

including mathematical transfer functions, automatically generated concepts can be 

easily tested against target values.  The difficult task associated with including transfer 

functions is the classification of the associated mathematical formulas and maintaining 

database integrity when tracing mathematical and numerical variables. 

Access and usability of repository information can be increased by providing a 

repository API to outside organizations.  Repository users are sometimes interested in 

specific subsets data and their relationships.  By providing an API users can develop 

their own customized searches and data views.  Upgrading the web portal to a Web 2.0 

application would allow for different types of data navigation and interactive design 

tools to be employed.  A Web 2.0 application would also allow the current concept 

generation and risk analysis tools to be hosted online.   

A graphical functional model editor is currently under development at UMR.  

Further development is necessary to connect the editor to the repository system.  The 

connection will allow an easier way to populate repository data and can also be used as 

a visualization tool for current repository data.     
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ABSTRACT 
This paper describes an open source computer application developed at the 

University of Missouri – Rolla (UMR) for archiving product design information.  The 

Repository Entry application is designed to work with the UMR design repository to 

record and upload product information.  Written in C++, the application and user 

interface is compiled in Qt allowing for native Macintosh and Windows executables. The 

Repository Entry application can record all of the design information types allowed by 

the repository including: artifact-, function-, failure-, physical-, performance-, sensory- 

and media-related information types.  By using XML, files can be seamlessly transferred 

between the Windows and Macintosh entry application versions as well as the online 

repository.   Through an example product the procedure of using the entry application to 

record and upload design information is demonstrated.  The result of this research is a 

fully functional, easy to use and multi-platform application to aid in the design 

information archival and reuse process. 

1 INTRODUCTION 
The objective of a design repository is to allow designers to store and retrieve 

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function.  The different levels 

of abstraction and types of design information provide innovative ways to approach 
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design.  A design by analogy approach, for example, would use a functional or product 

architecture description to find other existing products, which are similar to it, thus 

providing a starting point for a form solution.  A risk conscious approach, for example, 

would make use of conceptual level functionality and failure related information to 

determine values for risk likelihood and consequence.  With a well-populated repository, 

emerging concept generator algorithms can take as input basic product functionality and 

instantaneously develop, filter and rank concepts to use as baselines for further product 

development.  While the possibilities design repositories offer are diverse and helpful to 

designers, the implementation of such repositories is crucial to their overall success and 

usefulness.  Offering a fully functional and intuitive way to record product design 

information is key to the acceptance of repositories as an important tool for designers. 

Realizing the potential impact of an operational design repository, researchers at 

UMR began gathering artifact information in 1999 [1].  Since that time, the process in 

which artifact data is gathered and recorded has changed significantly.  Initially, artifact 

design information was recorded in spreadsheets and mainly took the form of Bills of 

Materials (BOM), Function Component Matrices (FCM), and Design Structure Matrices 

(DSM).  While this type of information was very useful, it was also limited in scope and 

the required matrix multiplications were quite cumbersome.  A design repository 

initiative by the National Institute of Standards and Technology (NIST) helped to guide 

the design repository project at UMR to a more mature state.  The need to have a unified 

point of entry for design information was initially fulfilled by the EBOM (Enhanced Bill 

of Materials) entry application [1].  The EBOM entry application was a simple stand-

alone database form implemented with FileMaker Pro.  Although the EBOM application 

was functional, it lacked an intuitive interface, and transferring design information to 

the online repository was a daunting task. 

With increasing usage of the UMR design repository as well as the number of 

outside institutions contributing to the repository database of design information, it 
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became necessary to enhance the features, reliability and quality of the EBOM 

application.  Of key interest was the way in which repository contributors recorded 

product information as well as uploaded design information to the central repository 

database.  All previous versions of the EBOM application required that the contributing 

partner email a FileMaker file to a UMR contact to then be parsed and uploaded to the 

repository database.  Another downfall of the EBOM entry application was the lack of 

version control.  Often times, a contributing partner would record product information 

using an outdated version of the EBOM application and cause data-mismatches with the 

repository database.  Using all of these items as central customer needs, an entirely new 

repository entry application was designed and built from the ground up.  The new 

repository entry application can be downloaded at 

http://function.basiceng.umr.edu/repositoryEntry. 

The goal of this paper is to present and fully describe the new repository entry 

application.  This paper reports on research efforts to 1) streamline the process of design 

information entry, 2) eliminate redundancy in the entry process, 3) implement tools to 

verify design information integrity, 4) create an easy way to transfer design information 

and 5) deliver an easy to use repository entry application.  Section 3 presents technical 

details of the repository application including: object classes, XML frameworks and 

database connectivity.  Section 4 demonstrates how product design information is 

recorded and uploaded to the repository database. 

2 BACKGROUND 
Several types of applications have been created to record pieces of product or 

process information.  This niche of design-based applications include PDM (Product 

Data Management) systems, CAD based repositories and knowledge storing systems.  

PDM systems allow for part hierarchy storage as well as process data and project 

management elements.  CAD based design repositories store numerous artifact CAD 

files and rely on feature descriptions and recognition capabilities.  Knowledge based 
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applications record information regarding product or artifact function, flow or customer 

need attributes.  In this section an overview of PDM, CAD based and knowledge storing 

systems that includes a wide variety of design-based information systems is presented.   

2.1  PDM Systems 
In recent years product data management (PDM) systems have emerged to help 

store and retrieve product and part data.  PDM systems allow for part hierarchy storage 

as well as process data and project management elements.  Svensson and Malmqvist [2] 

explore a PDM system and demonstrate many uses of such a system.  The PDM system 

demonstrated collects requirement, function, concept and part structures as well as 

property models.  Additionally a PDM system stores the entire product structure, 

variants, revisions and finally documentation and CAD models.  Although function 

structures and property models can be stored within a PDM system, they are not capable 

of storing the detailed function based information we desire and integrating it into 

useful design tools without heavy modification.  A PDM system is a highly effective tool 

for use in the manufacturing side of emerging products and parts but is fundamentally 

different from a repository system.  Within the UMR repository, similar pieces of design 

knowledge, such as CAD models and develop part hierarchies, are stored; however, the 

main focus is the mapping between functions and components and the compatibility of 

components to connect together as a system. 

2.2 CAD-based Systems 
Regli [3] in partnership with NIST and the National Science Foundation (NSF) 

has also developed a CAD-based design repository.  The focus of Regli’s work includes 

collaboration in the field of CAD, engineering design, manufacturing process planning, 

and feature recognition.  The design repository contains mostly CAD, solid models, and 

assemblies along with some supporting documentation such as cost and assembly plans. 

2.3  Knowledge Based Systems 
Several researchers have built a variety of knowledge-based design information 

systems and have used different product representations with varying degrees of design 
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knowledge abstraction.  Although not all of the knowledge bases built were designed for 

the collection of function-based design, information can still be extracted from these 

systems and their representations.   

Summers [4] reports on a feature-based knowledge system designed for CAD-

based feature elements such as shapes, protrusions or cuts with the intent of supporting 

designer activities.  For conceptual designers, features are crucial pieces of form-based 

modeling information.  The modeling approach of a CAD-based feature system and a 

functional-based representation are different; however, both capture relevant design 

information.  Design information in both cases is highly relevant to the respective fields 

of study.  What differentiates the two approaches is the application of the design 

representations.  The CAD-based knowledge system from Summers exemplifies that all 

design knowledge is relevant dependent upon the domain, representation and level of 

abstraction.  Dixon [5] makes the point that feature descriptions and representations 

must be valid within their respective domain of use. 

Functional representations have been used to represent design information in 

early repository systems.  These systems used a block diagram approach and were based 

on “function logic.”  One of these early systems, described by Sturges [6] and powered 

by Hypercard stacks, was used to navigate function diagrams.  In this preamble to the 

Functional Basis and defined functional modeling techniques, a representation schema 

had to be chosen.  The representation schema used by Sturges [6] built on function logic 

to describe complex systems and included mathematical relationship equations in 

relationship to the “function blocks.”  Through the use of “function logic” and “function 

blocks,” designers were able to gain insight into how a product operates functionally 

3 ENTRY APPLICATION TECHNICAL DETAILS 
In this section the technical underpinnings of the entry application are explored.  

Section 3.1 details how the entry application is organized and programmed.  Section 3.2 

explains how the entry application connects and transfers data with the online 
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repository.  Finally, Section 3.3 describes the XML framework used to save repository 

documents.     

3.1  Building the Entry Application 
The Repository Entry application is an object oriented data management tool and 

designed to work with the UMR repository version 2.0 database schema [7].  The 

interface is designed to guide the user in capturing relevant design information for entry 

into the repository database.  Because this information is taken from tangible items, the 

object-oriented paradigm is highly suitable for implementing the software.  Here, the 

organization of the software will be discussed, with key features highlighted as 

appropriate.   

Modules in the Repository Entry software are organized into C++ objects or 

classes.  Each object class corresponds to a logical or physical component of the product 

or the interface used to gather product information.  For example, much like the Design 

Repository, the central component of data is the Artifact class.  This object represents an 

actual artifact from the product being represented.  The class captures the data 

prescribed by the Design Repository schema and stores it in an Artifact object in memory.  

This class also gives the object the appropriate operations needed to interface it with 

other Artifact objects, the system to which they belong and the user interface used to 

capture the data.  This object-oriented organization allows for a logical mapping of the 

software to its requirements and applications. 

Following the Design Repository schema, Artifact objects are collected into 

another object class representing a system.  Systems are further collected into an object 

representing the repository.  Various further encapsulations of data are found in classes 

that can be part of an Artifact.  These include classes for Failures, Physical Attributes, and 

of course, classes that represent the artifact’s Function and Flow components.   

Each of these objects possess the ability to validate the data entered into them 

through an interface with the object representing the repository and to provide feedback 
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and interaction with the user interface.  The user interface is constructed using 

Trolltech’s Qt framework [[A]].  This allows for rapid development by leveraging 

existing objects and customizing them for this particular application.  Appropriately, Qt 

provides software building blocks, each with some core functionality that can be 

connected and manipulated to build new software, allowing the software engineer to 

focus on satisfying customer needs rather than re-inventing the wheel.  

 Qt was chosen as the framework for several reasons.  Primarily, Qt allows for 

immediate cross-platform development.  The Qt framework utilizes libraries native to 

the target system to ensure that an application compiled for Microsoft Windows has the 

familiar Windows interface, while  an application compiled for OS X uses native OS X 

interface components.  At the same time, the Qt framework provides a platform-agnostic 

application programming interface (API) [[B]].  This removes the burden of maintaining 

multiple versions of code for multiple target systems.   

Secondly, Qt was chosen because it is strongly object-oriented.  Objects created 

from the Qt framework can interact with one another using signals and messages. The 

framework already includes several useful building blocks that allow for rapid 

development of applications.  Among these included objects are those that provide 

database connectivity, network and internet connectivity, operating-system agnostic file 

access, XML document creation and manipulation and, of course, user interface 

capabilities [8]. 

Each of the data centric classes described previously has a corresponding user 

interface class that is used to both capture and display the data found within an object of 

the given class.  In Qt parlance, user interface objects are Widgets.  The Artifact Widget 

contains the drop-down boxes, text fields and custom interface objects that guide the 

user in capturing artifact data.  Like the Artifact class itself, the Artifact Widget is a 

composite of other, more narrowly defined widget classes (e.g., the Failure Widget). 
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These widgets combine and work together to guide the user in defining a 

product that is composed of various artifacts.  The user is prompted to fill out 

identifying information for an artifact first (such as artifact name, description, 

component name, etc).  Next, the user finds controls for entering functionality 

performed by the artifact. Functionality relies on Flows coming in from and going out to 

other artifacts.  The interface makes it equally easy to select an input or output artifact 

from a list of those already instantiated as to direct the application to create a new 

artifact to be described later from the function/flow entry area.   

Since artifact identification and function/flow association are the principle forms 

of data, the interface widgets that capture this information are displayed foremost in the 

application.  Other attributes are captured from widgets lying on other tabs behind the 

functionality tab.  The user is guided in a similar manner to associate failure data (i.e., 

failure modes, failure severity, failure consequence, etc), physical parameters (i.e., 

dimensions and physical measurements), human sensory information (i.e., texture, 

smell, taste, etc), and many other attributes. 

After entering in information describing an artifact, the user can use an intuitive 

tree structure to organize the artifacts into a System or product.  This hierarchy is 

represented by an interactive tree structure.  Newly created artifacts are placed in a 

special area where they can be dragged and dropped into their appropriate position in 

the system tree.  This allows for the representation of the product as a collection of sub-

assemblies.  

Additionally, the entry application allows the user to provide a photo of the 

artifact through a simple drag-and-drop interface.  Other various files prescribed in the 

Design Repository schema can also be associated.  This information is encapsulated with 

the artifact and later uploaded into the repository database. 

Several checks are in place to ensure the integrity of the data captured.  First, 

data integrity is assured where possible by constraining certain attributes to lists of pre-
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defined options (such as failure mode, functionality, color, etc).  For these attributes, the 

set of possible values is finite and known a priori.  However, to improve the experience 

of advanced users, many of these fields allow the user to type the value as though it 

were a free-text entry area.  The interface transforms this free text into the closest 

matching value from the fixed data space.  These pre-defined values are packaged in a 

mutable form with the software, which will be discussed in more detail in Section 3.2. 

Secondly, the creation, deletion, or modification of an artifact prompts a quick 

validation of the product’s data integrity.  Checks are performed to ensure, among other 

constraints, that no two artifacts have the same name and that every artifact that is 

referenced exists within the system.  If an error is found, the user is notified through the 

Problem Artifact menu, which lists the offending artifact and provides access to resolve 

the issue. 

Finally, the structure of storage and retrieval provides a mechanism to ensure 

data integrity.  Each system, when exported to a file, is a self-contained unit, making 

external reference only to a set of “legal” values for each of the captured attributes.  This 

set of terms is fairly stable and derives from the Design Repository schema itself.  The 

Design Engineering Lab maintains the set of terms centrally.  The Repository Entry 

Application contains a mechanism to ease the transition from one version of the set of 

terms to the next.  This translation framework allows a software engineer to simply add 

an entry into the term mapping dictionary to be incorporated in the next software 

release (which ostensibly coincides with the release of the new set of terms).  When one 

of the self-contained product data structures is opened, either from a local file or a 

remote repository, the terms used are translated as necessary into their new 

counterparts. 

3.2 Linking the Entry Application and Online Repository 
The Repository Entry application implements two primary means of information 

transfer.  Products can be imported from and exported to self-contained XML files or 
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through a remote repository database connection. Each mode has a separate interface 

class providing the functionality.   

Remote repository connections are made using Qt classes for SQL-based 

database interaction.  Qt provides a means to execute SQL queries on remote databases 

and then to retrieve the results.  This functionality is incorporated into a custom 

repository database interface class.  This class contains many SQL statements written to 

bridge the divide between the internal object representation of a product and the remote 

repository’s database table representation of a product.   

Because both the Repository Entry Application and the Design Repository 

database are built using object-oriented design paradigms, it is a relatively 

straightforward task to map the logical representation of a product from one to the other.  

Little transformation has to occur to move a product from the repository database to the 

Entry Application or vice-versa. 

A typical interaction between the Entry Application and the Design Repository is 

described: 

1. The user launches the Entry Application and elects to connect to a remote repository 

using a URL or IP address, username, and password. 

2. The Entry Application connects to the remote repository and verifies the username 

and password and, if valid, retrieves the user’s permissions which control whether 

or not the user is able to download products, upload products, delete or modify 

products, and/or modify the repository itself. 

3. The user is presented with a list of products contained in the repository. 

4. The user selects a product to be opened by the Entry Application.  Because the 

Design Repository is a relational database, the database interface object queries the 

database to gather the attributes associated with the product’s artifacts.  This 

information is dynamically retrieved, downloaded, and used to construct the objects 

described above. 
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5. The user is presented with the system in a ready-to-edit format with the product 

now residing entirely in local memory.  Further database interaction is not necessary. 

