
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2009

Information archival and reuse: drawing conclusions from the Information archival and reuse: drawing conclusions from the

past past

Matt R. Bohm
Missouri University of Science and Technology, mbohm@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mechanical Engineering Commons

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering

Recommended Citation Recommended Citation
Bohm, Matt R., "Information archival and reuse: drawing conclusions from the past" (2009). Doctoral
Dissertations. 1892.
https://scholarsmine.mst.edu/doctoral_dissertations/1892

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1892&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1892?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1892&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INFORMATION ARCHIVAL AND REUSE:

DRAWING CONCLUSIONS FROM THE PAST

by

MATT ROBERT BOHM

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

2009

Approved by

Robert Stone, Advisor

Xiaopingu Du
Robert Landers

Ming Leu
Ralph Wilkerson

© 2009

Matt Robert Bohm
All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

Sections of this dissertation have been submitted for publication in relevant

engineering conference proceedings and journals and have been prepared in the style

utilized by these publications.

Pages 13-45 have been prepared in the style preferred by the Journal of

Computer Aided Design.

Pages 46-76 have been prepared in the style preferred by the ASME International

Design Engineering Technical Conferences.

Pages 77-96 have been prepared in the style preferred by the Journal of

Computer and Information Science in Engineering.

Pages 97-121 have been prepared in the style preferred by the ASME

International Design Engineering Technical Conferences.

Pages 122-151 have been prepared in the styled preferred by the ASME

International Mechanical Engineering Congress and Expo.

The remaining pages have been prepared in accordance with the Missouri

University of Science and Technology dissertation specifications.

iv

ABSTRACT

Over the last few decades design researchers have put forward theories and

proposed methodologies that increase the chance that a design team will reliably arrive

at the optimal solution to a given design problem. Studies, however, bear out that

theories and methodologies alone will not guarantee an optimal or even good design

solution. Instead, a breadth of knowledge across multiple engineering domains and the

time and tools to thoroughly evaluate the design space are as important as any

prescriptive design method. This work presents a set of underlying engineering

technologies to define, archive and reuse product design knowledge to provide a

breadth of domain knowledge for designers and to leverage artificial intelligence

approaches to thoroughly, if not exhaustively, search the design space. Specifically, a

database schema and entry application for a prototype design repository of product

design knowledge is formulated and implemented. A real-time, knowledge base-

driven, function-based conceptual design algorithm known as the morphological search

is formulated to extract information from the design repository and support a thorough

exploration of the design space for solutions. Currently, the Design Engineering Lab’s

prototype Design Repository contains design knowledge for over 125 products and has

over 300 user accounts representing 17 different countries.

With the foundational repository elements in place, artificial intelligence

methods are employed to generate a natural language to formal component naming

terms thesaurus as part of a novel form-initiated concept generation approach. The

approach, known as Form Follows Form, automatically generates a functional model

based upon an initial component solution seed to a design problem. With a functional

model in hand, established automated concept generation algorithms are employed to

return more complete and varied solutions following a thorough search of the design

space.

v

 ACKNOWLEDGMENTS

I would like to thank first and foremost my parents, Roger and Bobbie Bohm,

they have always been there for me and given me encouragement my whole life. I

would secondly like to thank my advisor, Dr. Robert Stone, for allowing me to work on

the repository project and for his personal encouragement as a friend and teacher.

I would also like to thank Dr. Xiapingu Du, Dr. Robert Landers, Dr. Ming Leu,

and Dr. Ralph Wilkerson for serving on my committee.

A special thanks also goes out to all of my fellow graduate and undergraduate

researchers in the Design Engineering Lab. Their support and collaboration has been

invaluable.

vi

TABLE OF CONTENTS

Page
PUBLICATION DISSERTATION OPTION ... iii 
ABSTRACT ... iv 
ACKNOWLEDGMENTS... v 
LIST OF ILLUSTRATIONS... xi 
LIST OF TABLES.. xiii
SECTION

1.  INTRODUCTION..1 
1.1  PHILOSOPHICAL STATEMENT ...1 
1.2  PROBLEM SCOPE ...1 
1.3  THE SUPERVAC - A MOTIVATIONAL CASE ..3 
1.4  STATE OF THE ART ...4 

1.4.1  NIST Repository Initiative ..5 
1.4.2  PDM Systems ..5 
1.4.3  The Design Repository ..6 
1.4.5  Concept Generation Techniques ..7 

1.4.5.1  C-Sketch/6-3-5 Method ..8 
1.4.5.2  The Catalog Design Method ..8 
1.4.5.3  Design by Analogy..8 
1.4.5.4  Morphological Matrix Method..9 

1.4.6  Foundations in Automated Concept Generation ..9 
1.4.7  The State of the Art in Automated Concept Generation10 

1.5  HOW TO USE THIS DISSERTATION..12
PAPER
1.  INTRODUCTION OF A DATA SCHEMA: TO SUPPORT A DESIGN
 REPOSITORY ..13 

ABSTRACT ...13 
1  INTRODUCTION ..14 
2  BACKGROUND ..15 

2.1  NIST Repository Initiative...16 
2.2  PDM Systems ..17 
2.3  CAD-based Systems...17 

3  UMR DESIGN REPOSITORY CONVENTIONS...18 

vii

4  UMR DESIGN REPOSITORY DATA GROUPS..21 
4.1  Artifact-related Design Knowledge ...21 
4.2  Function-related Design Knowledge...23 
4.3  Failure-related Design Knowledge ..27 
4.4  Physical-related Design Knowledge..30 
4.5  Performance-related Design Knowledge ..33 
4.6  Sensory-related Design Knowledge ..34 
4.7  Media-related Design Information ..35 

5  DISCUSSION..36 
5.1  A High Level Look at Database Tables ...37 
5.2  Engineering Design Applications Enabled by the Repository Schema....41 

6  CONCLUSIONS ..42 
7  FUTURE WORK ..42 
ACKNOWLEDGEMENTS..43 
REFERENCES ...44 

2.  AN OPEN SOURCE APPLICATION FOR ARCHIVING PRODUCT DESIGN
INFORMATION ...46 

ABSTRACT ...46 
1  INTRODUCTION ..46 
2  BACKGROUND ..48 

2.1   PDM Systems ...49 
2.2  CAD-based Systems...49 
2.3   Knowledge Based Systems...49 

3  ENTRY APPLICATION TECHNICAL DETAILS...50 
3.1   Building the Entry Application ...51 
3.2  Linking the Entry Application and Online Repository...............................54 
3.3   XML File Structure ..56 

4  USING THE ENTRY APPLICATION...58 
4.1  Recording New Product Information..58 

4.1.1  Creating New Artifacts ...59 
4.1.2  Adding General Artifact Information ...63 
4.1.3  Adding Artifact Functionality..64 
4.1.4  Adding Artifact Parameters and Attributes...................................67 
4.1.5   Adding Failure Information ..68 
4.1.6  Associating Additional Files with an Artifact70 
4.1.7  Completing the Product..71 

viii

4.2  Using the Entry Application to Open or Edit an Existing Product...........71 
5  CONCLUSIONS AND FUTURE WORK ...74 
6  REFERENCES...75 

3.  USING A DESIGN REPOSITORY TO DRIVE CONCEPT GENERATION.................77 
ABSTRACT ...77 
1  INTRODUCTION ..78 
2  BACKGROUND ..78 

2.1  Concept Generation Techniques ..79 
2.1.1  C-Sketch/6-3-5 Method...79 
2.1.2  Design by Analogy ..80 
2.1.3  Morphological Matrix Method...80 
2.1.4  Chi-Matrix Method ..81 

3  DESIGN PROJECT...81 
3.1  Case Project Background...81 
3.2  Functional Model..82 
3.3  Concept Generation ...82 

3.3.1  Concepts Generated by the C-sketch Method83 
3.3.2  Concepts Generated with Design by Analogy83 
3.3.3  Concepts Generated by the Chi-Matrix Method84 

4  USING THE REPOSITORY MORPHOLOGICAL SEARCH FEATURE84 
4.1  Searching the Repository...85 
4.2  Distilling the Results ..89 

5  CONCLUSIONS ..94 
ACKNOWLEDGEMENTS..95 
REFERENCES ...95 

4.  A NATURAL LANGUAGE TO COMPONENT TERM METHODOLOGY:
TOWARDS A FORM BASED CONCEPT GENERATION TOOL97 

ABSTRACT ...97 
1  INTRODUCTION ..97 

1.1  Motivational Case...98 
1.2  Relationship to Natural Language Interpretation in AI100 

2  BACKGROUND ..101 
2.1  Design Repository ..101 
2.2  Component Naming Taxonomy ..102 
2.3  Natural Language in Engineering..104 

ix

3   RESEARCH APPROACH: FORMULATING NATURAL LANGUAGE
SYNONYMS ...104 
3.1  Repository Conventions ..104 
3.2  A Functional Perspective...105 

3.2.1  A Functional Look at Material Suppliers105 
3.2.2  A Functional Look at Guiders ..107 

3.3  A Component Perspective...108 
3.3.1  A Component Look at Material Suppliers110 
3.3.2  A Component Look at Guiders..111 

4   RESULTS..113 
4.1  Combining Two Viewpoints...113 
4.2  Proposed Method ...114 

5   COMPONENT NAMING SYNONYMS ...115 
6   CONCLUSIONS AND FUTURE WORK ..118 
REFERENCES ...119 

5.  FORM FOLLOWS FORM – IS A NEW PARADIGM NEEDED?122 
ABSTRACT ...122 
1  INTRODUCTION ..122 
2  BACKGROUND ..124 

2.1  Concept Generation Techniques ..124 
2.1.1  C-Sketch/6-3-5 Method...124 
2.1.2  The Catalog Design Method...125 
2.1.3  Design by Analogy ..125 
2.1.4  Morphological Matrix Method...125 

2.2  Foundations in Automated Concept Generation.......................................126 
2.3  The State of the Art in Automated Concept Generation127 
2.4  The Design Repository...128 

3  RESEARCH APPROACH...130 
3.1  Objective 1 – Capturing Chains of Components..130 
3.2  Objective 2 – Determining User Intent ..131 

3.2.1  Tier 1 Approach..133 
3.2.2  Tier 2 Approach..135 

3.3  Objective 3 – Reasoning to Derive a Functional Representation.............135 
4  RESULTS: GENERATING A FUNCTIONAL MODEL140 

4.1  Generating a Tier 1 Functional Model...140 
4.2  Generating a Tier 2 Functional Model...143 

x

4.3  Discussion: Comparing FFF to Control Functional Models.....................145 
5  CONCLUSIONS AND FUTURE WORK ...147 
ACKNOWLEDGEMENTS..148 
6  REFERENCES...148 

SECTION
2.  CONCLUSIONS ..152 
3.  REFERENCES...158 

VITA ..163 

xi

LIST OF ILLUSTRATIONS

Figure Page
1.1. Overview of the design process (left side)..2 
1.2. A schematic of a future form-initiated computational design tool4 
PAPER 1
1. Graphical view of repository database tables ..20 
2. Repository schema snippet with sample data..38 
PAPER 2
1. Vice Grip Functional Model..59 
2. Creating a New System ...60 
3. Blank Product Entry Screen ..61 
4. Unattached Artifacts Listing ...62 
5. Artifact Tree Listing ...63 
6. General Information of the Vice Grip Artifact ...64 
7. Blank Artifact Functionality..65 
8. Artifact Function and Flow Entry ..66 
9. Artifact Function Listing ...67 
10. Parameter and Attributes Tab ..69 
11. Failure Tab ...70 
12. Additional Files Tab ...71 
13. Repository Connection Window..73 
14. Available Repository Products ...73 
PAPER 3
1. Functional Model..82 
2. Concepts Generated by the C-Sketch Method ...83 
3. Concepts Generated by the Chi-Matrix Method..84 
4. Morphological Search Input ...87 
5. Morphological Search Results ..88 
6. Detailed Component List for Housing ..89 
PAPER 4
1. Mockup Envisioned Component Entry System...99 
PAPER 5
1. Component capture screenshot ..131 
2. Simplified functional model of an ice tea maker ...133 

xii

3. Component chains..141 
4. Functions and flows (Tier 1) associated with each component141 
5. Tier 1 functional model of an ice tea maker..142 
6. Functions and flows (Tier 2) associated with each component143 
7. Tier 2 functional model of an ice tea maker..144 

xiii

LIST OF TABLES

Table Page
PAPER 1
1. Artifact table description ...19 
2. Subfunction_type table description ...21 
3. System table description..22 
4. Function flow table description..24 
5. Function flow database table with sample data...26 
6. Function flow database table with translated sample...26 
7. Failure table description ..28 
8. Failure database info table description ...29 
9. Manufacturing process table description..30 
10. Material table description..31 
11. Color table description...32 
12. Parameter table description ..32 
13. Performance characteristics table description..34 
14. Customer needs table description..34 
15. Sensory table description ..35 
16. Media table description ...36 
17. Database table listing ...39 
18. Database type table listing ..40 
PAPER 3
1. Identified Subfunctions ...86 
2. Results Based on Function Return ...90 
3. Identified Subfunctions of Concepts ...92 
4. Identified Components and Results (trial 2) for Chi-Matrix 1.......................................93 
5. Component Similarity Results..94 
PAPER 4
1. Component Naming Taxonomy...103 
2. Functions Associated with Material Suppliers ..106 
3. Full Function Listing for Reservoir ..107 
4. Full Function Listing for Tube ..108 
5. Functions Associated with Guiders ...109 
6. Component View of Material Suppliers ...111 

xiv

7. Detailed Component View of Link ..112 
8. Component View of Guiders ..113 
9. Reservoir Synonym Data Table ..115 
10. Natural Language Synonyms ...116 
PAPER 5
1. Ice tea maker components and their associated functions and flows.........................134 
2. Grammar Rules for Form Follows Form...136 
3. Control and computer generated model comparison...146
SECTION
2.1. List of publications ...155

1. INTRODUCTION

1.1 PHILOSOPHICAL STATEMENT
The broad vision of this research is to capture existing or expert design

knowledge and build tools that allow the novice, student, or less experienced designer

access to expert information in an intuitive and easy to use manner. Design knowledge

capture has taken form in connected database schema and design repository and the

tools provide foundations in automated concept generation and reasoning. This

dissertation seeks to answer the hypothesis that computational intelligence (i.e., product

design knowledge archival and reuse and AI algorithms) can be applied in the early

phases of design to increase the quantity, quality, and breadth of concept variants

produced during the design of a product. �

1.2 PROBLEM SCOPE
This research aims to link expert knowledge from not only the fields of

mechanical engineering and engineering design, but also engineering and science in

general. To support today’s complex products, processes, and needs it is import to

bridge the gaps that sometimes exists between traditional domains of study. The field of

engineering is almost synonymous with design. Arguably, the essence of engineering is

applying the theories and principles of the sciences to serve the needs of humankind.

Stated more succinctly, engineering is focused on designing solutions to observed needs.

Within engineering many fields exist to support those activities and engineering design

is the one field that is concerned with the principles, theories and methodologies of

design that transcend all disciplinary engineering fields. Often this field of study finds

its academic home in mechanical engineering even though it is an interdisciplinary

activity cutting across all of engineering.

The basic process of engineering design can generally be described as four

phases that 1) clarify a problem; 2) generate conceptual solutions; 3) embody the chosen

2

concept; and finally 4) detail out the design for production. The input to this four phase

process of design is an unmet societal need and the ultimate output is a product meeting

the societal need. While depicted in Figure 1.1 as a sequential process, the process is

invariable a iterative activity within each phase and between phases.

Figure 1.1. Overview of the design process (left side). Early advances in automating
the early phases of design (upper right quadrant) and one major focus of the current

research on moving to a form-initiated, computational thinking-based concept
generation approach (lower right quadrant)

Specific to the hypothesis under consideration here, the scope of this research

encompasses some latter stage activities of the clarify problem phase and most of the

generate concept phase. In recent years, researchers have made progress at automating

portions of the generate concept phase by introducing algorithms that transform a

3

functional description of the societal (or product) need into form - expressed as concept

variants. The fundamental steps of this process are shown in the upper right quadrant

of Figure 1.1. This advance relies on design knowledge archival methods (some of

which is covered in this dissertation) and supports a more thorough, if not exhaustive,

search of the solution space. One of the keys to successful operation of these algorithms

is the development of the functional description of the product under consideration. In

this work, that required input will be referred to as a functional model or function

structure. Experience shows that abstracting the product need to a functional model is a

difficult process for engineering designers. A significant portion of this research is

involved with moving toward a form-initiated design approach, outlined in the lower

right quadrant of Figure 1.1, that will overcome this last major stumbling block.

1.3 THE SUPERVAC - A MOTIVATIONAL CASE
Looking ahead to the potential impact of a new form-initiated approach, consider

how a typical design experience in the future, informed by an approach that boosts a

designer’s creativity and accessible by any engineer, might play out. Audrey and Zeke

work for ACME AirGas, a company that makes industrial grade vacuums and blowers.

They have an identified requirement to redesign their “SuperVac” model so that it is less

noisy. They are assigned to the manufacturing division and typically do not “do

design.” However, the design division is swamped with a new product launch and they

are tasked with the redesign. The customer need of “less noise” is easily associated with

an automobile muffler component by Audrey and Zeke as shown in Figure 1(a). It is, of

course, not feasible to install an automotive muffler on even the industrial SuperVac

model. However, by using their new form-initiated computational design tool, the

vacuum’s original components plus the imagined muffler are input. The underlying

functionality of the components is determined (shown in Figure 1(b)) and component

solutions for the functionality are returned from a query to existing function-initiated

concept generation algorithms (depicted in Figure 1(c)). Based on the ability to start

4

with a specific, yet infeasible, component, more feasible concept models are recalled

from the repository and presented to stimulate further creative modifications as

represented in Figure 1(d). As a result of using the new form inspired automated

concept generation, both Audrey and Zeke are able to find useful and creative ways to

solve the product’s noise issue (Figure 1.2). In such new product research and

development scenarios, several alternatives can be pursued throughout detailed design.

Figure 1.2. A schematic of a future form-initiated computational design tool

1.4 STATE OF THE ART
In this section a brief review of related works is presented. The topics presented

include design information archival as well as manual and automated concept

generation techniques.

5

1.4.1 NIST Repository Initiative
The most similar system to UMR’s repository schema takes form in the NIST

Design Repository representation model [1-5]. Through their repository initiative, NIST

set out to define basic guidelines of a Design Repository and how archived design

information could be useful to designers. The NIST Design Repository representation

model is a basic framework to help guide what type of product information is collected

and how the elements of information are related to each other. NIST has also developed

a mapping from this representational framework into an XML (eXtensible Markup

Language) data format. While portions of the NIST initiative overlaps with design

representation standards such as STEP (Standard for the Exchange of Product model

data), the breadth and scope of implementation differ greatly. Like certain STEP

protocols, the NIST framework provides for geometric and process information storage

but also expands them to a higher-level domain of design information storage.

The NIST initiative proposes a set of information models to be used for modeling

product knowledge at varying levels of detail. There are several data entities which

allow for a variety of aspects of a product description to be represented. The classes

specified in the NIST Core Product Model include: Artifact, Function, Transfer Function,

Flow, Form, Geometry, Material, Behavior, Specification, Configuration, Relationship,

Requirement, Reference and Constraint.

1.4.2 PDM Systems
In recent years product data management (PDM) systems have emerged to help

store and retrieve product and part data. PDM systems allow for part hierarchy storage

as well as process data and project management elements. Svensson and Malmqvist [6]

explore a PDM system and demonstrate many uses of such a system. The PDM system

demonstrated collects requirement, function, concept and part structures as well as

property models. Additionally a PDM system stores the entire product structure,

variants, revisions and finally documentation and CAD models. Although function

6

structures and property models can be stored within a PDM system, they are not capable

of storing the detailed function based information we desire and integrating it into

useful design tools without heavy modification. A PDM system is a highly effective tool

for use in the manufacturing side of emerging products and parts but is fundamentally

different from a repository system.

1.4.3 The Design Repository
The objective of a Design Repository is to allow designers to store and retrieve

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function. Currently the

Missouri S&T Design Repository contains design information for over 125 consumer

based electro-mechanical products. Design information captured by the repository can

be divided into seven main categories including: artifact-, function-, failure-, physical-,

performance-, sensory- and media-related information types. The different levels of

abstraction and types of design information provide innovative ways to approach

design. With a well populated repository, emerging concept generator algorithms take,

as input, basic product functionality or component information and instantaneously

develop, filter and rank concepts to use as baselines for further product development.

While the possibilities design repositories offer are diverse and helpful to designers, the

implementation of such repositories are crucial to their overall success and usefulness.

Realizing the potential impact of an operational Design Repository, researchers at

Missouri S&T, The University of Texas at Austin and the National Institute of Standards

and Technology (NIST) began gathering artifact information in 1999 [7-9]. Since that

time, the process in which artifact data is gathered and recorded has changed

significantly. Initially, artifact design information was recorded in spreadsheets and

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM),

and Design Structure Matrices (DSM). While this type of information was useful, it was

also limited in scope and the required matrix multiplications were quite cumbersome. A

7

prior Design Repository initiative by NIST helped to guide the Design Repository

project at Missouri S&T to a more mature state. To enhance data integrity, design

information was migrated from spreadsheet form to a relational database. A web-based

repository navigator including search and design tool generation features was created

along with a repository entry application.

More recently, Missouri S&T has further partnered with UT-Austin [10, 11], Penn

State [12], Virginia Tech, Bucknell [13], University of Buffalo and Texas A&M to expand

the types of design information and breadth of design tool features within the repository.

The Design Repository serves as a hub for designers for information exchange and

design generation tools and is heavily utilized in the current VOICE project.

Information entry and retrieval occurs within a standalone application [14] (available at

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs

over the Internet through the Design Repository’s web portal

(http://repository.designengineeringlab.org/). The infrastructure supporting these two

applications is the Design Repository database and schema [12]. The database schema

establishes what types of design information can be stored, the relationship of those

elements and the extensibility of including new and additional types of design

information.

1.4.5 Concept Generation Techniques
A variety of concept generation methods exist for application to engineering

design problems – from those that are common practice within the field of design to the

more modern computer aided concept generation methods. Many researchers have

sought to formalize the conceptual design phase. Antonsson and Cagan concisely define

the notion of 'formal' as “...computable, structured, and rigorous, not ad hoc” [15].

Furthermore, by founding concept generation techniques on functionality, solution-

independent design descriptions can be built [16]. Such methods generally rely on a

form of functional decomposition of the overall problem to initiate the search for

8

physical design solutions during conceptual design. Whether driven in this function-

based manner or otherwise, much variability is exhibited in just how this search is

carried out depending on the method chosen. This reflects the variety of perspectives

that have been suggested for addressing the conceptual design problem and a sampling

of the major themes is reviewed next.

1.4.5.1 C-Sketch/6-3-5 Method
The 6-3-5 method is a generic technique that supports innovative thinking [17].

In 6-3-5, members of an engineering design team (optimally 6-8 members) generate,

interpret, and modify the individual ideas of other team members by first brainstorming

and sketching individually on three ideas for various aspects of the product, then

passing their ideas to the next team-member who adds additional ideas and sketches. C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and

refrain from communicating verbally when passing ideas to the next member [18].

Passing only sketches allows other team members the opportunity to interpret the

concepts in a different manner than the original author, thereby increasing design

diversity.

1.4.5.2 The Catalog Design Method
Another approach, referred to as catalog design, is based on a catalog of physical

elements (components, assemblies, etc.) that can be browsed for solutions that match

required performance specifications. The data for design catalogs are limited to some

degree insofar as these design catalogs are generally a subset of previously designed

systems, which leads to the issue of potential novelty restrictions. However, a major

benefit of catalog design is the ability to utilize design knowledge that falls outside

human memory [19-21]

1.4.5.3 Design by Analogy
In Design by Analogy, a functional model is created of the product being

designed. Examining analogous products or components that perform the same

function generates solutions to the present design problem. The designer then evaluates

9

these similar components for appropriateness in solving the given design problem [22].

One Design by Analogy method widely recognized in the engineering design

community is the Theory of Inventive Problem Solving, or simply TRIZ. TRIZ was

developed by Altshuller during the 1940-50’s period and was based on the examination

of large numbers of existing patents [23]. The end result of this effort is an engineering

design approach that identifies a set of conflicts that occur in design along with a set of

principles that can be applied to generate solutions that solve these conflicts.

1.4.5.4 Morphological Matrix Method
The morphological matrix introduced by Zwicky is now a classic technique for

use in conceptual design [24]. This method provides the design engineer with a simple,

albeit manual, means for bookkeeping potential physical solutions and their

corresponding functionality.

1.4.6 Foundations in Automated Concept Generation
The front end of the conceptual design process has seen few attempts at

automation, perhaps due in part to the evolving strategies and methodologies that exist

for this phase of design. However, over the past decade, several methodologies have

coalesced around the functional decomposition and partial solution manipulation

techniques originally introduced by Pahl and Beitz [25], e.g., [26-35]. These

methodologies take a designer through a set of steps to help decompose a design

problem and build conceptual solutions based on the functionality that a product needs

to exhibit. Function modeling methods abstract the functionality that a solution must

fulfill from the established customer needs, ideally removing designer biases that may

be introduced by focusing on specific solutions too early in the design process. This

abstraction helps a designer generate more complete conceptual solutions and balance

design choices between different components with the same functionality [25].

Research into the benefits of structured design methods (e.g., [36]) coupled with

research into designers’ reluctance to use them (e.g., [37, 38]) seem to point toward the

10

need for the seemingly tedious stages of systematic design to employ some level of

automation to help integrate the benefits of a structured method with the more natural

activities of a designer – a need that is most evident during the early phases of

conceptual development.

Computational tools for conceptual design do exist, yet these tools often address

areas that support aspects such as initial requirements gathering (e.g., organizational

tools such as the TikiWiki project [39], the creation of function structures (e.g., the

function grammar tool developed by Sridharan and Campbell [40]), or optimization of

well-established concepts (e.g., [41]) rather than the translation of functional

requirements into creative solutions).

1.4.7 The State of the Art in Automated Concept Generation
Computerized concept generation techniques, spanning the broad AI topics of

knowledge representation and reasoning, promise engineers a faster realization of

potential design solutions based upon previously known products and implementations.

While the area of automated concept generation has made great strides in recent years,

most methods still require the user to indicate desired functionality. Using functional

descriptions has been shown to help engineers stray away from pre-trained ideas of how

a product or device would look and operate, although can cause confusion for engineers

and scientists who have not been trained to describe product functionality. Two of the

automated concept generation methods under development today rely solely on the

user’s ability to develop functional descriptions of their desired product. Both of these

methods make use of a repository of design information including component

connection information and component functionality.

The recent foundations for concept generation through computational reasoning

have been developed based on formalisms for describing function or purpose in

engineering design largely led by members of our research team [42, 43]. Some of the

results of this research include the development of a design repository to allow

11

designers to store and retrieve design knowledge at various levels of abstraction, from

form (components, sub-assemblies and assemblies) to configurations to function.