6. The user may make changes to the product. 

7. The product can be saved locally as a self-contained XML file to be shared with other 

users of the Repository Entry application or, if the user has the proper credentials, 

uploaded to the Design Repository, in which case the process outlined in step 4 is 

executed more or less in reverse:  Each internal artifact object is decomposed into 

primitive data which is inserted into the appropriate database tables using SQL 

queries. 

3.3  XML File Structure 
As has been previously mentioned, products can be saved in self-contained XML 

files.  The import and export of products into XML files is handled by an interface class 

similar to the repository database interface class described previously.  This XML 

interface class is built using Qt XML and DOM (Document Object Model) classes.  These 

classes are used to translate the internal object structure of a product into a text file 

formatted as XML.   

Most of the attributes of an artifact can be represented as simple text strings.  

This makes using XML as a transmission medium very straightforward.  Additionally, 

XML files can be structured in a hierarchical way, which closely mimics the internal 

object structure used by the Entry Application, which in turn mimics the hierarchical 

structure of the Design Repository schema.   

An advantage to using XML to store products is that the files are human 

readable.  Opening an XML file created by the Entry Application (which uses the .repo 

file extension) will reveal a structure which could be understood by a user familiar with 

the Design Repository.  Most importantly, these XML files are self-contained.  All of the 

data necessary to reconstruct the product as entered is present in the .repo file.  These 

files can easily be e-mailed back and forth or shared across a network.  This is 
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accomplished by encoding the binary data associated with artifacts into a text 

representation. 

The XML interface module is also responsible for loading the set of valid values 

for many of the constrained attributes captured by the Entry Application.  This set of 

terms was discussed previously and includes such constraints as the Functional Basis, 

the set of available failure modes, the allowed component basis names, and many other 

such sets of possible values.   

In addition, this set of terms also contains auxiliary information about many of 

the terms.  For example, each function described by the Functional Basis includes a 

definition of the function, information about the function hierarchy, and a list of 

synonyms (correspondents) to that function.  This information is used to build a 

searchable reference dictionary for the user as well as to construct the hierarchical 

presentation of function and flow values in the Function and Flow Widgets.   

This set of terms is stored as XML and packaged with the Repository Entry 

application in several ways.  Primarily, the set of terms is built into the application when 

it is compiled.  This allows the set of terms to be available regardless of remote 

repository connectivity for stand-alone operation.  Secondly, the set of terms can be 

loaded from a special terms XML file.  In this way the user can manually update their set 

of terms to a newer version (which is then stored either in a registry key for Microsoft 

Windows users or in a preference file for OS X and Linux users).   Thirdly, the set of 

terms can be ascertained by querying a remote repository database and dynamically 

constructing the set. 

Most importantly, however, the Repository Entry application will check a central 

location on the Design Engineering Lab server for information on the latest application 

and set of terms versions.  If the set of terms is out of date, the user can choose to 

download and install the newest set of terms from within the Entry Application itself. 
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Additionally, if the application itself is out of date, the user will be notified and 

presented with instructions on how to obtain a new version of the Entry Application. 

4 USING THE ENTRY APPLICATION 
There are two main ways in which the repository entry application can be 

utilized.  The first way is to download, review and edit existing design information.  The 

second way is to use it as a dissection aid to enter new product information.  In this 

section both usage methods are described with focus on use as a product dissection and 

design information capture aid.  Section 4.1 describes using the repository entry 

application as a capture aid while section 4.2 describes using the application as a way to 

download, review and edit existing design information.  To use the application it must 

first be downloaded from http://function.basiceng.umr.edu/repositoryEntry.  The entry 

application can be used as a product dissection and information entry tool without a 

repository account.  In order to use the entry application to download, view and edit 

existing design information a repository account is required.  To activate a repository 

account, navigate to http://function.basiceng.umr.edu/repository and click on the 

“Create an Account” tab.   

4.1 Recording New Product Information 
The repository entry application is an artifact-centric method of storing design 

information, meaning that for a design attribute to exist, it must be linked to an artifact.  

Other information classes contained in the design repository entry application, such as 

manufacturing and physical parameters for example, describe additional design 

attributes while still relating to their artifact hub.  Product information can be recorded 

simultaneously with or following the decomposition process.  Throughout this section, a 

vise grip is used to show the design information entry process.  Prior to entry, the vise 

grip was decomposed, and a functional model was created shown in Figure 1.   
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Figure 1. Vice Grip Functional Model 

4.1.1 Creating New Artifacts 
When first launching the repository entry application the user is presented with a 

screen asking them to define a new product or connect to the online database (Figure 2).  

To use the entry application as a means to record a new product, high-level product 

information is initially requested.  High-level product information includes the system 

(product) name, type of product, description, contributing institution information and 

general contact information.  The available system types (product types) are currently 

limited to consumer, industrial, NASA and scientific.  The system types, like many other 

pieces of information stored by the repository, draw from various taxonomies that are 

controlled by the “repository.termsXML” file.  Once high-level system information is 

entered, product information entry can occur after clicking the Create System button.  

Once the Create System button is clicked the main entry application window is 

initialized using the system name as the window title.  Within this window, shown in 
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Figure 3, information regarding artifact function, attributes, failure, files and hierarchy 

can be entered.   On the left side of this screen there are areas for an artifact image, 

unattached artifacts and an artifact tree.  Across the top of this window there are buttons 

labeled add artifact, create new artifact, clear artifact, view systems and save system.  At 

this point a blank file for the vise grip as a system has been initialized but no design 

information can be entered until an artifact(s) have been created. 

 
Figure 2. Creating a New System 

To create a new artifact, simply click the Create New Artifact button at the top of 

the window.  Notice that once the Create New Artifact button has been clicked areas of 
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the window that were previously shaded are now unshaded and accessible.  There are 

two main ways in which the entry application can be used to enter new product data.  

The first way is to create all of the artifacts initially and then proceed to enter artifact 

information such as functionality.  Another way is to create a new artifact and add all of 

the associated design information before traversing to a new artifact.  For large products 

it usually works best to create all of the artifacts and then enter their associated design 

information.  For smaller products either approach can be used.  In this example all of 

the artifacts will be created before actual design information is entered.   

 

Figure 3. Blank Product Entry Screen 

The top-level artifact in the vise grip system is the vise grip itself.  With the entry 

application ready to accept input, the artifact vise grip is entered by typing the name in 

the Artifact Name box and clicking the Add Artifact button.  Once the Add Artifact 



 

 

62 

button is clicked, the artifact vise grip now appears in the Unattached Artifacts box in the 

middle left of the application window.  This process is now repeated for all of the 

artifacts contained within the vise grips.  Figure 4 shows the Unattached Artifacts box of 

the main application window populated with the vise grip artifacts.  The artifacts are 

labeled as unattached because they have not yet been placed within the Artifact Tree.  

The Artifact Tree is used to establish a hierarchy of artifacts within a product.   

 
Figure 4. Unattached Artifacts Listing 

With all of the artifacts created and present in the Unattached Artifacts box they 

can now be moved to the Artifact Tree box.  During this step of product entry it is 

important to consider the hierarchy of the product.  The vise grips are very simple and 

do not contain complicated subassemblies therefore all of the artifacts will be children of 

the main vise grip artifact.  To establish this type of relationship the vise grip artifact is 

dragged to the Artifact Tree box.  Since all of the remaining artifacts are children of the 

main vise grip artifact they must be situated beneath the vise grip artifact. The 

remaining artifacts are dragged one-by-one from the Unattached Artifacts box and 

dropped on the vise grip artifact. After dropping the first artifact on the vise grip artifact 
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an arrow should appear to the left of the vise grip artifact.  The arrow denotes that there 

are now children artifacts of the vise grip artifact.  To view the children artifacts simply 

click on the arrow such that it is pointed downward.  Figure 5 shows a populated 

Artifact Tree box and the hierarchy of the vise grip artifacts. 

Now that all of the artifacts are situated within the Artifact Tree, additional 

artifact information can now be entered.  The main categories of artifact information 

include: functionality, parameters and attributes, failures and media.  

4.1.2 Adding General Artifact Information 
To begin, a user would want to add general artifact information such as an 

image, description, component basis name, quantity, release date and whether or not the 

artifact in question is an assembly.  All of these information fields are located in the 

upper portion of the entry application window.  To add any information to an artifact, 

the artifact must first be selected in either the Unattached Artifact or Artifact Tree boxes.  

Since all of the artifacts of the vise grip have already been added to the Artifact Tree they 

will be selected from this point.   

 
Figure 5. Artifact Tree Listing 
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To associate an image with an artifact simply drag an image file to the Artifact 

Image box in the upper left hand corner of the application window.  To keep overall file 

size relatively small it is best if images are jpeg format and are no bigger than 640x480 

pixels.  Once an image has been dropped on the Artifact Image box a thumbnail of that 

image will appear.  The Component Basis box of the entry application allows for a 

common component name to be associated with an artifact [9, 10].  Since the vise grip 

artifact is an assembly of several artifacts and does not exist within the component basis 

taxonomy the box will be left at its default value of none.  The Quantity box allows for 

the numerical quantity of an item to be entered.  If a particular screw existed 18 times 

within an artifact, it would be captured by the Quantity descriptor.  The Part Family 

field allows for a part family name to be associated with an artifact.  This could be used 

in an industrial setting where there might exist 25 different types of the same artifact.  

The Description box allows for a free text description of the item.  In cases where an 

artifact is an assembly of several artifacts the Assembly checkbox is used.  The vise grip 

artifact is an assembly of artifacts and will be checked for this artifact.  Release Date can 

be used if the release date of a specific product is known but in most cases is left blank.  

Figure 6 shows populated general information for the vise grip artifact.   

 
Figure 6. General Information of the Vice Grip Artifact 

4.1.3 Adding Artifact Functionality 
The center section of the repository entry application allows for information on 

functionality, geometry, manufacturing processes, materials, failure modes and media 
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files to be associated with an artifact.  A user can access these different types of 

information by clicking across the Functionality, Parameters and Attributes, Failures and 

Additional Files tabs in the entry application window.  Although a tab is shown for 

Performance, this section of the entry application remains as future work.  To add 

artifact functionality, click on the Functionality tab of the entry application.  Multiple 

functions that consist of an input artifact, input flow, subfunction, output flow, output 

artifact and a supporting designation can be associated with each artifact.   

Both the input and output artifacts are used to trace flow from the current artifact 

to the corresponding input and output artifacts.  Input and output flows are used to 

trace the actual flow of the artifact while the subfunction box is where functionality can 

be described.  The entry application makes use of the Functional Basis to describe both 

function and flow [11].  The supporting function option is used to denote whether the 

artifact subfunction is supporting or conceptual [12].  Figure 7 shows a close-up of a 

blank artifact functionality entry screenshot. 

 
Figure 7. Blank Artifact Functionality 

Since the vise grip artifact is the top-level artifact of the product the Black Box 

functional description will be used.  For all other lower-level artifacts the standard 

functional model will be consulted to add artifact functionality.  The Black Box 

functional description of the vise grip is to secure a solid with flows of mechanical 
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energy, an object, human material and clamped/not-clamped signal.  Since this is at the 

Black Box level of description all input and output artifacts will be set to external.  

Lower-level function descriptions will use appropriate input and output artifacts to 

denote function and flow sources and destinations.  To add functionality for the vise grip 

artifact, begin by entering the input and output artifacts as external and a subfunction of 

secure.  The subfunction secure will be used for all of the flows at the black box level.  

Next, the input and output flow boxes are set as solid material.  To add this as a flow, 

click the Add button to the right of the Output Flow box.  Continuing on with secure as 

the subfunction, change the input and output flow boxes to mechanical energy and once 

again click the Add button.  Repeat this process for all of the flows that operate on a 

particular function.  Figure 8 shows the flows populated with secure as their function.  

Notice that Passive checkmarks have been indicated next to the mechanical energy, 

human material and signal flows.  This is because the function secure only truly operates 

on the flow of solid materials.  The flows of energy, human material are simply carrier 

flows [13].  If you wish to remove a flow, click on the gray circle ‘x’ next to a flow.  Once 

all of the flows associated with a particular function have been added, click the Add 

Functionality box to add a function to an artifact. 

 
Figure 8. Artifact Function and Flow Entry 
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The entry application allows for multiple flows to be associated with a single 

function.  Alternatively, each function could also contain only a single active flow.  For 

the case of the vise grip artifact, all of the flows passed through the same function.  If 

only a single flow is associated with a particular function the Add Functionality button 

would be clicked after recording the particular function-flow combination.  From there, 

additional functions and flows can be associated with an artifact.  Figure 9 shows the 

completed function listing for the vise grip artifact.  Notice that the entry application 

recognizes the function secure as having multiple input and output flows with the same 

input and output artifacts.   

 
Figure 9. Artifact Function Listing 

4.1.4 Adding Artifact Parameters and Attributes 
The Parameters and Attributes tab allows materials, manufacturing processes, 

colors, physical dimensions, finishes and textures to be associated with an artifact.  Each 

subsection within the Parameters and Attributes tab contains a list to select an attribute 

and a Plus button to add an attribute.  For example, to record the vise grip material, use 
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the Materials pulldown list to select steel and then click the Plus button (Figure 10).   This 

same process is used to populate the remaining Parameters and Attributes sections.  

Since the vise grip artifact is an assembly of several different parts it does not make 

sense to list manufacturing process.  The overall color of the vise grip artifact is listed as 

gray.  The Physical Parameters section is used to describe overall geometries of an 

artifact.  To describe geometries use the Dimension pulldown list to select a specific 

geometric attribute.  With a geometric attribute selected, enter the corresponding 

numerical value and use the remaining pulldown list to select the appropriate unit.  

Once the attribute type, value and unit are entered click the Plus button to record the 

information.  The Physical Parameters section can also be used to record artifact weight 

and mass. 

The lower right corner of the Parameters and Attributes tab is used to record 

design information regarding the five senses: sight, sound, taste, touch and smell.  These 

senses correlate to surface finish, sound, taste, texture and smell.  The vise grip artifact 

can be described as having a glossy surface finish and a smooth texture.  Sensory 

information is recorded in the same manner as for artifact material.  Select the sensory 

descriptor from the appropriate pulldown menu and click the Plus button to record the 

information.  Figure 10 shows populated a populated Parameters and Attributes tab for 

the vise grip artifact. 

4.1.5  Adding Failure Information 
The Failure tab (Figure 11) of the entry application allows for actual or potential 

failure and severity information to be associated with an artifact.  Failure information in 

this section is driven by efforts including the Function-Failure Design Method (FFDM) 

[14, 15], Risk-in-Early Design (RED) [16], and adaptations of modern Failure Modes and 

Effects Analysis (FMEA) [17] techniques.  FFDM and RED are similar in purpose to 

generic FMEA methods but strive to provide risk and possible failure information at the 

conceptual level of design based solely on product functionality. A failure mode 
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taxonomy for mechanical and electrical components has been developed at UMR and is 

used as the reference taxonomy here [14, 15].  To associate actual or potential failure 

modes with an artifact, begin by selecting the appropriate failure mode through the 

Failure Mode pulldown tab.  The Severity box allows for a severity of the failure mode 

to be recorded.  Typically a 1-5 scale is used with 1 being a minor artifact malfunction 

and 5 being catastrophic and leading to the loss of life.  If the failure mode is an actual 

documented failure mode the Actual Failure checkbox should be enabled.  If the failure 

mode in question is an actual failure mode, the lower portion of the Failure tab can be 

utilized.  Information regarding the number of occurrences, sample size, failure rate and 

detailed failure reports can be recorded.  This specific information can then be used to 

perform risk analysis.  Once all relevant failure information for an artifact is entered the 

Add Failure button should be clicked to then associate the failure information with the 

artifact.   

 
Figure 10. Parameter and Attributes Tab 
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4.1.6 Associating Additional Files with an Artifact 
The Additional Files tab (Figure 12) of the entry application allows for assembly 

model, functional models, CAD files and VRML files to be associated with an artifact 

(Figure 12).  Typically functional and assembly models are associated with the top-level 

artifact; in this case the vise grip artifact.  There are drop boxes for both functional and 

assembly model PDFs as well as a source file (the actual Concept Draw, Omni Graffle or 

Visio file).  To add a functional or assembly model to an artifact simply drag the 

appropriate file to the labeled well of the Additional Files tab.  CAD and VRML files can 

also be associated with an artifact and are done so by also dragging the appropriate file 

to the labeled drop box.  Any of the associated files can be retrieved through the entry 

application by clicking the Save File button.  A dialog box will prompt for the name and 

location for the file to be saved locally.   