Offering a fully functional and intuitive way to record product design information has

been key to the acceptance of repositories as an important concept generation tool for

designers. A prototype design repository framework by NIST guided the design

repository (discussed further in Section 2.4) project to a more mature state.

The bank of empirical knowledge relating components to functions leads to the

development of relational matrices [10, 11] and graph grammar rules [44, 45] that, when

combined with a search mechanism, automatically creates conceptual designs. Aiding

the methods set forth by Bryant and Kurtoglu [46, 47] is a component naming taxonomy

spanning 140 different component classifications. With the open-endedness or large

degree of variability in conceptual design, numerous solutions are created through the

search mechanisms (on the order of thousands). Presenting these thousands of solutions

to the user is similar to an Internet search that produces thousands of results. It is

overwhelming to the user and impractical to expect that such a large number of

alternatives will be useful to the designer. Furthermore, the results showed that subtle

challenges in a given design problem may not always be captured in the specification of

initial function, and thus many results were not relevant to the user’s needs [48, 49]. As

a result, the proof of concept Designer Preference Modeler [50, 51] was created to find

within the large set of results which concepts were most meaningful to the designer. By

ranking select concepts, the search mechanism learns what aspects of the concept the

user prefers, and seeks solutions that maximize the predicted preference. Initial results

for this method are promising, but the impact they have on the design process is still

unclear.

12

1.5 HOW TO USE THIS DISSERTATION
The remainder of this dissertation consists of five publications spanning the

scope of the engineering design problem outlined above. Combined together the

included papers provide tools to aid in the conceptual level of the engineering design

process. A repository system is implemented to capture design information regarding

the final description of a design and use that information to clarify a project and/or

generate concepts. The first paper, “Introduction of a Data Schema to Support a Design

Repository,” specifically outlines the underlying database and relationships necessary to

support product design information archival. With a framework for information

archival established, the second paper, “An Open Source Application for Archiving

Product Design Information,” details an application used for recording product design

information. Specifically this paper details information archival from the standpoint of a

user and discusses the implementations of an operational repository system. The

remaining three papers utilize the operational repository and the data stored within to

develop methods that aid in the conceptual stage of design.

The third paper, “Using a Design Repository to Drive Concept Generation,”

illustrates the first concept generation tool built using data stored in the design

repository. Concept generation is simple and takes the form of a morphological function

based search that returns possible solution components. Repository data is utilized once

again in, “A Natural Language to Component Term Methodology: Towards a Form

Based Concept Generation Tool,” to develop a list of natural language terms to augment

an existing component basis taxonomy. Finally, “Form Follows Form – Is a New

Paradigm Needed?” again utilizes repository data and natural language component

terms to introduce a form-based conceptual design tool.

13

1. INTRODUCTION OF A DATA SCHEMA: TO SUPPORT A DESIGN
REPOSITORY

Matt R. Bohm,

and Robert B. Stone, Ph.D.

Design Engineering Laboratory

Department of Interdisciplinary

Engineering

University of Missouri – Rolla

Rolla, MO 65409

Timothy W. Simpson, Ph.D.

and Elizabeth D. Steva

Engineering Design Optimization Group

Department of Mechanical & Nuclear

Engineering

The Pennsylvania State University

University Park, PA 16802

ABSTRACT
This paper presents the data schema required to capture fundamental elements

of design information in a heterogeneous repository supporting design reuse. Design

information captured by the repository can be divided into seven main categories of

artifact-, function-, failure-, physical-, performance-, sensory- and media-related

information types. Each of the seven types of design information is described in detail.

The repository schema is specific to a relational database system driving the

implemented Design Repository; however, the types of design information recorded are

applicable to any implementation of a design repository. The aim of this paper is to fully

describe the data schema such that it could be recreated or specialized for industrial or

research applications. The result is a complete description of fundamental design

knowledge to support design reuse and a data schema specification. The data schema

has been vetted with the implemented Design Repository that contains design

information for over 100 consumer electro-mechanical products

KEYWORDS: Design Repository schema, conceptual design

PAPER

14

1 INTRODUCTION
The objective of a design repository is to allow designers to store and retrieve

design knowledge at various levels of abstraction – from form (components, sub-

assemblies and assemblies as well as historical performance and failure data) to

architecture to function. The different levels of abstraction and types of design

information provide innovative ways to approach design. A design by analogy

approach, for example, uses a functional or product architecture description to find

other existing products which are similar to it, thus providing a starting point for a form

solution. A risk conscious approach, for example, uses conceptual level functionality to

find related failure information to determine values for risk likelihood and consequence.

With a well populated repository, emerging concept generator algorithms take, as input,

basic product functionality and synthesize, filter and rank concepts to use as baselines

for further product development. While the possibilities design repositories offer are

diverse and helpful to designers, the implementation of such repositories are crucial to

their overall success and usefulness.

Realizing the potential impact of an operational design repository, researchers at

UMR, the University of Texas at Austin and the National Institute of Standards and

Technology (NIST) began gathering artifact information in 1999 [1]. Since that time, the

process in which artifact data is gathered and recorded has changed significantly.

Initially, artifact design information was recorded in spreadsheets and mainly took the

form of Bills of Materials (BOM), Function Component Matrices (FCM), and Design

Structure Matrices (DSM). While this type of information was useful, it was also limited

in scope and the required manipulations to compute with the data were cumbersome. A

prior Design Repository Project initiative by NIST helped to guide the design repository

project hosted at UMR to a more mature state. To enhance data integrity, design

information was migrated from various independent file formats to a relational

database. A web-based repository navigator including search and design tool

15

generation features was created along with a repository entry application creating the

user interface for the new repository, dubbed the UMR Design Repository (also referred

to as simply the Design Repository in this article).

More recently, UMR has further partnered with UT-Austin [2, 3], Penn State,

Virginia Tech and Bucknell [4] to expand the types of design information and breadth of

design tool features within the repository. Currently, the Design Repository serves as a

hub for designers for information exchange and design generation tools. Information

entry and retrieval occurs within a standalone application (available at

http://function.basiceng.umr.edu/repositoryEntry) while information retrieval occurs

over the Internet through the Design Repository’s web portal

(http://function.basiceng.umr.edu/repository). The infrastructure supporting these

two applications is the Design Repository database and more specifically the database

schema. The database schema establishes what types of design information can be

stored, the relationship of those elements and the extensibility of including new and

additional types of design information.

The objective of this paper is to fully describe the database schema, currently at

version 2.0, powering the repository. This paper reports on research efforts to 1) identify

pieces of fundamental design information that support designer activities, 2) segment

and classify the pieces of design information, 3) define relationships between the

disparate pieces of design information, 4) develop ways to standardize design

information representation, and 5) deliver a functional database schema. Sections 3 and

4 provide implementation level details, Section 5 presents the larger context of

repository operations and Section 6 summarizes conclusions prior to future work in

Section 7.

2 BACKGROUND
Several types of applications have been created to record pieces of product or

process information. This niche of design-based applications includes the NIST

16

Repository initiative, PDM (Product Data Management) systems, and CAD based

repositories. The NIST Repository initiative set forth guidelines for categorizing

function-centric design information. PDM systems allow for part hierarchy storage as

well as process data and project management elements. CAD based design repositories

store numerous artifact CAD files and rely on feature descriptions and recognition

capabilities. In this section an overview of the NIST Repository Initiative, PDM, and

CAD based storing systems is presented.

2.1 NIST Repository Initiative
The most similar system to UMR’s repository schema takes form in the NIST

Design Repository representation model [5-10]. Through their repository initiative,

NIST set out to define basic guidelines of a Design Repository and how archived design

information could be useful to designers. The NIST Design Repository representation

model is a basic framework to help guide what type of product information is collected

and how the elements of information are related to each other. NIST has also developed

a mapping from this representational framework into an XML (eXtensible Markup

Language) data format. While portions of the NIST initiative overlaps with design

representation standards such as STEP (Standard for the Exchange of Product model

data), the breadth and scope of implementation differ greatly. Like certain STEP

protocols, the NIST framework provides for geometric and process information storage

but also expands them to a higher-level domain of design information storage.

The NIST initiative proposes a set of information models to be used for modeling

product knowledge at varying levels of detail. There are several data entities which

allow for a variety of aspects of a product description to be represented. The classes

specified in the NIST Core Product Model include: Artifact, Function, Transfer Function,

Flow, Form, Geometry, Material, Behavior, Specification, Configuration, Relationship,

Requirement, Reference and Constraint.

17

While the UMR schema contains elements similar to that of the NIST schema but

is distinguished by allowing design information regarding customer needs, component

basis designations, manufacturer, failure modes and sensory level information to be

stored. Also, the NIST schema is only exemplary and has not been implemented in a

distributable, publicly accessible and operational system.

2.2 PDM Systems
In recent years product data management (PDM) systems have emerged to help

store and retrieve product and part data. PDM systems allow for part hierarchy storage

as well as process data and project management elements. Svensson and Malmqvist [11]

explore a PDM system and demonstrate many uses of such a system. The PDM system

demonstrated collects requirement, function, concept and part structures as well as

property models. Additionally a PDM system stores the entire product structure,

variants, revisions and finally documentation and CAD models. Although function

structures and property models can be stored within a PDM system, they are not capable

of storing the detailed function based information we desire and integrating it into

useful design tools without heavy modification. A PDM system is a highly effective tool

for use in the manufacturing side of emerging products and parts but is fundamentally

different from a repository system. Within the UMR repository, similar pieces of design

knowledge, such as CAD models and part hierarchies, are stored; however, the main

focus is the mapping between functions and components and the compatibility of

components to connect together as a system

2.3 CAD-based Systems
Regli [12] in partnership with NIST and the National Science Foundation (NSF)

has also developed a CAD-based design repository. The focus of Regli’s work includes

collaboration in the field of CAD, engineering design, manufacturing process planning,

and feature recognition. The design repository contains mostly CAD, solid models, and

assemblies along with some supporting documentation such as cost and assembly plans.

18

3 UMR DESIGN REPOSITORY CONVENTIONS
The UMR Design Repository is an artifact-centric repository, meaning that for a

design attribute to exist, it must be linked to an artifact. Other information classes

contained in the Design Repository, such as manufacturing and physical parameters for

example, describe additional design attributes while still relating to their artifact hub.

Because the Design Repository is artifact-centric, understanding the artifact table and

associated relationships is key to understanding the data handling capabilities of the

repository.

The repository schema is built and served by a PostgreSQL (a SQL variant)

database [13]. In general, the database contains tables that have clusters of similar types

of information. Database tables are then connected to other tables within the database to

form data relationships. In this paper there are two types of database tables: 1) a

database table description, which detail the fields and associated data types that define a

database table (alternatively, for non-computer scientists, table descriptions describe the

structure and connectedness of the data), and 2) a database table that details the set of

data entries in the database (alternatively, the actual data that is entered into the

repository – in this case, the product data). Note, every database table has an associated

database table description. The term row will be used to describe an entry in a database

table and the term field will be used to describe an object in the database table

description. Table 1 shows the artifact table description in the repository database

schema.

All table descriptions throughout this paper are presented in the same format as

Table 1. The first column represents the field name, the second column specifies the data

type, the third column denotes whether or not a piece of information is mandatory, and

the fourth column describes any default values, if applicable. The fifth column describes

the type of key that might exist for a particular field. Only one primary key can exist per

table and is used to develop a unique reference to the particular entry in that database

19

table. Having a foreign key designation means that the particular field references the

primary key of another database table. All database tables in the UMR Design

Repository begin with an id column that is a serial integer, mandatory for any

information entry with no default value and designated as the database table’s primary

key.

 Table 1. Artifact table description

artifact

field name data type mandatory default value key type
id serial yes N/A primary
name varchar yes N/A N/A
child_of_artifact int no N/A foreign
basis_name int no N/A foreign
serial_id_number varchar no N/A N/A
assembly boolean yes FALSE N/A
description varchar no N/A N/A
quantity int yes 1 N/A
system int yes N/A foreign
manufacturer varchar no N/A N/A
trademark varchar no N/A N/A
artifact_release_date date no N/A N/A
entry_date date yes N/A N/A
modification_date date no N/A N/A
creator_info int yes N/A foreign

Within the UMR Design Repository, there are two main categories of tables—

those that store artifact-specific design data information and those that store taxonomies

and bases to classify design information. The Design Repository makes use of several

taxonomies and bases to describe information such as functionality, failure modes,

manufacturing processes, materials and color. While several different taxonomies exists

to describe these types of information, ones chosen for use within the repository could

alternatively be replaced for specific repository implementations. The tables that store

taxonomies and bases are denoted with _type after the table name. Figure 1 shows all 41

20

of the repository database tables with the 13 database storing tables highlighted.

Taxonomy and basis storing tables do not reference design data storing tables; however,

they may reference themselves in order to establish hierarchies. Shown in Table 2 is a

prime example of a basis-storing database table: the subfunction_type table description.

As with all other database table descriptions in the repository, the

subfunction_type table begins with a serial id that establishes a primary key. The second

field of the database table is where the actual Functional Basis term is stored. Tier is

used to denote whether the particular Functional Basis term is in the primary, secondary,

or tertiary level [14]. Child of subfunction establishes a hierarchy of the Functional Basis

terms and the definition field is used to hold the definition of the particular function.

Figure 1. Graphical view of repository database tables

21

Table 2. Subfunction_type table description

subfunction_type
field name data type mandatory default value key type

id serial yes N/A primary
subfunction varchar yes N/A foreign
tier int yes N/A N/A
child_of_subfunction int no N/A foreign
definition varchar no N/A N/A

4 UMR DESIGN REPOSITORY DATA GROUPS
The design information captured by the Design Repository data schema can be

broken up into seven main classes: artifact-, function-, failure-, physical-, performance-,

sensory- and media-related information types. All seven of these categories are

represented in different database tables but are all brought together by the use of

database table relationships, found in the database table descriptions for each database

table. In this section, each of the seven data classes are reviewed along with the specific

pieces of information they hold. Section 5 details how these elements are connected

together to create a cohesive Design Repository.

4.1 Artifact-related Design Knowledge
As mentioned in Section 3, the artifact table serves as a central hub for the

remaining six categories of data. Although all design information typically references an

artifact, there are a few pieces of design information that the artifact database table

stores directly. Each artifact comprises a row entry in the artifact table. An artifact can

be considered an entire product, a sub-assembly, or a single part when stored in the

Design Repository. To represent the artifacts of a product in the repository, the product

is first identified as an artifact, and then all individual assemblies, sub-assemblies, and

artifacts are grouped accordingly under that artifact. The repository database has the

capability of establishing parent-child relationships such that a product artifact

hierarchy is created. In order to keep a strict separation of different products within the

22

repository a system database table is used, the system database table description is

shown in Table 3.

Table 3. System table description

system
field name data type mandatory default value key type

id serial yes N/A primary
name varchar yes N/A N/A
system_type int yes N/A foreign
description varchar no N/A N/A
contributing_institution varchar yes N/A N/A

Looking back at the artifact database table description shown in Section 3 (see

Table 1), there is a placeholder for a system reference for each artifact instance. A unique

system id is established for each new product that is added to the repository. Every

artifact belonging to the given system is then referenced to the system id. In the system

database table description (see Table 3), a system name, system description, and

contributing institution are associated with the system. For example there may be 30

artifacts named ‘motor’ that are unique to different products because of the system

designation. The contributing_institution field in the system database table is used to

track what institutions have recorded design information for a particular product. The

system database table also includes a system_type field. The system_type field links to

the system_type database table containing a list of different product categories. Example

product categories include consumer, industrial, commercial, automotive, space, etc.

The artifact database table description (see Table 1) begins with a serial-based id

number to establish a unique serial number for each artifact that resides in the database.

Moving through the artifact table, data fields such as the artifact name, description,

quantity, manufacturer, trademark, artifact release date, entry date and modification

23

date are present. The child_of_artifact field is used to create an artifact hierarchy; this is

accomplished by designating the field as a foreign key, which in this instance points to

an artifact id.

Next in the artifact database table, the basis_name field is used to associate a

component basis name to a specific artifact [15]. For example an artifact denoted as a

coffee cup would reference the component_basis_type table to establish that ‘reservoir’

is the corresponding component basis term. Component basis naming is used to cluster

similar artifacts. When an artifact is a grouping of several artifacts, the assembly field is

used. The assembly field Boolean value defaults to FALSE indicating that the artifact is a

singular artifact. For bookkeeping purposes, the creator_info field is used. The

creator_info field references the creator_info_type database table, which contains

contributor information such as their name, email address, and affiliation.

4.2 Function-related Design Knowledge
Product functionality is highly important not only to conceptual design but also

to other design and optimization methods that use function as a link to existing design

information. Since several aspects of design engineering and product design revolve

around function, it is highly necessary to accurately represent artifact functionality

digitally.

The function_flow database table in the repository is used to allow portions of

functional models to be associated with an artifact. In order to accurately capture the

material, energy, and signal flow through a product, it is necessary to have additional

artifact connection information alongside the standard function and flow language.

Capturing the function, flow, and artifact connection information is done by associating

an input and output artifact and flow with each function. Table 4 shows the

function_flow database table description.

24

Table 4. Function flow table description

function_flow
field name data type mandatory default value key type

id serial yes N/A primary
describes_artifact int yes N/A foreign
supporting boolean yes FALSE N/A
input_artifact int yes N/A foreign
input_flow int yes N/A foreign
subfunction int yes N/A foreign
output_flow int yes N/A foreign
output_artifact int yes N/A foreign

Similar to the artifact database table, the function_flow database table begins

with a serial id number creating a unique primary key. The primary key ensures that

each set of function and flow descriptions are represented uniquely in the scope of the

entire set of function-flow descriptions in the repository. Each tuple containing the

{input_artifact, input_flow, subfunction, output_flow, and output_artifact} is linked to a

specific artifact by the describes_artifact field. The supporting field is used to establish

whether a particular function tuple is described as a supporting or conceptual function

[16]. A conceptual function is a function that is required by customer needs where

supporting functions describe the necessary functions required for the physical

embodiment of the product. The supporting field also has a default value of FALSE,

which corresponds to a function being recorded as a conceptual function. The

input_artifact and output_artifact fields are both foreign keys that reference a specific

artifact id number in the artifact table. The subfunction field is also a foreign key and

references a specific function id in the function_type table. All of the data elements in

the function_flow table are specified as mandatory in order to accurately represent

functionality. In cases where an artifact solves multiple functions the input and output

artifact fields can be designated as ‘internal,’ representing that a particular flow stays

within an artifact’s boundary. If an input (or output) flow comes from (or goes to) more

25

than a single artifact, the flow can be designated as going to (or from) multiple sources

using the ‘internal’ designation. For example, when an artifact has an incoming flow of

electrical energy from two specific sources both electrical energy flows would be

transferred to the designated artifact with an output_artifact of ‘internal.’ Functionality

of the artifact can then be recorded using ‘internal’ as the input flow. When multiple

artifacts are used in concert to solve a single function each artifact is denoted with the

overall function. All fields within the function_flow database table are set as mandatory.

From a functional perspective, it would not make sense to list a function without also

listing the incoming and outgoing flows or the destination.

Table 5 shows the function_flow database table populated with sample data to

demonstrate how function relationships are generated. Reading across the table, the

sample function and flow tuples describe artifact number 0000008. In the row beginning

with an id of 1, the input_artifact corresponds to ‘external’ and the output_artifact

corresponds to 0000009. If an input or output artifact is denoted as ‘external’ it means

that a particular source or destination of a flow crosses the given product’s boundary.

Both input_flow and output_flow reference id numbers in the flow_type table. For this

example, flow id of 16 corresponds to ‘electrical energy.’ The subfunction field in Table 5

references an id number in the subfunction_type table, with an id of 12 representing the

function ‘import.’ All of these designations for row id 1 correspond to ‘electrical energy’

being imported from an outside source with a destination of an artifact having an id of

0000009.

Moving on to row id 2 of Table 5, the artifact being described has an id number of

0000009, an input artifact id of 0000008, input flow of id 16, subfunction id of 22, output

flow id of 44, and a destination artifact id of 0000006. Translating the id numbers, the

row reads as having an input flow of ‘electrical energy,’ the subfunction ‘convert’ and an

output flow of ‘rotational mechanical energy.’ Adding both of these rows together

shows that two separate artifacts are being described: one that would take form as an

26

electric plug or wire (artifact id 0000008) and the other artifact taking form as some kind

of electric motor (artifact id 0000009). The input artifact for the electric cord is external

while the output artifact is the motor. The electric motor has a source artifact of the

electric cord while the destination artifact, specified as artifact id 0000006, would likely

be some kind of coupler, gear, or other artifact that can connect to an electric motor. A

translated version of Table 5 is shown in Table 6. For both Tables 5 and 6, the functions

are described as conceptual functions, taking the value of FALSE in the supporting field

[16].

Table 5. Function flow database table with sample data

function_flow

id describes input_artifact input_flow subfunction output_flow output_artifact supporting

1 OOOOOO8 external 16 12 16 OOOOOO9 FALSE

2 OOOOOO9 OOOOOO8 16 22 44 OOOOOO6 FALSE

3 xx xx xx xx xx xx xx

4 xx xx xx xx xx xx xx

5 xx xx xx xx xx xx xx

Table 6. Function flow database table with translated sample

function_flow

id describes input_artifact input_flow subfunction output_flow output_artifact supporting

1
electric

cord
external

electrical
energy

import
electrical
energy

electric motor FALSE

2
electric
motor

electric cord
electrical
energy

convert
rotational

mechanical
energy

OOOOOO6 FALSE

3 xx xx xx xx xx xx xx

4 xx xx xx xx xx xx xx

5 xx xx xx xx xx xx xx

27

4.3 Failure-related Design Knowledge
Failure information in this Design Repository is driven by efforts including the

Function-Failure Design Method (FFDM) [17, 18], Risk-in-Early Design (RED) [19], and

adaptations of modern Failure Modes and Effects Analysis (FMEA) [20] techniques.

FFDM and RED are similar in purpose to generic FMEA methods but strive to provide

risk and possible failure information at the conceptual level of design based solely on

product functionality. It is necessary to build an infrastructure such that designers and

engineers can archive and easily access this critical information. A failure mode

taxonomy for mechanical and electrical components has been developed at UMR and is

used as the reference taxonomy in this work [17, 18].

Like the function_flow database table description, the failure database table

description shown in Table 7, begins with a serial id number and link to the particular

artifact being described (describes_artifact). It is necessary that the serial id and

describes_artifact fields are present to establish a unique identifier for a given set of

failure information and to properly link the failure information to a specific artifact.

Next, the particular type of failure is recorded in the failure field. Again, the failure field

actually references the failure taxonomy, meaning that only the failure id number is

actually entered in failure table.

The next two fields in the failure database table are used to specify the severity

and whether the failure mode is an actual or potential failure mode. Typically a 1-5 scale

is used to denote severity; however, the failure database table allows a float value to be

entered in the severity field. The float value is allowed because not all data

contributions are rated on the same 1-5 severity scale. It is necessary to specify whether

a particular failure mode is an actual failure mode or is only noted that it ‘could’ happen.

Actual failure modes are those that have been recorded historically where potential

failure modes are those that are believed to be physically possible. Because of this very

distinct difference it is necessary to record the correct information. The potential field in

28

the failure data table is a Boolean and has a default value of FALSE indicating that a

failure mode is an actual failure mode. In cases where a failure mode is denoted as an

actual failure mode, it is necessary to record the number of occurrences, the sample size,

and rating type.

The default rating scale assumed in the repository is the 1-5 severity scale [20].

In cases where an alternate failure rating scale is used, the rating_type field in the failure

table can be used to reference the rating_type table. The rating_type table can be

populated with a list of failure mode rating types, a description of the rating system, and

conversion values to the repository standard 1-5 rating scale. When occurrence and

sample size data is not available and only failure rate data is specified, the rate field is

used to input a float value of the failure rate. Ideally it is better to have occurrence and

sample size failure data such that similar artifacts and functions can be clustered to

present statistically valid failure likelihood and severity information.

Table 7. Failure table description

Failure
field name data type mandatory default value key type

id serial yes N/A primary
describes_artifact int yes N/A foreign
failure int yes N/A foreign
severity float no N/A N/A
potential boolean yes FALSE N/A
occurences int no N/A N/A
rating_type int yes 1 foreign
sample_size int no N/A N/A
rate float no N/A N/A

When more accurate failure mode information is available through warranty or

problem reporting databases for example, the failure_data_info database table

description, shown in Table 8, can be used to record the additional information. The

29

failure_data_info database table is used to supplement information in the failure

database table by adding the data source, a report number for bookkeeping, the

operational environment of the artifact at time of failure, date of incident, and a

description. Detailed failure information like this is highly important where human life

is a factor in the operation of a device. Unlike the failure data table, which references

artifact id numbers, the failure_data_info table references a particular failure id number.

Using this referencing scheme means additional failure_data_info information can only

be associated with an existing failure mode entry.

The driving force behind the failure_data_info comes from NASA, industry

partners, and other academic institutions [21-23]. For safety and or economically critical

subsystems it is necessary to accurately record not only the failure modes but also

additional descriptions of the failure mode. The data_source field in the

failure_data_info table references a data_source_type table. Data source types may take

on the form of corporate-specific failure databases, warranty data, or NASA’s Problem

Failure Reporting (PFR) database [24].

Table 8. Failure database info table description

failure_data_info
field name data type mandatory default value key type

id serial yes N/A primary
describes_failure int yes N/A foreign
data_source int yes N/A foreign
report_number varchar no N/A N/A
oper_env int no N/A foreign
date_of_incident date no N/A N/A
description varchar no N/A N/A

30

4.4 Physical-related Design Knowledge
There are several types of physical-related design information elements that can

be used to describe artifacts. This type of information originates from the form aspect of

an artifact and can be used to search for components that meet certain manufacturing,

material or size criteria. Currently the repository records four main categories of

physical design information elements: manufacturing information, artifact material,

rough geometric bounding dimensions, and color.

The manufacturing_process database table description, shown in Table 9, is used

to denote specific manufacturing processes utilized in the manufacture of the referenced

artifact. Similar to most other database tables in the repository, the

manufacturing_process database table begins with a serial id number and a reference to

a specific artifact id (describes_artifact). The manufac_process_type field in the

manufacturing_process database table references an id of a specific type of

manufacturing in the manufacturing_type table. Examples of manufacturing types

include casting, machining, injection molding, etc. The manufacturing_process database

table is used only to link a specific artifact to a type of manufacturing process; process

data types are stored only in the manufacturing_type table. It is not required to specify a

manufacturing type when recording artifact information; however the repository can

record multiple manufacturing processes for each artifact.

Table 9. Manufacturing process table description

manufacturing_process
field name data type mandatory default value key type

id serial yes N/A primary
describes_artifact int yes N/A foreign
manufac_process_type int yes N/A foreign

31

The material database table description, shown in Table 10, operates in the same

manner as the manufacturing_process database table but is used to link an artifact to

material types instead of manufacturing types. Examples of material types in the

material_type database table include ABS plastic, aluminum, stainless steel, etc. Like the

manufacturing_process database table, it is not required to specify material information

when recording artifact data although multiple material types can be specified for each

artifact.