 
Figure 11. Failure Tab 
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Figure 12. Additional Files Tab 

4.1.7 Completing the Product 
Once all additional design information as been associated with a particular 

artifact, click the Update Artifact button in the main entry application window.  Doing so 

will commit all of the changes made to the artifact.  To complete a product, follow the 

same procedure for each artifact contained in the product.  To save the product file click 

the Save System button in the upper right hand corner of the entry application window.  

The entry application will then ask the user to provide a name and specify a location for 

the “.repo” file to be saved.   

4.2 Using the Entry Application to Open or Edit an Existing Product 
The entry application can open or edit exiting product files that are stored locally 

on a machine or remotely hosted by the UMR repository.  The Available Systems 

window is used to access all existing files.  If the Available Systems window is not 

present it can be activated by going to the Windows tab and clicking Show Systems 

(Figure 2).  To open a local .repo file click the Load From File button under the Create or 
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Open Tab.  Navigate to the appropriate .repo file and click Open.  The product can then 

be seen in the Loaded Systems box.  Selecting the file and clicking the Examine button 

will then open the file in the entry application. 

To examine a product that is housed in the repository database, the Download 

tab of the Available Systems window is utilized.  In order to access the online database a 

user must first be connected to the repository.  To connect to the repository click the 

Connect button at the bottom of the screen (Figure 13).  A window titled “Connect to a 

Repository Database” will then appear on screen.  Authentication to the online 

repository can be gained by using your repository username and password (Section 4).  

Once the appropriate user name and password have been entered the click the Connect 

button.  The user will then be returned to the Available Systems window showing all of 

the products from the repository (Figure 14).    

To open a repository-based system simply click on the system name and then 

click the Examine button.  Please be patient as the selected system downloads over the 

Internet and is constructed dynamically from the database.  All authenticated repository 

have access rights to download products, edit them and save them locally.  If a user 

wishes to have repository upload privileges, they can contact the Design Engineering 

Lab. 

The privilege level of the user’s account governs repository access.  There are 

four levels of access.  The most basic level is User.  A User is able to download remote 

systems and nothing more.  The next level, Contributor, adds the ability to upload 

systems to the repository.  The third level, Administrator, has the additional ability to 

mark uploaded systems as verified and to delete systems.  Finaly, a database Superuser 

also has the ability to edit fundamental database tables, create, edit, and delete user 

accounts and grant user access privileges. 

Uploaded systems are not immediately available for viewing through the online 

Design Repository web interface.  After uploading, a system must be marked as verified 
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by a repository administrator.  This provides a level of quality control over the data that 

is presented online.  Uploaded systems, regardless of verification, can always be 

downloaded using the Entry Application. 

 
Figure 13. Repository Connection Window 

 
Figure 14. Available Repository Products 
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5 CONCLUSIONS AND FUTURE WORK 
The entry application represents several years of research and development in 

the field of product dissection, archival and reuse.  Although the task of building and 

expanding systems to digitally represent design information will continue, the entry 

application presented in this paper provides a roadmap to future revisions and supports 

design information storage with modern repository applications.  The current version of 

the entry application stable, functional and supports multi-platform development and 

execution.  The entry application is released under the GNU General Public License and 

as such the source code is available and serves as a baseline for other developers.   

Future work of the entry application includes implementing the ability to record 

mathematical performance equations, usability analysis and further integration into the 

suite of function-based applications currently under development.  Currently neither the 

repository database schema nor entry application supports the archival of mathematical-

based performance equations.  Including mathematical transfer functions alongside 

artifacts would allow for future concept generator tools to analyze overall concepts 

based on various input and output parameters.  A user would also be able to quickly 

search for particular components based upon values for certain parameters such as input 

voltage or output torque.  The main difficulty in implementing such a feature is the way 

in which mathematical equations are stored and related across all artifacts.  While simple 

transfer functions and mathematical equations would be easy to implement, those in the 

form of partial differential equations pose the most difficulty.   

In order to fine tune the entry application a series of usability and case studies 

are required.  Through use case and usability analysis, a great deal of information 

regarding user interaction could be gained.  This information could then be used to 

adjust the cosmetic layout of the entry application and provide for a better user 

experience. 
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Currently, an application named Function CAD is being developed at UMR.  

Function CAD is a program that allows users to draw graphical functional models.  

While several applications exist that can create a functional model, Function CAD allows 

users to start from existing functional model snippets to use as building blocks for a 

larger more detailed functional model.  Function CAD also obeys functional modeling 

rules and will not allow the user to create an inappropriate functional model.  For 

example, a free form drawing package would allow the representation of human energy 

as a solid material (as they are represented by different line styles); Function CAD would 

not allow this representation as it is both syntactically and semantically aware of the 

functional model.  Function CAD also uses the same XML backbone as the entry 

application.  Further refinement of both applications would eventually allow a 

functional model to be drawn in Function CAD and then imported to the entry 

application.  The pre-populated functions could then be associated with specific artifacts 

within the entry application and reduce the overall workload of the user.    
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ABSTRACT  
This paper describes how a design repository can be used as a concept 

generation tool by drawing upon archived function-based design knowledge.  Modern 

design methodologies include several types of activities to formally generate design 

concepts.  Typical concept generation methods range from open-ended creative 

brainstorming activities to quantitative function-component analysis.  A combination of 

two such methods—the Chi Matrix and Morphological Matrix techniques—is the basis 

for this work.  Building on existing functionality of the design repository, desired 

product functions can be specified in a search of stored design knowledge, returning a 

Morphological Matrix of artifacts solving the specified functions.  Such a search is 

termed a Morphological Search. The repository Morphological Search feature is 

evaluated against concepts generated in a previous original design project,.  

Results of the Morphological Search return are then compared to ten of the 

original concept variants generated during the design project.  This comparison shows 

that 89% of the specified subfunctions return results and that, on average, 77% of the 

components used in the hand-generated concepts can be derived by using the 

Morphological Search feature.  
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1 INTRODUCTION  
As the product development space becomes more complex and competitive, it is 

essential that designers have a wide variety of tools to aid in the many aspects of 

product development.  Many tools exist that all specialize in certain aspects of the 

product development space.  For example, CAD tools allow designs to be visualized and 

moved to production, while Finite Element Analysis (FEA) packages allow for specific 

components to be structurally analyzed.  While many design packages exist for the CAD 

and FEA space of product development, few software packages are geared toward the 

pre-form space of product development.  One such tool aimed towards the pre-form 

phase of product development is a design repository which are used to archive, store, 

and retrieve existing design knowledge in a formalized method.  

Over the span of several years of research and integrated design coursework, a 

web-based design repository has been implemented at the University of Missouri-Rolla.  

The design repository currently contains detailed design knowledge for over 100 

consumer electromechanical products and provides an interface for user specified 

searches across all products.  With this knowledge-base in place, tools are being built to 

utilize the repository infrastructure to support conceptual product development.  By 

expanding the design repository’s search capability we present a tool aimed specifically 

toward concept generation activities.     

2 BACKGROUND  
Modern product design techniques demand that the designer spend an 

increasing amount of time and effort to research possible design solutions, draw upon 

many disciplines and backgrounds, and often reach outside the designer’s own domain 

of experience.  Design repositories have the capacity to store and retrieve design 

knowledge such that the designer can have easy access to a wide array of design 

solutions beyond his or her own stored knowledge.  Such repositories benefit from well 

defined taxonomies.  In particular, a functional taxonomy known as the  
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Functional Basis [1] and a component naming infrastructure [2, 3] are utilized in 

the UMR design repository.  The description language for artifacts in a repository 

increases the computability of design information and eliminate ambiguities between 

individuals sharing information.  Using the Functional Basis to represent product 

functionality within the design repository allows product knowledge to be searched and 

categorized by their function.  This abstraction allows the designer to focus on overall 

functionality and to develop more creative solutions for solving a design problem [4].  

For this paper, we will be considering the design repository under development at the 

University of Missouri-Rolla Design Engineering Lab [5, 6, 7].  

2.1 Concept Generation Techniques  
Many researchers have sought to formalize the conceptual design phase.  

Antonsson and Cagan concisely define the notion of ‘formal’ as “...computable, 

structured, and rigorous, not ad hoc” [8].  Furthermore, by founding concept generation 

techniques on functionality, solution-independent design descriptions can be built [9].  

Such methods generally rely on a form of functional decomposition of the overall 

problem to initiate the search for physical design solutions during conceptual design.  

Whether driven in this function-based manner or otherwise, much variability is 

exhibited in just how this search is carried out depending on the method chosen.  This 

reflects the variety of perspectives that have been suggested for addressing the 

conceptual design problem.  

2.1.1 C-Sketch/6-3-5 Method  
The 6-3-5 method is a generic technique that supports innovative thinking [10].  

In 6-3-5, members of an engineering design team (optimally 6-8 members) generate, 

interpret, and modify the individual ideas of other team members by first brainstorming 

and sketching individually on three ideas for various aspects of the product, then 

passing their ideas to the next team-member who adds additional ideas and sketches.  C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and 
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refrain from communicating verbally when passing ideas to the next member.  Passing 

only sketches allows other team members the opportunity to interpret the concepts in a 

different manner than the original author, thereby increasing design diversity.  

2.1.2 Design by Analogy  
In Design by Analogy, a functional model is created of the product being 

designed.  Examining analogous products or components that perform the same 

function generates solutions to the present design problem.  The designer then evaluates 

these similar components for appropriateness in solving the given design problem [4].  

One Design By Analogy method widely recognized in the engineering design 

community is the Theory of Inventive Problem Solving, or simply TRIZ.  TRIZ was 

developed by Altshuller during the 1940-50’s period and was based on the examination 

of large numbers of existing patents [11].  The end result of this effort is an engineering 

design approach that identified a set of specific conflicts that occur in design along with 

a set of principles that can be applied to generate solutions that solve these conflicts.   

2.1.3 Morphological Matrix Method  
The morphological matrix introduced by Zwicky is a now a classic technique for 

use in conceptual design [12].  This method provides the design engineer with a simple, 

albeit manual, means for bookkeeping potential physical solutions and their 

corresponding functionality.  

A morphological matrix is traditionally created by listing all of the sub-functions 

for a design and brainstorming solutions to each sub-function, listing the solutions as 

columns and the sub-functions as rows [10, 13, 14, 15, 16].  

In a manual engineering design context, the morphological matrix is limited to 

the concepts generated by the engineer, although the morphological matrix is one 

technique that can be used in conjunction with overall design processes such as 6-3-5 or 

the reverse engineering and redesign method of [10].  
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2.1.4 Chi-Matrix Method  
The chi-matrix method relies on a catalog of design information that stores 

components and the functions they perform [17].  When a designer desires to generate 

concepts for a given design problem, a filter matrix is used which contains only the 

functions needed for the given problem.  This filter is multiplied into the aggregate 

function-component matrix to produce a matrix that contains only components that 

solve the needed functions.  In this way a designer can generate possible solutions 

without having to search the entire store of knowledge manually.  

3 DESIGN PROJECT  
Before discussing the Repository Morph Search further, we introduce a design 

problem that uses traditional concept generation techniques from Section 2.  The goal of 

this design problem was to transform an imprecise counting and packaging line at the 

Rolla Area Sheltered Workshop.  The solutions generated for that design problem are 

used here to compare the results of manual concept generation techniques with the 

results of an automatically generated morphological matrix using a design repository.  

The device, prototyped at University of Missouri – Rolla (UMR), was the product of 

several modern design methodologies.  Initial customer interviews were conducted, a 

customer needs questionnaire was developed, technical requirements were formed, and 

several types of concept generation and selection techniques were applied to this 

original design project.  

3.1 Case Project Background  
The Rolla Area Sheltered Workshop employs persons with mental and physical 

disabilities to package variety boxes of dog and cat food sample packets for a local pet 

food manufacturer. In the interest of increased productivity and a reduced incidence of 

repacking, a counting and packaging assistive device was sought.  The design team 

began by observing the previous method of packaging used by the employees.  At this 

point the Workshop did not have any specific solution sets in mind.  An informal two-
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way question & answer session took place between the design team and Workshop 

managers so that both groups had an understanding of the problem and what types of 

design solutions would be valid.  

3.2 Functional Model  
A functional model is a description of a product or process in terms of the 

elementary functions that are required to achieve its overall function or purpose.  A 

graphical form of a functional model is represented by a collection of sub-functions 

connected by the flows on which they operate.  This structure is an easy way for a 

designer to see what type of functions are performed without being distracted by any 

particular form the artifact may take.  A functional model of the dog food packaging 

device is shown in Fig. 1.  

 
Figure 1. Functional Model 

3.3 Concept Generation  
The functional model is a useful tool during the concept generation phase of the 

project.  Because all of the required functions are identified, the design team can focus on 
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developing solutions for given functions one at a time resulting in an entire concept.  

There are several formal methods for developing concepts which are designed to help 

stimulate a design team’s creativity [18, 19].  In particular, the methods employed during 

this project were the C-sketch method, Design by Analogy, the Chi-Matrix approach and 

the Morphological Matrix approach.  Using all of these methods allows for a broad 

spectrum of design concepts to be generated.  

3.3.1 Concepts Generated by the C-sketch Method  
By using the C-sketch method, the design team was able to generate five design 

concepts.  Three of the concepts were based on mechanical and electrical systems to 

transport and count the dog food packets.  The fourth concept contained no  moving 

parts or electronics and was a simple plastic tray with color-coded slots.  The fifth 

concept built on concept 4 by adding switches and buzzers to indicate when the slots 

were full.  Figure 2 shows three such concepts developed using the C-Sketch method (C-

sketch 1, C-sketch 3 and C-sketch 5, respectively).  

 
Figure 2. Concepts Generated by the C-Sketch Method 

3.3.2 Concepts Generated with Design by Analogy  
Four concepts were produced using the Design by Analogy method.  The first 

three concepts were electro-mechanical devices using conveyors and sensors to count 
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and transport the dog food packets.  The forth concept was a plastic tray variant with 

rotating handles to empty the counted dog food packets directly into the box.  

3.3.3 Concepts Generated by the Chi-Matrix Method  
Employing the Chi-Matrix approach generated five concepts.  The first concept 

was based on a case with individual dog food packet receptacle slots.  A sliding door 

was placed beneath the receptacles and was used to empty the slots once they are filled 

directly into the packing box via a chute.  The remaining 4 concepts incorporated fairly 

simple electronics to act as counters while dog food packets were manually placed in the 

box.  Figure 3 shows concepts Chi-Matrix 1, Chi-Matrix 2, and Chi-Matrix 5 as example 

solutions generated by the design team using this method.  Although the method is 

similar to the Morphological Matrix Search method discussed in the remainder of this 

paper, the Chi-Matrix solutions here were produced by hand using a different set of 

data. 

 

 
Figure 3. Concepts Generated by the Chi-Matrix Method 

4 USING THE REPOSITORY MORPHOLOGICAL SEARCH FEATURE  
As a test case, subfunctions identified by a customer needs based functional 

model from the bulk-packaging device design project (introduced in Section 3) are used 

in the Morphological Search feature.  The returned search results are then compared to 

original bulk-packaging device concepts.  Two sets of test data are presented in this 

work.  The first set of test data was created using a repository containing only 29 
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products discussed as trial 1.  The second set of test data, trial 2, comes from the same 

repository but containing 68 products.  The premise of this comparison is that if the 

Morphological Search tool can generate concepts that match the results of the design 

team (produced by following the creativity-based concept generation techniques), then 

the Morphological Search tool offers an automated approach that leads to at least as 

creative results as a design team. 

4.1 Searching the Repository  
The original functional model (shown previously in Fig. 1) developed for the 

bulk-packaging device contains 29 subfunctions (26 of them unique), which are 

summarized in Table 1 and numbered based on their order of appearance in the 

functional model.   

Upon logging into the design repository, located at 

http://function.basiceng.umr.edu/repository, the user is presented with an options 

menu.  To perform a Morphological Search, the user navigates to the Search page and is 

presented with the option to perform either a “Standard Artifact Search” or a 

“Morphological Chart Search”.  Once “Morphological Chart Search” is selected, the user 

is then presented with the Morphological Search options shown in Fig. 4. 

A list of available products is presented on the left hand side of the 

Morphological Search Input. The user can select any combination of the products listed 

depending on their desired search domain.  With the search base selected, the user then 

selects the number of subfunctions they wish to enter through the “Subfunction:” pull-

down menu.  At this time, a maximum of 10 subfunctions can be entered for a single 

search.  If more than 10 subfunctions exist, the user must perform multiple searches.  

Once the number of subfunctions is selected, the user must specify the number of 

columns they wish to appear in the search return.  A maximum of 20 columns can be 

displayed although 10 columns typically capture most, if not all, of the possible returns. 
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The user can now begin to specify the subfunctions they wish to search for by 

using the pull-down menus.  Subfunctions are entered as a tuple representing the input 

flow, subfunction and output flow.  The first subfunction entered in Fig. 4 relates to 

“import human material” but is specified in the format (human material, import, human 

material).  For most functions, the input and output flow are identical; however, the 

input and output flow for some functions (e.g. convert) are different.  Currently the 

subfunction and flow inputs used in the Morphological Search are limited to the 

secondary term of the Functional Basis [1].  If a primary or tertiary form of the 

Functional Basis is desired as search input, the user should render the function or flow in 

the secondary level Functional Basis. 

Table 1. Identified Subfunctions  
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Figure 4. Morphological Search Input  

With all of the desired subfunction tuples entered, the user can utilize the “Use 

Component Basis Naming” checkbox to choose how search results are returned.  

Checking the box categorizes returned artifacts into the component basis [2, 3].  Leaving 

the box unchecked will return results categorized by the name given to a specific artifact.  

For example, artifacts may be named “motor,” “electric motor” and “dc motor,” but they 

are all categorized by the component basis as “Electric Motor.”  Choosing to categorize 

search results by the component basis will group all instances of an electric motor as 

“Electric Motor.”  Without using the component basis categorization, the instances of 

“motor,” “electric motor” and “dc motor” would be returned distinctly. 
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Upon submitting the search, a new browser window is opened containing the 

search results.  These results for the three example subfunction tuples entered above in 

Fig. 4 are shown in Fig. 5.  The left-most column of the results page displays the 

subfunction search criteria and subsequent columns (up to the amount specified) show 

the groupings of artifacts solving the given function.  The results are sorted within each 

row by their rate of return.  For example, a “Housing” of some sort is found to solve 

“Import Human Material” in 34.55% of the total number of solutions to “Import Human 

Material.”  

 
Figure 5. Morphological Search Results  

 
For this particular search, results were returned for “import human material” 

and “guide human material” while no artifacts were found for the “stabilize human 

material” criteria.  To view specific instances of a returned component grouping, the user 

can click on the link below the component image.  Figure 6 shows all of the 19 artifacts 
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classified as a “Housing” for the “import human material” search criteria.  Listed along 

side each artifact is the artifact’s parent product.  For example, the “Left Case Handle” 

artifact originated from the Black&Decker Dustbuster.  If the user wishes to view more 

information about a specific artifact, they can do so by clicking the artifact name.  

 
 Figure 6. Detailed Component List for Housing  

4.2 Distilling the Results  
Morphological Searches were carried out for the remaining 26 subfunctions 

identified for the bulk-packaging device.  Table 2 summarizes the Morphological Search 

results based only on function return.  Out of the 29 subfunctions searched, trial 1 

returned results for 21 of the functions while trial 2 returned results for 26 of the 
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functions.  The function return results correspond to 72% and 89% for trials 1 and 2, 

respectively. 

Table 2. Results Based on Function Return  

 

Ten of the 31 concepts developed during the bulk-packaging device project were 

chosen to compare to the Morphological Search results. The concepts are named for the 

technique that was used for their generation.  For example, “Chi-Matrix 1” corresponds 

to the first concept developed by using the Chi-Matrix approach.  The concepts named  

“Chi-Matrix 1”, “Chi-Matrix 2”, “Chi-Matrix 4”, “Chi-Matrix 5”, and “C-Sketch 5” were 

identified by the original design team as their top-five concepts.  The remaining concepts 
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were selected from the pool of 31 because they represented complete design solutions 

with definable functionality and were well-documented. 

In order to compare the Morphological Search results to the concepts developed 

for the bulk-packaging device, concept sketches and notes were revisited.  Since the 

subfunctions used for the Morphological Search input originated from the initial 

functional model of the bulk-packaging device, each concept was then related to the 

same set of subfunctions.  There are some differences between the subfunctions 

identified in each of the concepts and those of the original functional model.  The 

subfunction variation is due to the natural progression in the design process where 

customer needs are refined and the product direction is better identified.  Table 3 shows 

a mapping of the originally identified subfunctions to each of the concepts used in this 

study.  

Components that solve each subfunction found in the concepts are identified, 

completing the comparison to the Morphological Search results.  Table 4 shows the 

identified subfunctions and components for the Chi-Matrix 1 concept comparison in trial 

2.  Note that the components listed in the columns represent only those components that  

were identified as part of the Chi-Matrix 1 concept.  Components that were 

identified to solve a specific function are denoted with a ‘1’ while a shaded function-

component combination shows that no results were returned for the combination by the 

Morphological Search.  For the Chi-Matrix 1 concept, 15 components were identified but 

the Morphological Search only returned 12 of the same function mapped components 

resulting in an 80% return of components. 

To quantify the amount of similarity between the concept’s function-component 

matrix (C) and the function-component matrix (R) returned by the Morphological 

Search, a simple routine is devised.  After each of the two matrices are converted to 

binary matrices, an overlap table is constructed by multiplying Cij * Rij only if Cij=1.  In 

this manner, a table is built containing null values if the product matrix does not contain 
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the given function-component pair, a one if both the product matrix and the repository 

matrix have the function-component pair, and a zero if the product contains the 

function-component pair but no match is found in the repository matrix.  In cases where 

the returned Morphological Matrix R does not contain a component used in C, a “Not 

Found” column is used with a zero in R and a one in C.  Using the totals gained from the 

overlap table, a simple ratio of total pair-matches (the ones) to total overlap (the zeros 

and ones) is calculated.  This ratio represents the percentage of the product’s 

functionality that is captured by the repository search.  

Table 3. Identified Subfunctions of Concepts  
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Table 4. Identified Components and Results (trial 2) for Chi-Matrix 1 

 

Table 5 shows the comparison between specific concepts and the Morphological 

Search results for trials 1 and 2.  For the concept Chi-Matrix 1, 71.43% of the components 

used in the concept were returned by the Morphological Search in trial 1 but increases to 

80% in trial 2.  This means that 80% of the concept could have been derived by using the 

Morphological Search feature of the repository.  Analysis of all of the concepts for trial 2 

indicate that an average of 77.07% of the ten manually derived concepts could have been 

automatically generated by the repository’s design tools system. A mature repository 

could conceivably generate 100% of the manually generated concepts. 
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Table 5. Component Similarity Results  

 

5 CONCLUSIONS  
The Morphological Search tool offers designers an additional approach for 

generating concept variants and presents historically recorded subfunction solutions in 

the familiar morphological matrix format.  Given that the empirical case study finds that 

77% of the concepts reviewed can be derived using the Morphological Search tool we 

conclude that the method shows promise as an automated concept generation tool.  The 

use of the Component Basis in this evaluation ensures the reliability of these results by 

standardizing the comparison basis between the two projects. 

Additionally, the high level of commonality between these automatically 

generated concepts and handgenerated concepts contributes to the notion of utility for 

such a design tool.  The 89% average return of functionality for this case study 

demonstrates that a relatively small number of products (68 in this case) can constitute a 

useful and usable design repository. 

Comparing the Morphological Search tool to previously generated concepts is a 

novel, systematic test to demonstrate the suitability of the returned results.  Overall, our 

results add supporting evidence to ongoing work that attempts to show the utility of 

computational-based conceptual design methods.  Specifically, the results show that the 

Morphological Search feature can be an effective tool capable of replicating a substantial 

amount of solutions automatically that would otherwise be generated by hand in state-
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of-the-art conceptual design techniques.  As with any concept generation technique, 

actual usefulness of the Morphological Search tool depends greatly upon the designer’s 

ability to gain insight from the tool. 

As the knowledge base grows, the potential number of concepts suggested by the 

Morphological Search tool also grows.  This effect is directly related to the number of 

distinct subfunctions contained in the repository.  Until a distinct subfunction bound is 

reached, the number of concepts suggested by the search tool will increase.  From one 

perspective, this is a desirable result.  At the early stages of design, it is beneficial to 

generate as many concepts as possible.  From a different perspective, evaluating all of 

the concepts becomes a burdensome and time-consuming task.  Compatibility reasoning 

methods, domain similarity or other computational techniques aimed at reducing the set 

of suggested concepts to some “best” subset for detailed review by the designer remains 

as future work. 
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ABSTRACT 
This paper reports on research leading to a natural language to component 

naming method that underpins an emerging form-initiated concept generation tool.  The 

purpose of identifying standard component terms from natural language phrasing is to 

support computational parsing of an initial set of physical artifacts that solve a design 

problem as suggested in natural language by a novice designer.  Parsing the natural 

language transfers the burden of design abstraction to the computer and more 

seamlessly integrates with existing concept generation algorithms.  By leveraging an 

existing design repository data set and a hierarchical component naming taxonomy a 

detailed algorithm for natural language to component synonym identification is 

presented.   

1 INTRODUCTION 
From an engineering education standpoint, design is the perhaps one of the 

toughest topics to teach and, often, the most feared course assignment in a given 

engineering department.  That is likely due to the emphasis of modern design 

techniques on abstracting the problem and identifying this fuzzy, hard to grasp (and 

explain) concept of functionality [1-4].  Yet, this is the area of engineering where 

innovation takes root and where students need the most nurturing.  
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At both the student and professional level, the major obstacle that designers face 

is the leap it takes to abstract a design problem to its constituent functionality – the 

essence, according to the above methodologies, to synthesizing the product that will 

meet customer demands.  The natural language processing research presented 

underpins an alternative approach that is, based on over a decade of observation, more 

natural for engineering designers.  The approach, which we will call Form Follows Form 

(FFF), automates concept generation by starting with suggested components that the 

designer believes may solve the design problem and extracts the underlying 

functionality of those components to create a set of more thorough and complete concept 

variants through existing concept generation algorithms [5-8].   

1.1 Motivational Case 
With the ability to translate a designer’s natural language into a standardized, 

parse-able set of terms, designers would be allowed to build up chains of components 

they envision being in a new product.  This is a task that initially appears to be simple, 

however, there are several ways one could describe information about components – 

from a topological adjacency matrix from such as a design structure matrix to a simple 

listing of components.  Since ease of use and accessibility are key to this research, asking 

a user to first generate an adjacency matrix would be a cumbersome task.  Alternatively, 

a simple list of components may not effectively capture the intent of the user (that is 

component connection and ordering).  From a computational standpoint, information 

regarding components needs to, at a minimum, infer how the user intends those 

components to be connected to one another.  For example, a user lists out wire, shaft and 

motor as components in a concept.  A basic search of an appropriate design knowledge 

base would show that those components have not been observed to connect in that 

particular order.  It is therefore necessary to build a framework that allows for an easy 

and logical manner to gain information about components in a particular concept.  With 
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a semi-logical ordering of input components, algorithms will be better positioned to 

statistically determine the intended component order.   

Figure 1 shows a potential interface to capture a perceived concept for the form-

initiated concept generation approach.  The example shown in Figure 1 contains the 

basic components of an iced tea maker. Users would be asked to enter components as a 

series of discrete chains.  For example one chain of components may include a cord, 

switch, and a heating element while another may consist of a tank, tube and a condenser.  

Once chains are entered a user would be allowed edit, remove or reorder specific chains 

or components.  

 

 

Figure 1. Mockup Envisioned Component Entry System 

The envisioned components and their connection information can then be passed 

to an algorithm to develop a functional model of the product.  Overall product 

functionality will be disguised from the user.  The functional model will then be passed 

to existing computational concept generators.  Computerized concept generation 

techniques, spanning the broad AI topics of knowledge representation and reasoning, 
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promise engineers a faster realization of potential design solutions based upon 

previously known products and implementations.  FFF will be compatible with two 

existing concept generators.  One of these methods utilizes relational matrices [9, 10] 

derived from the design repository while the other method relies on graph grammar 

rules [11, 12] 

1.2 Relationship to Natural Language Interpretation in AI 
The thrust of natural language interpretation in the artificial intelligence (AI) 

field is to provide a mechanism for machines to understand ‘human speak’  [13].  In the 

design context, it allows designers to specify components within a concept and do so 

using natural language.  The current design repository makes use of a component 

naming taxonomy to classify artifacts with a general, standardized name.  Artifacts 

within the repository can be tagged with a specific name such as “small dc motor” but 

are also tagged with the component naming term of “electric motor.”  This convention 

allows for artifact data to be clustered and analyzed but may also hinder how designers 

and engineers describe and search for a given component.  If a designer were to search 

for a “tank” as a component naming term, using current implementation of the 

repository, no existing artifact would be found.  This is because the word “tank” does 

not exist within the realm of the component naming terms.  The term “tank,” however, is 

a synonym of the component naming term “reservoir.”  In order to allow for designers 

to specify a concept using natural language it is necessary to attach additional synonym 

terms to the existing component naming terms. 

The scope of this paper is to present our method to translate natural language 

component terms into standardized component terms as well as an initial set of natural 

language component synonyms.  Both of these contributions are necessary to realize the 

overall research goal of FFF. 
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2 BACKGROUND  
Three areas of prior work are necessary to support the natural language 

interpretation  research of this work: design repositories, component naming terms and 

natural language interpretation as applied to engineering.  Each topic is briefly reviewed 

next. 

2.1 Design Repository 
The objective of a Design Repository is to allow designers to store and retrieve 

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function.  Currently the Design 

Engineering Lab’s Design Repository contains design information for over 125 consumer 

based electro-mechanical products.  Design information captured by the repository can 

be divided into seven main categories including: artifact-, function-, failure-, physical-, 

performance-, sensory- and media-related information types.  The different levels of 

abstraction and types of design information provide innovative ways to approach 

design.  With a well populated repository, emerging concept generator algorithms take, 

as input, basic product functionality or component information and instantaneously 

develop, filter and rank concepts to use as baselines for further product development.  

While the possibilities design repositories offer are diverse and helpful to designers, the 

implementation of such repositories are crucial to their overall success and usefulness.   

Realizing the potential impact of an operational Design Repository, researchers at 

Missouri S&T, The University of Texas at Austin and the National Institute of Standards 

and Technology (NIST) began gathering artifact information in 1999 [14-16].  Since that 

time, the process in which artifact data is gathered and recorded has changed 

significantly.  Initially, artifact design information was recorded in spreadsheets and 

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM), 

and Design Structure Matrices (DSM).  While this type of information was useful, it was 

also limited in scope and the required matrix multiplications were quite cumbersome.  A 
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prior Design Repository initiative by NIST helped to guide the Design Repository 

project at Missouri S&T to a more mature state.  To enhance data integrity, design 

information was migrated from spreadsheet form to a relational database.  A web-based 

repository navigator including search and design tool generation features was created 

along with a repository entry application.  

More recently, Missouri S&T has further partnered with UT-Austin [9, 10], Penn 

State [17], Virginia Tech, Bucknell [18], University of Buffalo and Texas A&M to expand 

the types of design information and breadth of design tool features within the repository.  

The Design Repository serves as a hub for designers for information exchange and 

design generation tools and is heavily utilized in the current VOICED project.  