Table 10. Material table description

Material
field name data type mandatory default value key type

id serial Yes N/A primary
describes_artifact int Yes N/A foreign
material int yes N/A foreign

The color database table is similar to the manufacturing_process and material

database table descriptions and is shown in Table 11. Each instance of a color association

is tracked by the serial id field and is then associated to a specific artifact id by the

describes_artifact field. The color field in the color database table references a color id

in the color_type table. Like the manufacturing_process and material database tables,

multiple colors can be associated with a single artifact.

The parameter database table description, see Table 12, is slightly more complex

than the prior physical-related design information tables in the repository. The

complexity stems from the table’s ability to record several different types of information

that are quantifiable aspects of the physical artifact. Fields in the parameter database

table begin with a serial id and a reference to a specific artifact id number. Additional

fields in the table are parameter_type, parameter_metric_type, and parameter_value.

32

The parameter_value field is where an actual numerical value for a specific parameter is

recorded. When specifying a parameter value it is not only mandatory to specify the

type of parameter but also the metric used to measure the specific parameter.

Table 11. Color table description

color

field name data type mandatory default value key type
id serial yes N/A primary
describes_artifact int yes N/A foreign
color int yes N/A foreign

The parameter_type and parameter_metric_type fields both reference specific

database tables. A parameter type is typically classified as a measurement, which

includes descriptors of length, width, height, diameter, etc. The parameter table is also

used to store artifact cost, where the type of ‘cost’ is denoted. Once a specific parameter

type is recorded it is necessary to also record the associated parameter type metric. For

the examples of measurement the metric may include inches, feet, centimeters, etc.

Examples of the cost parameter metric type include US dollars, Canadian dollars,

Japanese Yen, etc.

Table 12. Parameter table description

parameter
field name data type mandatory default value key type

id serial yes N/A primary
describes_artifact int yes N/A foreign
parameter_type int yes N/A foreign
parameter_metric_type int yes N/A foreign
parameter_value float yes N/A N/A

33

4.5 Performance-related Design Knowledge
Performance-related design knowledge is captured with 'high level'

characteristics that describe the overall functionality of the entire product. These

characteristics extend beyond the component level representation of functionality,

helping translate product functionality into measurable quantities. As defined in Table

13, designers first specify the type of performance (e.g., power) and then the metrics that

are used to define it (e.g., Watts). These characteristics can be inherent to the product or

be associated with a specific input or output. If the performance characteristic is tied to

a particular component within the product, then the designer can specify this association

using the component basis [15]. The value of the characteristic must also be specified.

The same unique primary key and artifact id referencing begin the

performance_characterstics database table description, and the performance_type,

performance_metric_type, and characterstic_type fields all reference their named type

database tables. Specific taxonomies are stored in the type database tables. The

component_basis_type field is used to reference the component basis taxonomy when

the performance of a specific component of a more generic artifact is described. For

example, when a motor is entered (the higher level artifact) but a torque rating is given

for the output shaft, the component basis specification should be used so that the

characteristic is related to the motor but tied specifically to the output shaft. Continuing

this example, the electrical requirements for the motor could specify voltage and current,

which would also be linked to the wire connectors for the motor.

In addition to performance characteristics, customer needs are categorized as

shown in Table 14. Although customer needs do not always match the performance

characteristics one-to-one, it is important to denote the desired performance or function

when information is available. Elements of the customer_needs database table

description resemble the failure database table description in that occurrences,

sample_size, and rate are specified fields. Importance is also recorded in the

34

customer_needs database table. When importance, occurrence, sample size and/or rate

are specified, it is possible to evaluate product functionality and performance versus

customer needs specifications [25, 26]. The customer_need_type table allows for a list of

unique customer needs to be established and is referenced by the customer_need field.

Table 13. Performance characteristics table description

performance_characteristics

field name data type mandatory default value key type
id serial yes N/A primary
describes_artifact int yes N/A foreign
performance_type int yes N/A foreign
performance_metric_type int yes N/A foreign
characteristic_type int no N/A foreign
component_basis_type int no N/A foreign
performance_value float yes N/A N/A

Table 14. Customer needs table description

customer_needs
field name data type mandatory default value key type

id serial yes N/A primary
describes_artifact int yes N/A foreign
customer_need int yes N/A foreign
importance int no N/A N/A
occurences int no N/A N/A
sample_size int no N/A N/A
rate float no N/A N/A

4.6 Sensory-related Design Knowledge
The sensory database table captures additional product data related to the five

senses as shown in Table 15. Finish defines the visual sheen or luster that covers the

largest area of the product and is typically one of three options: brilliant, glossy, or dull.

Finish relates additional sight data beyond data organized into color and material.

Meanwhile, texture relates to touch and specifies the feel of the product when held. It

35

can be one of three options—smooth, rough, or coarse—based on the extent to which the

customer interacts with the product through touch. A product's dormant and

operational smell can be specified using options such as strong, mild, or none.

While smell may not be a concern for many products, some designers pay close

attention to the smell of their products such as in the automotive industry when interior

smell is an important aspect of their product offering (e.g., the 'new car smell').

Likewise, a product's taste may be an important characteristic to record (e.g., for an

electro-mechanical toothbrush); hence, gustatory (taste) data is included and specified

using the four human tastes: salty, sour, sweet, and bitter. Finally, the operational sound

of the product can be specified using specific dB ratings or general terms such as loud,

quiet, etc. We assume that the dormant (non-operational) sound is quiet; therefore, it is

not included in the sensory data table.

Table 15. Sensory table description

sensory

field name data type mandatory default value key type
id serial yes N/A primary
describes_artifact int yes N/A foreign
finish int no N/A foreign
texture int no N/A foreign
dormant_smell int no N/A foreign
operational_smell int no N/A foreign
gustatorial int no N/A foreign
operational_sound int no N/A foreign

4.7 Media-related Design Information
There are several types of media that can be associated with artifacts. Media

types can take the form of pictures, graphical functional models, graphical assembly

models, 2D-CAD files, 3D-CAD files, stereo lithographic (.stl) files for rapid prototyping

machines, and many others. Note that all media types are stored as large objects (files)

36

within the database, thus any associated metadata is also stored. All of the types of

media, mentioned and unmentioned, reside in the media table of the repository, the table

description of which is shown in Table 16. Instances of media are unique and associated

with an artifact, which is demonstrated by the id and describes_artifact field.

Although a single media database table is used to hold all types of media for all

of the artifacts, the media_type field allows for specification of the exact media type.

The media_type field references an id number in the media_type table. Examples of

media types in the media_type table include .jpg, .gif, .stl, .dxf, and .pdf. Having a type

associated with a specific piece of media directs the repository software components

how to handle and display a piece of media. In cases of .jpg and .gif the repository web

site will simply display the image. For .stl, .dxf, and .pdf, the repository web site shows

a link for file download and viewing in another application.

Table 16. Media table description

media

field name data type mandatory default value key type
id serial yes N/A primary
describes_artifact int yes N/A foreign
media_type int yes N/A foreign
data large object yes N/A N/A

5 DISCUSSION
As discussed in the previous sections, the Design Repository consists of

numerous data tables to store design information and relationships. The operational

Design Repository contains 41 data tables. The 41 data tables do not include tables that

are used to control user access, system authentication and other bookkeeping

information. All of the operational design tables and their top level referencing is

described and shown in this section. Along with the high-level review of the data

37

schema, features that are enabled by the particular data schema implementation are

briefly discussed.

5.1 A High Level Look at Database Tables
To begin this section, the database tables are broken up into two separate

categories: (1) those that directly store product information and (2) those that are

referenced by product storing database tables. There are 13 database tables that directly

store product information and 28 supporting tables. All of the 13 product information

storing tables were discussed throughout Section 4.

Figure 2 shows a snippet of the Design Repository schema (Figure 1) with sample

data. The boxes represent data tables and arrows represent data relationships. The

sample data shown represents only a small subset of design information that can be

associated with an artifact. For this example a “gear” is shown as an artifact along with

associated media, functionality and failure information. The arrows that connect the

function_flow, failure, and media tables to the artifact table establish a relationship to the

artifact “electric motor.” The corresponding _type table relationships are also shown.

For example, looking at the failure table, the failure is denoted as “28” and corresponds

to an entry in the failure_type table as being “high cycle fatigue.”

All 41 of the repository data tables are represented in Figure 1 with the 13 data

storing tables highlighted. A data table makes a reference to another table by an

outbound arrow to a particular data table. Looking at Figure 1, the failure table

references the artifact, failure_type and failure_rating_type tables but is referenced by

the failure_data_info table. Tables 18 and 19 show a textual version of Figure 1. The

product information storage tables are listed in Table 17 while the product information

support tables are listed in Table 18. While most of these tables were referenced in

Section 4, some of them were not directly discussed. All of the tables listed in Table 17

are referenced by the data tables listed in Table 18; however, some of the supporting

tables are referenced by other supporting tables.

38

Figure 2. Repository schema snippet with sample data

39

Table 17. Database table listing

 Database
Table Name Description References

1 artifact
Used to record high level
artifact information such as
name, description, quantity

system id, creator info
type id, comp basis type
id, artifact id

2 color
Used to record the color of an
artifact

artifact id, color type id

3 customer
needs

Used to record customer
needs, importance and the
number of occurrences

artifact id, customer
needs type id

4 failure
Used to record artifact failure
modes, severity and
likelihood

artifact id, failure type id,
failure rating id

5 failure data
info

Used to record additional
artifact failure information
such as data source and the
operational environment

failure id, failure data
source type id, oper env
type id

6 function flow
Used to record artifact
functionality

artifact id, subfunction
type id, flow type id

7 manufacturing
process

Used to record manufacturing
process associated with an
artifact

artifact id, manufacturing
process type id

8 material
Used to record the material of
an artifact

artifact id, material type
id

9 media
Used to store media such as
photos, cad drawings and
functional models of artifacts

artifact id, media type id

10 parameter
Used to record physical
measurements and artifact
cost

artifact id, parameter
type id, parameter metric
type id

11 performance
characteristics

Used to record performance
data such as voltage
requirement and output
torque

artifact id, performance
type id, performance
metric type id,
characteristic type id,
comp basis type

12 sensory
Used to record items relating
to the five sense such as
sound, sight, etc.

comp basis type id,
texture type id, smell
type id, finish type id,
sound type id, gustatory
type id, artifact id

13 system
Used to establish a unique
product in the repository

system type id, institution
type id

40

Table 18. Database type table listing

Database Table

Name Description Referenced By

1
characteristic
type

Used to store the type of
performance characteristic (input,
output, inherent)

performance
characteristics

2 color type Used to store a list of colors color

3 comp basis type
Used to store the taxonomy of
general components

artifact, performance
characteristics,
component basis corr
type

4
component basis
corr type

Used to store synonyms to
component basis terms

5 creator info type
Used to store information about an
individual who creates a set of
product information

artifact

6
customer needs
type

Used to store a list of typical
customer needs

customer needs

7
failure data
source type

Used to store the list of failure
data sources

failure data info

8 failure rating type
Used to store the list of different
failure rating scales and
conversion factors

failure

9 failure type
Used to store the electrical and
mechanical failure taxonomies

failure

10 finish type
Used to store a list of possible
artifact finishes

sensory

11 flow corresp type
Used to store synonyms of the
flow words of the functional basis

flow type

12 flow type
Used to store the flow words of
the functional basis

13 func corresp type
Used to store synonyms of the
function words of the functional
basis

14 gustatory type
Used to store a list of possible
artifact tastes

sensory

15 institution type
Used to store a list of types of
institutions (academic, industry,
etc.)

system

16
manufacturing
process type

Used to store a list of
manufacturing processes

manufacturing
process

17 material type
Used to store a list of material
types

material

18 media type
Used to store a list of possible
types of media associations and
their required actions

media

19 oper env type
Used to store a list of possible
artifact operating environments

failure data info

41

Table 18. Database type table listing (cont.)

20
parameter
metric type

Used to store metrics associated with
physical artifact parameters (feet,
inches, etc.)

parameter

21 parameter type
Used to store a list of possible types of
physical parameters (length, width,
etc.)

parameter

22
performance
metric type

Used to store units for possible
performance parameters (dBa, ft-lbs
etc.)

performance
characteristics

23
performance
type

Used to store a list of possible types of
performance parameters (torque,
power, etc.)

performance
characteristics

24 smell type
Used to store a list of possible types of
artifact odors

sensory

25 sound type
Used to store a list of possible artifact
sounds

sensory

26 subfunction type
Used to store the function words of the
functional basis

function flow

27 system type
Used to store a list of possible system
types (consumer, industrial, etc.)

system

28 texture type
Used to store a list of possible artifact
textures

sensory

5.2 Engineering Design Applications Enabled by the Repository Schema
The Design Repository serves as a hub for several engineering design methods

and applications. Emerging techniques in concept generation and preliminary risk

assessment are two design methods that both utilize the design repository. Currently

the concept generator takes as input a list of desired functions. The concept generator

algorithm then queries the database to find existing components known to solve the

desired functions. As a second step the concept generator again queries the repository to

then determine which of those components are known to physically connect to one

another. The final output is a set of concepts that could further be ranked on specific

design criteria.

Preliminary risk assessment is an effortless FMEA done at the conceptual level of

design where only desired product/device functionality is known. Like the concept

generator application, the risk assessment tool also takes as input a list of desired

42

functions. The repository is then quarried to return information regarding failure modes

and failure mode severity. Through some simple matrix based calculations the risk

assessment tool then returns a Risk Fever Chart that maps functions and failure modes

on a 0-5 likelihood and severity axes. Both of these tools require very little information

from the user and quickly return design relevant information.

6 CONCLUSIONS
The UMR Design Repository represents several years of development and has

undergone multiple revisions and updates. The current version of the repository

schema, web portal and entry application demonstrate that design information can be

archived and provide useful tools for designers. Although the task of building and

expanding systems to digitally represent design information will continue, the schema

presented in this paper provides a roadmap to future revisions and supports design

information storage and the associated repository connected applications. The UMR

Design Repository—and more specifically the types of design information recorded—

began with a somewhat limited set of design information: component-to-component

connects, function-to-component connections, and basic artifact bills of materials. The

UMR schema has expanded on the initial data set to include failure and risk-based

information, generic component naming, function and flow hierarchies, multiple types

of media associations, and sensory-related artifact descriptions – potentially a

fundamental set of design knowledge upon which future uses will be built.

7 FUTURE WORK
Future work of the UMR Design Repository includes allowing additional data

types within the schema, increasing database accessibility and viewing options, and

developing additional synthesis and analysis tools. Schema expansion may include data

tables and references to enable mathematical analysis, consumer product safety

commission reports, and process modeling. Database accessibility can be greatly

enhanced by offering a connection API as well migrating the web portal to a Web 2.0

43

site. Refinements to the existing concept generation and risk analysis tools along with

developing easier and more efficient ways to populate repository data will increase

repository usefulness.

Schema additions include the integration of mathematical-based transfer

functions, function and flow synonym lookup implementation, component naming

synonym lookup implementation, further database optimization, work with

standardization efforts, and further application development. The desire to include

mathematical-based transfer functions stems from work in concept generation. By

including mathematical transfer functions, automatically generated concepts can be

easily tested against target values. The difficult task associated with including transfer

functions is the classification of the associated mathematical formulas and maintaining

database integrity when tracing mathematical and numerical variables.

Access and usability of repository information can be increased by providing a

repository API to outside organizations. Repository users are sometimes interested in

specific subsets data and their relationships. By providing an API users can develop

their own customized searches and data views. Upgrading the web portal to a Web 2.0

application would allow for different types of data navigation and interactive design

tools to be employed. A Web 2.0 application would also allow the current concept

generation and risk analysis tools to be hosted online.

A graphical functional model editor is currently under development at UMR.

Further development is necessary to connect the editor to the repository system. The

connection will allow an easier way to populate repository data and can also be used as

a visualization tool for current repository data.

ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation under Grant Nos.

IIS-0325415 and IIS-0325402. Any opinions or findings of this work are those of the

44

authors and do not necessarily reflect the view of the National Science Foundation or

our collaborators.

REFERENCES
[1] Bohm, M., R. Stone and S. Szykman, 2005, “Enhancing Virtual Product

Representations for Advanced Design Repository Systems," ASME Journal of
Computer and Information Science in Engineering, 5 (4): 360-372.

[2] Bryant, C., D. McAdams, R. Stone, T. Kurtoglu and M. Campbell, 2005, “A
Computational Technique for Concept Generation," Proceedings of IDETC/CIE
2005, DETC2005-85323, Long Beach, CA.

[3] Bryant, C., R. Stone, D. McAdams, T. Kurtoglu and M. Campbell, 2005, “Concept
Generation from the Functional Basis of Design," International Conference on
Engineering Design, ICED 05, Melbourne, Australia.

[4] Shooter, S. B., T. W. Simpson, S. R. T. Kumaray, R. B. Stone and J. P. Terpenny,
2005, “Toward a Multi-Agent Information Infrastructure for Product Family
Planning and Mass Customization," International Journal of Mass Customization, 1
(1): 134-155.

[5] Szykman, S., R. Sriram and S. Smith, 1996, Proceedings of the NIST Design
Repository Workshop, National Institute of Standards and Technology,
Gaithersburg, MD.

[6] Murdock, J., S. Szykman and R. Sriram, 1997, “An Information Modeling
Framework to Support Design Databases and Repositories," Proceedings of
DETC'97, DETC97/DFM-4373, Sacramento, CA.

[7] Szykman, S., J. Racz and R. Sriram, 1999, “The Representation of Function in
Computer-Based Design," Proceedings of the ASME Design Theory and Methodology
Conference, DETC99/DTM-8742, Las Vegas, NV.

[8] Shooter, S., W. Keirouz, S. Szykman and S. Fenves, 2000, “A Model For
Information Flow In Design," Proceedings of the ASME Design Theory and
Methodology Conference, DETC2000/DTM-14550, Baltimore, MD.

[9] Szykman, S., S. Fenves, S. Shooter and W. Keirouz, 2001, “A Foundation for
Interoperability in the Next-Generation Product Development Systems,"
Computer-Aided Design, 33 (7): 545-559.

[10] Szykman, S., 2002, “Architecture and Implementation of a Design Repository
System," Proceedings of DETC2002, DETC2002/CIE-34463, Montreal, Canada.

[11] Svensson, D. and J. Malmqvist, 2001, “Integration of Requirement Management
and Product Data Management Systems," DETC, DETC2001/CIE-21246,
Pittsburgh, PA.

[12] Regli, W. C. and D. M. Gaines, 1997, “A repository for design, process planning
and assembly," Computer-Aided Design, 29 (12): 895-905.

[13] Douglas, K. and S. Douglas, 2003, PostgreSQL, SAMS Publishing.

45

[14] Hirtz, J., R. Stone, D. McAdams, S. Szykman and K. Wood, 2002, “A Functional
Basis for Engineering Design: Reconciling and Evolving Previous Efforts,"
Research in Engineering Design, 13 (2): 65-82.

[15] Kurtoglu, T., M. Campbell, C. Bryant, R. Stone and D. McAdams, 2005, “Deriving
a Component Basis for Computational Functional Synthesis," International
Conference on Engineering Design, ICED'05, Melbourne, Australia.

[16] Bohm, M. and R. Stone, 2004, “Representing Product Functionality to Support
Reuse: Conceptual and Supporting Functions," Proceedings of DETC2004,
DETC2004-57693, Salt Lake City, UT.

[17] Stone, R., I. Tumer and M. Stock, 2005, “Comparing Two Levels of Functional
Detail for Mapping Historical Failures: You Are Only as Good as Your
Knowledge Base," Research in Engineering Design, In Press, DOI 10.1007/s00163-
005-0005-z.

[18] Stone, R., I. Tumer and M. Van Wie, 2004, “The Function Failure Design
Method," Journal of Mechanical Design, 127 (3): 397-407.

[19] Grantham Lough, K., R. Stone and I. Tumer, 2005, “Function Based Risk
Assessment: Mapping Function to Likelihood," Proceedings of the ASME
International Design Engineering Technical Conference, Long Beach, CA.

[20] Lock, D., 1993, Handbook of Engineering Management, Butterworth-Heinemann,
Oxford.

[21] Tumer, I. Y. and R. B. Stone, 2003, “Mapping Function to Failure During High-
Risk Component Development," Research in Engineering Design, 14 (1): 25-33.

[22] Tumer, I. Y. and R. B. Stone, 2003, “Analytical Methods for Mapping Function to
Failure During High-Risk Component Development," Research in Engineering
Design, 14 (1): 25-33.

[23] Tumer, I. Y., R. B. Stone and D. G. Bell, 2003, “Requirements for a Failure Mode
Taxonomy for Use in Conceptual Design," International Conference on Engineering
Design, Stockholm Sweden.

[24] Tumer, I. Y., R. Stone, R. A. Roberts and A. F. Brown, 2003, “A Function-Based
Exploration of JPL's Problem/Failure Reporting Database," ASME International
Mechanical Engineering Congress and Expo, IMECE2003-42769, Washington, D.C.

[25] McAdams, D., R. B. Stone and K. L. Wood, 1999, “Functional interdependance
and product similarity based on customer needs," Research in Engineering Design,
11 (1).

[26] Yu, J. S., J. P. Gonzalez-Zugasti and K. N. Otto, 1999, “Product Architecture
Based Upon Customer Demand," ASME Journal of Mechanical Design, 121 (3): 329-
335.

46

2. AN OPEN SOURCE APPLICATION FOR ARCHIVING PRODUCT
DESIGN INFORMATION

Matt R. Bohm, Jayson P. Vucovich and Robert B. Stone, Ph.D.
Design Engineering Lab

Department of Interdisciplinary Engineering
University of Missouri-Rolla

Rolla, MO 65409
mbohm@umr.edu, jayson@vucovich.com, rstone@umr.edu

ABSTRACT
This paper describes an open source computer application developed at the

University of Missouri – Rolla (UMR) for archiving product design information. The

Repository Entry application is designed to work with the UMR design repository to

record and upload product information. Written in C++, the application and user

interface is compiled in Qt allowing for native Macintosh and Windows executables. The

Repository Entry application can record all of the design information types allowed by

the repository including: artifact-, function-, failure-, physical-, performance-, sensory-

and media-related information types. By using XML, files can be seamlessly transferred

between the Windows and Macintosh entry application versions as well as the online

repository. Through an example product the procedure of using the entry application to

record and upload design information is demonstrated. The result of this research is a

fully functional, easy to use and multi-platform application to aid in the design

information archival and reuse process.

1 INTRODUCTION
The objective of a design repository is to allow designers to store and retrieve

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function. The different levels

of abstraction and types of design information provide innovative ways to approach

47

design. A design by analogy approach, for example, would use a functional or product

architecture description to find other existing products, which are similar to it, thus

providing a starting point for a form solution. A risk conscious approach, for example,

would make use of conceptual level functionality and failure related information to

determine values for risk likelihood and consequence. With a well-populated repository,

emerging concept generator algorithms can take as input basic product functionality and

instantaneously develop, filter and rank concepts to use as baselines for further product

development. While the possibilities design repositories offer are diverse and helpful to

designers, the implementation of such repositories is crucial to their overall success and

usefulness. Offering a fully functional and intuitive way to record product design

information is key to the acceptance of repositories as an important tool for designers.

Realizing the potential impact of an operational design repository, researchers at

UMR began gathering artifact information in 1999 [1]. Since that time, the process in

which artifact data is gathered and recorded has changed significantly. Initially, artifact

design information was recorded in spreadsheets and mainly took the form of Bills of

Materials (BOM), Function Component Matrices (FCM), and Design Structure Matrices

(DSM). While this type of information was very useful, it was also limited in scope and

the required matrix multiplications were quite cumbersome. A design repository

initiative by the National Institute of Standards and Technology (NIST) helped to guide

the design repository project at UMR to a more mature state. The need to have a unified

point of entry for design information was initially fulfilled by the EBOM (Enhanced Bill

of Materials) entry application [1]. The EBOM entry application was a simple stand-

alone database form implemented with FileMaker Pro. Although the EBOM application

was functional, it lacked an intuitive interface, and transferring design information to

the online repository was a daunting task.

With increasing usage of the UMR design repository as well as the number of

outside institutions contributing to the repository database of design information, it

48

became necessary to enhance the features, reliability and quality of the EBOM

application. Of key interest was the way in which repository contributors recorded

product information as well as uploaded design information to the central repository

database. All previous versions of the EBOM application required that the contributing

partner email a FileMaker file to a UMR contact to then be parsed and uploaded to the

repository database. Another downfall of the EBOM entry application was the lack of

version control. Often times, a contributing partner would record product information

using an outdated version of the EBOM application and cause data-mismatches with the

repository database. Using all of these items as central customer needs, an entirely new

repository entry application was designed and built from the ground up. The new

repository entry application can be downloaded at

http://function.basiceng.umr.edu/repositoryEntry.

The goal of this paper is to present and fully describe the new repository entry

application. This paper reports on research efforts to 1) streamline the process of design

information entry, 2) eliminate redundancy in the entry process, 3) implement tools to

verify design information integrity, 4) create an easy way to transfer design information

and 5) deliver an easy to use repository entry application. Section 3 presents technical

details of the repository application including: object classes, XML frameworks and

database connectivity. Section 4 demonstrates how product design information is

recorded and uploaded to the repository database.

2 BACKGROUND
Several types of applications have been created to record pieces of product or

process information. This niche of design-based applications include PDM (Product

Data Management) systems, CAD based repositories and knowledge storing systems.

PDM systems allow for part hierarchy storage as well as process data and project

management elements. CAD based design repositories store numerous artifact CAD

files and rely on feature descriptions and recognition capabilities. Knowledge based

49

applications record information regarding product or artifact function, flow or customer

need attributes. In this section an overview of PDM, CAD based and knowledge storing

systems that includes a wide variety of design-based information systems is presented.

2.1 PDM Systems
In recent years product data management (PDM) systems have emerged to help

store and retrieve product and part data. PDM systems allow for part hierarchy storage

as well as process data and project management elements. Svensson and Malmqvist [2]

explore a PDM system and demonstrate many uses of such a system. The PDM system

demonstrated collects requirement, function, concept and part structures as well as

property models. Additionally a PDM system stores the entire product structure,

variants, revisions and finally documentation and CAD models. Although function

structures and property models can be stored within a PDM system, they are not capable

of storing the detailed function based information we desire and integrating it into

useful design tools without heavy modification. A PDM system is a highly effective tool

for use in the manufacturing side of emerging products and parts but is fundamentally

different from a repository system. Within the UMR repository, similar pieces of design

knowledge, such as CAD models and develop part hierarchies, are stored; however, the

main focus is the mapping between functions and components and the compatibility of

components to connect together as a system.

2.2 CAD-based Systems
Regli [3] in partnership with NIST and the National Science Foundation (NSF)

has also developed a CAD-based design repository. The focus of Regli’s work includes

collaboration in the field of CAD, engineering design, manufacturing process planning,

and feature recognition. The design repository contains mostly CAD, solid models, and

assemblies along with some supporting documentation such as cost and assembly plans.