Information entry and retrieval occurs within a standalone application [19] (available at 

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs 

over the Internet through the Design Repository’s web portal 

(http://repository.designengineeringlab.org/).  The infrastructure supporting these two 

applications is the Design Repository database and schema [17].  The database schema 

establishes what types of design information can be stored, the relationship of those 

elements and the extensibility of including new and additional types of design 

information.  

2.2 Component Naming Taxonomy 
The component naming taxonomy is a hierarchal naming system for engineering 

components [6, 7].  The taxonomy is a functional approach to component identification 

contains three levels of identification; 1.) the Primary Component Classification, 2.) the 

Secondary Component Classification, and 3.) the Component Term level.  There are 8 

different primary component classifications used to describe the generic function of a 

component.  The secondary level adds specificity to the primary component level.  For 

example, the primary level term channelers describes 3 secondary level terms: 

importers/exporters, transferors, and guiders.   
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Each secondary level term is then further decomposed to the component term 

level.  Table 1 shows a portion of the component naming taxonomy for the component 

level terms of material suppliers  (reservoir, container, bladder, and pressure vessel) and 

guiders (hinge, tube, diode, bearing, link, sled).   Component terms are then associated 

with thesaurus derived synonyms and a detailed definition.    

Table 1. Component Naming Taxonomy 

Comp. Term Synonyms Definition 

Reservoir cup, vessel, 
bucket, bottle 

A device in the form of an open tank used to accumulate 
and dispense a material. 

Container box, receptacle, 
holder 

A device in the form of a closed canister used to 
accumulate and dispense a material. 

Bladder balloon 
A device in the form of a hollow, expandable sac or 
membrane with a narrow opening used to accumulate 
and dispense a material. 

Pressure 
Vessel 

air tank, gas 
tank 

A device in the form of a sealed tank used to accumulate 
and dispense a pressurized fluid material. 

Hinge 
pivot, axis, pin, 
hold down, 
jam, post, peg, 
dowel 

A device that allows rigidly connected materials to 
rotate relative to each other about an axis, such as the 
revolution of a lid, valve, gate or door, etc. 

Tube 
pipe, cylinder, 
conduit, 
channel, duct, 
nipple, sleeve 

A device in the form of a hollow body, usually 
cylindrical and long in proportion to its diameter, used 
to direct fluid material along a path. 

Diode  A semiconductor device which allows current to flow in 
only one direction. 

Bearing journal bearing, 
thrust bearing 

A device in the form of a ball or arrangement of balls 
that is placed between moving parts to allow them to 
move easily relative to each other along a path. 

Link 
connection, 
pawl, rod, strut, 
brace, cross 
piece, girder 

A device connecting two or more components that 
transmits motive power from one part to another along 
a specific path. 

Sled shoe, runner, 
skid 

A device either under or within a machine used to 
facilitate the sliding of components relative to each 
another along a path. 
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2.3 Natural Language in Engineering 
The thrust of natural language interpretation is to remove formality as a 

requirement to computational activities and to stray away from specific terms and 

taxonomies.  Recently there has been a great deal of work developing natural language 

terms to aid in biological inspired design [20-22].  Biological inspired design strives to 

bring elements and attributes that occur in nature to man-made products and processes.  

Unfortunately most engineers and designers know the language of engineering, not the 

language of biology.  Natural language processing in this regard attempts to link what 

would be considered an engineering vocabulary to a biology/science vocabulary.  

In order to develop a natural language translation for biological inspired design 

Chiu and Shu make use of keyword searches [20, 21].  Lexical references are then 

established by performing keyword searches on existing biological texts and articles.  

Without the wealth of existing published material it would be nearly impossible to 

develop such relationships.  Chakrabarti et al. detail a method for developing analogies 

to link the natural and artificial world [22].  All of these works aim to better formalize 

biomimetic design, however, perhaps more fundamental is the goal making existing 

knowledge more accessible a synonym list or domain to domain thesaurus.   

3  RESEARCH APPROACH: FORMULATING NATURAL LANGUAGE 
SYNONYMS 

In this section, we examine repository data from a functional and artifact naming 

standpoint for two classes of the component naming taxonomy to guide the natural 

language interpretation activity.   The section begins with a brief explanation of how the 

design repository stores artifact name, component naming term, and functional 

information.  Next, Sections 3.2 and 3.3 examine functionality and naming statistics for 

both material suppliers and guiders.    

3.1 Repository Conventions 
The design repository contains over 5500 unique artifacts with over 99% of those 

artifacts also having a component naming term.  Component naming information is 
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recorded using two separate database tables within the design repository.  The artifact 

table allows for a common name to be associated with a particular artifact as well as 

point to a component naming term in the component_basis_type table.  Designers who 

enter information in the design repository are allowed to specify an artifact’s common 

name.  There are no restrictions on an artifact’s common name as long as it appropriately 

describe the component.  Often times an artifact’s common name will take the form 

“small dc motor” or “upper half case.”  Along with the common name designers are also 

allowed to specify a component term of the component naming taxonomy.  For example 

an artifact with a common name of “small dc motor” should have a component name of 

“motor.”  

Functionality is recorded in a similar fashion and makes use of the functional 

basis for the allowed function and flow terms.  Each artifact within the repository can 

have as few or as many associated functions and flows.  A function-flow pair must be 

linked to an artifact and cannot be recorded independently.  

3.2 A Functional Perspective 
Next we examine how component naming terms are associated with 

functionality.  The goal of this section is to determine the level of similarity or 

dissimilarity of component classes with regard to function.  A high degree of function 

similarity within a component class would suggest component synonyms could be 

associated with the secondary level of the component naming terms.  Significant 

dissimilarity, however, would suggest that component synonyms should be associated 

with the component level of the component naming taxonomy. 

3.2.1 A Functional Look at Material Suppliers 
Material suppliers include the component naming terms of bladder, container, 

pressure vessel and reservoir.  At the time of analysis there were no artifacts in the 

repository labeled as a bladder, thus the term is removed from analysis.  For the 

remaining components the top 6 functions for each are listed along with an incremental 
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percentage, shown in Table 2.  The incremental percentage is a running percent total of 

overall function representation. For example, the function store represents 31.82% of all 

of the functions associated with the component naming term container.  Likewise the 

functions store and import combined represent 48.86% of all functions associated with 

the component naming term container.   

Table 2. Functions Associated with Material Suppliers 

 

The top 6 functions are shown for the container, pressure vessel and the reservoir.  

While performing the analysis we observe that in general 70% of all functionality is 

captured within the first 30% of the population of unique function terms.  This 

phenomenon, known as Pareto Optimum, is better shown by Table 3 which contains a 

full listing of functions associated with a reservoir [23, 24].  The first column is the 

function term, the second column is the number of times that function is performed by a 

reservoir, the third column is a running percent of unique function terms (i.e., there are 

15 unique terms each representing 6.67% of the population), the fourth column is the 

overall percentage a function exists when compared to the number of total functions, 

and the fifth column is a running summation of the fourth column.  The function 

position is realized within approximately the first third of the population and at that 

point over 70% of all functions have been realized. 
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Table 3. Full Function Listing for Reservoir 

 

Table 2 shows significant function overlap for material suppliers.  The functions 

import, export and store are observed to occur for each component naming term.  The 

function supply is also seen by 2 of the 3 components.  This data suggests that material 

suppliers are overall functionally similar.   

3.2.2 A Functional Look at Guiders 
As with material suppliers it was noticed that in general 70% of all instances of 

function are realized within the first 30% of the population.  Table 4 shows the full listing 

of functions associated with the component naming term tube in the same fashion as 

Table 3.  There are 18 different functions solved by a tube with over 80% of all functions 

realized within the first third of the population.  These results are a bit higher than most 

function realization relationships but are still considered to be in line.  
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Table 4. Full Function Listing for Tube 

 

Table 5 summarizes all 6 guider component naming terms.  Unlike material 

suppliers there is only a single function that appears for each of the component naming 

terms.  The function guide appears at varying frequencies for each term, but still realized 

within the first 70% of all function instances.  With the exception of diode, the remaining 

guiders are mostly similar duplicating the functions transfer, import, export, and guide.  

Conceptually this data is self supporting, you would not expect a diode to be similar to a 

hinge.   

3.3 A Component Perspective 
The method for component naming analysis is slightly more complex than the 

functional analysis.  Complexity is introduced because users are allowed to name 

individual components while also assigning a component naming term.  Common 

names for individual components may take the form of a single word such as “cup” or 

several words such as “lower left drip cup.”  From a computational standpoint it is very 
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easy to aggregate single words of the same tense.  It is much more difficult to 

automatically parse the phrase “lower left drip cup” into a single component name.  

Table 5. Functions Associated with Guiders 

 

In order to analyze common component names with respect to their naming 

taxonomy a script was developed to first parse through the given common names.  The 

script begins by creating a new database table to store alternate common names for a 

particular artifact.  Any existing given component name that is a single word is then 

copied to the corresponding spot in the  alternative name table.  The script then prompts 

a user to enter new alternate names for the remaining common names.  For example, a 

user would enter an alternate name of “cup” for the common name “lower left drip 

cup.”  The script then places “cup” as an alternate name for all artifacts with a common 

name of “lower left drip cup.”  Replacing all common name matches with the same 

alternate name allows for consistency in how data is interpreted.  Approximately half of 
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the existing common artifact names were replaced with a new alternate name during 

this process.   

A query was then structured to relate an artifact’s component naming term to its 

new alternative name.  One would expect for natural language terms to be associated 

with the secondary class of component terms if there is a high degree of overlap for 

component names.  If there is a low or more singular relationship of common names and 

component naming terms it is proposed that the natural language synonyms be 

associated at the term level of the component naming taxonomy.   

3.3.1 A Component Look at Material Suppliers 
For analysis of material suppliers, only the component naming terms reservoir 

and container are included.  The term bladder is not observed within the repository and 

the term pressure vessel is only seen 3 times, each time with a common name of pressure 

vessel.  Because of the non-existent and limited data, Table 6 only examines common 

names associated with reservoir and container.  Both terms are associated with 17 

unique common names.  Shown in italics are common names that are repeated between 

both component naming terms. 

Again, the number next to a common name represents the number of times that 

common name has been associated with the corresponding component naming term.   

Since each term has 17 unique components their percent of the unique population 

column is the same, shown in the first column.  The third column for each term is the 

percent representation of a common name seen across the entire data set and the fourth 

column is a running summation of the third column.  Common names for reservoir 

again closely match the 70/30 Pareto optimality seen throughout the repository.  

Optimality (70/30) is not however recognized for container, but is on the lower bound of 

data seen across the repository. 
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In total, 76.9% of all instances of a container have also been denoted as a 

reservoir and 70% of all occurrences of a reservoir have also been labeled as a container.  

The high overlap suggests that users see the two component naming terms as synonyms.  

Recalling component naming term definitions detailed in Section 2.2, the main 

distinguishing factor between the two terms is that a container is closed while a 

reservoir is open.  Perhaps a confusing point for users is how to treat a container or 

reservoir that have an open and closed state.  The close overlap of terms suggests that 

synonyms for reservoir and container could be associated with the higher level term 

material suppliers without much confusion.   

Table 6. Component View of Material Suppliers 

 

3.3.2 A Component Look at Guiders 
Table 7 shows a detailed view of common names associated with the component 

naming term link.  Again it is worth mentioning that 70% of all common name instances 
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are again realized within the first 30% of the population.  A summary of all guider 

component terms is shown in Table 8.  Unlike for material suppliers there is not a large 

amount of overlap between the varying terms.   

Hinge, sled, link, and tube do have some instances of component overlap, but 

not as often as with material suppliers.  It is worth noting that common names for 

bearing and diode are almost always the same as their respective component naming 

term.  This may be because bearing and diode are both very specific, non-ambiguous 

components and are not often realized with varying types of form.  The remaining 

guider terms carry a higher level of ambiguity as shown by their associated common 

names.  Users have used the term sled to describe artifacts ranging from a car to a bolt, 

two artifacts that share no commonality.   

Table 7. Detailed Component View of Link 
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Table 8. Component View of Guiders 

 

4  RESULTS 
Based on the functional and common naming analyses performed above, it is 

apparent that a hybrid approach is needed to formulate a natural language to 

component naming synonym method. 

4.1 Combining Two Viewpoints 
Neither common naming information or functional information alone suggest 

how to begin linking natural language synonyms.  There are cases where an entire class 

of component naming terms overlap and others with hardly any overlap.  Some 

component naming terms have overlapping common names and others have minimal 

overlap.  For guiders, with the exception of the term diode, all components within a 

class appear to have a great deal of functional overlap, but minimal naming overlap.  For 

material suppliers there is both functional similarity as well as common name overlap.    

If synonyms are associated with the secondary level of the component naming 

taxonomy, there would be several cases where common names would not seem like they 
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belong together in the same list such as car and diode.  If synonyms are to be associated 

with the component level of the component naming the question is how to appropriately 

address repeated common names.  Should common names only be associated with a 

single component naming term, and if so what rules can be developed to determine 

where to assign a particular synonym?  Looking back at the reservoir and container data 

users consistently use tray, carafe, and cup to describe both naming terms.  Should tray 

be associated with container instead of reservoir because it has one more occurrence 

with container?  Functionally reservoir and container are nearly identical and using 

either tray, cup, or tank would result in the same overall functional representation.  Since 

the goal is to ultimately use the natural language terms to generate a functional model, 

duplication of common terms is necessary.   

4.2 Proposed Method 
In order to implement the hybrid strategy outlined above, a step by step method 

for gathering natural language terms from existing repository data is formulated here.   

Step 1) Reduce verbose common names to their root by removing any unnecessary 

descriptors.  For example “lower left ac cover” would become “cover.”   

Step 2) Generate a list of all common names and their rate of appearance associated with 

a given component naming term.   

Step 3) Remove conflicting component naming terms that may exist within the list of 

common component names.  A conflict occurs when a different component naming term 

appears in a  list of common names for another component naming term.  For example, 

the common name container (also a component naming term) appears in the listing for 

the naming term reservoir.  For this case container would then be removed from the list 

of common names associated with a reservoir (shown in Table 9).   

Step 4) Calculate the percent representation and a summation of percentages of each 

common name across the population and order from highest to lowest.  An example is 

shown in Table 9. 
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Table 9. Reservoir Synonym Data Table 

 

Step 5) Accept all common names as natural language synonyms up to and including all 

terms required to reach a 70% threshold of the population.  The highlighted terms from 

Table 9 would then be added as natural language synonyms for component naming term 

reservoir.  Synonym terms listed in the component naming terms (shown in Section 2.2) 

will also be included in the overall set of natural language synonyms.   

The 5 step algorithm shown will allow for synonym terms to be duplicated for 

different component naming terms.  For example, the term tank would be listed as a 

synonym for both a reservoir and a container.  If a user were to specify the component 

tank in FFF all artifacts tagged as a reservoir or container will be used for further 

functional analysis.  As shown in Section 3.2 it is expected that overlapping terms will 

have similar if not identical functionality.  

5  COMPONENT NAMING SYNONYMS 
This section presents the natural language component synonyms (Table 10) 

found using the method shown in Section 4.2.  Only component basis terms that have 

occurred in the repository are shown.  
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Table 10. Natural Language Synonyms 

Component Basis Term Natural Language Synonyms 
abrasive  sand paper, conductor, switch, sensor  
acoustic insulator  muffler   
agitator  stirrer  
airfoil  airfoil, wing  
battery  battery  
bearing  bearing  
belt  belt, webbing, zip tie  
blade  blade  
bracket  bracket  
brush  brush, bristle, ring  
burner  burner, sparkler  
cam  cam, counterweight, converter  
cap  cap, plug  
capacitor  capacitor  
carousel  carousel, turntable, scraper  
choke  coil  
circuit board  chip, control board  
clamp  clamp, gripper, caliper, chuck, clip, collet, crimp  
clutch  clutch, actuator, spacer  
condenser  condenser  

container  basket, carafe, container, holder, tank, drum, tray, 
hopper, compartment 

cover  cover, plate, lid  
crank  crank  
cushion  pad, cushion, panel, dampener, bushing, foam  
diode  diode  
divider  spacer, divider, plate  
door  door, window  
electric conductor  crimp, conductor, connector, power cord, contact  
electric cord  plug and cord, power cord  
electric distributor  bus  

electric insulator  insulator, backing material  
electric motor  motor  
electric plug  plug and cord, plug, inner connection  
electric resistor  resistor  
electric socket  socket, input, outlet, jack  
electric switch  switch, button  
em sensor  antenna, bar  
extension  holder  
fan  fan, impeller  
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Table 10. Natural Language Synonyms (cont.) 

Component Basis Term Natural Language Synonyms 
fastener  fastener, bolt, weld, nut  
flywheel  bobbin, holder, hammer  
friction enhancer  grip, pad, feet, filter, clip, tape, roller, sticker  
fuse  fuse  
generator  alternator  
handle  handle  
heat exchanger  mass, peltier device, chamber, radiator, pipe  
heating element  heater  
hinge  hinge, pin, rivet, joint  
housing  housing, case, shell  
hydraulic piston  piston, bolt, plunger  

hydraulic pump  cylinder, pump 
ic motor   engine 
inclined plane  Slope 
inductor  inductor, transformer  

insert  liner, pin, drop forward, connector, insert, bushing, 
die  

knob  knob, button, pad  
latch release  clip, button, lock, release, brake, holder, pin, switch  
lens  lens  
lever  lever, pedal, trigger, actuator, control lever  
light source  lamp, bulb  
link  linkage, link, rod, bar, pin, arm  
magnet  magnet, rails  
material filter  filter, bag, grate pre-filter  
mechanical transformer  transformer, dashboard  
needle  needle, mount  
nozzle  nozzle, shower head, neck, guard  
pneumatic piston  piston, booster  

pneumatic pump  pump  
pressure gauge  gauge  
projectile  ball  
punch  punch  
reservoir  tank, reservoir, bowl, carafe, cup, tray  
rotational coupler  coupler, rotor, input, coupling  
screw propeller  impeller  
seal  gasket, o-ring, seal  
shaft  shaft, axle, driveshaft  
sled  car, bracket, plate, bolt, button  
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Table 10. Natural Language Synonyms (cont.) 

Component Basis Term Natural Language Synonyms 
speaker  speaker  
spring  spring  

stop  stop, snap ring, lock washer, stopper, feet, sphere, 
gear lock, bumper, visor  

stuffing  foam 

support  plate, support, ring, mount, base, pin, clip, holder, 
bar, frame, guide, foot, spacer, body  

thermal conductor  plate  

thermal insulator  shield, ceramic, fiberglass, insulator  
thermostat  thermostat, sensor  
transistor  junction, chip, solid state silver bond, transistor  
tube  tube, hose, pipe, line, faucet  
valve  valve, stopper, flap, sieve  
visual indicator  gauge, guide, plate, ball  
washer  washer  
wheel  wheel, rotor 

6  CONCLUSIONS AND FUTURE WORK 
This work establishes the natural language interpretation foundation necessary 

to support the envisioned Form Follows Form method.  Natural language interpretation 

of components is essential to allow novice engineers and designers to specify an initial 

product concept that, once interpreted, can be parsed and used as input for existing 

concept generation algorithms.  This ability, paired with the emerging Form Follows 

Form method, is anticipated to make design more accessible to the larger engineering 

community by removing the need to be well versed in naming taxonomies 

The natural language to component naming terms method presented establishes 

an approach that imbues a machine with the ability to learn the association between 

human speak and the standardized set of component naming terms as the knowledge 

base in the Repository.  An initial set of natural language to component naming terms is 

generated by the AI method for the current state of the Design Repository and 
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presented.  After review of the results, we observe that the normative nature of the 

Design Repository (i.e., entry by many different contributors with varying descriptive 

styles) indeed captures a wide array of natural language terms that support the 

interpretation algorithm. 

Future work includes the task of monitoring common names associated with 

artifacts as additional products are cataloged.   There may be the need to update or 

modify the parsing algorithm as more products are added to the repository systems.  

This work also establishes a framework for analyzing the component naming taxonomy.  

As shown in Section 5 there are several component naming terms that have not yet been 

used to represent a single artifact.  Further analysis may find that the component basis 

taxonomy naming terms could be removed or modified.   

It is possible that additional natural language synonyms could be found using 

alternate sources.  Additional synonyms could possibly be found by searching 

engineering catalogs, patents, and texts.  This process would also help to verify the 

natural language synonyms that have already been identified in this work.  Natural 

language synonyms could also be realized and verified by using language sources such 

as WordNet (http://wordnet.princeton.edu/).  WordNet may best aid by adding natural 

language synonyms to component basis terms not yet realized within the design 

repository.   
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ABSTRACT 
This paper presents a new form-based concept generation technique known as 

Form Follows Form (FFF).  The technique allows a novice engineer or designer to use 

natural language to specify components envisioned within a product to initiate a more 

thorough concept generation process.  Form follows form takes the initial component 

solution and then formulates the underlying function structure by leveraging a 

repository of over 5500 artifacts.  Existing computational conceptual design methods are 

then employed to automatically display a set of ranked concept alternatives to the user.  

Users can choose from two different levels of interaction, an automatic mode that uses 

the most common functions to develop concept alternatives, or a mode that allows the 

user to be more precise in defining a product’s interaction.  The computational 

algorithms and grammar rules are detailed along with a case study using both tiers of 

interaction.   

1 INTRODUCTION 
Today the United States is the leader in technology innovation.  That innovation 

or creativity results from funded national initiatives (e.g. NSF, DoD), from large 

companies supporting their own research to stay competitive (e.g. Intel, 3M, Boeing, 

Northrop Grumman, Apple) and from smaller companies driven to address a perceived 

market need.  The nation’s standing as an innovation leader is now more tenuous than it 
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has been in the past half-century due to a number of factors ranging from the current 

economic downturn to the effects of globalization and emerging economic forces in 

formerly third-world countries.  Now, more than ever, methods that support innovation 

need to be studied to ensure quality of life continues as expected.  Innovative concept 

generation is still widely viewed as a magical quality largely not characterized by 

scientific phenomena.  Ideas about fostering innovation in product design have been 

rampant in psychological and design literature in the last twenty years, but no definitive 

studies have emerged to prescribe practices that positively impact creativity or 

innovation. 

Collaborative research projects with national labs, defense agencies and industry 

coupled with teaching engineering students, we have observed that most often 

engineers and designers think in terms of components.  They visualize the physical 

implementation instead of interpreting the functional requirements.  For example, 

engineers in NASA JPL’s Team X select from standard space systems when developing a 

mission and its subsequent spacecraft, even though unknown, new, emerging systems 

may ultimately be implemented on the actual spacecraft.  When GM’s design for six-

sigma engineers try to associate performance equations with customer demand through 

automotive sub-system functionality, often the functional description created contains a 

mix of components and pseudo-functions and is not necessarily computable using 

existing methods . 

This paper reports on efforts to 1) capture components within an envisioned 

concept or design, 2) infer user intent of the designated components, and 3) apply a set 

of grammar rules to output a resulting functional model.  Section 3 presents technical 

details of capturing concept information and the set of grammar rules used for 

functional model generation.  Section 4 begins by demonstrating functional model 

generation using FFF using two different levels of user involvement.  Finally, Section 4 

compares a human generated functional model to the FFF counterpart. 
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2 BACKGROUND 
In this section we present an overview of current and emerging concept 

generation techniques.  We begin in Section 2.1 by reviewing techniques associated with 

manual concept generation activities.  Sections 2.2 and 2.3 outline more recent efforts to 

apply artificial intelligence (AI) techniques to concept generation.  Finally, a brief 

overview of a design repository is presented in Section 2.4.   

2.1 Concept Generation Techniques 
A variety of concept generation methods exist for application to engineering 

design problems – from those that are common practice within the field of design to the 

more modern computer aided concept generation methods.  Many researchers have 

sought to formalize the conceptual design phase.  Antonsson and Cagan concisely define 

the notion of 'formal' as “...computable, structured, and rigorous, not ad hoc” [1].  

Furthermore, by founding concept generation techniques on functionality, solution-

independent design descriptions can be built [2].  Such methods generally rely on a form 

of functional decomposition of the overall problem to initiate the search for physical 

design solutions during conceptual design.  Whether driven in this function-based 

manner or otherwise, much variability is exhibited in just how this search is carried out 

depending on the method chosen.  This reflects the variety of perspectives that have 

been suggested for addressing the conceptual design problem and a sampling of the 

major themes is reviewed next.  

2.1.1 C-Sketch/6-3-5 Method 
The 6-3-5 method is a generic technique that supports innovative thinking [3].  In 

6-3-5, members of an engineering design team (optimally 6-8 members) generate, 

interpret, and modify the individual ideas of other team members by first brainstorming 

and sketching individually on three ideas for various aspects of the product, then 

passing their ideas to the next team-member who adds additional ideas and sketches.  C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and 

refrain from communicating verbally when passing ideas to the next member [4].  
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Passing only sketches allows other team members the opportunity to interpret the 

concepts in a different manner than the original author, thereby increasing design 

diversity. 

2.1.2 The Catalog Design Method 
Another approach, referred to as catalog design, is based on a catalog of physical 

elements (components, assemblies, etc.) that can be browsed for solutions that match 

required performance specifications.  The data for design catalogs are limited to some 

degree insofar as these design catalogs are generally a subset of previously designed 

systems, which leads to the issue of potential novelty restrictions.  However, a major 

benefit of catalog design is the ability to utilize design knowledge that falls outside 

human memory [5-7]  

2.1.3 Design by Analogy 
In Design by Analogy, a functional model is created of the product being 

designed.  Examining analogous products or components that perform the same 

function generates solutions to the present design problem.  The designer then evaluates 

these similar components for appropriateness in solving the given design problem [8].  

One Design by Analogy method widely recognized in the engineering design 

community is the Theory of Inventive Problem Solving, or simply TRIZ.  TRIZ was 

developed by Altshuller during the 1940-50’s period and was based on the examination 

of large numbers of existing patents [9].  The end result of this effort is an engineering 

design approach that identifies a set of conflicts that occur in design along with a set of 

principles that can be applied to generate solutions that solve these conflicts.   

2.1.4 Morphological Matrix Method 
The morphological matrix introduced by Zwicky is now a classic technique for 

use in conceptual design [10].  This method provides the design engineer with a simple, 

albeit manual, means for bookkeeping potential physical solutions and their 

corresponding functionality. 
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2.2 Foundations in Automated Concept Generation  
The front end of the conceptual design process has seen few attempts at 

automation, perhaps due in part to the evolving strategies and methodologies that exist 

for this phase of design. However, over the past decade, several methodologies have 

coalesced around the functional decomposition and partial solution manipulation 

techniques originally introduced by Pahl and Beitz [11], e.g., [12-21]. These 

methodologies take a designer through a set of steps to help decompose a design 

problem and build conceptual solutions based on the functionality that a product needs 

to exhibit. Function modeling methods abstract the functionality that a solution must 

fulfill from the established customer needs, ideally removing designer biases that may 

be introduced by focusing on specific solutions too early in the design process. This 

abstraction helps a designer generate more complete conceptual solutions and balance 

design choices between different components with the same functionality [11].  

Research into the benefits of structured design methods (e.g., [22]) coupled with 

research into designers’ reluctance to use them (e.g., [23, 24]) seem to point toward the 

need for the seemingly tedious stages of systematic design to employ some level of 

automation to help integrate the benefits of a structured method with the more natural 

activities of a designer – a need that is most evident during the early phases of 

conceptual development.  

Computational tools for conceptual design do exist, yet these tools often address 

areas that support aspects such as initial requirements gathering (e.g., organizational 

tools such as the TikiWiki project [25], the creation of function structures (e.g., the 

function grammar tool developed by Sridharan and Campbell [26]), or optimization of 

well-established concepts (e.g., [27]) rather than the translation of functional 

requirements into creative solutions). 
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2.3 The State of the Art in Automated Concept Generation 
Computerized concept generation techniques, spanning the broad AI topics of 

knowledge representation and reasoning, promise engineers a faster realization of 

potential design solutions based upon previously known products and implementations.  

While the area of automated concept generation has made great strides in recent years, 

most methods still require the user to indicate desired functionality.  Using functional 

descriptions has been shown to help engineers stray away from pre-trained ideas of how 

a product or device would look and operate, although can cause confusion for engineers 

and scientists who have not been trained to describe product functionality.  Two of the 

automated concept generation methods under development today rely solely on the 

user’s ability to develop functional descriptions of their desired product.  Both of these 

methods make use of a repository of design information including component 

connection information and component functionality.  

The recent foundations for concept generation through computational reasoning 

have been developed based on formalisms for describing function or purpose in 

engineering design largely led by members of our research team [28, 29].  Some of the 

results of this research include the development of a design repository to allow 

designers to store and retrieve design knowledge at various levels of abstraction, from 

form (components, sub-assemblies and assemblies) to configurations to function.  

Offering a fully functional and intuitive way to record product design information has 

been key to the acceptance of repositories as an important concept generation tool for 

designers.  A prototype design repository framework by NIST guided the design 

repository (discussed further in Section 2.4) project to a more mature state.   

The bank of empirical knowledge relating components to functions leads to the 

development of relational matrices [30, 31] and graph grammar rules [32, 33] that, when 

combined with a search mechanism, automatically creates conceptual designs.  Aiding 

the methods set forth by Bryant and Kurtoglu [34, 35] is a component naming taxonomy 
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spanning 140 different component classifications.  With the open-endedness or large 

degree of variability in conceptual design, numerous solutions are created through the 

search mechanisms (on the order of thousands).  Presenting these thousands of solutions 

to the user is similar to an Internet search that produces thousands of results.  It is 

overwhelming to the user and impractical to expect that such a large number of 

alternatives will be useful to the designer.  Furthermore, the results showed that subtle 

challenges in a given design problem may not always be captured in the specification of 

initial function, and thus many results were not relevant to the user’s needs [36, 37].  As 

a result, the proof of concept Designer Preference Modeler [38, 39] was created to find 

within the large set of results which concepts were most meaningful to the designer.  By 

ranking select concepts, the search mechanism learns what aspects of the concept the 

user prefers, and seeks solutions that maximize the predicted preference.  Initial results 

for this method are promising, but the impact they have on the design process is still 

unclear. 

2.4 The Design Repository 
The objective of a Design Repository is to allow designers to store and retrieve 

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function.  Currently the 

Missouri S&T Design Repository contains design information for over 125 consumer 

based electro-mechanical products.  Design information captured by the repository can 

be divided into seven main categories including: artifact-, function-, failure-, physical-, 

performance-, sensory- and media-related information types.  The different levels of 

abstraction and types of design information provide innovative ways to approach 

design.  With a well populated repository, emerging concept generator algorithms take, 

as input, basic product functionality or component information and instantaneously 

develop, filter and rank concepts to use as baselines for further product development.  
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While the possibilities design repositories offer are diverse and helpful to designers, the 

implementation of such repositories are crucial to their overall success and usefulness.   

Realizing the potential impact of an operational Design Repository, researchers at 

Missouri S&T, The University of Texas at Austin and the National Institute of Standards 

and Technology (NIST) began gathering artifact information in 1999 [40-42].  Since that 

time, the process in which artifact data is gathered and recorded has changed 

significantly.  Initially, artifact design information was recorded in spreadsheets and 

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM), 

and Design Structure Matrices (DSM).  While this type of information was useful, it was 

also limited in scope and the required matrix multiplications were quite cumbersome.  A 

prior Design Repository initiative by NIST helped to guide the Design Repository 

project at Missouri S&T to a more mature state.  To enhance data integrity, design 

information was migrated from spreadsheet form to a relational database.  A web-based 

repository navigator including search and design tool generation features was created 

along with a repository entry application.  

More recently, Missouri S&T has further partnered with UT-Austin [30, 31], Penn 

State [43], Virginia Tech, Bucknell [44], University of Buffalo and Texas A&M to expand 

the types of design information and breadth of design tool features within the repository.  

The Design Repository serves as a hub for designers for information exchange and 

design generation tools and is heavily utilized in the current VOICE project.  