2.3 Knowledge Based Systems
Several researchers have built a variety of knowledge-based design information

systems and have used different product representations with varying degrees of design

50

knowledge abstraction. Although not all of the knowledge bases built were designed for

the collection of function-based design, information can still be extracted from these

systems and their representations.

Summers [4] reports on a feature-based knowledge system designed for CAD-

based feature elements such as shapes, protrusions or cuts with the intent of supporting

designer activities. For conceptual designers, features are crucial pieces of form-based

modeling information. The modeling approach of a CAD-based feature system and a

functional-based representation are different; however, both capture relevant design

information. Design information in both cases is highly relevant to the respective fields

of study. What differentiates the two approaches is the application of the design

representations. The CAD-based knowledge system from Summers exemplifies that all

design knowledge is relevant dependent upon the domain, representation and level of

abstraction. Dixon [5] makes the point that feature descriptions and representations

must be valid within their respective domain of use.

Functional representations have been used to represent design information in

early repository systems. These systems used a block diagram approach and were based

on “function logic.” One of these early systems, described by Sturges [6] and powered

by Hypercard stacks, was used to navigate function diagrams. In this preamble to the

Functional Basis and defined functional modeling techniques, a representation schema

had to be chosen. The representation schema used by Sturges [6] built on function logic

to describe complex systems and included mathematical relationship equations in

relationship to the “function blocks.” Through the use of “function logic” and “function

blocks,” designers were able to gain insight into how a product operates functionally

3 ENTRY APPLICATION TECHNICAL DETAILS
In this section the technical underpinnings of the entry application are explored.

Section 3.1 details how the entry application is organized and programmed. Section 3.2

explains how the entry application connects and transfers data with the online

51

repository. Finally, Section 3.3 describes the XML framework used to save repository

documents.

3.1 Building the Entry Application
The Repository Entry application is an object oriented data management tool and

designed to work with the UMR repository version 2.0 database schema [7]. The

interface is designed to guide the user in capturing relevant design information for entry

into the repository database. Because this information is taken from tangible items, the

object-oriented paradigm is highly suitable for implementing the software. Here, the

organization of the software will be discussed, with key features highlighted as

appropriate.

Modules in the Repository Entry software are organized into C++ objects or

classes. Each object class corresponds to a logical or physical component of the product

or the interface used to gather product information. For example, much like the Design

Repository, the central component of data is the Artifact class. This object represents an

actual artifact from the product being represented. The class captures the data

prescribed by the Design Repository schema and stores it in an Artifact object in memory.

This class also gives the object the appropriate operations needed to interface it with

other Artifact objects, the system to which they belong and the user interface used to

capture the data. This object-oriented organization allows for a logical mapping of the

software to its requirements and applications.

Following the Design Repository schema, Artifact objects are collected into

another object class representing a system. Systems are further collected into an object

representing the repository. Various further encapsulations of data are found in classes

that can be part of an Artifact. These include classes for Failures, Physical Attributes, and

of course, classes that represent the artifact’s Function and Flow components.

Each of these objects possess the ability to validate the data entered into them

through an interface with the object representing the repository and to provide feedback

52

and interaction with the user interface. The user interface is constructed using

Trolltech’s Qt framework [[A]]. This allows for rapid development by leveraging

existing objects and customizing them for this particular application. Appropriately, Qt

provides software building blocks, each with some core functionality that can be

connected and manipulated to build new software, allowing the software engineer to

focus on satisfying customer needs rather than re-inventing the wheel.

 Qt was chosen as the framework for several reasons. Primarily, Qt allows for

immediate cross-platform development. The Qt framework utilizes libraries native to

the target system to ensure that an application compiled for Microsoft Windows has the

familiar Windows interface, while an application compiled for OS X uses native OS X

interface components. At the same time, the Qt framework provides a platform-agnostic

application programming interface (API) [[B]]. This removes the burden of maintaining

multiple versions of code for multiple target systems.

Secondly, Qt was chosen because it is strongly object-oriented. Objects created

from the Qt framework can interact with one another using signals and messages. The

framework already includes several useful building blocks that allow for rapid

development of applications. Among these included objects are those that provide

database connectivity, network and internet connectivity, operating-system agnostic file

access, XML document creation and manipulation and, of course, user interface

capabilities [8].

Each of the data centric classes described previously has a corresponding user

interface class that is used to both capture and display the data found within an object of

the given class. In Qt parlance, user interface objects are Widgets. The Artifact Widget

contains the drop-down boxes, text fields and custom interface objects that guide the

user in capturing artifact data. Like the Artifact class itself, the Artifact Widget is a

composite of other, more narrowly defined widget classes (e.g., the Failure Widget).

53

These widgets combine and work together to guide the user in defining a

product that is composed of various artifacts. The user is prompted to fill out

identifying information for an artifact first (such as artifact name, description,

component name, etc). Next, the user finds controls for entering functionality

performed by the artifact. Functionality relies on Flows coming in from and going out to

other artifacts. The interface makes it equally easy to select an input or output artifact

from a list of those already instantiated as to direct the application to create a new

artifact to be described later from the function/flow entry area.

Since artifact identification and function/flow association are the principle forms

of data, the interface widgets that capture this information are displayed foremost in the

application. Other attributes are captured from widgets lying on other tabs behind the

functionality tab. The user is guided in a similar manner to associate failure data (i.e.,

failure modes, failure severity, failure consequence, etc), physical parameters (i.e.,

dimensions and physical measurements), human sensory information (i.e., texture,

smell, taste, etc), and many other attributes.

After entering in information describing an artifact, the user can use an intuitive

tree structure to organize the artifacts into a System or product. This hierarchy is

represented by an interactive tree structure. Newly created artifacts are placed in a

special area where they can be dragged and dropped into their appropriate position in

the system tree. This allows for the representation of the product as a collection of sub-

assemblies.

Additionally, the entry application allows the user to provide a photo of the

artifact through a simple drag-and-drop interface. Other various files prescribed in the

Design Repository schema can also be associated. This information is encapsulated with

the artifact and later uploaded into the repository database.

Several checks are in place to ensure the integrity of the data captured. First,

data integrity is assured where possible by constraining certain attributes to lists of pre-

54

defined options (such as failure mode, functionality, color, etc). For these attributes, the

set of possible values is finite and known a priori. However, to improve the experience

of advanced users, many of these fields allow the user to type the value as though it

were a free-text entry area. The interface transforms this free text into the closest

matching value from the fixed data space. These pre-defined values are packaged in a

mutable form with the software, which will be discussed in more detail in Section 3.2.

Secondly, the creation, deletion, or modification of an artifact prompts a quick

validation of the product’s data integrity. Checks are performed to ensure, among other

constraints, that no two artifacts have the same name and that every artifact that is

referenced exists within the system. If an error is found, the user is notified through the

Problem Artifact menu, which lists the offending artifact and provides access to resolve

the issue.

Finally, the structure of storage and retrieval provides a mechanism to ensure

data integrity. Each system, when exported to a file, is a self-contained unit, making

external reference only to a set of “legal” values for each of the captured attributes. This

set of terms is fairly stable and derives from the Design Repository schema itself. The

Design Engineering Lab maintains the set of terms centrally. The Repository Entry

Application contains a mechanism to ease the transition from one version of the set of

terms to the next. This translation framework allows a software engineer to simply add

an entry into the term mapping dictionary to be incorporated in the next software

release (which ostensibly coincides with the release of the new set of terms). When one

of the self-contained product data structures is opened, either from a local file or a

remote repository, the terms used are translated as necessary into their new

counterparts.

3.2 Linking the Entry Application and Online Repository
The Repository Entry application implements two primary means of information

transfer. Products can be imported from and exported to self-contained XML files or

55

through a remote repository database connection. Each mode has a separate interface

class providing the functionality.

Remote repository connections are made using Qt classes for SQL-based

database interaction. Qt provides a means to execute SQL queries on remote databases

and then to retrieve the results. This functionality is incorporated into a custom

repository database interface class. This class contains many SQL statements written to

bridge the divide between the internal object representation of a product and the remote

repository’s database table representation of a product.

Because both the Repository Entry Application and the Design Repository

database are built using object-oriented design paradigms, it is a relatively

straightforward task to map the logical representation of a product from one to the other.

Little transformation has to occur to move a product from the repository database to the

Entry Application or vice-versa.

A typical interaction between the Entry Application and the Design Repository is

described:

1. The user launches the Entry Application and elects to connect to a remote repository

using a URL or IP address, username, and password.

2. The Entry Application connects to the remote repository and verifies the username

and password and, if valid, retrieves the user’s permissions which control whether

or not the user is able to download products, upload products, delete or modify

products, and/or modify the repository itself.

3. The user is presented with a list of products contained in the repository.

4. The user selects a product to be opened by the Entry Application. Because the

Design Repository is a relational database, the database interface object queries the

database to gather the attributes associated with the product’s artifacts. This

information is dynamically retrieved, downloaded, and used to construct the objects

described above.

56

5. The user is presented with the system in a ready-to-edit format with the product

now residing entirely in local memory. Further database interaction is not necessary.

6. The user may make changes to the product.

7. The product can be saved locally as a self-contained XML file to be shared with other

users of the Repository Entry application or, if the user has the proper credentials,

uploaded to the Design Repository, in which case the process outlined in step 4 is

executed more or less in reverse: Each internal artifact object is decomposed into

primitive data which is inserted into the appropriate database tables using SQL

queries.

3.3 XML File Structure
As has been previously mentioned, products can be saved in self-contained XML

files. The import and export of products into XML files is handled by an interface class

similar to the repository database interface class described previously. This XML

interface class is built using Qt XML and DOM (Document Object Model) classes. These

classes are used to translate the internal object structure of a product into a text file

formatted as XML.

Most of the attributes of an artifact can be represented as simple text strings.

This makes using XML as a transmission medium very straightforward. Additionally,

XML files can be structured in a hierarchical way, which closely mimics the internal

object structure used by the Entry Application, which in turn mimics the hierarchical

structure of the Design Repository schema.

An advantage to using XML to store products is that the files are human

readable. Opening an XML file created by the Entry Application (which uses the .repo

file extension) will reveal a structure which could be understood by a user familiar with

the Design Repository. Most importantly, these XML files are self-contained. All of the

data necessary to reconstruct the product as entered is present in the .repo file. These

files can easily be e-mailed back and forth or shared across a network. This is

57

accomplished by encoding the binary data associated with artifacts into a text

representation.

The XML interface module is also responsible for loading the set of valid values

for many of the constrained attributes captured by the Entry Application. This set of

terms was discussed previously and includes such constraints as the Functional Basis,

the set of available failure modes, the allowed component basis names, and many other

such sets of possible values.

In addition, this set of terms also contains auxiliary information about many of

the terms. For example, each function described by the Functional Basis includes a

definition of the function, information about the function hierarchy, and a list of

synonyms (correspondents) to that function. This information is used to build a

searchable reference dictionary for the user as well as to construct the hierarchical

presentation of function and flow values in the Function and Flow Widgets.

This set of terms is stored as XML and packaged with the Repository Entry

application in several ways. Primarily, the set of terms is built into the application when

it is compiled. This allows the set of terms to be available regardless of remote

repository connectivity for stand-alone operation. Secondly, the set of terms can be

loaded from a special terms XML file. In this way the user can manually update their set

of terms to a newer version (which is then stored either in a registry key for Microsoft

Windows users or in a preference file for OS X and Linux users). Thirdly, the set of

terms can be ascertained by querying a remote repository database and dynamically

constructing the set.

Most importantly, however, the Repository Entry application will check a central

location on the Design Engineering Lab server for information on the latest application

and set of terms versions. If the set of terms is out of date, the user can choose to

download and install the newest set of terms from within the Entry Application itself.

58

Additionally, if the application itself is out of date, the user will be notified and

presented with instructions on how to obtain a new version of the Entry Application.

4 USING THE ENTRY APPLICATION
There are two main ways in which the repository entry application can be

utilized. The first way is to download, review and edit existing design information. The

second way is to use it as a dissection aid to enter new product information. In this

section both usage methods are described with focus on use as a product dissection and

design information capture aid. Section 4.1 describes using the repository entry

application as a capture aid while section 4.2 describes using the application as a way to

download, review and edit existing design information. To use the application it must

first be downloaded from http://function.basiceng.umr.edu/repositoryEntry. The entry

application can be used as a product dissection and information entry tool without a

repository account. In order to use the entry application to download, view and edit

existing design information a repository account is required. To activate a repository

account, navigate to http://function.basiceng.umr.edu/repository and click on the

“Create an Account” tab.

4.1 Recording New Product Information
The repository entry application is an artifact-centric method of storing design

information, meaning that for a design attribute to exist, it must be linked to an artifact.

Other information classes contained in the design repository entry application, such as

manufacturing and physical parameters for example, describe additional design

attributes while still relating to their artifact hub. Product information can be recorded

simultaneously with or following the decomposition process. Throughout this section, a

vise grip is used to show the design information entry process. Prior to entry, the vise

grip was decomposed, and a functional model was created shown in Figure 1.

59

Figure 1. Vice Grip Functional Model

4.1.1 Creating New Artifacts
When first launching the repository entry application the user is presented with a

screen asking them to define a new product or connect to the online database (Figure 2).

To use the entry application as a means to record a new product, high-level product

information is initially requested. High-level product information includes the system

(product) name, type of product, description, contributing institution information and

general contact information. The available system types (product types) are currently

limited to consumer, industrial, NASA and scientific. The system types, like many other

pieces of information stored by the repository, draw from various taxonomies that are

controlled by the “repository.termsXML” file. Once high-level system information is

entered, product information entry can occur after clicking the Create System button.

Once the Create System button is clicked the main entry application window is

initialized using the system name as the window title. Within this window, shown in

60

Figure 3, information regarding artifact function, attributes, failure, files and hierarchy

can be entered. On the left side of this screen there are areas for an artifact image,

unattached artifacts and an artifact tree. Across the top of this window there are buttons

labeled add artifact, create new artifact, clear artifact, view systems and save system. At

this point a blank file for the vise grip as a system has been initialized but no design

information can be entered until an artifact(s) have been created.

Figure 2. Creating a New System

To create a new artifact, simply click the Create New Artifact button at the top of

the window. Notice that once the Create New Artifact button has been clicked areas of

61

the window that were previously shaded are now unshaded and accessible. There are

two main ways in which the entry application can be used to enter new product data.

The first way is to create all of the artifacts initially and then proceed to enter artifact

information such as functionality. Another way is to create a new artifact and add all of

the associated design information before traversing to a new artifact. For large products

it usually works best to create all of the artifacts and then enter their associated design

information. For smaller products either approach can be used. In this example all of

the artifacts will be created before actual design information is entered.

Figure 3. Blank Product Entry Screen

The top-level artifact in the vise grip system is the vise grip itself. With the entry

application ready to accept input, the artifact vise grip is entered by typing the name in

the Artifact Name box and clicking the Add Artifact button. Once the Add Artifact

62

button is clicked, the artifact vise grip now appears in the Unattached Artifacts box in the

middle left of the application window. This process is now repeated for all of the

artifacts contained within the vise grips. Figure 4 shows the Unattached Artifacts box of

the main application window populated with the vise grip artifacts. The artifacts are

labeled as unattached because they have not yet been placed within the Artifact Tree.

The Artifact Tree is used to establish a hierarchy of artifacts within a product.

Figure 4. Unattached Artifacts Listing

With all of the artifacts created and present in the Unattached Artifacts box they

can now be moved to the Artifact Tree box. During this step of product entry it is

important to consider the hierarchy of the product. The vise grips are very simple and

do not contain complicated subassemblies therefore all of the artifacts will be children of

the main vise grip artifact. To establish this type of relationship the vise grip artifact is

dragged to the Artifact Tree box. Since all of the remaining artifacts are children of the

main vise grip artifact they must be situated beneath the vise grip artifact. The

remaining artifacts are dragged one-by-one from the Unattached Artifacts box and

dropped on the vise grip artifact. After dropping the first artifact on the vise grip artifact

63

an arrow should appear to the left of the vise grip artifact. The arrow denotes that there

are now children artifacts of the vise grip artifact. To view the children artifacts simply

click on the arrow such that it is pointed downward. Figure 5 shows a populated

Artifact Tree box and the hierarchy of the vise grip artifacts.

Now that all of the artifacts are situated within the Artifact Tree, additional

artifact information can now be entered. The main categories of artifact information

include: functionality, parameters and attributes, failures and media.

4.1.2 Adding General Artifact Information
To begin, a user would want to add general artifact information such as an

image, description, component basis name, quantity, release date and whether or not the

artifact in question is an assembly. All of these information fields are located in the

upper portion of the entry application window. To add any information to an artifact,

the artifact must first be selected in either the Unattached Artifact or Artifact Tree boxes.

Since all of the artifacts of the vise grip have already been added to the Artifact Tree they

will be selected from this point.

Figure 5. Artifact Tree Listing

64

To associate an image with an artifact simply drag an image file to the Artifact

Image box in the upper left hand corner of the application window. To keep overall file

size relatively small it is best if images are jpeg format and are no bigger than 640x480

pixels. Once an image has been dropped on the Artifact Image box a thumbnail of that

image will appear. The Component Basis box of the entry application allows for a

common component name to be associated with an artifact [9, 10]. Since the vise grip

artifact is an assembly of several artifacts and does not exist within the component basis

taxonomy the box will be left at its default value of none. The Quantity box allows for

the numerical quantity of an item to be entered. If a particular screw existed 18 times

within an artifact, it would be captured by the Quantity descriptor. The Part Family

field allows for a part family name to be associated with an artifact. This could be used

in an industrial setting where there might exist 25 different types of the same artifact.

The Description box allows for a free text description of the item. In cases where an

artifact is an assembly of several artifacts the Assembly checkbox is used. The vise grip

artifact is an assembly of artifacts and will be checked for this artifact. Release Date can

be used if the release date of a specific product is known but in most cases is left blank.

Figure 6 shows populated general information for the vise grip artifact.

Figure 6. General Information of the Vice Grip Artifact

4.1.3 Adding Artifact Functionality
The center section of the repository entry application allows for information on

functionality, geometry, manufacturing processes, materials, failure modes and media

65

files to be associated with an artifact. A user can access these different types of

information by clicking across the Functionality, Parameters and Attributes, Failures and

Additional Files tabs in the entry application window. Although a tab is shown for

Performance, this section of the entry application remains as future work. To add

artifact functionality, click on the Functionality tab of the entry application. Multiple

functions that consist of an input artifact, input flow, subfunction, output flow, output

artifact and a supporting designation can be associated with each artifact.

Both the input and output artifacts are used to trace flow from the current artifact

to the corresponding input and output artifacts. Input and output flows are used to

trace the actual flow of the artifact while the subfunction box is where functionality can

be described. The entry application makes use of the Functional Basis to describe both

function and flow [11]. The supporting function option is used to denote whether the

artifact subfunction is supporting or conceptual [12]. Figure 7 shows a close-up of a

blank artifact functionality entry screenshot.

Figure 7. Blank Artifact Functionality

Since the vise grip artifact is the top-level artifact of the product the Black Box

functional description will be used. For all other lower-level artifacts the standard

functional model will be consulted to add artifact functionality. The Black Box

functional description of the vise grip is to secure a solid with flows of mechanical

66

energy, an object, human material and clamped/not-clamped signal. Since this is at the

Black Box level of description all input and output artifacts will be set to external.

Lower-level function descriptions will use appropriate input and output artifacts to

denote function and flow sources and destinations. To add functionality for the vise grip

artifact, begin by entering the input and output artifacts as external and a subfunction of

secure. The subfunction secure will be used for all of the flows at the black box level.

Next, the input and output flow boxes are set as solid material. To add this as a flow,

click the Add button to the right of the Output Flow box. Continuing on with secure as

the subfunction, change the input and output flow boxes to mechanical energy and once

again click the Add button. Repeat this process for all of the flows that operate on a

particular function. Figure 8 shows the flows populated with secure as their function.

Notice that Passive checkmarks have been indicated next to the mechanical energy,

human material and signal flows. This is because the function secure only truly operates

on the flow of solid materials. The flows of energy, human material are simply carrier

flows [13]. If you wish to remove a flow, click on the gray circle ‘x’ next to a flow. Once

all of the flows associated with a particular function have been added, click the Add

Functionality box to add a function to an artifact.

Figure 8. Artifact Function and Flow Entry

67

The entry application allows for multiple flows to be associated with a single

function. Alternatively, each function could also contain only a single active flow. For

the case of the vise grip artifact, all of the flows passed through the same function. If

only a single flow is associated with a particular function the Add Functionality button

would be clicked after recording the particular function-flow combination. From there,

additional functions and flows can be associated with an artifact. Figure 9 shows the

completed function listing for the vise grip artifact. Notice that the entry application

recognizes the function secure as having multiple input and output flows with the same

input and output artifacts.

Figure 9. Artifact Function Listing

4.1.4 Adding Artifact Parameters and Attributes
The Parameters and Attributes tab allows materials, manufacturing processes,

colors, physical dimensions, finishes and textures to be associated with an artifact. Each

subsection within the Parameters and Attributes tab contains a list to select an attribute

and a Plus button to add an attribute. For example, to record the vise grip material, use

68

the Materials pulldown list to select steel and then click the Plus button (Figure 10). This

same process is used to populate the remaining Parameters and Attributes sections.

Since the vise grip artifact is an assembly of several different parts it does not make

sense to list manufacturing process. The overall color of the vise grip artifact is listed as

gray. The Physical Parameters section is used to describe overall geometries of an

artifact. To describe geometries use the Dimension pulldown list to select a specific

geometric attribute. With a geometric attribute selected, enter the corresponding

numerical value and use the remaining pulldown list to select the appropriate unit.

Once the attribute type, value and unit are entered click the Plus button to record the

information. The Physical Parameters section can also be used to record artifact weight

and mass.

The lower right corner of the Parameters and Attributes tab is used to record

design information regarding the five senses: sight, sound, taste, touch and smell. These

senses correlate to surface finish, sound, taste, texture and smell. The vise grip artifact

can be described as having a glossy surface finish and a smooth texture. Sensory

information is recorded in the same manner as for artifact material. Select the sensory

descriptor from the appropriate pulldown menu and click the Plus button to record the

information. Figure 10 shows populated a populated Parameters and Attributes tab for

the vise grip artifact.

4.1.5 Adding Failure Information
The Failure tab (Figure 11) of the entry application allows for actual or potential

failure and severity information to be associated with an artifact. Failure information in

this section is driven by efforts including the Function-Failure Design Method (FFDM)

[14, 15], Risk-in-Early Design (RED) [16], and adaptations of modern Failure Modes and

Effects Analysis (FMEA) [17] techniques. FFDM and RED are similar in purpose to

generic FMEA methods but strive to provide risk and possible failure information at the

conceptual level of design based solely on product functionality. A failure mode

69

taxonomy for mechanical and electrical components has been developed at UMR and is

used as the reference taxonomy here [14, 15]. To associate actual or potential failure

modes with an artifact, begin by selecting the appropriate failure mode through the

Failure Mode pulldown tab. The Severity box allows for a severity of the failure mode

to be recorded. Typically a 1-5 scale is used with 1 being a minor artifact malfunction

and 5 being catastrophic and leading to the loss of life. If the failure mode is an actual

documented failure mode the Actual Failure checkbox should be enabled. If the failure

mode in question is an actual failure mode, the lower portion of the Failure tab can be

utilized. Information regarding the number of occurrences, sample size, failure rate and

detailed failure reports can be recorded. This specific information can then be used to

perform risk analysis. Once all relevant failure information for an artifact is entered the

Add Failure button should be clicked to then associate the failure information with the

artifact.

Figure 10. Parameter and Attributes Tab

70

4.1.6 Associating Additional Files with an Artifact
The Additional Files tab (Figure 12) of the entry application allows for assembly

model, functional models, CAD files and VRML files to be associated with an artifact

(Figure 12). Typically functional and assembly models are associated with the top-level

artifact; in this case the vise grip artifact. There are drop boxes for both functional and

assembly model PDFs as well as a source file (the actual Concept Draw, Omni Graffle or

Visio file). To add a functional or assembly model to an artifact simply drag the

appropriate file to the labeled well of the Additional Files tab. CAD and VRML files can

also be associated with an artifact and are done so by also dragging the appropriate file

to the labeled drop box. Any of the associated files can be retrieved through the entry

application by clicking the Save File button. A dialog box will prompt for the name and

location for the file to be saved locally.

Figure 11. Failure Tab

71

Figure 12. Additional Files Tab

4.1.7 Completing the Product
Once all additional design information as been associated with a particular

artifact, click the Update Artifact button in the main entry application window. Doing so

will commit all of the changes made to the artifact. To complete a product, follow the

same procedure for each artifact contained in the product. To save the product file click

the Save System button in the upper right hand corner of the entry application window.

The entry application will then ask the user to provide a name and specify a location for

the “.repo” file to be saved.

4.2 Using the Entry Application to Open or Edit an Existing Product
The entry application can open or edit exiting product files that are stored locally

on a machine or remotely hosted by the UMR repository. The Available Systems

window is used to access all existing files. If the Available Systems window is not

present it can be activated by going to the Windows tab and clicking Show Systems

(Figure 2). To open a local .repo file click the Load From File button under the Create or

72

Open Tab. Navigate to the appropriate .repo file and click Open. The product can then

be seen in the Loaded Systems box. Selecting the file and clicking the Examine button

will then open the file in the entry application.

To examine a product that is housed in the repository database, the Download

tab of the Available Systems window is utilized. In order to access the online database a

user must first be connected to the repository. To connect to the repository click the

Connect button at the bottom of the screen (Figure 13). A window titled “Connect to a

Repository Database” will then appear on screen. Authentication to the online

repository can be gained by using your repository username and password (Section 4).

Once the appropriate user name and password have been entered the click the Connect

button. The user will then be returned to the Available Systems window showing all of

the products from the repository (Figure 14).

To open a repository-based system simply click on the system name and then

click the Examine button. Please be patient as the selected system downloads over the

Internet and is constructed dynamically from the database. All authenticated repository

have access rights to download products, edit them and save them locally. If a user

wishes to have repository upload privileges, they can contact the Design Engineering

Lab.

The privilege level of the user’s account governs repository access. There are

four levels of access. The most basic level is User. A User is able to download remote

systems and nothing more. The next level, Contributor, adds the ability to upload

systems to the repository. The third level, Administrator, has the additional ability to

mark uploaded systems as verified and to delete systems. Finaly, a database Superuser

also has the ability to edit fundamental database tables, create, edit, and delete user

accounts and grant user access privileges.

Uploaded systems are not immediately available for viewing through the online

Design Repository web interface. After uploading, a system must be marked as verified

73

by a repository administrator. This provides a level of quality control over the data that

is presented online. Uploaded systems, regardless of verification, can always be

downloaded using the Entry Application.

Figure 13. Repository Connection Window

Figure 14. Available Repository Products

74

5 CONCLUSIONS AND FUTURE WORK
The entry application represents several years of research and development in

the field of product dissection, archival and reuse. Although the task of building and

expanding systems to digitally represent design information will continue, the entry

application presented in this paper provides a roadmap to future revisions and supports

design information storage with modern repository applications. The current version of

the entry application stable, functional and supports multi-platform development and

execution. The entry application is released under the GNU General Public License and

as such the source code is available and serves as a baseline for other developers.

Future work of the entry application includes implementing the ability to record

mathematical performance equations, usability analysis and further integration into the

suite of function-based applications currently under development. Currently neither the

repository database schema nor entry application supports the archival of mathematical-

based performance equations. Including mathematical transfer functions alongside

artifacts would allow for future concept generator tools to analyze overall concepts

based on various input and output parameters. A user would also be able to quickly

search for particular components based upon values for certain parameters such as input

voltage or output torque. The main difficulty in implementing such a feature is the way

in which mathematical equations are stored and related across all artifacts. While simple

transfer functions and mathematical equations would be easy to implement, those in the

form of partial differential equations pose the most difficulty.

In order to fine tune the entry application a series of usability and case studies

are required. Through use case and usability analysis, a great deal of information

regarding user interaction could be gained. This information could then be used to

adjust the cosmetic layout of the entry application and provide for a better user

experience.

75

Currently, an application named Function CAD is being developed at UMR.

Function CAD is a program that allows users to draw graphical functional models.

While several applications exist that can create a functional model, Function CAD allows

users to start from existing functional model snippets to use as building blocks for a

larger more detailed functional model. Function CAD also obeys functional modeling

rules and will not allow the user to create an inappropriate functional model. For

example, a free form drawing package would allow the representation of human energy

as a solid material (as they are represented by different line styles); Function CAD would

not allow this representation as it is both syntactically and semantically aware of the

functional model. Function CAD also uses the same XML backbone as the entry

application. Further refinement of both applications would eventually allow a

functional model to be drawn in Function CAD and then imported to the entry

application. The pre-populated functions could then be associated with specific artifacts

within the entry application and reduce the overall workload of the user.

6 REFERENCES
1. Bohm, M., R. Stone and S. Szykman, 2005, "Enhancing Virtual Product

Representations for Advanced Design Repository Systems," Journal of Computer
and Information Science in Engineering, 5 (4): 360-372.

2. Svensson, D. and J. Malmqvist, 2001, "Integration of Requirement Management and
Product Data Management Systems," Proceedings of DETC2001, Pittsburgh, PA,
DETC2001/CIE-21246.

3. Regli, W. C. and D. M. Gaines, 1997, "A repository for design, process planning and
assembly.," Computer-Aided Design, 29 (12): 895-905.

4. Summers, J., D. Maxwell, C. Camp and A. Butler, 2000, "Features as an Abstraction for
designer convenience in the Design of Complex Products," Proceedings of DETC-
2000, Baltimore, MD, DETC2000/CIE-14642.

5. Dixon, J., E. Libardi, S. Luby, M. Vaghul and M. Simmons, 1987, "Expert Systems for
Mechanical Design: Examples of Symbolic Representations of Design
Geometries," Engineering Computing, 2 (1): 1-10.

6. Sturges, R., K. O'Shaughnessy and M. Kilani, 1996, "Computational model for
conceptual design based on extended function logic," Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 10 (4): 255-274.

7. Bohm, M. R., R. B. Stone, T. W. Simpson and E. D. Steva, 2006, "Introduction of a Data
Schema: The Inner Workings of a Design Repository," Design Engineering and
Technical Conference 2006, Philadelphia, PA, DETC2006/CIE-99518.

76

8. Dalheimer, M. K., 2002, Programming with Qt, Second Edition, O'Reilly, London.
9. Kurtoglu, T., M. Campbell, C. Bryant, R. Stone and D. McAdams, 2005, "Deriving a

Component Basis for Computational Functional Synthesis," International
Conference on Engineering Design, ICED'05, Melbourne, Australia.

10. Greer, J. L., M. E. Stock, R. B. Stone and K. L. Wood, 2003, "Enumerating the
Component Space: First Steps Toward a Design Naming Convention for
Mechanical Parts," ASME Design Engineering Technical Conference, Design
Theory and Methodology Conference, Chicago, IL, DETC2003/DTM-48666.

11. Hirtz, J., R. Stone, D. McAdams, S. Szykman and K. Wood, 2002, "A Functional Basis
for Engineering Design: Reconciling and Evolving Previous Efforts," Research in
Engineering Design, 13 (2): 65-82.

12. Bohm, M. and R. Stone, 2004, "Representing Product Functionality to Support Reuse:
Conceptual and Supporting Functions," Proceedings of DETC2004, Salt Lake
City, UT, DETC2004-57693.

13. Nagel, R. L., M. R. Bohm and R. B. Stone, 2007, "A Representation of Carrier Flows
for Functional Design.," Accepted to International Conference on Engineering
Design, ICED'07, Paris.

14. Stone, R., I. Tumer and M. Stock, 2005, "Comparing Two Levels of Functional Detail
for Mapping Historical Failures: You Are Only as Good as Your Knowledge
Base," Research in Engineering Design, In Press, DOI 10.1007/s00163-005-0005-z.

15. Stone, R. B., I. Tumer and M. Van Wie, 2004, "The Function Failure Design Method,"
Journal of Mechanical Design, 127 (3): 397-407.

16. Grantham Lough, K., R. Stone and I. Tumer, 2005, "Function Based Risk Assessment:
Mapping Function to Likelihood," Proceedings of DETC'05, Long Beach, CA.

17. Lock, D., 1993, Handbook of Engineering Management, Butterworth-Heinemann,
Oxford.

77

3. USING A DESIGN REPOSITORY TO DRIVE CONCEPT GENERATION

Matt R. Bohm
Jayson P. Vucovich

and Robert B. Stone, Ph.D.
Design Engineering Laboratory

Department of Interdisciplinary Engineering
University of Missouri – Rolla

Rolla, Missouri 65409

ABSTRACT
This paper describes how a design repository can be used as a concept

generation tool by drawing upon archived function-based design knowledge. Modern

design methodologies include several types of activities to formally generate design

concepts. Typical concept generation methods range from open-ended creative

brainstorming activities to quantitative function-component analysis. A combination of

two such methods—the Chi Matrix and Morphological Matrix techniques—is the basis

for this work. Building on existing functionality of the design repository, desired

product functions can be specified in a search of stored design knowledge, returning a

Morphological Matrix of artifacts solving the specified functions. Such a search is

termed a Morphological Search. The repository Morphological Search feature is

evaluated against concepts generated in a previous original design project,.

Results of the Morphological Search return are then compared to ten of the

original concept variants generated during the design project. This comparison shows

that 89% of the specified subfunctions return results and that, on average, 77% of the

components used in the hand-generated concepts can be derived by using the

Morphological Search feature.

78

1 INTRODUCTION
As the product development space becomes more complex and competitive, it is

essential that designers have a wide variety of tools to aid in the many aspects of

product development. Many tools exist that all specialize in certain aspects of the

product development space. For example, CAD tools allow designs to be visualized and

moved to production, while Finite Element Analysis (FEA) packages allow for specific

components to be structurally analyzed. While many design packages exist for the CAD

and FEA space of product development, few software packages are geared toward the

pre-form space of product development. One such tool aimed towards the pre-form

phase of product development is a design repository which are used to archive, store,

and retrieve existing design knowledge in a formalized method.

Over the span of several years of research and integrated design coursework, a

web-based design repository has been implemented at the University of Missouri-Rolla.

The design repository currently contains detailed design knowledge for over 100

consumer electromechanical products and provides an interface for user specified

searches across all products. With this knowledge-base in place, tools are being built to

utilize the repository infrastructure to support conceptual product development. By

expanding the design repository’s search capability we present a tool aimed specifically

toward concept generation activities.

2 BACKGROUND
Modern product design techniques demand that the designer spend an

increasing amount of time and effort to research possible design solutions, draw upon

many disciplines and backgrounds, and often reach outside the designer’s own domain

of experience. Design repositories have the capacity to store and retrieve design

knowledge such that the designer can have easy access to a wide array of design

solutions beyond his or her own stored knowledge. Such repositories benefit from well

defined taxonomies. In particular, a functional taxonomy known as the

79

Functional Basis [1] and a component naming infrastructure [2, 3] are utilized in

the UMR design repository. The description language for artifacts in a repository

increases the computability of design information and eliminate ambiguities between

individuals sharing information. Using the Functional Basis to represent product

functionality within the design repository allows product knowledge to be searched and

categorized by their function. This abstraction allows the designer to focus on overall

functionality and to develop more creative solutions for solving a design problem [4].

For this paper, we will be considering the design repository under development at the

University of Missouri-Rolla Design Engineering Lab [5, 6, 7].

2.1 Concept Generation Techniques
Many researchers have sought to formalize the conceptual design phase.

Antonsson and Cagan concisely define the notion of ‘formal’ as “...computable,

structured, and rigorous, not ad hoc” [8]. Furthermore, by founding concept generation

techniques on functionality, solution-independent design descriptions can be built [9].

Such methods generally rely on a form of functional decomposition of the overall

problem to initiate the search for physical design solutions during conceptual design.

Whether driven in this function-based manner or otherwise, much variability is

exhibited in just how this search is carried out depending on the method chosen. This

reflects the variety of perspectives that have been suggested for addressing the

conceptual design problem.

2.1.1 C-Sketch/6-3-5 Method
The 6-3-5 method is a generic technique that supports innovative thinking [10].

In 6-3-5, members of an engineering design team (optimally 6-8 members) generate,

interpret, and modify the individual ideas of other team members by first brainstorming

and sketching individually on three ideas for various aspects of the product, then

passing their ideas to the next team-member who adds additional ideas and sketches. C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and

80

refrain from communicating verbally when passing ideas to the next member. Passing

only sketches allows other team members the opportunity to interpret the concepts in a

different manner than the original author, thereby increasing design diversity.

2.1.2 Design by Analogy
In Design by Analogy, a functional model is created of the product being

designed. Examining analogous products or components that perform the same

function generates solutions to the present design problem. The designer then evaluates

these similar components for appropriateness in solving the given design problem [4].

One Design By Analogy method widely recognized in the engineering design

community is the Theory of Inventive Problem Solving, or simply TRIZ. TRIZ was

developed by Altshuller during the 1940-50’s period and was based on the examination

of large numbers of existing patents [11]. The end result of this effort is an engineering

design approach that identified a set of specific conflicts that occur in design along with

a set of principles that can be applied to generate solutions that solve these conflicts.

2.1.3 Morphological Matrix Method
The morphological matrix introduced by Zwicky is a now a classic technique for

use in conceptual design [12]. This method provides the design engineer with a simple,

albeit manual, means for bookkeeping potential physical solutions and their

corresponding functionality.

A morphological matrix is traditionally created by listing all of the sub-functions

for a design and brainstorming solutions to each sub-function, listing the solutions as

columns and the sub-functions as rows [10, 13, 14, 15, 16].

In a manual engineering design context, the morphological matrix is limited to

the concepts generated by the engineer, although the morphological matrix is one

technique that can be used in conjunction with overall design processes such as 6-3-5 or

the reverse engineering and redesign method of [10].

81

2.1.4 Chi-Matrix Method
The chi-matrix method relies on a catalog of design information that stores

components and the functions they perform [17]. When a designer desires to generate

concepts for a given design problem, a filter matrix is used which contains only the

functions needed for the given problem. This filter is multiplied into the aggregate

function-component matrix to produce a matrix that contains only components that

solve the needed functions. In this way a designer can generate possible solutions

without having to search the entire store of knowledge manually.

3 DESIGN PROJECT
Before discussing the Repository Morph Search further, we introduce a design

problem that uses traditional concept generation techniques from Section 2. The goal of

this design problem was to transform an imprecise counting and packaging line at the

Rolla Area Sheltered Workshop. The solutions generated for that design problem are

used here to compare the results of manual concept generation techniques with the

results of an automatically generated morphological matrix using a design repository.

The device, prototyped at University of Missouri – Rolla (UMR), was the product of

several modern design methodologies. Initial customer interviews were conducted, a

customer needs questionnaire was developed, technical requirements were formed, and

several types of concept generation and selection techniques were applied to this

original design project.

3.1 Case Project Background
The Rolla Area Sheltered Workshop employs persons with mental and physical

disabilities to package variety boxes of dog and cat food sample packets for a local pet

food manufacturer. In the interest of increased productivity and a reduced incidence of

repacking, a counting and packaging assistive device was sought. The design team

began by observing the previous method of packaging used by the employees. At this

point the Workshop did not have any specific solution sets in mind. An informal two-

82

way question & answer session took place between the design team and Workshop

managers so that both groups had an understanding of the problem and what types of

design solutions would be valid.

3.2 Functional Model
A functional model is a description of a product or process in terms of the

elementary functions that are required to achieve its overall function or purpose. A

graphical form of a functional model is represented by a collection of sub-functions

connected by the flows on which they operate. This structure is an easy way for a

designer to see what type of functions are performed without being distracted by any

particular form the artifact may take. A functional model of the dog food packaging

device is shown in Fig. 1.

Figure 1. Functional Model

3.3 Concept Generation
The functional model is a useful tool during the concept generation phase of the

project. Because all of the required functions are identified, the design team can focus on

83

developing solutions for given functions one at a time resulting in an entire concept.

There are several formal methods for developing concepts which are designed to help

stimulate a design team’s creativity [18, 19]. In particular, the methods employed during

this project were the C-sketch method, Design by Analogy, the Chi-Matrix approach and

the Morphological Matrix approach. Using all of these methods allows for a broad

spectrum of design concepts to be generated.

3.3.1 Concepts Generated by the C-sketch Method
By using the C-sketch method, the design team was able to generate five design

concepts. Three of the concepts were based on mechanical and electrical systems to

transport and count the dog food packets. The fourth concept contained no moving

parts or electronics and was a simple plastic tray with color-coded slots. The fifth

concept built on concept 4 by adding switches and buzzers to indicate when the slots

were full. Figure 2 shows three such concepts developed using the C-Sketch method (C-

sketch 1, C-sketch 3 and C-sketch 5, respectively).

Figure 2. Concepts Generated by the C-Sketch Method

3.3.2 Concepts Generated with Design by Analogy
Four concepts were produced using the Design by Analogy method. The first

three concepts were electro-mechanical devices using conveyors and sensors to count

84

and transport the dog food packets. The forth concept was a plastic tray variant with

rotating handles to empty the counted dog food packets directly into the box.

3.3.3 Concepts Generated by the Chi-Matrix Method
Employing the Chi-Matrix approach generated five concepts. The first concept

was based on a case with individual dog food packet receptacle slots. A sliding door

was placed beneath the receptacles and was used to empty the slots once they are filled

directly into the packing box via a chute. The remaining 4 concepts incorporated fairly

simple electronics to act as counters while dog food packets were manually placed in the

box. Figure 3 shows concepts Chi-Matrix 1, Chi-Matrix 2, and Chi-Matrix 5 as example

solutions generated by the design team using this method. Although the method is

similar to the Morphological Matrix Search method discussed in the remainder of this

paper, the Chi-Matrix solutions here were produced by hand using a different set of

data.

Figure 3. Concepts Generated by the Chi-Matrix Method

4 USING THE REPOSITORY MORPHOLOGICAL SEARCH FEATURE
As a test case, subfunctions identified by a customer needs based functional

model from the bulk-packaging device design project (introduced in Section 3) are used

in the Morphological Search feature. The returned search results are then compared to

original bulk-packaging device concepts. Two sets of test data are presented in this

work. The first set of test data was created using a repository containing only 29

85

products discussed as trial 1. The second set of test data, trial 2, comes from the same

repository but containing 68 products. The premise of this comparison is that if the

Morphological Search tool can generate concepts that match the results of the design

team (produced by following the creativity-based concept generation techniques), then

the Morphological Search tool offers an automated approach that leads to at least as

creative results as a design team.

4.1 Searching the Repository
The original functional model (shown previously in Fig. 1) developed for the

bulk-packaging device contains 29 subfunctions (26 of them unique), which are

summarized in Table 1 and numbered based on their order of appearance in the

functional model.

Upon logging into the design repository, located at

http://function.basiceng.umr.edu/repository, the user is presented with an options

menu. To perform a Morphological Search, the user navigates to the Search page and is

presented with the option to perform either a “Standard Artifact Search” or a

“Morphological Chart Search”. Once “Morphological Chart Search” is selected, the user

is then presented with the Morphological Search options shown in Fig. 4.

A list of available products is presented on the left hand side of the

Morphological Search Input. The user can select any combination of the products listed

depending on their desired search domain. With the search base selected, the user then

selects the number of subfunctions they wish to enter through the “Subfunction:” pull-

down menu. At this time, a maximum of 10 subfunctions can be entered for a single

search. If more than 10 subfunctions exist, the user must perform multiple searches.

Once the number of subfunctions is selected, the user must specify the number of

columns they wish to appear in the search return. A maximum of 20 columns can be

displayed although 10 columns typically capture most, if not all, of the possible returns.

86

The user can now begin to specify the subfunctions they wish to search for by

using the pull-down menus. Subfunctions are entered as a tuple representing the input

flow, subfunction and output flow. The first subfunction entered in Fig. 4 relates to

“import human material” but is specified in the format (human material, import, human

material). For most functions, the input and output flow are identical; however, the

input and output flow for some functions (e.g. convert) are different. Currently the

subfunction and flow inputs used in the Morphological Search are limited to the

secondary term of the Functional Basis [1]. If a primary or tertiary form of the

Functional Basis is desired as search input, the user should render the function or flow in

the secondary level Functional Basis.

Table 1. Identified Subfunctions

87

Figure 4. Morphological Search Input

With all of the desired subfunction tuples entered, the user can utilize the “Use

Component Basis Naming” checkbox to choose how search results are returned.

Checking the box categorizes returned artifacts into the component basis [2, 3]. Leaving

the box unchecked will return results categorized by the name given to a specific artifact.

For example, artifacts may be named “motor,” “electric motor” and “dc motor,” but they

are all categorized by the component basis as “Electric Motor.” Choosing to categorize

search results by the component basis will group all instances of an electric motor as

“Electric Motor.” Without using the component basis categorization, the instances of

“motor,” “electric motor” and “dc motor” would be returned distinctly.

88

Upon submitting the search, a new browser window is opened containing the

search results. These results for the three example subfunction tuples entered above in

Fig. 4 are shown in Fig. 5. The left-most column of the results page displays the

subfunction search criteria and subsequent columns (up to the amount specified) show

the groupings of artifacts solving the given function. The results are sorted within each

row by their rate of return. For example, a “Housing” of some sort is found to solve

“Import Human Material” in 34.55% of the total number of solutions to “Import Human

Material.”

Figure 5. Morphological Search Results

For this particular search, results were returned for “import human material”

and “guide human material” while no artifacts were found for the “stabilize human

material” criteria. To view specific instances of a returned component grouping, the user

can click on the link below the component image. Figure 6 shows all of the 19 artifacts

89

classified as a “Housing” for the “import human material” search criteria. Listed along

side each artifact is the artifact’s parent product. For example, the “Left Case Handle”

artifact originated from the Black&Decker Dustbuster. If the user wishes to view more

information about a specific artifact, they can do so by clicking the artifact name.

 Figure 6. Detailed Component List for Housing

4.2 Distilling the Results
Morphological Searches were carried out for the remaining 26 subfunctions

identified for the bulk-packaging device. Table 2 summarizes the Morphological Search

results based only on function return. Out of the 29 subfunctions searched, trial 1

returned results for 21 of the functions while trial 2 returned results for 26 of the

90

functions. The function return results correspond to 72% and 89% for trials 1 and 2,

respectively.

Table 2. Results Based on Function Return

Ten of the 31 concepts developed during the bulk-packaging device project were

chosen to compare to the Morphological Search results. The concepts are named for the

technique that was used for their generation. For example, “Chi-Matrix 1” corresponds

to the first concept developed by using the Chi-Matrix approach. The concepts named

“Chi-Matrix 1”, “Chi-Matrix 2”, “Chi-Matrix 4”, “Chi-Matrix 5”, and “C-Sketch 5” were

identified by the original design team as their top-five concepts. The remaining concepts

91

were selected from the pool of 31 because they represented complete design solutions

with definable functionality and were well-documented.

In order to compare the Morphological Search results to the concepts developed

for the bulk-packaging device, concept sketches and notes were revisited. Since the

subfunctions used for the Morphological Search input originated from the initial

functional model of the bulk-packaging device, each concept was then related to the

same set of subfunctions. There are some differences between the subfunctions

identified in each of the concepts and those of the original functional model. The

subfunction variation is due to the natural progression in the design process where

customer needs are refined and the product direction is better identified. Table 3 shows

a mapping of the originally identified subfunctions to each of the concepts used in this

study.

Components that solve each subfunction found in the concepts are identified,

completing the comparison to the Morphological Search results. Table 4 shows the

identified subfunctions and components for the Chi-Matrix 1 concept comparison in trial

2. Note that the components listed in the columns represent only those components that

were identified as part of the Chi-Matrix 1 concept. Components that were

identified to solve a specific function are denoted with a ‘1’ while a shaded function-

component combination shows that no results were returned for the combination by the

Morphological Search. For the Chi-Matrix 1 concept, 15 components were identified but

the Morphological Search only returned 12 of the same function mapped components

resulting in an 80% return of components.

To quantify the amount of similarity between the concept’s function-component

matrix (C) and the function-component matrix (R) returned by the Morphological

Search, a simple routine is devised. After each of the two matrices are converted to

binary matrices, an overlap table is constructed by multiplying Cij * Rij only if Cij=1. In

this manner, a table is built containing null values if the product matrix does not contain

92

the given function-component pair, a one if both the product matrix and the repository

matrix have the function-component pair, and a zero if the product contains the

function-component pair but no match is found in the repository matrix. In cases where

the returned Morphological Matrix R does not contain a component used in C, a “Not

Found” column is used with a zero in R and a one in C. Using the totals gained from the

overlap table, a simple ratio of total pair-matches (the ones) to total overlap (the zeros

and ones) is calculated. This ratio represents the percentage of the product’s

functionality that is captured by the repository search.

Table 3. Identified Subfunctions of Concepts

93

Table 4. Identified Components and Results (trial 2) for Chi-Matrix 1

Table 5 shows the comparison between specific concepts and the Morphological

Search results for trials 1 and 2. For the concept Chi-Matrix 1, 71.43% of the components

used in the concept were returned by the Morphological Search in trial 1 but increases to

80% in trial 2. This means that 80% of the concept could have been derived by using the

Morphological Search feature of the repository. Analysis of all of the concepts for trial 2

indicate that an average of 77.07% of the ten manually derived concepts could have been

automatically generated by the repository’s design tools system. A mature repository

could conceivably generate 100% of the manually generated concepts.

94

Table 5. Component Similarity Results

5 CONCLUSIONS
The Morphological Search tool offers designers an additional approach for

generating concept variants and presents historically recorded subfunction solutions in

the familiar morphological matrix format. Given that the empirical case study finds that

77% of the concepts reviewed can be derived using the Morphological Search tool we

conclude that the method shows promise as an automated concept generation tool. The

use of the Component Basis in this evaluation ensures the reliability of these results by

standardizing the comparison basis between the two projects.

Additionally, the high level of commonality between these automatically

generated concepts and handgenerated concepts contributes to the notion of utility for

such a design tool. The 89% average return of functionality for this case study

demonstrates that a relatively small number of products (68 in this case) can constitute a

useful and usable design repository.

Comparing the Morphological Search tool to previously generated concepts is a

novel, systematic test to demonstrate the suitability of the returned results. Overall, our

results add supporting evidence to ongoing work that attempts to show the utility of

computational-based conceptual design methods. Specifically, the results show that the

Morphological Search feature can be an effective tool capable of replicating a substantial

amount of solutions automatically that would otherwise be generated by hand in state-

95

of-the-art conceptual design techniques. As with any concept generation technique,

actual usefulness of the Morphological Search tool depends greatly upon the designer’s

ability to gain insight from the tool.

As the knowledge base grows, the potential number of concepts suggested by the

Morphological Search tool also grows. This effect is directly related to the number of

distinct subfunctions contained in the repository. Until a distinct subfunction bound is

reached, the number of concepts suggested by the search tool will increase. From one

perspective, this is a desirable result. At the early stages of design, it is beneficial to

generate as many concepts as possible. From a different perspective, evaluating all of

the concepts becomes a burdensome and time-consuming task. Compatibility reasoning

methods, domain similarity or other computational techniques aimed at reducing the set

of suggested concepts to some “best” subset for detailed review by the designer remains

as future work.

ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation under grant and IIS-

0307419. Any opinions or findings of this work are the responsibility of the authors and

do not necessarily reflect the views of the sponsors or collaborators.

REFERENCES
[1] Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K., 2002, “A Functional

Basis for Engineering Design: Reconciling and Evolving Previous Efforts,”
Research in Engineering Design, 13(2), pp. 65-82.

[2] Greer, J. L., Stock, M. E., Stone, R. B. and Wood, K. L., 2003, “Enumerating the
Component Space: First Steps Toward a Design Naming Convention for
Mechanical Parts,” DETC03/DTM-48666, Proceedings of DETC2003, Chicago,
IL.

[3] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R. and McAdams, D., 2005, “Deriving a
Component Basis for Computational Functional Synthesis,” International
Conference on Engineering Design, ICED’05, Melbourne, Australia.

[4] McAdams, D. and Wood, K., 2000, “Quantitative Measures for Design By Analogy,”
DETC2000/DTM-14562, Proceedings of DETC2000, Balitmore, MD.

[5] Bohm, M. and Stone, R., 2004, “Representing Product Functionality to Support Reuse:
Conceptual and Supporting Functions,” DETC2004-57693, Proceedings of
DETC2004, Salt Lake City, UT.

96

[6] Bohm, M. and Stone, R., 2004, “Product Design Support: Exploring a Design
Repository System,” IMECE2004-61746, ASME International Mechanical
Engineering Congress, Anaheim, CA.

[7] Bohm, M., Stone, R. and Szykman, S., 2003, “Enhancing Virtual Product
Representations for Advanced Design Repository Systems,” DETC2003/CIE-
48239, Proceedings of DETC2003, ASME, Chicago, IL.

[8] Antonsson, E. and Cagain, J., 2001, Formal Engineering Design Synthesis, Cambridge
University Press, New York, NY.

[9] Pahl, G. and Wallace, K., 2002, Using the Concept of Functions to Help Synthesize
Solutions, Springer, London.

[10] Otto, K. and Wood, K., 2001, Product Design: Techniques in Reverse Engineering,
Systematic Design, and New Product Development, Prentice-Hall, New York.

[11] Altshuller, G., 1984, Creativity As An Exact Science, Gorden and Breach,
Luxembourg.

[12] Zwicky, F., 1969, Discovery, Invention, Research - Through the Morphological
Approach, The Macmillian Company, Toronto.

[13] Pahl, G. and Beitz, W., 1996, Engineering Design: A Systematic Approach, Springer-
Verlag, London, UK.