Information entry and retrieval occurs within a standalone application [45] (available at 

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs 

over the Internet through the Design Repository’s web portal 

(http://repository.designengineeringlab.org/).  The infrastructure supporting these two 

applications is the Design Repository database and schema [43].  The database schema 

establishes what types of design information can be stored, the relationship of those 
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elements and the extensibility of including new and additional types of design 

information.  

3 RESEARCH APPROACH 
In order to explore the possibility of a form-initiated, AI-enabled concept 

generation paradigm, initial steps require a systematic approach to abstracting 

functional descriptions from an initial form-based concept seed.  From there, the AI 

generated functional model can be used as input to the existing concept generation 

algorithms (from Section 2.3).  The overall research approach followed is decomposed 

into three specific activities. 

1)  Capture chains of envisioned components for a given concept by using computer 
parse-able natural-language component terms; 

2)  Capture designer preferences to determine intent of the concept; and 

3)  Explore AI reasoning approaches to derive a functional representation of the 
concept. 

3.1 Objective 1 – Capturing Chains of Components 
Users are allowed to specify an initial solution by listing chains of components 

envisioned in their product by using an augmented component naming taxonomy [46].  

This is a task that initially appears to be simple, however, there are several ways one 

could describe information about components such as a DSM or a simple listing of 

components.  Since ease of use and accessibility are key drivers of this research, asking a 

user to first generate a component connection matrix would be a cumbersome task.  

Alternatively, a simple list of components may not effectively capture the intent of the 

user (that is component connection and ordering).  From a computational standpoint, 

information regarding components needs to, at a minimum, infer how the user intends 

those components to be connected to one another.  For example, a user lists out wire, 

shaft and motor as components in a concept.  A basic search of the design repository 

would show those components have not been observed to connect in that particular 

order.  It is therefore necessary to build a framework that allows for an easy and logical 
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manner to gain information about components in a particular concept.  With a semi-

logical ordering of input components, algorithms will be better positioned to statistically 

determine the intended component order.   

Figure 1 shows the proposed approach to capture a perceived concept.  The 

example shown in Figure 1 contains the basic components of an ice tea maker and will 

be used throughout the remainder of this paper.  Users are asked to enter components as 

a series of discrete chains.  As shown, the first chain of components includes a cord, 

switch, and a heating element while another may consist of a tank, tube and a condenser.  

Once chains are entered a user is allowed edit, remove or reorder specific chains or 

components. 

 
Figure 1. Component capture screenshot 

3.2 Objective 2 – Determining User Intent 
At this stage designer preferences are needed in order to provide additional 

information such that computational reasoning about the intended use of their product 

may proceed.  Once the component chains are designated by the user it will be necessary 
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to systematically determine the intended use of particular components.   Data from the 

repository will be utilized to determine which functions and flows are solved by each of 

the given input components.  Most artifacts in the repository are given a common name 

as well as a more accurate component basis taxonomy name [34, 35].  For example, a 

user might list “small dc motor” as a common name, but also choose “motor” from the 

component naming taxonomy.  The component naming taxonomy exists to remove 

ambiguity from common names and to aid in the clustering of design information.  

Across the entire repository each component naming term is associated with, on 

average, 17.7 unique function-flow pairs.  This non-exclusive relationship between 

function flow pairs and components occurs because some components solve more than 

one function for a particular implementation and some components have multiple 

distinct uses.  It is therefore necessary to determine which function(s) and flow(s) are 

intended by the user’s selection of a particular component. 

To determine user intent we present a two-tiered approach for user involvement: 

Tier 1 – algorithms automatically select the most prevalent chain of functions associated 

with a given component, or Tier 2 – the user is prompted to identify the primary flow 

(material, energy or signal) traversing a particular component.  As an example for both 

tiers of user involvement we present a simplified functional model (Figure 2) of an ice 

tea maker.  For brevity the model ignores thermal sensing, on/off switches and 

interaction.  A functional model of this type is not always common to engineers, but 

what is common is the identification of components.  Components have been associated 

with individual or groupings of functions within the model for clarity.  For example, the 

functions of importing and transferring electrical energy have previously been observed 

to solved by the component cord whereas the functions of converting electrical energy 

(EE) to thermal energy (TE), transferring TE and converting liquid to gas have been 

solved by a heating element. 
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Figure 2. Simplified functional model of an ice tea maker 

Examination of repository data shows that in general 70% of both functions and 

flows are realized within the first 30% of unique instances of a particular component.  

This finding suggests that the 70/30 allocation is Pareto optimal [57].  Table 1 shows the 

top 70% of instances of both function and flow for each of these components designated 

in the functional model in Figure 3.  For all of the components, except for tank, no 

component synonym lookup or natural language exploration has been conducted at this 

stage.  Table 1 along with the functional model in Figure 2 is used for illustration as the 

proposed two-level tiered approach is presented next. 

3.2.1 Tier 1 Approach 
This tier is analogous to Google’s “I’m Feeling Lucky” search option.  The 

algorithm will query the database and determine all of the top rated functions and flows 

associated with each of the components of the ice tea maker.  Looking specifically at the 

component tank, the highest ranked functions are export, import, store, stop, and 
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position with the highest-ranking flow being a solid material.  At this point the system 

will designate the functionality of the tank as importing, storing, stopping, provisioning 

and exporting a solid material.  In order to better refine the output order of functionality 

a series of grammars will be formulated (Section 3.3) and applied such that the selected 

functions are organized in a logical fashion.  Previous efforts [26, 32, 47] have sought 

such functional model creation grammars and those efforts will be leveraged and 

extended.  For example, from a modeling sense it is not logical to export something 

before it is imported. 

Table 1. Ice tea maker components and their associated functions and flows 
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3.2.2 Tier 2 Approach 
The second tier is analogous to a Google search aimed at a specific Internet 

address.  The fundamentals of this type of user involvement are similar to the Tier 1 

approach, however, the user will be asked to enter information regarding the primary 

flow (material, energy or signal) moving through a particular chain of components.  The 

approach differs from the example presented in Section 3.2.1 in that the user would be 

allowed to select the dominant flow passing through a particular component.  In the tier 

1 approach the system automatically selects that a solid material is passing through the 

tank.  In actuality the purpose of the tank is to move liquid through the system.  Tier 2 

will assign the same functionality but allow for the user to select the primary flow of 

liquid.  Again, rules and grammars will create a logical ordering of functionality as well 

as associate natural language synonyms to standard flow terms. 

3.3 Objective 3 – Reasoning to Derive a Functional Representation 
Reasoning is one of the major topics of research within the AI community [48-50].  

It is applicable to the current concept generation problem of transforming an initial seed 

concept into a more abstract representation of underlying functionality to initiate 

existing automated search and synthesis algorithms. Prior research has produced 

grammar rules that generate function structures from overall input and outputs of a 

product [26, 47] and to transform functions to components (that solve the functionality) 

[32], but none exist to go from components to functions.   

Grammar rules are associated with individual functions and dictate the allowed 

incoming and outgoing flows.  A set of rules has been developed for each tier.  Tier 1 one 

requires no user interaction and relies on grammar rules to assign incoming/outgoing 

flows.  Tier 2 allows for user interaction, more specifically the user is asked to designate 

a flow at the input of a function chain, when multiple flows are associated with a 

function, or when a function definition states that an output flow must be different from 

an output flow.  Table 2 summarizes the grammar rules for each function and shows a 
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graphical example of a function operating on Energy, Material or Signal (EMS) flow(s) 

for different classes of rules.  Previous research has concluded that the secondary level of 

the functional basis is sufficient for most types of representation [51], as such the 

grammar rules are only associated with the secondary level of the functional basis.   

In addition to the grammar rules, FFF will also make use of the following 

definitions and global rule for each tier: Continuing Flow – A continuing flow is a flow 

that is both the output of the previous function and the input to the next function.  

Dangling Flow – A dangling flow is a flow that is connected to a single function 

(incoming or outgoing) but does not continue to or originate from another function 

within the functional model.  As a global rule, no functions may be duplicated 

sequentially. 

Table 2. Grammar Rules for Form Follows Form 

 Tier 1 Tier 2 
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s) 

Uses previous 
flow from function 
chain.   

Continuing 
output flow 
matches input 
flow.  
Additional 
dangling output 
flow created 
matching 
continuing 
output flow. 

Uses previous 
flow from 
function chain. 

User allowed to 
select 
continuing 
output flow as 
well terminating 
output flow 
from component 
flow list.  

Separate 
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Table 2. Grammar Rules for Form Follows Form (cont.) 

 Tier 1 Tier 2 
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s) 

Uses previous 
flow from function 
chain.  

Continuing 
output flow 
matches input 
flow.  
Additional 
termination 
output flow 
created using 
input flow.  

Uses previous 
flow from 
function chain.  

Continuing 
output flow 
matches input 
flow.  
Additional 
termination 
output flow 
created using 
input flow.  

Distribute 

  
Automatically 
placed as the first 
function for a 
chain of 
components.  
Highest ranking 
flow chosen as 
input.  

Output matches 
input. 

Automatically 
placed as the 
first function for 
a chain of 
components. 
User allowed to 
select input flow 
from component 
associated 
flows. 

Output matches 
input. 

Import 

  
Export Automatically 

placed as the last 
function for a 
chain of 
components.  Uses 
previous flow 
from function 
chain. 

Output matches 
input.  Final 
function in a 
chain of 
functions.   

Automatically 
placed as the 
last function for 
a chain of 
components.  
Uses previous 
flow from 
function chain. 

Output matches 
input.  Final 
function in a 
chain of 
functions. 

Transfer Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 

Guide Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 
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Table 2. Grammar Rules for Form Follows Form (cont.) 

 Tier 1 Tier 2 
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s) 

Uses previous 
flow from function 
chain as the 
continuing flow.  
Duplicate input 
flow automatically 
created.    

Single output 
flow matches 
original input 
flow. 

Uses previous 
flow from 
function chain 
as the 1st input 
flow.  Prompts 
the user to 
designate a 2nd 
input flow.      

User allowed to 
select output 
flow. 

Couple 

  
Mix Uses previous 

flow from function 
chain as the 
continuing flow.  
Duplicate input 
flow automatically 
created. 

Single output 
flow matches 
original input 
flow. 

Uses previous 
flow from 
function chain 
as the 1st input 
flow.  Prompts 
the user to 
designate a 2nd 
input flow.      

User allowed to 
select output 
flow. 

Actuate Uses previous 
flow from function 
chain as the 
continuing flow. 
Additional input 
control signal flow 
created. 

Output matches 
input.  

Uses previous 
flow from 
function chain 
as the 
continuing flow. 
Additional 
input control 
signal flow 
created. 

Output matches 
input.  

Regulate Uses previous 
flow from function 
chain as the 
continuing flow. 
Additional input 
control signal flow 
created. 

Output matches 
input. 

Uses previous 
flow from 
function chain 
as the 
continuing flow. 
Additional 
input control 
signal flow 
created. 

Output matches 
input. 

Change Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 
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Table 2. Grammar Rules for Form Follows Form (cont.) 

 Tier 1 Tier 2 
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s) 

Stop Uses previous 
flow from function 
chain. 

Output matches 
input. 

Uses previous 
flow from 
function chain. 

Output matches 
input. 

Convert Uses previous 
flow from function 
chain.  

Highest ranking 
flow for a given 
component flow 
list that does not 
match the input 
flow. 

Uses previous 
flow from 
function chain.  

User chooses 
new outgoing 
flow from flow 
list.  If selected 
output matches 
input then 
function is 
removed.    

Store Uses previous 
flow from function 
chain.  Must be 
directly followed 
by the Supply 
Function. 

Output matches 
input. 
Additional 
function of 
supply 
automatically 
attached. 

Uses previous 
flow from 
function chain.  
Must be directly 
followed by the 
Supply 
Function. 

Output matches 
input. 
Additional 
function of 
supply 
automatically 
attached. 

Supply Uses previous 
flow from function 
chain.  Must be 
directly proceeded 
by the Store 
Function. 

Output matches 
input. 

Uses previous 
flow from 
function chain.  
Must be directly 
proceeded by 
the Store 
Function. 

Output matches 
input. 

Uses previous 
flow from function 
chain as 
continuing flow.  

Output matches 
input.  
Additional 
terminating 
status signal 
flow 
automatically 
attached.   

Uses previous 
flow from 
function chain 
as continuing 
flow.  

Output matches 
input.  
Additional 
terminating 
status signal 
flow 
automatically 
attached.   

Sense 

  
Indicate Must be a status 

signal flow.  
Output matches 
input. 

Must be a status 
signal flow.  

Output matches 
input. 

Process Must be a status 
signal or control 
signal flow.     

Output matches 
input. 

Must be a status 
signal or control 
signal flow. 

Output matches 
input. 
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Table 2. Grammar Rules for Form Follows Form (cont.) 

 Tier 1 Tier 2 
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s) 

Process Must be a status 
signal or control 
signal flow.     

Output matches 
input. 

Must be a status 
signal or control 
signal flow. 

Output matches 
input. 

Stabilize Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 

Secure Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 

Position Uses previous 
flow from function 
chain.  

Output matches 
input. 

Uses previous 
flow from 
function chain.  

Output matches 
input. 

4 RESULTS: GENERATING A FUNCTIONAL MODEL 
In this section two functional models using the Tier 1 and Tier 2 approaches are 

generated.  Both functional models will utilize input components of an ice tea maker as 

shown in Section 3.1.   Section 4.1 steps through the logic for creating a Tier 1 functional 

model and Section 4.2 presents the same information for a Tier 2 functional model.  

Finally, Section 4.3 compares machine generated functional models to a control model as 

well as discusses limitations of the 2-tier approach.  

4.1 Generating a Tier 1 Functional Model 
Tier 1 of FFF relies solely upon component chains entered by the user, repository 

data, and grammar rules presented in Section 3.3.  Figure 3 shows the components 

identified in Figure 1 in a block representation.  The component names are then replaced 

with their associated functionality and shown with their incoming and outgoing 

functionality (Table 1) in Figure 4.  By stepping through the elements in each block in 

Figure 4 and combining the grammar rules from Table 2 a Tier 1 functional model can be 

constructed. 
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Figure 3. Component chains 

 
Figure 4. Functions and flows (Tier 1) associated with each component   

Figure 5 shows the resulting functional model from the application of the 

grammar rules and the functions shown in Figure 4.  Function chain 1 begins with the 

function import as specified by the import grammar rule.  The flow of electrical energy 

is then attached because it is the highest ranked flow associated with the component 

cord (Table 2).  Next, the function transfer is placed because it is the highest ranked 

function associated with a cord.  Note that the function import is not again inserted in 
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the function chain because it can only exist at the beginning of a function chain.  The 

component switch causes the addition of the functions actuate, convert, and transfers.  

Following the grammar rules a control signal is added as an additional input to the 

actuate function.  The convert function continues to use electrical energy as the input 

flow and then chooses the human energy as an output flow.  Human energy is the 

highest ranked flow for the component switch that does not match the input flow.  The 

heating element component then adds the functions of transfer, convert, and change to 

the function chain.  Finally, the function export is added as the last function in the 

component chain.   

 

Figure 5. Tier 1 functional model of an ice tea maker  

The second function chain is constructed in the same manner as the first function 

chain.  An additional grammar rule is utilized directly following the store function.  As 

listed in Table 2 the function supply must directly follow the function store, thus it is 

then inserted in the functional model.  The third and final function chain makes use of 

another unique grammar rule.  An additional duplicate output flow of solid material is 
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automatically added to the separate solid function.  Conceptually this rule is obvious, if 

something is separate one would end up with a minimum of 2 separate or distinct items.   

4.2 Generating a Tier 2 Functional Model  
Tier 2 of FFF builds on the Tier 1 algorithm by allowing the user to specify the 

flows of a product.  Again, the staring components emerge from Figure 3 and are 

augmented with the Tier 2 functions and flows in Figure 6.  The resulting Tier 2 

functional model is then shown in Figure 7. .   

 
Figure 6. Functions and flows (Tier 2) associated with each component 

The first chain in Figure 7 starts off much the same way as the Tier 1 functional 

model, however the user is allowed to specify the imported flow of electrical energy.  