[14] Ullman, D. G., 1997, The Mechanical Design Process, McGraw-Hill, New York, NY.
[15] Ulrich, K. T. and Eppinger, S. D., 1995, Product Design and Development, McGraw-

Hill, New York, NY.
[16] Hubka, V. and W. Ernst Eder, Theory of Technical Systems. 1984, Berlin: Springer-

Verlag.
[17] Strawbridge, Z., McAdams, D. A. and Stone, R. B., 2002, “A Computational

Approach to Conceptual Design,” DETC02/DTM-34001, Proceedings of
DETC2002, ASME, Montreal, Canada.

[18] Shah. J. (1998). “Experimental Investigation of Progressive Idea Generation
Techniques in Engineering Design, “ Proceedings of the 1998 ASME Design
Theory and Methodology Conference, DETC98/DTM-5676, Atlanta, GA.

[19] Shah, J. J., Vargas-Hernandez, N., Summers, J. D. and Kulkarni, S., 2001,
“Collaborative Sketching (C-Sketch) - An Idea Generation Technique for
Engineering Design,” Journal of Creative Behavior, 35(3), pp. 168-198.

97

4. A NATURAL LANGUAGE TO COMPONENT TERM METHODOLOGY:
TOWARDS A FORM BASED CONCEPT GENERATION TOOL

Matt R. Bohm
mbohm@mst.edu

Design Engineering Lab
Department of Interdisciplinary

Engineering
Missouri University of Science and

Technology
Rolla, MO, 65409 USA

Robert B. Stone, Ph.D.
rstone@mst.edu

Design Engineering Lab
Department of Interdisciplinary

Engineering
Missouri University of Science and

Technology
Rolla, MO, 65409 USA

ABSTRACT
This paper reports on research leading to a natural language to component

naming method that underpins an emerging form-initiated concept generation tool. The

purpose of identifying standard component terms from natural language phrasing is to

support computational parsing of an initial set of physical artifacts that solve a design

problem as suggested in natural language by a novice designer. Parsing the natural

language transfers the burden of design abstraction to the computer and more

seamlessly integrates with existing concept generation algorithms. By leveraging an

existing design repository data set and a hierarchical component naming taxonomy a

detailed algorithm for natural language to component synonym identification is

presented.

1 INTRODUCTION
From an engineering education standpoint, design is the perhaps one of the

toughest topics to teach and, often, the most feared course assignment in a given

engineering department. That is likely due to the emphasis of modern design

techniques on abstracting the problem and identifying this fuzzy, hard to grasp (and

explain) concept of functionality [1-4]. Yet, this is the area of engineering where

innovation takes root and where students need the most nurturing.

98

At both the student and professional level, the major obstacle that designers face

is the leap it takes to abstract a design problem to its constituent functionality – the

essence, according to the above methodologies, to synthesizing the product that will

meet customer demands. The natural language processing research presented

underpins an alternative approach that is, based on over a decade of observation, more

natural for engineering designers. The approach, which we will call Form Follows Form

(FFF), automates concept generation by starting with suggested components that the

designer believes may solve the design problem and extracts the underlying

functionality of those components to create a set of more thorough and complete concept

variants through existing concept generation algorithms [5-8].

1.1 Motivational Case
With the ability to translate a designer’s natural language into a standardized,

parse-able set of terms, designers would be allowed to build up chains of components

they envision being in a new product. This is a task that initially appears to be simple,

however, there are several ways one could describe information about components –

from a topological adjacency matrix from such as a design structure matrix to a simple

listing of components. Since ease of use and accessibility are key to this research, asking

a user to first generate an adjacency matrix would be a cumbersome task. Alternatively,

a simple list of components may not effectively capture the intent of the user (that is

component connection and ordering). From a computational standpoint, information

regarding components needs to, at a minimum, infer how the user intends those

components to be connected to one another. For example, a user lists out wire, shaft and

motor as components in a concept. A basic search of an appropriate design knowledge

base would show that those components have not been observed to connect in that

particular order. It is therefore necessary to build a framework that allows for an easy

and logical manner to gain information about components in a particular concept. With

99

a semi-logical ordering of input components, algorithms will be better positioned to

statistically determine the intended component order.

Figure 1 shows a potential interface to capture a perceived concept for the form-

initiated concept generation approach. The example shown in Figure 1 contains the

basic components of an iced tea maker. Users would be asked to enter components as a

series of discrete chains. For example one chain of components may include a cord,

switch, and a heating element while another may consist of a tank, tube and a condenser.

Once chains are entered a user would be allowed edit, remove or reorder specific chains

or components.

Figure 1. Mockup Envisioned Component Entry System

The envisioned components and their connection information can then be passed

to an algorithm to develop a functional model of the product. Overall product

functionality will be disguised from the user. The functional model will then be passed

to existing computational concept generators. Computerized concept generation

techniques, spanning the broad AI topics of knowledge representation and reasoning,

100

promise engineers a faster realization of potential design solutions based upon

previously known products and implementations. FFF will be compatible with two

existing concept generators. One of these methods utilizes relational matrices [9, 10]

derived from the design repository while the other method relies on graph grammar

rules [11, 12]

1.2 Relationship to Natural Language Interpretation in AI
The thrust of natural language interpretation in the artificial intelligence (AI)

field is to provide a mechanism for machines to understand ‘human speak’ [13]. In the

design context, it allows designers to specify components within a concept and do so

using natural language. The current design repository makes use of a component

naming taxonomy to classify artifacts with a general, standardized name. Artifacts

within the repository can be tagged with a specific name such as “small dc motor” but

are also tagged with the component naming term of “electric motor.” This convention

allows for artifact data to be clustered and analyzed but may also hinder how designers

and engineers describe and search for a given component. If a designer were to search

for a “tank” as a component naming term, using current implementation of the

repository, no existing artifact would be found. This is because the word “tank” does

not exist within the realm of the component naming terms. The term “tank,” however, is

a synonym of the component naming term “reservoir.” In order to allow for designers

to specify a concept using natural language it is necessary to attach additional synonym

terms to the existing component naming terms.

The scope of this paper is to present our method to translate natural language

component terms into standardized component terms as well as an initial set of natural

language component synonyms. Both of these contributions are necessary to realize the

overall research goal of FFF.

101

2 BACKGROUND
Three areas of prior work are necessary to support the natural language

interpretation research of this work: design repositories, component naming terms and

natural language interpretation as applied to engineering. Each topic is briefly reviewed

next.

2.1 Design Repository
The objective of a Design Repository is to allow designers to store and retrieve

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function. Currently the Design

Engineering Lab’s Design Repository contains design information for over 125 consumer

based electro-mechanical products. Design information captured by the repository can

be divided into seven main categories including: artifact-, function-, failure-, physical-,

performance-, sensory- and media-related information types. The different levels of

abstraction and types of design information provide innovative ways to approach

design. With a well populated repository, emerging concept generator algorithms take,

as input, basic product functionality or component information and instantaneously

develop, filter and rank concepts to use as baselines for further product development.

While the possibilities design repositories offer are diverse and helpful to designers, the

implementation of such repositories are crucial to their overall success and usefulness.

Realizing the potential impact of an operational Design Repository, researchers at

Missouri S&T, The University of Texas at Austin and the National Institute of Standards

and Technology (NIST) began gathering artifact information in 1999 [14-16]. Since that

time, the process in which artifact data is gathered and recorded has changed

significantly. Initially, artifact design information was recorded in spreadsheets and

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM),

and Design Structure Matrices (DSM). While this type of information was useful, it was

also limited in scope and the required matrix multiplications were quite cumbersome. A

102

prior Design Repository initiative by NIST helped to guide the Design Repository

project at Missouri S&T to a more mature state. To enhance data integrity, design

information was migrated from spreadsheet form to a relational database. A web-based

repository navigator including search and design tool generation features was created

along with a repository entry application.

More recently, Missouri S&T has further partnered with UT-Austin [9, 10], Penn

State [17], Virginia Tech, Bucknell [18], University of Buffalo and Texas A&M to expand

the types of design information and breadth of design tool features within the repository.

The Design Repository serves as a hub for designers for information exchange and

design generation tools and is heavily utilized in the current VOICED project.

Information entry and retrieval occurs within a standalone application [19] (available at

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs

over the Internet through the Design Repository’s web portal

(http://repository.designengineeringlab.org/). The infrastructure supporting these two

applications is the Design Repository database and schema [17]. The database schema

establishes what types of design information can be stored, the relationship of those

elements and the extensibility of including new and additional types of design

information.

2.2 Component Naming Taxonomy
The component naming taxonomy is a hierarchal naming system for engineering

components [6, 7]. The taxonomy is a functional approach to component identification

contains three levels of identification; 1.) the Primary Component Classification, 2.) the

Secondary Component Classification, and 3.) the Component Term level. There are 8

different primary component classifications used to describe the generic function of a

component. The secondary level adds specificity to the primary component level. For

example, the primary level term channelers describes 3 secondary level terms:

importers/exporters, transferors, and guiders.

103

Each secondary level term is then further decomposed to the component term

level. Table 1 shows a portion of the component naming taxonomy for the component

level terms of material suppliers (reservoir, container, bladder, and pressure vessel) and

guiders (hinge, tube, diode, bearing, link, sled). Component terms are then associated

with thesaurus derived synonyms and a detailed definition.

Table 1. Component Naming Taxonomy

Comp. Term Synonyms Definition

Reservoir cup, vessel,
bucket, bottle

A device in the form of an open tank used to accumulate
and dispense a material.

Container box, receptacle,
holder

A device in the form of a closed canister used to
accumulate and dispense a material.

Bladder balloon
A device in the form of a hollow, expandable sac or
membrane with a narrow opening used to accumulate
and dispense a material.

Pressure
Vessel

air tank, gas
tank

A device in the form of a sealed tank used to accumulate
and dispense a pressurized fluid material.

Hinge
pivot, axis, pin,
hold down,
jam, post, peg,
dowel

A device that allows rigidly connected materials to
rotate relative to each other about an axis, such as the
revolution of a lid, valve, gate or door, etc.

Tube
pipe, cylinder,
conduit,
channel, duct,
nipple, sleeve

A device in the form of a hollow body, usually
cylindrical and long in proportion to its diameter, used
to direct fluid material along a path.

Diode A semiconductor device which allows current to flow in
only one direction.

Bearing journal bearing,
thrust bearing

A device in the form of a ball or arrangement of balls
that is placed between moving parts to allow them to
move easily relative to each other along a path.

Link
connection,
pawl, rod, strut,
brace, cross
piece, girder

A device connecting two or more components that
transmits motive power from one part to another along
a specific path.

Sled shoe, runner,
skid

A device either under or within a machine used to
facilitate the sliding of components relative to each
another along a path.

104

2.3 Natural Language in Engineering
The thrust of natural language interpretation is to remove formality as a

requirement to computational activities and to stray away from specific terms and

taxonomies. Recently there has been a great deal of work developing natural language

terms to aid in biological inspired design [20-22]. Biological inspired design strives to

bring elements and attributes that occur in nature to man-made products and processes.

Unfortunately most engineers and designers know the language of engineering, not the

language of biology. Natural language processing in this regard attempts to link what

would be considered an engineering vocabulary to a biology/science vocabulary.

In order to develop a natural language translation for biological inspired design

Chiu and Shu make use of keyword searches [20, 21]. Lexical references are then

established by performing keyword searches on existing biological texts and articles.

Without the wealth of existing published material it would be nearly impossible to

develop such relationships. Chakrabarti et al. detail a method for developing analogies

to link the natural and artificial world [22]. All of these works aim to better formalize

biomimetic design, however, perhaps more fundamental is the goal making existing

knowledge more accessible a synonym list or domain to domain thesaurus.

3 RESEARCH APPROACH: FORMULATING NATURAL LANGUAGE
SYNONYMS

In this section, we examine repository data from a functional and artifact naming

standpoint for two classes of the component naming taxonomy to guide the natural

language interpretation activity. The section begins with a brief explanation of how the

design repository stores artifact name, component naming term, and functional

information. Next, Sections 3.2 and 3.3 examine functionality and naming statistics for

both material suppliers and guiders.

3.1 Repository Conventions
The design repository contains over 5500 unique artifacts with over 99% of those

artifacts also having a component naming term. Component naming information is

105

recorded using two separate database tables within the design repository. The artifact

table allows for a common name to be associated with a particular artifact as well as

point to a component naming term in the component_basis_type table. Designers who

enter information in the design repository are allowed to specify an artifact’s common

name. There are no restrictions on an artifact’s common name as long as it appropriately

describe the component. Often times an artifact’s common name will take the form

“small dc motor” or “upper half case.” Along with the common name designers are also

allowed to specify a component term of the component naming taxonomy. For example

an artifact with a common name of “small dc motor” should have a component name of

“motor.”

Functionality is recorded in a similar fashion and makes use of the functional

basis for the allowed function and flow terms. Each artifact within the repository can

have as few or as many associated functions and flows. A function-flow pair must be

linked to an artifact and cannot be recorded independently.

3.2 A Functional Perspective
Next we examine how component naming terms are associated with

functionality. The goal of this section is to determine the level of similarity or

dissimilarity of component classes with regard to function. A high degree of function

similarity within a component class would suggest component synonyms could be

associated with the secondary level of the component naming terms. Significant

dissimilarity, however, would suggest that component synonyms should be associated

with the component level of the component naming taxonomy.

3.2.1 A Functional Look at Material Suppliers
Material suppliers include the component naming terms of bladder, container,

pressure vessel and reservoir. At the time of analysis there were no artifacts in the

repository labeled as a bladder, thus the term is removed from analysis. For the

remaining components the top 6 functions for each are listed along with an incremental

106

percentage, shown in Table 2. The incremental percentage is a running percent total of

overall function representation. For example, the function store represents 31.82% of all

of the functions associated with the component naming term container. Likewise the

functions store and import combined represent 48.86% of all functions associated with

the component naming term container.

Table 2. Functions Associated with Material Suppliers

The top 6 functions are shown for the container, pressure vessel and the reservoir.

While performing the analysis we observe that in general 70% of all functionality is

captured within the first 30% of the population of unique function terms. This

phenomenon, known as Pareto Optimum, is better shown by Table 3 which contains a

full listing of functions associated with a reservoir [23, 24]. The first column is the

function term, the second column is the number of times that function is performed by a

reservoir, the third column is a running percent of unique function terms (i.e., there are

15 unique terms each representing 6.67% of the population), the fourth column is the

overall percentage a function exists when compared to the number of total functions,

and the fifth column is a running summation of the fourth column. The function

position is realized within approximately the first third of the population and at that

point over 70% of all functions have been realized.

107

Table 3. Full Function Listing for Reservoir

Table 2 shows significant function overlap for material suppliers. The functions

import, export and store are observed to occur for each component naming term. The

function supply is also seen by 2 of the 3 components. This data suggests that material

suppliers are overall functionally similar.

3.2.2 A Functional Look at Guiders
As with material suppliers it was noticed that in general 70% of all instances of

function are realized within the first 30% of the population. Table 4 shows the full listing

of functions associated with the component naming term tube in the same fashion as

Table 3. There are 18 different functions solved by a tube with over 80% of all functions

realized within the first third of the population. These results are a bit higher than most

function realization relationships but are still considered to be in line.

108

Table 4. Full Function Listing for Tube

Table 5 summarizes all 6 guider component naming terms. Unlike material

suppliers there is only a single function that appears for each of the component naming

terms. The function guide appears at varying frequencies for each term, but still realized

within the first 70% of all function instances. With the exception of diode, the remaining

guiders are mostly similar duplicating the functions transfer, import, export, and guide.

Conceptually this data is self supporting, you would not expect a diode to be similar to a

hinge.

3.3 A Component Perspective
The method for component naming analysis is slightly more complex than the

functional analysis. Complexity is introduced because users are allowed to name

individual components while also assigning a component naming term. Common

names for individual components may take the form of a single word such as “cup” or

several words such as “lower left drip cup.” From a computational standpoint it is very

109

easy to aggregate single words of the same tense. It is much more difficult to

automatically parse the phrase “lower left drip cup” into a single component name.

Table 5. Functions Associated with Guiders

In order to analyze common component names with respect to their naming

taxonomy a script was developed to first parse through the given common names. The

script begins by creating a new database table to store alternate common names for a

particular artifact. Any existing given component name that is a single word is then

copied to the corresponding spot in the alternative name table. The script then prompts

a user to enter new alternate names for the remaining common names. For example, a

user would enter an alternate name of “cup” for the common name “lower left drip

cup.” The script then places “cup” as an alternate name for all artifacts with a common

name of “lower left drip cup.” Replacing all common name matches with the same

alternate name allows for consistency in how data is interpreted. Approximately half of

110

the existing common artifact names were replaced with a new alternate name during

this process.

A query was then structured to relate an artifact’s component naming term to its

new alternative name. One would expect for natural language terms to be associated

with the secondary class of component terms if there is a high degree of overlap for

component names. If there is a low or more singular relationship of common names and

component naming terms it is proposed that the natural language synonyms be

associated at the term level of the component naming taxonomy.

3.3.1 A Component Look at Material Suppliers
For analysis of material suppliers, only the component naming terms reservoir

and container are included. The term bladder is not observed within the repository and

the term pressure vessel is only seen 3 times, each time with a common name of pressure

vessel. Because of the non-existent and limited data, Table 6 only examines common

names associated with reservoir and container. Both terms are associated with 17

unique common names. Shown in italics are common names that are repeated between

both component naming terms.

Again, the number next to a common name represents the number of times that

common name has been associated with the corresponding component naming term.

Since each term has 17 unique components their percent of the unique population

column is the same, shown in the first column. The third column for each term is the

percent representation of a common name seen across the entire data set and the fourth

column is a running summation of the third column. Common names for reservoir

again closely match the 70/30 Pareto optimality seen throughout the repository.

Optimality (70/30) is not however recognized for container, but is on the lower bound of

data seen across the repository.

111

In total, 76.9% of all instances of a container have also been denoted as a

reservoir and 70% of all occurrences of a reservoir have also been labeled as a container.

The high overlap suggests that users see the two component naming terms as synonyms.

Recalling component naming term definitions detailed in Section 2.2, the main

distinguishing factor between the two terms is that a container is closed while a

reservoir is open. Perhaps a confusing point for users is how to treat a container or

reservoir that have an open and closed state. The close overlap of terms suggests that

synonyms for reservoir and container could be associated with the higher level term

material suppliers without much confusion.

Table 6. Component View of Material Suppliers

3.3.2 A Component Look at Guiders
Table 7 shows a detailed view of common names associated with the component

naming term link. Again it is worth mentioning that 70% of all common name instances

112

are again realized within the first 30% of the population. A summary of all guider

component terms is shown in Table 8. Unlike for material suppliers there is not a large

amount of overlap between the varying terms.

Hinge, sled, link, and tube do have some instances of component overlap, but

not as often as with material suppliers. It is worth noting that common names for

bearing and diode are almost always the same as their respective component naming

term. This may be because bearing and diode are both very specific, non-ambiguous

components and are not often realized with varying types of form. The remaining

guider terms carry a higher level of ambiguity as shown by their associated common

names. Users have used the term sled to describe artifacts ranging from a car to a bolt,

two artifacts that share no commonality.

Table 7. Detailed Component View of Link

113

Table 8. Component View of Guiders

4 RESULTS
Based on the functional and common naming analyses performed above, it is

apparent that a hybrid approach is needed to formulate a natural language to

component naming synonym method.

4.1 Combining Two Viewpoints
Neither common naming information or functional information alone suggest

how to begin linking natural language synonyms. There are cases where an entire class

of component naming terms overlap and others with hardly any overlap. Some

component naming terms have overlapping common names and others have minimal

overlap. For guiders, with the exception of the term diode, all components within a

class appear to have a great deal of functional overlap, but minimal naming overlap. For

material suppliers there is both functional similarity as well as common name overlap.

If synonyms are associated with the secondary level of the component naming

taxonomy, there would be several cases where common names would not seem like they

114

belong together in the same list such as car and diode. If synonyms are to be associated

with the component level of the component naming the question is how to appropriately

address repeated common names. Should common names only be associated with a

single component naming term, and if so what rules can be developed to determine

where to assign a particular synonym? Looking back at the reservoir and container data

users consistently use tray, carafe, and cup to describe both naming terms. Should tray

be associated with container instead of reservoir because it has one more occurrence

with container? Functionally reservoir and container are nearly identical and using

either tray, cup, or tank would result in the same overall functional representation. Since

the goal is to ultimately use the natural language terms to generate a functional model,

duplication of common terms is necessary.

4.2 Proposed Method
In order to implement the hybrid strategy outlined above, a step by step method

for gathering natural language terms from existing repository data is formulated here.

Step 1) Reduce verbose common names to their root by removing any unnecessary

descriptors. For example “lower left ac cover” would become “cover.”

Step 2) Generate a list of all common names and their rate of appearance associated with

a given component naming term.

Step 3) Remove conflicting component naming terms that may exist within the list of

common component names. A conflict occurs when a different component naming term

appears in a list of common names for another component naming term. For example,

the common name container (also a component naming term) appears in the listing for

the naming term reservoir. For this case container would then be removed from the list

of common names associated with a reservoir (shown in Table 9).

Step 4) Calculate the percent representation and a summation of percentages of each

common name across the population and order from highest to lowest. An example is

shown in Table 9.

115

Table 9. Reservoir Synonym Data Table

Step 5) Accept all common names as natural language synonyms up to and including all

terms required to reach a 70% threshold of the population. The highlighted terms from

Table 9 would then be added as natural language synonyms for component naming term

reservoir. Synonym terms listed in the component naming terms (shown in Section 2.2)

will also be included in the overall set of natural language synonyms.

The 5 step algorithm shown will allow for synonym terms to be duplicated for

different component naming terms. For example, the term tank would be listed as a

synonym for both a reservoir and a container. If a user were to specify the component

tank in FFF all artifacts tagged as a reservoir or container will be used for further

functional analysis. As shown in Section 3.2 it is expected that overlapping terms will

have similar if not identical functionality.

5 COMPONENT NAMING SYNONYMS
This section presents the natural language component synonyms (Table 10)

found using the method shown in Section 4.2. Only component basis terms that have

occurred in the repository are shown.

116

Table 10. Natural Language Synonyms

Component Basis Term Natural Language Synonyms
abrasive sand paper, conductor, switch, sensor
acoustic insulator muffler
agitator stirrer
airfoil airfoil, wing
battery battery
bearing bearing
belt belt, webbing, zip tie
blade blade
bracket bracket
brush brush, bristle, ring
burner burner, sparkler
cam cam, counterweight, converter
cap cap, plug
capacitor capacitor
carousel carousel, turntable, scraper
choke coil
circuit board chip, control board
clamp clamp, gripper, caliper, chuck, clip, collet, crimp
clutch clutch, actuator, spacer
condenser condenser

container basket, carafe, container, holder, tank, drum, tray,
hopper, compartment

cover cover, plate, lid
crank crank
cushion pad, cushion, panel, dampener, bushing, foam
diode diode
divider spacer, divider, plate
door door, window
electric conductor crimp, conductor, connector, power cord, contact
electric cord plug and cord, power cord
electric distributor bus

electric insulator insulator, backing material
electric motor motor
electric plug plug and cord, plug, inner connection
electric resistor resistor
electric socket socket, input, outlet, jack
electric switch switch, button
em sensor antenna, bar
extension holder
fan fan, impeller

117

Table 10. Natural Language Synonyms (cont.)

Component Basis Term Natural Language Synonyms
fastener fastener, bolt, weld, nut
flywheel bobbin, holder, hammer
friction enhancer grip, pad, feet, filter, clip, tape, roller, sticker
fuse fuse
generator alternator
handle handle
heat exchanger mass, peltier device, chamber, radiator, pipe
heating element heater
hinge hinge, pin, rivet, joint
housing housing, case, shell
hydraulic piston piston, bolt, plunger

hydraulic pump cylinder, pump
ic motor engine
inclined plane Slope
inductor inductor, transformer

insert liner, pin, drop forward, connector, insert, bushing,
die

knob knob, button, pad
latch release clip, button, lock, release, brake, holder, pin, switch
lens lens
lever lever, pedal, trigger, actuator, control lever
light source lamp, bulb
link linkage, link, rod, bar, pin, arm
magnet magnet, rails
material filter filter, bag, grate pre-filter
mechanical transformer transformer, dashboard
needle needle, mount
nozzle nozzle, shower head, neck, guard
pneumatic piston piston, booster

pneumatic pump pump
pressure gauge gauge
projectile ball
punch punch
reservoir tank, reservoir, bowl, carafe, cup, tray
rotational coupler coupler, rotor, input, coupling
screw propeller impeller
seal gasket, o-ring, seal
shaft shaft, axle, driveshaft
sled car, bracket, plate, bolt, button

118

Table 10. Natural Language Synonyms (cont.)

Component Basis Term Natural Language Synonyms
speaker speaker
spring spring

stop stop, snap ring, lock washer, stopper, feet, sphere,
gear lock, bumper, visor

stuffing foam

support plate, support, ring, mount, base, pin, clip, holder,
bar, frame, guide, foot, spacer, body

thermal conductor plate

thermal insulator shield, ceramic, fiberglass, insulator
thermostat thermostat, sensor
transistor junction, chip, solid state silver bond, transistor
tube tube, hose, pipe, line, faucet
valve valve, stopper, flap, sieve
visual indicator gauge, guide, plate, ball
washer washer
wheel wheel, rotor

6 CONCLUSIONS AND FUTURE WORK
This work establishes the natural language interpretation foundation necessary

to support the envisioned Form Follows Form method. Natural language interpretation

of components is essential to allow novice engineers and designers to specify an initial

product concept that, once interpreted, can be parsed and used as input for existing

concept generation algorithms. This ability, paired with the emerging Form Follows

Form method, is anticipated to make design more accessible to the larger engineering

community by removing the need to be well versed in naming taxonomies

The natural language to component naming terms method presented establishes

an approach that imbues a machine with the ability to learn the association between

human speak and the standardized set of component naming terms as the knowledge

base in the Repository. An initial set of natural language to component naming terms is

generated by the AI method for the current state of the Design Repository and

119

presented. After review of the results, we observe that the normative nature of the

Design Repository (i.e., entry by many different contributors with varying descriptive

styles) indeed captures a wide array of natural language terms that support the

interpretation algorithm.

Future work includes the task of monitoring common names associated with

artifacts as additional products are cataloged. There may be the need to update or

modify the parsing algorithm as more products are added to the repository systems.

This work also establishes a framework for analyzing the component naming taxonomy.

As shown in Section 5 there are several component naming terms that have not yet been

used to represent a single artifact. Further analysis may find that the component basis

taxonomy naming terms could be removed or modified.

It is possible that additional natural language synonyms could be found using

alternate sources. Additional synonyms could possibly be found by searching

engineering catalogs, patents, and texts. This process would also help to verify the

natural language synonyms that have already been identified in this work. Natural

language synonyms could also be realized and verified by using language sources such

as WordNet (http://wordnet.princeton.edu/). WordNet may best aid by adding natural

language synonyms to component basis terms not yet realized within the design

repository.

REFERENCES
[1] Otto, K., and Wood, K., 2001, Product Design: Techniques in Reverse

Engineering, Systematic Design, and New Product Development, Prentice-Hall,
New York.

[2] Pahl, G., and Beitz, W., 1996, Engineering Design: A Systematic Approach,
Springer Verlag.

[3] Ullman, D. G., 2002, The Mechanical Design Process 3rd Edition, McGraw-Hill,
Inc., New York.

[4] Ulrich, K. T., and Eppinger, S. D., 2004, Product Design and Development,
McGraw-Hill/Irwin, Boston, MA.

120

[5] Bryant, C., Bohm, M., Stone, R., and Mcadams, D., 2007, "An Interactive
Computational Design Tool: A Hybrid of Two Methods," Proc. Proceedings of
the IDETC/CIE 2007, Las Vegas, NV, DETC2007-35583.

[6] Bryant, C., Stone, R., Greer, J. L., Mcadams, D., Kurtoglu, T., and Campbell, M.,
2007, "A Function-Based Component Ontology for Systems Design," Proc.
International Conference on Engineering Design, ICED‘07, Paris, France, Paper
643.

[7] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and Mcadams, D., 2008, "A
Component Taxonomy as a Framework for Computational Design Synthesis,"
Journal of Computers and Information Science in Engineering, Accepted, to
appear(

[8] Kurtoglu, T., and Campbell, M., 2007, "Exploring the Worth of Automatically
Generated Design Alternatives Based on Designer Preferences," Paris, France.

[9] Bryant, C., Mcadams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2005, "A
Computational Technique for Concept Generation," Proc. Proceedings of
IDETC/CIE 2005, Long Beach, CA, DETC2005-85323.

[10] Bryant, C., Stone, R., Mcadams, D., Kurtoglu, T., and Campbell, M., 2005,
"Concept Generation from the Functional Basis of Design," Proc. International
Conference on Engineering Design, ICED 05, Melbourne, Australia.

[11] Kurtoglu, T., and Campbell, M., 2008, "Automated Synthesis of
Electromechanical Design Configurations from Empirical Analysis of Function to
Form Mapping," Journal of Engineering Design, Accepted, To Appear
(http://www.informaworld.com/10.1080/09544820701546165).

[12] Kurtoglu, T., Campbell, M., Gonzalez, J., Bryant, C., Stone, R., and Mcadams, D.,
2005, "Capturing Empirically Derived Design Knowledge for Creating
Conceptual Design Configurations," Proc. Proceedings of IDETC/CIE 2005, Long
Beach, CA, DETC2005-84405.

[13] Russell, S. J., and Norvig, P., 2003, Artificial Intelligence: A Modern Approach
(2nd Ed.), Prentice Hall, Upper Saddle River, NJ.

[14] Bohm, M., Stone, R., and Szykman, S., 2005, "Enhancing Virtual Product
Representations for Advanced Design Repository Systems," Journal of Computer
and Information Science in Engineering, 5(4), pp. 360-372.

[15] Szykman, S., Sriram, R., and Regli, W., 2001, "The Role of Knowledge in Next-
Generation Product Development Systems," Journal of Computer and
Information Science in Engineering, 1(1), pp. 3-11.

[16] Szykman, S., Fenves, S., Shooter, S., and Keirouz, W., 2001, "A Foundation for
Interoperability in the Next-Generation Product Development Systems,"
Computer-Aided Design, 33(7), pp. 545-559.

[17] Bohm, M., Stone, R., Simpson, T., and Steva, E., 2008, "Introduction of a Data
Schema: To Support a Design Repository," Computer-Aided Design, 40(7), pp.
801-811.

[18] Shooter, S., Simpson, T., Kumara, S., Stone, R., and Terpenny, J., 2005, "Toward a
Multi-Agent Information Management Infrastructure for Product Family
Planning and Mass Customisation," International Journal for Mass
Customisation, 1(1), pp. 134-155.

121

[19] Bohm, M., Vuchovich, J., and Stone, R., 2007, "An Open Source Application for
Archiving Product Design Information," Proc. Proceedings of DETC’07, Las
Vegas, NV, DETC2007-35401.

[20] Chiu, I., and Shu, L., 2007, "Biomimetic Design through Natural Language
Analysis to Facilitate Cross-Domain Information Retrieval," Artificial Intelligence
for Engineering Design, Analysis & Manufacturing, 21(pp. 45-59.)

[21] Chiu, I., and Shu, L., 2007, "Using Language as a Related Stimuli for Concept
Generation," Artificial Intelligence for Engineering Design, Analysis &
Manufacturing, 21(pp. 103-121.)

[22] Chakrabarti, A., Sarkar, P., Leelavathamma, B., and Nataraju, B. S., 2005, "A
Functional Representation for Aiding Biomimetic and Artificial Inspiration of
New Ideas," Artificial Intelligence for Engineering Design, Analysis &
Manufacturing, 19(pp. 113-132.)

[23] Luc, D. T., 2008, Pareto Optimality, Game Theory and Equilibria, Springer New
York, Chap. 481-515.

[24] Deb, K., 2001, Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley and Sons, New York.

122

5. FORM FOLLOWS FORM – IS A NEW PARADIGM NEEDED?

Matt R. Bohm
Robert L. Nagel

Robert B. Stone, Ph.D.
Design Engineering Lab

Department of Interdisciplinary Engineering
Missouri University of Science and Technology

Rolla, MO 65409

ABSTRACT
This paper presents a new form-based concept generation technique known as

Form Follows Form (FFF). The technique allows a novice engineer or designer to use

natural language to specify components envisioned within a product to initiate a more

thorough concept generation process. Form follows form takes the initial component

solution and then formulates the underlying function structure by leveraging a

repository of over 5500 artifacts. Existing computational conceptual design methods are

then employed to automatically display a set of ranked concept alternatives to the user.

Users can choose from two different levels of interaction, an automatic mode that uses

the most common functions to develop concept alternatives, or a mode that allows the

user to be more precise in defining a product’s interaction. The computational

algorithms and grammar rules are detailed along with a case study using both tiers of

interaction.

1 INTRODUCTION
Today the United States is the leader in technology innovation. That innovation

or creativity results from funded national initiatives (e.g. NSF, DoD), from large

companies supporting their own research to stay competitive (e.g. Intel, 3M, Boeing,

Northrop Grumman, Apple) and from smaller companies driven to address a perceived

market need. The nation’s standing as an innovation leader is now more tenuous than it

123

has been in the past half-century due to a number of factors ranging from the current

economic downturn to the effects of globalization and emerging economic forces in

formerly third-world countries. Now, more than ever, methods that support innovation

need to be studied to ensure quality of life continues as expected. Innovative concept

generation is still widely viewed as a magical quality largely not characterized by

scientific phenomena. Ideas about fostering innovation in product design have been

rampant in psychological and design literature in the last twenty years, but no definitive

studies have emerged to prescribe practices that positively impact creativity or

innovation.

Collaborative research projects with national labs, defense agencies and industry

coupled with teaching engineering students, we have observed that most often

engineers and designers think in terms of components. They visualize the physical

implementation instead of interpreting the functional requirements. For example,

engineers in NASA JPL’s Team X select from standard space systems when developing a

mission and its subsequent spacecraft, even though unknown, new, emerging systems

may ultimately be implemented on the actual spacecraft. When GM’s design for six-

sigma engineers try to associate performance equations with customer demand through

automotive sub-system functionality, often the functional description created contains a

mix of components and pseudo-functions and is not necessarily computable using

existing methods .

This paper reports on efforts to 1) capture components within an envisioned

concept or design, 2) infer user intent of the designated components, and 3) apply a set

of grammar rules to output a resulting functional model. Section 3 presents technical

details of capturing concept information and the set of grammar rules used for

functional model generation. Section 4 begins by demonstrating functional model

generation using FFF using two different levels of user involvement. Finally, Section 4

compares a human generated functional model to the FFF counterpart.

124

2 BACKGROUND
In this section we present an overview of current and emerging concept

generation techniques. We begin in Section 2.1 by reviewing techniques associated with

manual concept generation activities. Sections 2.2 and 2.3 outline more recent efforts to

apply artificial intelligence (AI) techniques to concept generation. Finally, a brief

overview of a design repository is presented in Section 2.4.

2.1 Concept Generation Techniques
A variety of concept generation methods exist for application to engineering

design problems – from those that are common practice within the field of design to the

more modern computer aided concept generation methods. Many researchers have

sought to formalize the conceptual design phase. Antonsson and Cagan concisely define

the notion of 'formal' as “...computable, structured, and rigorous, not ad hoc” [1].

Furthermore, by founding concept generation techniques on functionality, solution-

independent design descriptions can be built [2]. Such methods generally rely on a form

of functional decomposition of the overall problem to initiate the search for physical

design solutions during conceptual design. Whether driven in this function-based

manner or otherwise, much variability is exhibited in just how this search is carried out

depending on the method chosen. This reflects the variety of perspectives that have

been suggested for addressing the conceptual design problem and a sampling of the

major themes is reviewed next.

2.1.1 C-Sketch/6-3-5 Method
The 6-3-5 method is a generic technique that supports innovative thinking [3]. In

6-3-5, members of an engineering design team (optimally 6-8 members) generate,

interpret, and modify the individual ideas of other team members by first brainstorming

and sketching individually on three ideas for various aspects of the product, then

passing their ideas to the next team-member who adds additional ideas and sketches. C-

Sketch is a variant of the 6-3-5 method wherein members produce only sketches and

refrain from communicating verbally when passing ideas to the next member [4].

125

Passing only sketches allows other team members the opportunity to interpret the

concepts in a different manner than the original author, thereby increasing design

diversity.

2.1.2 The Catalog Design Method
Another approach, referred to as catalog design, is based on a catalog of physical

elements (components, assemblies, etc.) that can be browsed for solutions that match

required performance specifications. The data for design catalogs are limited to some

degree insofar as these design catalogs are generally a subset of previously designed

systems, which leads to the issue of potential novelty restrictions. However, a major

benefit of catalog design is the ability to utilize design knowledge that falls outside

human memory [5-7]

2.1.3 Design by Analogy
In Design by Analogy, a functional model is created of the product being

designed. Examining analogous products or components that perform the same

function generates solutions to the present design problem. The designer then evaluates

these similar components for appropriateness in solving the given design problem [8].

One Design by Analogy method widely recognized in the engineering design

community is the Theory of Inventive Problem Solving, or simply TRIZ. TRIZ was

developed by Altshuller during the 1940-50’s period and was based on the examination

of large numbers of existing patents [9]. The end result of this effort is an engineering

design approach that identifies a set of conflicts that occur in design along with a set of

principles that can be applied to generate solutions that solve these conflicts.

2.1.4 Morphological Matrix Method
The morphological matrix introduced by Zwicky is now a classic technique for

use in conceptual design [10]. This method provides the design engineer with a simple,

albeit manual, means for bookkeeping potential physical solutions and their

corresponding functionality.

126

2.2 Foundations in Automated Concept Generation
The front end of the conceptual design process has seen few attempts at

automation, perhaps due in part to the evolving strategies and methodologies that exist

for this phase of design. However, over the past decade, several methodologies have

coalesced around the functional decomposition and partial solution manipulation

techniques originally introduced by Pahl and Beitz [11], e.g., [12-21]. These

methodologies take a designer through a set of steps to help decompose a design

problem and build conceptual solutions based on the functionality that a product needs

to exhibit. Function modeling methods abstract the functionality that a solution must

fulfill from the established customer needs, ideally removing designer biases that may

be introduced by focusing on specific solutions too early in the design process. This

abstraction helps a designer generate more complete conceptual solutions and balance

design choices between different components with the same functionality [11].

Research into the benefits of structured design methods (e.g., [22]) coupled with

research into designers’ reluctance to use them (e.g., [23, 24]) seem to point toward the

need for the seemingly tedious stages of systematic design to employ some level of

automation to help integrate the benefits of a structured method with the more natural

activities of a designer – a need that is most evident during the early phases of

conceptual development.

Computational tools for conceptual design do exist, yet these tools often address

areas that support aspects such as initial requirements gathering (e.g., organizational

tools such as the TikiWiki project [25], the creation of function structures (e.g., the

function grammar tool developed by Sridharan and Campbell [26]), or optimization of

well-established concepts (e.g., [27]) rather than the translation of functional

requirements into creative solutions).

127

2.3 The State of the Art in Automated Concept Generation
Computerized concept generation techniques, spanning the broad AI topics of

knowledge representation and reasoning, promise engineers a faster realization of

potential design solutions based upon previously known products and implementations.

While the area of automated concept generation has made great strides in recent years,

most methods still require the user to indicate desired functionality. Using functional

descriptions has been shown to help engineers stray away from pre-trained ideas of how

a product or device would look and operate, although can cause confusion for engineers

and scientists who have not been trained to describe product functionality. Two of the

automated concept generation methods under development today rely solely on the

user’s ability to develop functional descriptions of their desired product. Both of these

methods make use of a repository of design information including component

connection information and component functionality.

The recent foundations for concept generation through computational reasoning

have been developed based on formalisms for describing function or purpose in

engineering design largely led by members of our research team [28, 29]. Some of the

results of this research include the development of a design repository to allow

designers to store and retrieve design knowledge at various levels of abstraction, from

form (components, sub-assemblies and assemblies) to configurations to function.

Offering a fully functional and intuitive way to record product design information has

been key to the acceptance of repositories as an important concept generation tool for

designers. A prototype design repository framework by NIST guided the design

repository (discussed further in Section 2.4) project to a more mature state.

The bank of empirical knowledge relating components to functions leads to the

development of relational matrices [30, 31] and graph grammar rules [32, 33] that, when

combined with a search mechanism, automatically creates conceptual designs. Aiding

the methods set forth by Bryant and Kurtoglu [34, 35] is a component naming taxonomy

128

spanning 140 different component classifications. With the open-endedness or large

degree of variability in conceptual design, numerous solutions are created through the

search mechanisms (on the order of thousands). Presenting these thousands of solutions

to the user is similar to an Internet search that produces thousands of results. It is

overwhelming to the user and impractical to expect that such a large number of

alternatives will be useful to the designer. Furthermore, the results showed that subtle

challenges in a given design problem may not always be captured in the specification of

initial function, and thus many results were not relevant to the user’s needs [36, 37]. As

a result, the proof of concept Designer Preference Modeler [38, 39] was created to find

within the large set of results which concepts were most meaningful to the designer. By

ranking select concepts, the search mechanism learns what aspects of the concept the

user prefers, and seeks solutions that maximize the predicted preference. Initial results

for this method are promising, but the impact they have on the design process is still

unclear.

2.4 The Design Repository
The objective of a Design Repository is to allow designers to store and retrieve

design knowledge at various levels of abstraction, from form (components, sub-

assemblies and assemblies) to architecture description to function. Currently the

Missouri S&T Design Repository contains design information for over 125 consumer

based electro-mechanical products. Design information captured by the repository can

be divided into seven main categories including: artifact-, function-, failure-, physical-,

performance-, sensory- and media-related information types. The different levels of

abstraction and types of design information provide innovative ways to approach

design. With a well populated repository, emerging concept generator algorithms take,

as input, basic product functionality or component information and instantaneously

develop, filter and rank concepts to use as baselines for further product development.

129

While the possibilities design repositories offer are diverse and helpful to designers, the

implementation of such repositories are crucial to their overall success and usefulness.

Realizing the potential impact of an operational Design Repository, researchers at

Missouri S&T, The University of Texas at Austin and the National Institute of Standards

and Technology (NIST) began gathering artifact information in 1999 [40-42]. Since that

time, the process in which artifact data is gathered and recorded has changed

significantly. Initially, artifact design information was recorded in spreadsheets and

mainly took the form of Bills of Materials (BOM), Function Component Matrices (FCM),

and Design Structure Matrices (DSM). While this type of information was useful, it was

also limited in scope and the required matrix multiplications were quite cumbersome. A

prior Design Repository initiative by NIST helped to guide the Design Repository

project at Missouri S&T to a more mature state. To enhance data integrity, design

information was migrated from spreadsheet form to a relational database. A web-based

repository navigator including search and design tool generation features was created

along with a repository entry application.

More recently, Missouri S&T has further partnered with UT-Austin [30, 31], Penn

State [43], Virginia Tech, Bucknell [44], University of Buffalo and Texas A&M to expand

the types of design information and breadth of design tool features within the repository.

The Design Repository serves as a hub for designers for information exchange and

design generation tools and is heavily utilized in the current VOICE project.

Information entry and retrieval occurs within a standalone application [45] (available at

http://designengineeringlab.org/repositoryEntry/) while information retrieval occurs

over the Internet through the Design Repository’s web portal

(http://repository.designengineeringlab.org/). The infrastructure supporting these two

applications is the Design Repository database and schema [43]. The database schema

establishes what types of design information can be stored, the relationship of those

130

elements and the extensibility of including new and additional types of design

information.

3 RESEARCH APPROACH
In order to explore the possibility of a form-initiated, AI-enabled concept

generation paradigm, initial steps require a systematic approach to abstracting

functional descriptions from an initial form-based concept seed. From there, the AI

generated functional model can be used as input to the existing concept generation

algorithms (from Section 2.3). The overall research approach followed is decomposed

into three specific activities.

1) Capture chains of envisioned components for a given concept by using computer
parse-able natural-language component terms;

2) Capture designer preferences to determine intent of the concept; and

3) Explore AI reasoning approaches to derive a functional representation of the
concept.

3.1 Objective 1 – Capturing Chains of Components
Users are allowed to specify an initial solution by listing chains of components

envisioned in their product by using an augmented component naming taxonomy [46].

This is a task that initially appears to be simple, however, there are several ways one

could describe information about components such as a DSM or a simple listing of

components. Since ease of use and accessibility are key drivers of this research, asking a

user to first generate a component connection matrix would be a cumbersome task.

Alternatively, a simple list of components may not effectively capture the intent of the

user (that is component connection and ordering). From a computational standpoint,

information regarding components needs to, at a minimum, infer how the user intends

those components to be connected to one another. For example, a user lists out wire,

shaft and motor as components in a concept. A basic search of the design repository

would show those components have not been observed to connect in that particular

order. It is therefore necessary to build a framework that allows for an easy and logical

131

manner to gain information about components in a particular concept. With a semi-

logical ordering of input components, algorithms will be better positioned to statistically

determine the intended component order.

Figure 1 shows the proposed approach to capture a perceived concept. The

example shown in Figure 1 contains the basic components of an ice tea maker and will

be used throughout the remainder of this paper. Users are asked to enter components as

a series of discrete chains. As shown, the first chain of components includes a cord,

switch, and a heating element while another may consist of a tank, tube and a condenser.

Once chains are entered a user is allowed edit, remove or reorder specific chains or

components.

Figure 1. Component capture screenshot

3.2 Objective 2 – Determining User Intent
At this stage designer preferences are needed in order to provide additional

information such that computational reasoning about the intended use of their product

may proceed. Once the component chains are designated by the user it will be necessary

132

to systematically determine the intended use of particular components. Data from the

repository will be utilized to determine which functions and flows are solved by each of

the given input components. Most artifacts in the repository are given a common name

as well as a more accurate component basis taxonomy name [34, 35]. For example, a

user might list “small dc motor” as a common name, but also choose “motor” from the

component naming taxonomy. The component naming taxonomy exists to remove

ambiguity from common names and to aid in the clustering of design information.

Across the entire repository each component naming term is associated with, on

average, 17.7 unique function-flow pairs. This non-exclusive relationship between

function flow pairs and components occurs because some components solve more than

one function for a particular implementation and some components have multiple

distinct uses. It is therefore necessary to determine which function(s) and flow(s) are

intended by the user’s selection of a particular component.

To determine user intent we present a two-tiered approach for user involvement:

Tier 1 – algorithms automatically select the most prevalent chain of functions associated

with a given component, or Tier 2 – the user is prompted to identify the primary flow

(material, energy or signal) traversing a particular component. As an example for both

tiers of user involvement we present a simplified functional model (Figure 2) of an ice

tea maker. For brevity the model ignores thermal sensing, on/off switches and

interaction. A functional model of this type is not always common to engineers, but

what is common is the identification of components. Components have been associated

with individual or groupings of functions within the model for clarity. For example, the

functions of importing and transferring electrical energy have previously been observed

to solved by the component cord whereas the functions of converting electrical energy

(EE) to thermal energy (TE), transferring TE and converting liquid to gas have been

solved by a heating element.

133

Figure 2. Simplified functional model of an ice tea maker

Examination of repository data shows that in general 70% of both functions and

flows are realized within the first 30% of unique instances of a particular component.

This finding suggests that the 70/30 allocation is Pareto optimal [57]. Table 1 shows the

top 70% of instances of both function and flow for each of these components designated

in the functional model in Figure 3. For all of the components, except for tank, no

component synonym lookup or natural language exploration has been conducted at this

stage. Table 1 along with the functional model in Figure 2 is used for illustration as the

proposed two-level tiered approach is presented next.

3.2.1 Tier 1 Approach
This tier is analogous to Google’s “I’m Feeling Lucky” search option. The

algorithm will query the database and determine all of the top rated functions and flows

associated with each of the components of the ice tea maker. Looking specifically at the

component tank, the highest ranked functions are export, import, store, stop, and

134

position with the highest-ranking flow being a solid material. At this point the system

will designate the functionality of the tank as importing, storing, stopping, provisioning

and exporting a solid material. In order to better refine the output order of functionality

a series of grammars will be formulated (Section 3.3) and applied such that the selected

functions are organized in a logical fashion. Previous efforts [26, 32, 47] have sought

such functional model creation grammars and those efforts will be leveraged and

extended. For example, from a modeling sense it is not logical to export something

before it is imported.

Table 1. Ice tea maker components and their associated functions and flows

135

3.2.2 Tier 2 Approach
The second tier is analogous to a Google search aimed at a specific Internet

address. The fundamentals of this type of user involvement are similar to the Tier 1

approach, however, the user will be asked to enter information regarding the primary

flow (material, energy or signal) moving through a particular chain of components. The

approach differs from the example presented in Section 3.2.1 in that the user would be

allowed to select the dominant flow passing through a particular component. In the tier

1 approach the system automatically selects that a solid material is passing through the

tank. In actuality the purpose of the tank is to move liquid through the system. Tier 2

will assign the same functionality but allow for the user to select the primary flow of

liquid. Again, rules and grammars will create a logical ordering of functionality as well

as associate natural language synonyms to standard flow terms.

3.3 Objective 3 – Reasoning to Derive a Functional Representation
Reasoning is one of the major topics of research within the AI community [48-50].

It is applicable to the current concept generation problem of transforming an initial seed

concept into a more abstract representation of underlying functionality to initiate

existing automated search and synthesis algorithms. Prior research has produced

grammar rules that generate function structures from overall input and outputs of a

product [26, 47] and to transform functions to components (that solve the functionality)

[32], but none exist to go from components to functions.

Grammar rules are associated with individual functions and dictate the allowed

incoming and outgoing flows. A set of rules has been developed for each tier. Tier 1 one

requires no user interaction and relies on grammar rules to assign incoming/outgoing

flows. Tier 2 allows for user interaction, more specifically the user is asked to designate

a flow at the input of a function chain, when multiple flows are associated with a

function, or when a function definition states that an output flow must be different from

an output flow. Table 2 summarizes the grammar rules for each function and shows a

136

graphical example of a function operating on Energy, Material or Signal (EMS) flow(s)

for different classes of rules. Previous research has concluded that the secondary level of

the functional basis is sufficient for most types of representation [51], as such the

grammar rules are only associated with the secondary level of the functional basis.

In addition to the grammar rules, FFF will also make use of the following

definitions and global rule for each tier: Continuing Flow – A continuing flow is a flow

that is both the output of the previous function and the input to the next function.

Dangling Flow – A dangling flow is a flow that is connected to a single function

(incoming or outgoing) but does not continue to or originate from another function

within the functional model. As a global rule, no functions may be duplicated

sequentially.

Table 2. Grammar Rules for Form Follows Form

 Tier 1 Tier 2
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s)

Uses previous
flow from function
chain.

Continuing
output flow
matches input
flow.
Additional
dangling output
flow created
matching
continuing
output flow.

Uses previous
flow from
function chain.

User allowed to
select
continuing
output flow as
well terminating
output flow
from component
flow list.

Separate

137

Table 2. Grammar Rules for Form Follows Form (cont.)

 Tier 1 Tier 2
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s)

Uses previous
flow from function
chain.

Continuing
output flow
matches input
flow.
Additional
termination
output flow
created using
input flow.

Uses previous
flow from
function chain.

Continuing
output flow
matches input
flow.
Additional
termination
output flow
created using
input flow.

Distribute

Automatically
placed as the first
function for a
chain of
components.
Highest ranking
flow chosen as
input.

Output matches
input.

Automatically
placed as the
first function for
a chain of
components.
User allowed to
select input flow
from component
associated
flows.

Output matches
input.

Import

Export Automatically

placed as the last
function for a
chain of
components. Uses
previous flow
from function
chain.

Output matches
input. Final
function in a
chain of
functions.

Automatically
placed as the
last function for
a chain of
components.
Uses previous
flow from
function chain.

Output matches
input. Final
function in a
chain of
functions.

Transfer Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

Guide Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

138

Table 2. Grammar Rules for Form Follows Form (cont.)

 Tier 1 Tier 2
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s)

Uses previous
flow from function
chain as the
continuing flow.
Duplicate input
flow automatically
created.

Single output
flow matches
original input
flow.

Uses previous
flow from
function chain
as the 1st input
flow. Prompts
the user to
designate a 2nd
input flow.

User allowed to
select output
flow.

Couple

Mix Uses previous

flow from function
chain as the
continuing flow.
Duplicate input
flow automatically
created.

Single output
flow matches
original input
flow.

Uses previous
flow from
function chain
as the 1st input
flow. Prompts
the user to
designate a 2nd
input flow.

User allowed to
select output
flow.

Actuate Uses previous
flow from function
chain as the
continuing flow.
Additional input
control signal flow
created.

Output matches
input.

Uses previous
flow from
function chain
as the
continuing flow.
Additional
input control
signal flow
created.

Output matches
input.

Regulate Uses previous
flow from function
chain as the
continuing flow.
Additional input
control signal flow
created.

Output matches
input.

Uses previous
flow from
function chain
as the
continuing flow.
Additional
input control
signal flow
created.

Output matches
input.

Change Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

139

Table 2. Grammar Rules for Form Follows Form (cont.)

 Tier 1 Tier 2
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s)

Stop Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

Convert Uses previous
flow from function
chain.

Highest ranking
flow for a given
component flow
list that does not
match the input
flow.

Uses previous
flow from
function chain.

User chooses
new outgoing
flow from flow
list. If selected
output matches
input then
function is
removed.

Store Uses previous
flow from function
chain. Must be
directly followed
by the Supply
Function.

Output matches
input.
Additional
function of
supply
automatically
attached.

Uses previous
flow from
function chain.
Must be directly
followed by the
Supply
Function.

Output matches
input.
Additional
function of
supply
automatically
attached.