The chain continues to mimic the Tier 1 chain until the convert function appears.  It is 

important to note that in this function chain only a single convert function is present.  

The convert function associated with the switch has been removed.  Tier 2 grammar 

rules for convert specify that the user is allowed to specify the output flow.  In the case 

of the switch the output flow was selected to be the same as the input flow of electrical 
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energy, meaning that the user wanted electrical energy to continue in the function chain.  

Adhering to the grammar rules the function convert was then removed because the 

input flow matched the output flow.  Another significant difference again occurs for the 

function convert associated with the heating element component.  For this function the 

input flow is electrical energy, not human energy.  Again, the user is allowed to specify 

the output flow and naturally chooses thermal energy (TE).   

 

Figure 7. Tier 2 functional model of an ice tea maker 

The second function chain is identical to the Tier 1 chain until the function 

convert realized by the condenser component.  At this point the user is presented with a 

somewhat difficult choice on what to choose as a continuing output flow.  The input 

flow is designated as a liquid component, but the purpose of a condenser is to convert a 

gas to a liquid.  The reason a gas flow is not present in this function chain is because no 

component that converts a liquid to a gas is listed.  If the user chooses the output flow of 
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gas the function convert will remain in the chain.  However, selecting liquid as an output 

flow would then cause the convert function to be automatically removed.  As a designer 

neither choice is particularly ideal, thus both flow paths are shown for this decision.   

The third and final function chain mirrors the functionality of its Tier 1 

counterpart, but begins by importing a mixture flow.  The component filter is considered 

to be a basic coffee filter that would import both liquid and tea leaves.  For the Tier 2 

implementation it is expected that the user would then select mixture as an input flow.  

Another difference is shown by the separate function.  Following the Tier 2 grammar set 

the user is allowed to choose the terminating output flow as well as the continuing 

output flow.  Since the tea leaves will be discarding a solid material is shown as the 

terminating flow and a liquid shown as the continuing flow.   

4.3 Discussion: Comparing FFF to Control Functional Models 
Without much comparison it is most obvious that the Tier 1 and Tier 2 models 

contain several more functions than the control model presented in Figure 2.  The 

purpose of the model in Section 3 was to demonstrate high-level functionality in order to 

show their associated components.  Since FFF input was derived from Figure 2 we 

present a functional comparison of FFF to the original functional model.   

Table 3 contains a listing of all of the functions present in the initial simplified 

functional model (Figure 2).  In total the control model contains 15 unique functions and 

are shown in alphabetical order.  An ‘x’ is placed in the table when functions between 

the FFF method and hand generated model match.  In total 53.3% of the function-flow 

pairs are also realized by the Tier 1 algorithm and 80% appearing in the Tier 2 algorithm.   

The Tier 1 algorithm fails to capture a significant portion of the functionality 

because of improper flows.  For example the Tier 1 grammar allows for human energy to 

be converted to electrical energy instead of the more appropriate conversion of electrical 

energy to thermal energy.  The Tier 1 algorithm also fails to import a mixture material, 

but instead imports a solid material.  Results are substantially improved by using the 
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Tier 2 grammar, which allows the user to more accurately identify flows throughout the 

components.  

Both tiers assume that only a single flow is passing between each function.  That 

is connection information between discrete component chains is not captured.  In order 

to accurately trace multiple and branching flows it will first be necessary to gather more 

information from the user regarding how components will interact with one another and 

currently remains as future work.   

 

Table 3. Control and computer generated model comparison 

 

Output in the form a function adjacency matrix would then be used to seed one 

or both of the existing automated concept generators.  It is expected that output from the 

Tier 1 approach may generate novel or unique concept variants not previously 

envisioned by the users.  Their novelty would mostly be attributed to the automated 
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flow selection.  The Tier 2 approach, however, would perhaps return more appropriate 

concepts.  That is that their functionality and associated flows more closely match the 

user’s initial intent.   

5 CONCLUSIONS AND FUTURE WORK 
From an engineering education standpoint, design is the perhaps one of the 

toughest topics to teach and, often, the most feared course assignment in a given 

engineering department.  That is likely due to the emphasis of modern design 

techniques on abstracting the problem and identifying this fuzzy, hard to grasp (and 

explain) concept of functionality.  Yet, this is the area of engineering where innovation 

takes root and where students need the most nurturing.  Numerous studies have shown 

that early design is the best place in a product’s life cycle to promote innovation, reduce 

risks, control costs and avoid delays.  From research to education to practice, this form-

initiated approach to concept generation will have a significant impact on engineering 

design innovation by offering a new paradigm for AI-based concept generation.  

Specifically, Form Follows Form will accept natural language input to seed an initial 

search for design alternatives and leverage the designer preferences inherent in that 

natural language to return tailored, innovative design concepts. 

As shown in Section 4, FFF comes close to replicating a control functional model, 

but does not yet capture connections between discrete function chains.  Future work 

includes the development of a Tier 3 Approach.  This tier is analogous with a very 

detailed or directed search: I would like to see only journal papers published by a certain 

author in specific journals from May 1972 to July 1978.  Tier 3 mimics the same approach 

of Tier 2 but also allows for designers to designate connections between components 

within separate component chains.  An additional method to better realize user intent is 

to ask designers to specify the “commonness” of returned solutions.  The underlying 

idea is that there is a spectrum of components that may solve a given function and, 

based upon observations in the repository, the algorithm can favor components that 



 

 

148 

solve a function most of the time (i.e., a common solution) or components that rarely 

solve a function (i.e., a uncommon solution).  The uncommon solutions may in fact spur 

more innovative designs.  There are two approaches to achieve this outcome.  The first 

will correlate “commonness” with functionality.  Uncommon functions would be 

functions that are rarely realized throughout the repository and overall are unique to a 

specific component.  Common functions would be functions that solve a component a 

large percentage of the time, like the 70/30 allocation noted in Section 3.  The second 

approach to “commonness” is to pass the desired level to the concept generation 

routines that will later be employed to generate new design alternatives.  Both 

approaches will be explored for Form Follows Form.  Use of FFF can also lead to ways to 

record product knowledge in a repository and also be used as a tool to teach 

functionality to engineering students. 
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2. CONCLUSIONS 

The philosophical contribution of this dissertation research is to transform the 

process of engineering design.  The transformation occurs through formulating 

algorithms and harnessing computational resources heretofore relegated to the fields of 

computer science and statistics. Specifically, the key contributions of this body of 

research are the: 

• Formulation and implementation of a design repository schema that is robust 
and able to capture current product design knowledge for archival and retrieval 
purposes; 

• Ability to capture design information in the repository organized into seven 
main categories that include: artifact-, function-, failure-, physical-, performance-, 
sensory- and media-related information types; 

• Design of a database schema for easy expansion to capture additional types of 
design information; 

• Design and development of a novel data entry application to support product 
design knowledge archival, reuse and product dissection activities; 

• Cross-platform entry application, known as the Repository Entry Application, 
released under the GNU public license and, thus, available for modification by 
other researchers; 

• Adoption of the Repository Entry Application at over ten top-tier research 
institutions in the United States; 

• Formulation of the first computationally driven function-based concept 
generation application that allows mechanical design to be performed more 
thoroughly and quickly than by manual methods; 

• First evaluation of the computationally driven concept generation solutions for 
their impact on designer creativity; 

• Finding that solutions suggested by the computational approach capture an 
overwhelming majority of human generated solutions while relying upon a 
relatively small knowledge set of product information; 
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• Formulation of an artificial intelligence based approach to translate natural 
language component descriptions into computer parse-able terms; 

• Generation of an initial set of natural language to component naming terms that 
conforms to a Pareto frontier; 

• Formulation of a novel form-initiated approach to concept generation called 
Form Follows Form; 

• Artificial intelligence based approach in Form Follows Form that transforms an 
initial component solution seed for a design problem to its underlying 
functionality to broaden the search for alternative solutions; and 

• Completely automated transformation of form-to-function-to-form and capture 
of designer preference for a more directed solution approach by Form Follows 
Form. 

Collectively, the papers included in this dissertation describes how the burdens 

often associated with conceptual phase of the engineering design process may be 

overcome with intelligent algorithms and computational power.  As shown in many 

studies it is imperative for engineers and designers to have access to as much 

information as possible during the conceptual phases of design.  Proper use of such 

information results in quicker and less costly development times as well as a quality 

product or process.  As a whole, engineering design methods have been developed to 

assist in nearly every phase of the design process from customer needs analysis to 

design for lifecycle and reliability.  The goal of this work is to bring to bear the power of 

computational thinking on the early phases of the design process.  The work presented 

in the included papers begins by outlining a method to capture and store product design 

information in the form of a design repository and concludes with methods to aid in 

conceptual development and preliminary design analysis.    

The repository project at Missouri S&T has significantly impacted and 

contributed to engineering design knowledge as well as the broader field of science.  

Directly, the repository has transformed a disparate set of product design knowledge 

into a coherent body.  By using the repository system and data contained within, new 
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methods for concept generation can be explored.  The implementation of the design 

repository on the web, supports a new mode of design knowledge exchange between 

researchers in both industry and academia.  The exchange of ideas and information 

furthers the development of the repository project by incorporating supplemental design 

knowledge components.  Each contribution heightens the resolution as well as the 

breadth of design knowledge within the repository.  In addition, recent independent 

studies by external researches have assessed the information content of the repository 

and found the repository data to be both useful to designers and impact the design 

process in a positive way [52, 53]  

Two such methods enabled by the design repository, explored within this work, 

are the morphological search tool and the Form Follows Form method.  Without the 

design repository and wealth of engineering design information contained within 

neither of these methods would be possible.  The morphological search tool was the first 

computational concept generation tool built to take advantage of the design repository.   

For the first time users were able to quickly specify desired functionality and be quickly 

presented with a set of possible solution components.  Other researchers have since 

enhance the morphological search tool by incorporating component connection 

information. 

Form Follows Form is the next enhancement to conceptual level design tools.  

More specifically, FFF allows access to a host of engineering design methodologies such 

as preliminary failure mode analysis, preliminary risk analysis, two discrete automated 

concept generation methods, as well as general function identification.   FFF enables 

novice and expert designers to specify components using natural language removing the 

need to be well versed in specific function or component taxonomies.  In addition FFF 

establishes a framework for artificial intelligence and reasoning in design.  The logic and 

grammar rules in FFF serve as a foundation for automated reasoning in design. 
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Together, broader impacts of this research include the underlying design 

knowledge segmentation and categorization techniques as well as building a foundation 

to support automated reasoning.  The underpinnings of the repository increase the 

ability to archive any corporate knowledge of human experts in a form that is parsable 

and computable.  The form-initiated approach to concept generation will have a 

significant impact on engineering design innovation by offering a new paradigm for AI-

based concept generation. 

The five publications constituting this body of work do, jointly, prove the original 

hypothesis of this research: 

 

Computational thinking (i.e., product design knowledge archival and reuse and AI 

algorithms) can be applied in the early phases of design to increase the quantity, quality, 

and breadth of concept variants produced during the design of a product. 

 

More generally Table 2.1 lists the relevant research works by the author on the 

subjects of transforming engineering design through artificial intelligence based 

algorithms and computational thinking. 

Table 2.1. List of publications 

1. Bohm, M., Stone, R., 2009, “A Natural Language to Component Term Methodology: Towards a 
Form Based Concept Generation Approach,” Submitted to Proceedings of IDETC/CIE 2009, 
DETC2009/CIE-86581, San Diego, CA. 

2. Bohm, M., Stone, R., 2009 “Form Follows Form – Is a New Paradigm Needed?,” Submitted to 
Proceedings of the IMECE ’09, IMECE2009-10410, Lake Buena Vista, FL. 

3. Bohm, M., Stone, R., Simpson, S. and Steva, L., 2008 “Introduction of a Data Schema: The Inner 
Workings of a Design Repository,” Journal of Computer Aided Design., In press, doi:10.1016/j.cad. 
2008.09.003 

4. Bohm, M., Vucovich, J. and Stone, R., 2008, “ Using a Design Repository to Drive Concept 
Generation,” Journal of Computer and Information Science in Engineering, 8(1):14502. 
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Table 2.1. List of publications 

5. Stroble, J., Nagel, R., Poppa, K., Bohm, R. and Stone, R., 2008, “A Retrospective on Twenty  
 Years of the Design Theory and Methodology Conference,” Proceedings of IDETC/CIE  
 2008, DETC2008/DTM-49373, Brooklyn, NY. 

6. Nanda, J., Henri, J., Simpson, T., Stone, R., Bohm, M. and Shooter, S., 2007, “Product Family 
Design Knowledge Representation, Aggregation, Reuse, and Analysis,” Artificial Intelligence in 
Engineering Design, Analysis and Manufacture, 21(2):173-192. 

7. Bohm, M., Vucovich, J. and Stone, R., 2007 “An Open Source Application for Archiving Product 
Design Information,” Proceedings of IDETC/CIE 2007, DETC2007-35401, Las Vegas, NV. 

8. Bryant, C., McAdams, D., Bohm, M. and Stone, R., 2007 “An Interactive Computational Design 
Tool: A Hybrid of Two Methods,” Proceedings of IDETC/CIE 2007, DETC2007-35583, Las Vegas, 
NV. 

9. Nagel, R., Bohm, M., Stone, R. and McAdams, D., 2007 “A Representation of Carrier Flows for 
Functional Design,” Proceedings of the International Conference on Engineering Design, ICED 07, 
Paper 635, Paris, France. 

10. Bohm, M., Stone, R., Simpson, S. and Steva, L., 2006 “Introduction of a Data Schema: The 
Inner Workings of a Design Repository,” Proceedings of IDETC/CIE 2006, DETC2006-99518, 
Philadelphia, PA. 

11. Bohm, M., Stone, R. and Szykman, S., 2005, “Enhancing Virtual Product Representations for 
Advanced Design Repository Systems,” Journal of Computer and Information Science in Engineering, 
5(4):360-372. 

12. Bohm, M., Vucovich, J., and Stone, R., 2005, “Capturing Creativity: Using a Design Repository 
to Drive Concept Innovation,” Proceedings of IDETC/CIE 2005, DETC2005-85105, Long Beach, CA. 

13. Van Wie, M., Bryant, C., Bohm, M., McAdams, D. and Stone, R., 2004, “A general model of 
function-based representations,” Artificial Intelligence in Engineering Design, Analysis and 
Manufacture, 19(2):89-111. 

14. Bohm, M., and Stone, R., 2004, “Representing Functionality to Support Reuse: Conceptual and 
Supporting Functions,” Proceedings of DETC’04, DETC2004-57693, Salt Lake City, UT. 

15. Bohm, M. and Stone, R., 2004, “Product Design Support: Exploring a Design Repository 
System,” Proceedings of IMECE’04, IMECE2004-61746, Anaheim, CA. 

16. Stock, M., Bohm, M., Stone, R. and Hubing, N., 2003, “Using Product Architecture-Based 
Design Methods to Get Smart in the Battlefield,” Proceedings of the International Conference on 
Engineering Design, ICED 03, Paper 1192, Stockholm, Sweden. 

17. Bohm, M., Stone, R. and Szykman, S., 2003, “Enhancing Virtual Product Representations for 
Advanced Design Repository Systems,” Proceedings of DETC2003, DETC2003/CIE-48239, 
Chicago, IL. 

From an engineering standpoint, design is the perhaps one of the toughest topics 

to truly grasp.  This difficulty is likely due to the emphasis of modern design techniques 
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on abstracting the problem and identifying this fuzzy, hard to explain concept of 

functionality.  Yet, this is the area of engineering where innovation takes root and where 

minds need the most nurturing.  Numerous studies have shown that early design is the 

best place in a product’s life cycle to promote innovation, reduce risks, control costs and 

avoid delays.   

In summary, the design repository, morph matrix search, and Form Follows Form 

methodologies will have a significant impact on engineering design innovation by 

offering a new paradigm for AI-based concept generation.  As a result of this new 

application of computational thinking in a previously manual phase of engineering 

design, this research has democratized the concept generation process and increased the 

number, quality and breadth of concept variants that can be generated by any 

engineering designer.  Finally, third party validation of the work is in progress and is 

already finding utility in the methods. 
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