Supply Uses previous
flow from function
chain. Must be
directly proceeded
by the Store
Function.

Output matches
input.

Uses previous
flow from
function chain.
Must be directly
proceeded by
the Store
Function.

Output matches
input.

Uses previous
flow from function
chain as
continuing flow.

Output matches
input.
Additional
terminating
status signal
flow
automatically
attached.

Uses previous
flow from
function chain
as continuing
flow.

Output matches
input.
Additional
terminating
status signal
flow
automatically
attached.

Sense

Indicate Must be a status

signal flow.
Output matches
input.

Must be a status
signal flow.

Output matches
input.

Process Must be a status
signal or control
signal flow.

Output matches
input.

Must be a status
signal or control
signal flow.

Output matches
input.

140

Table 2. Grammar Rules for Form Follows Form (cont.)

 Tier 1 Tier 2
Function Incoming Flow(s) Outgoing Flow(s) Incoming Flow(s) Outgoing Flow(s)

Process Must be a status
signal or control
signal flow.

Output matches
input.

Must be a status
signal or control
signal flow.

Output matches
input.

Stabilize Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

Secure Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

Position Uses previous
flow from function
chain.

Output matches
input.

Uses previous
flow from
function chain.

Output matches
input.

4 RESULTS: GENERATING A FUNCTIONAL MODEL
In this section two functional models using the Tier 1 and Tier 2 approaches are

generated. Both functional models will utilize input components of an ice tea maker as

shown in Section 3.1. Section 4.1 steps through the logic for creating a Tier 1 functional

model and Section 4.2 presents the same information for a Tier 2 functional model.

Finally, Section 4.3 compares machine generated functional models to a control model as

well as discusses limitations of the 2-tier approach.

4.1 Generating a Tier 1 Functional Model
Tier 1 of FFF relies solely upon component chains entered by the user, repository

data, and grammar rules presented in Section 3.3. Figure 3 shows the components

identified in Figure 1 in a block representation. The component names are then replaced

with their associated functionality and shown with their incoming and outgoing

functionality (Table 1) in Figure 4. By stepping through the elements in each block in

Figure 4 and combining the grammar rules from Table 2 a Tier 1 functional model can be

constructed.

141

Figure 3. Component chains

Figure 4. Functions and flows (Tier 1) associated with each component

Figure 5 shows the resulting functional model from the application of the

grammar rules and the functions shown in Figure 4. Function chain 1 begins with the

function import as specified by the import grammar rule. The flow of electrical energy

is then attached because it is the highest ranked flow associated with the component

cord (Table 2). Next, the function transfer is placed because it is the highest ranked

function associated with a cord. Note that the function import is not again inserted in

142

the function chain because it can only exist at the beginning of a function chain. The

component switch causes the addition of the functions actuate, convert, and transfers.

Following the grammar rules a control signal is added as an additional input to the

actuate function. The convert function continues to use electrical energy as the input

flow and then chooses the human energy as an output flow. Human energy is the

highest ranked flow for the component switch that does not match the input flow. The

heating element component then adds the functions of transfer, convert, and change to

the function chain. Finally, the function export is added as the last function in the

component chain.

Figure 5. Tier 1 functional model of an ice tea maker

The second function chain is constructed in the same manner as the first function

chain. An additional grammar rule is utilized directly following the store function. As

listed in Table 2 the function supply must directly follow the function store, thus it is

then inserted in the functional model. The third and final function chain makes use of

another unique grammar rule. An additional duplicate output flow of solid material is

143

automatically added to the separate solid function. Conceptually this rule is obvious, if

something is separate one would end up with a minimum of 2 separate or distinct items.

4.2 Generating a Tier 2 Functional Model
Tier 2 of FFF builds on the Tier 1 algorithm by allowing the user to specify the

flows of a product. Again, the staring components emerge from Figure 3 and are

augmented with the Tier 2 functions and flows in Figure 6. The resulting Tier 2

functional model is then shown in Figure 7. .

Figure 6. Functions and flows (Tier 2) associated with each component

The first chain in Figure 7 starts off much the same way as the Tier 1 functional

model, however the user is allowed to specify the imported flow of electrical energy.

The chain continues to mimic the Tier 1 chain until the convert function appears. It is

important to note that in this function chain only a single convert function is present.

The convert function associated with the switch has been removed. Tier 2 grammar

rules for convert specify that the user is allowed to specify the output flow. In the case

of the switch the output flow was selected to be the same as the input flow of electrical

144

energy, meaning that the user wanted electrical energy to continue in the function chain.

Adhering to the grammar rules the function convert was then removed because the

input flow matched the output flow. Another significant difference again occurs for the

function convert associated with the heating element component. For this function the

input flow is electrical energy, not human energy. Again, the user is allowed to specify

the output flow and naturally chooses thermal energy (TE).

Figure 7. Tier 2 functional model of an ice tea maker

The second function chain is identical to the Tier 1 chain until the function

convert realized by the condenser component. At this point the user is presented with a

somewhat difficult choice on what to choose as a continuing output flow. The input

flow is designated as a liquid component, but the purpose of a condenser is to convert a

gas to a liquid. The reason a gas flow is not present in this function chain is because no

component that converts a liquid to a gas is listed. If the user chooses the output flow of

145

gas the function convert will remain in the chain. However, selecting liquid as an output

flow would then cause the convert function to be automatically removed. As a designer

neither choice is particularly ideal, thus both flow paths are shown for this decision.

The third and final function chain mirrors the functionality of its Tier 1

counterpart, but begins by importing a mixture flow. The component filter is considered

to be a basic coffee filter that would import both liquid and tea leaves. For the Tier 2

implementation it is expected that the user would then select mixture as an input flow.

Another difference is shown by the separate function. Following the Tier 2 grammar set

the user is allowed to choose the terminating output flow as well as the continuing

output flow. Since the tea leaves will be discarding a solid material is shown as the

terminating flow and a liquid shown as the continuing flow.

4.3 Discussion: Comparing FFF to Control Functional Models
Without much comparison it is most obvious that the Tier 1 and Tier 2 models

contain several more functions than the control model presented in Figure 2. The

purpose of the model in Section 3 was to demonstrate high-level functionality in order to

show their associated components. Since FFF input was derived from Figure 2 we

present a functional comparison of FFF to the original functional model.

Table 3 contains a listing of all of the functions present in the initial simplified

functional model (Figure 2). In total the control model contains 15 unique functions and

are shown in alphabetical order. An ‘x’ is placed in the table when functions between

the FFF method and hand generated model match. In total 53.3% of the function-flow

pairs are also realized by the Tier 1 algorithm and 80% appearing in the Tier 2 algorithm.

The Tier 1 algorithm fails to capture a significant portion of the functionality

because of improper flows. For example the Tier 1 grammar allows for human energy to

be converted to electrical energy instead of the more appropriate conversion of electrical

energy to thermal energy. The Tier 1 algorithm also fails to import a mixture material,

but instead imports a solid material. Results are substantially improved by using the

146

Tier 2 grammar, which allows the user to more accurately identify flows throughout the

components.

Both tiers assume that only a single flow is passing between each function. That

is connection information between discrete component chains is not captured. In order

to accurately trace multiple and branching flows it will first be necessary to gather more

information from the user regarding how components will interact with one another and

currently remains as future work.

Table 3. Control and computer generated model comparison

Output in the form a function adjacency matrix would then be used to seed one

or both of the existing automated concept generators. It is expected that output from the

Tier 1 approach may generate novel or unique concept variants not previously

envisioned by the users. Their novelty would mostly be attributed to the automated

147

flow selection. The Tier 2 approach, however, would perhaps return more appropriate

concepts. That is that their functionality and associated flows more closely match the

user’s initial intent.

5 CONCLUSIONS AND FUTURE WORK
From an engineering education standpoint, design is the perhaps one of the

toughest topics to teach and, often, the most feared course assignment in a given

engineering department. That is likely due to the emphasis of modern design

techniques on abstracting the problem and identifying this fuzzy, hard to grasp (and

explain) concept of functionality. Yet, this is the area of engineering where innovation

takes root and where students need the most nurturing. Numerous studies have shown

that early design is the best place in a product’s life cycle to promote innovation, reduce

risks, control costs and avoid delays. From research to education to practice, this form-

initiated approach to concept generation will have a significant impact on engineering

design innovation by offering a new paradigm for AI-based concept generation.

Specifically, Form Follows Form will accept natural language input to seed an initial

search for design alternatives and leverage the designer preferences inherent in that

natural language to return tailored, innovative design concepts.

As shown in Section 4, FFF comes close to replicating a control functional model,

but does not yet capture connections between discrete function chains. Future work

includes the development of a Tier 3 Approach. This tier is analogous with a very

detailed or directed search: I would like to see only journal papers published by a certain

author in specific journals from May 1972 to July 1978. Tier 3 mimics the same approach

of Tier 2 but also allows for designers to designate connections between components

within separate component chains. An additional method to better realize user intent is

to ask designers to specify the “commonness” of returned solutions. The underlying

idea is that there is a spectrum of components that may solve a given function and,

based upon observations in the repository, the algorithm can favor components that

148

solve a function most of the time (i.e., a common solution) or components that rarely

solve a function (i.e., a uncommon solution). The uncommon solutions may in fact spur

more innovative designs. There are two approaches to achieve this outcome. The first

will correlate “commonness” with functionality. Uncommon functions would be

functions that are rarely realized throughout the repository and overall are unique to a

specific component. Common functions would be functions that solve a component a

large percentage of the time, like the 70/30 allocation noted in Section 3. The second

approach to “commonness” is to pass the desired level to the concept generation

routines that will later be employed to generate new design alternatives. Both

approaches will be explored for Form Follows Form. Use of FFF can also lead to ways to

record product knowledge in a repository and also be used as a tool to teach

functionality to engineering students.

ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation under Grant No.

CMMI-074267. Any opinions or findings of this work are those of the authors and do

not necessarily reflect the view of the National Science Foundation or our collaborators.

6 REFERENCES
[1] Antonsson, E. and Cagan, J., 2001, Formal Engineering Design Synthesis, New

York, NY, Cambridge University Press.
[2] Pahl, G. and Wallace, K., 2002, Using the Concept of Functions to Help Synthesize

Solutions, London, Springer.
[3] Otto, K., 2001, “A process for modularizing product families,” International

conference on engineering design, ICED 01, Glasgow, Scotland.
[4] Shah, J.J., Vargas-Hernández, N., Summers, J.S., and Kulkarni, S., 2001,

“Collaborative Sketching (C-Sketch) – An Idea Generation Technique for
Engineering Design,” Journal of Creative Behavior, 35(3): 168-198.

[5] Roth, K., 2002, Design Catalogs and Their Usage, London, Springer.
[6] Ward, A., 1989, “A Theory of Quantitative Inference Applied to a Mechanical

Design Compiler,” Doctoral Thesis, Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, MA.

[7] Ward, A. and Seering, W., 1993, “Quantitative Inference in a Mechanical Design
'Compiler',” Journal of Mechanical Design, 115: 29-35.

149

[8] McAdams, D.A. and Wood, K.L., 2002, “A Quantitative Similarity Metric for
Design-by-Analogy,” Journal of Mechanical Design, 124(2): 173-182.

[9] Altshuller, G., 1984, Creativity as an Exact Science, Luxembourg, Gorden and
Breach.

[10] Zwicky, F., 1969, Discovery, Invention, Research - Through the Morphological
Approach, Toronto, The Macmillian Company.

[11] Pahl, G. and Beitz, W., 1996, Engineering Design: A Systematic Approach, Springer
Verlag.

[12] Otto, K. and Wood, K., 2001, Product Design: Techniques in Reverse Engineering,
Systematic Design, and New Product Development, New York, Prentice-Hall.

[13] Ullman, D.G., 2002, The Mechanical Design Process 3rd Edition, New York,
McGraw-Hill, Inc.

[14] Ulrich, K.T. and Eppinger, S.D., 2004, Product Design and Development, Boston,
MA, McGraw-Hill/Irwin.

[15] Cutherell, D., 1996, “Chapter 16: Product Architecture,” in The PDMA Handbook
of New Product Development, M. Rosenau Jr., Editor, Wiley and Sons.

[16] Hubka, V. and Ernst Eder, W., 1984, Theory of Technical Systems, Berlin, Springer-
Verlag.

[17] Otto, K. and Wood, K., 1996, “A Reverse Engineering and Redesign
Methodology for Product Evolution,” Proceedings of the 1996 ASME Design Theory
and Methodology Conference, 96-DETC/DTM-1523, Irvine, CA.

[18] Otto, K. and Wood, K., 1997, “Conceptual and Configuration Design of Products
and Assemblies,” in ASM Handbook, Materials Selection and Design, ASM
International.

[19] Pimmler, T. and Eppinger, S. (1994). Integration Analysis of Product Decompositions.
ASME Design Engineering Technical Conferences & Computers and Information
in Engineering Conference.

[20] Schmidt, L. and Cagan, J., 1995, “Recursive Annealing: A Computational Model
for Machine Design,” Research in Engineering Design, 7(2): 102-125.

[21] Shimomura, Y., Tanigawa, S., Takeda, H., Umeda, Y., and Tomiyama, T., 1996,
“Functional Evaluation Based on Function Content,” Proceedings of the 1996
ASME Design Theory and Methodology Conference, 96-DETC/DTM-1532, Irvine,
CA.

[22] Radcliffe, D. and Lee, T.Y., 1989, “Design Methods Used by Undergraduate
Engineering Students,” Design Studies, 10(4): 199-207.

[23] Cross, N., 1994, Engineering design methods: Strategies for product design, 2nd Ed.,
Chichester, UK, John Wiley & Sons.

[24] Ivashkov, M., 2004, “ACCEL: a Tool Supporting Concept Generation in the Early
Design Phase,” PhD Thesis, The Eindhoven University of Technology,
Eindhoven, The Netherlands.

[25] Wodehouse, A., Grierson, H., Ion, W.J., Juster, N., Lynn, A., and Stone, A.L.,
2004, “Tikiwiki: A Tool to Support Engineering Design Students in Concept
Generation,” International Engineering and Product Design Education Conference,
Delft, Netherlands.

150

[26] Sridharan, P. and Campbell, M., 2005, “A Study on the Grammatical
Construction of Function Structures,” Artificial Intelligence in Engineering Design,
Analysis and Manufacture, 19(3): 139-160.

[27] Du, X. and Chen, W., 2004, “Sequential Optimization and Reliability Assessment
for Probabilistic Design,” Journal of Mechanical Design, 126: 225-233.

[28] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and Wood, K., 2002, “A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts,” Research in Engineering Design, 13(2): 65-82.

[29] Stone, R. and Wood, K., 2000, “Development of a Functional Basis for Design,”
Journal of Mechanical Design, 122(4): 359-370.

[30] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2005, “A
Computational Technique for Concept Generation,” Proceedings of IDETC/CIE
2005, DETC2005-85323, Long Beach, CA.

[31] Bryant, C., Stone, R., McAdams, D., Kurtoglu, T., and Campbell, M., 2005,
“Concept Generation from the Functional Basis of Design,” International
Conference on Engineering Design, ICED 05, Melbourne, Australia.

[32] Kurtoglu, T. and Campbell, M., 2008, “Automated Synthesis of
Electromechanical Design Configurations from Empirical Analysis of Function to
Form Mapping,” Journal of Engineering Design, 20(1): 83-104.

[33] Kurtoglu, T., Campbell, M., Gonzalez, J., Bryant, C., Stone, R., and McAdams, D.,
2005, “Capturing Empirically Derived Design Knowledge for Creating
Conceptual Design Configurations,” Proceedings of IDETC/CIE 2005, DETC2005-
84405, Long Beach, CA.

[34] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D., 2008, “A
Component Taxonomy as a Framework for Computational Design Synthesis,”
Journal of Computers and Information Science in Engineering, Accepted, to appear.

[35] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D., 2005,
“Deriving a Component Basis for Computational Functional Synthesis,”
International Conference on Engineering Design, ICED'05, Melbourne, Australia.

[36] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2006, “A
Validation Study of an Automated Concept Generator Design Tool,” Proceedings
of IDETC/CIE 2006, DETC2006-99489, Philadelphia, PA.

[37] Bryant, C., Pieper, E., Walther, B., Kurtoglu, T., Stone, R., McAdams, D., and
Campbell, M., 2006, “Software Evaluation of an Automated Concept Generator
Design Tool,” Proceedings of the 2006 ASEE Annual Conference, ASEE-2006-1758,
Chicago, IL.

[38] Kurtoglu, T. and Campbell, M. (2007). Exploring the worth of automatically
generated design alternatives based on designer preferences. International Conference
on Engineering Design, Paris, France.

[39] Kurtoglu, T. and Campbell, M., 2008, “An Evaluation Scheme for Assessing the
Worth of Automatically Generated Design Alternatives,” Research in Engineering
Design, Accepted, To Appear.

[40] Bohm, M., Stone, R., and Szykman, S., 2005, “Enhancing Virtual Product
Representations for Advanced Design Repository Systems,” Journal of Computer
and Information Science in Engineering, 5(4): 360-372.

151

[41] Szykman, S., Sriram, R., and Regli, W., 2001, “The Role of Knowledge in Next-
generation Product Development Systems,” Journal of Computer and Information
Science in Engineering, 1(1): 3-11.

[42] Szykman, S., Fenves, S., Keirouz, W., and Shooter, S., 2001, “A Foundation for
Interoperability in Next-Generation Product Development Systems,” Computer-
Aided Design, 33(7): 545-559.

[43] Bohm, M., Stone, R., Simpson, T., and Steva, E., 2008, “Introduction of a Data
Schema: To Support a Design Repository,” Computer-Aided Design, 40(7): 801-811.

[44] Shooter, S., Simpson, T., Kumara, S., Stone, R., and Terpenny, J., 2005, “Toward a
Multi-Agent Information Management Infrastructure for Product Family
Planning and Mass Customisation,” International Journal for Mass Customisation,
1(1): 134-155.

[45] Bohm, M., Vuchovich, J., and Stone, R., 2007, “An Open Source Application for
Archiving Product Design Information,” Proceedings of DETC’07, DETC2007-
35401, Las Vegas, NV.

[46] Bohm, M. and Stone, R., 2009, “A Natural Language to Component Term
Methodology: Towards a Form Based Concept Generation Tool,” ASME Design
Engineering and Technical Conference, San Diego, CA.

[47] Nagel, R., Vucovich, J., Stone, R., and McAdams, D., 2008, “A Signal Grammar to
Guide Functional Modeling of Electromechanical Products,” Journal of
Mechanical Design, 130(5): 051101-1-10.

[48] Russell, S.J. and Norvig, P., 2003, Artificial Intelligence: A Modern Approach (2nd
ed.), Upper Saddle River, NJ, Prentice Hall.

[49] Poole, D., Mackworth, A., and Goebel, R., 1998, Computational Intelligence: A
Logical Approach, New York, Oxford University Press.

[50] Luger, G. and Stubblefield, W., 2004, Artificial Intelligence: Structures and Strategies
for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing
Company, Inc.

[51] Sen, C., Caldwell, B., Summers, J., and Mocko, G., 2009, “Evaluation of the
Functional Basis using an Information Theoretic Approach,” Submitted to Journal
of Artifical Intelligence for Engineering Design, Analysis and Manufacturing.

152

2. CONCLUSIONS

The philosophical contribution of this dissertation research is to transform the

process of engineering design. The transformation occurs through formulating

algorithms and harnessing computational resources heretofore relegated to the fields of

computer science and statistics. Specifically, the key contributions of this body of

research are the:

• Formulation and implementation of a design repository schema that is robust
and able to capture current product design knowledge for archival and retrieval
purposes;

• Ability to capture design information in the repository organized into seven
main categories that include: artifact-, function-, failure-, physical-, performance-,
sensory- and media-related information types;

• Design of a database schema for easy expansion to capture additional types of
design information;

• Design and development of a novel data entry application to support product
design knowledge archival, reuse and product dissection activities;

• Cross-platform entry application, known as the Repository Entry Application,
released under the GNU public license and, thus, available for modification by
other researchers;

• Adoption of the Repository Entry Application at over ten top-tier research
institutions in the United States;

• Formulation of the first computationally driven function-based concept
generation application that allows mechanical design to be performed more
thoroughly and quickly than by manual methods;

• First evaluation of the computationally driven concept generation solutions for
their impact on designer creativity;

• Finding that solutions suggested by the computational approach capture an
overwhelming majority of human generated solutions while relying upon a
relatively small knowledge set of product information;

SECTION

153

• Formulation of an artificial intelligence based approach to translate natural
language component descriptions into computer parse-able terms;

• Generation of an initial set of natural language to component naming terms that
conforms to a Pareto frontier;

• Formulation of a novel form-initiated approach to concept generation called
Form Follows Form;

• Artificial intelligence based approach in Form Follows Form that transforms an
initial component solution seed for a design problem to its underlying
functionality to broaden the search for alternative solutions; and

• Completely automated transformation of form-to-function-to-form and capture
of designer preference for a more directed solution approach by Form Follows
Form.

Collectively, the papers included in this dissertation describes how the burdens

often associated with conceptual phase of the engineering design process may be

overcome with intelligent algorithms and computational power. As shown in many

studies it is imperative for engineers and designers to have access to as much

information as possible during the conceptual phases of design. Proper use of such

information results in quicker and less costly development times as well as a quality

product or process. As a whole, engineering design methods have been developed to

assist in nearly every phase of the design process from customer needs analysis to

design for lifecycle and reliability. The goal of this work is to bring to bear the power of

computational thinking on the early phases of the design process. The work presented

in the included papers begins by outlining a method to capture and store product design

information in the form of a design repository and concludes with methods to aid in

conceptual development and preliminary design analysis.

The repository project at Missouri S&T has significantly impacted and

contributed to engineering design knowledge as well as the broader field of science.

Directly, the repository has transformed a disparate set of product design knowledge

into a coherent body. By using the repository system and data contained within, new

154

methods for concept generation can be explored. The implementation of the design

repository on the web, supports a new mode of design knowledge exchange between

researchers in both industry and academia. The exchange of ideas and information

furthers the development of the repository project by incorporating supplemental design

knowledge components. Each contribution heightens the resolution as well as the

breadth of design knowledge within the repository. In addition, recent independent

studies by external researches have assessed the information content of the repository

and found the repository data to be both useful to designers and impact the design

process in a positive way [52, 53]

Two such methods enabled by the design repository, explored within this work,

are the morphological search tool and the Form Follows Form method. Without the

design repository and wealth of engineering design information contained within

neither of these methods would be possible. The morphological search tool was the first

computational concept generation tool built to take advantage of the design repository.

For the first time users were able to quickly specify desired functionality and be quickly

presented with a set of possible solution components. Other researchers have since

enhance the morphological search tool by incorporating component connection

information.

Form Follows Form is the next enhancement to conceptual level design tools.

More specifically, FFF allows access to a host of engineering design methodologies such

as preliminary failure mode analysis, preliminary risk analysis, two discrete automated

concept generation methods, as well as general function identification. FFF enables

novice and expert designers to specify components using natural language removing the

need to be well versed in specific function or component taxonomies. In addition FFF

establishes a framework for artificial intelligence and reasoning in design. The logic and

grammar rules in FFF serve as a foundation for automated reasoning in design.

155

Together, broader impacts of this research include the underlying design

knowledge segmentation and categorization techniques as well as building a foundation

to support automated reasoning. The underpinnings of the repository increase the

ability to archive any corporate knowledge of human experts in a form that is parsable

and computable. The form-initiated approach to concept generation will have a

significant impact on engineering design innovation by offering a new paradigm for AI-

based concept generation.

The five publications constituting this body of work do, jointly, prove the original

hypothesis of this research:

Computational thinking (i.e., product design knowledge archival and reuse and AI

algorithms) can be applied in the early phases of design to increase the quantity, quality,

and breadth of concept variants produced during the design of a product.

More generally Table 2.1 lists the relevant research works by the author on the

subjects of transforming engineering design through artificial intelligence based

algorithms and computational thinking.

Table 2.1. List of publications

1. Bohm, M., Stone, R., 2009, “A Natural Language to Component Term Methodology: Towards a
Form Based Concept Generation Approach,” Submitted to Proceedings of IDETC/CIE 2009,
DETC2009/CIE-86581, San Diego, CA.

2. Bohm, M., Stone, R., 2009 “Form Follows Form – Is a New Paradigm Needed?,” Submitted to
Proceedings of the IMECE ’09, IMECE2009-10410, Lake Buena Vista, FL.

3. Bohm, M., Stone, R., Simpson, S. and Steva, L., 2008 “Introduction of a Data Schema: The Inner
Workings of a Design Repository,” Journal of Computer Aided Design., In press, doi:10.1016/j.cad.
2008.09.003

4. Bohm, M., Vucovich, J. and Stone, R., 2008, “ Using a Design Repository to Drive Concept
Generation,” Journal of Computer and Information Science in Engineering, 8(1):14502.

156

Table 2.1. List of publications

5. Stroble, J., Nagel, R., Poppa, K., Bohm, R. and Stone, R., 2008, “A Retrospective on Twenty
 Years of the Design Theory and Methodology Conference,” Proceedings of IDETC/CIE
 2008, DETC2008/DTM-49373, Brooklyn, NY.

6. Nanda, J., Henri, J., Simpson, T., Stone, R., Bohm, M. and Shooter, S., 2007, “Product Family
Design Knowledge Representation, Aggregation, Reuse, and Analysis,” Artificial Intelligence in
Engineering Design, Analysis and Manufacture, 21(2):173-192.

7. Bohm, M., Vucovich, J. and Stone, R., 2007 “An Open Source Application for Archiving Product
Design Information,” Proceedings of IDETC/CIE 2007, DETC2007-35401, Las Vegas, NV.

8. Bryant, C., McAdams, D., Bohm, M. and Stone, R., 2007 “An Interactive Computational Design
Tool: A Hybrid of Two Methods,” Proceedings of IDETC/CIE 2007, DETC2007-35583, Las Vegas,
NV.

9. Nagel, R., Bohm, M., Stone, R. and McAdams, D., 2007 “A Representation of Carrier Flows for
Functional Design,” Proceedings of the International Conference on Engineering Design, ICED 07,
Paper 635, Paris, France.

10. Bohm, M., Stone, R., Simpson, S. and Steva, L., 2006 “Introduction of a Data Schema: The
Inner Workings of a Design Repository,” Proceedings of IDETC/CIE 2006, DETC2006-99518,
Philadelphia, PA.

11. Bohm, M., Stone, R. and Szykman, S., 2005, “Enhancing Virtual Product Representations for
Advanced Design Repository Systems,” Journal of Computer and Information Science in Engineering,
5(4):360-372.

12. Bohm, M., Vucovich, J., and Stone, R., 2005, “Capturing Creativity: Using a Design Repository
to Drive Concept Innovation,” Proceedings of IDETC/CIE 2005, DETC2005-85105, Long Beach, CA.

13. Van Wie, M., Bryant, C., Bohm, M., McAdams, D. and Stone, R., 2004, “A general model of
function-based representations,” Artificial Intelligence in Engineering Design, Analysis and
Manufacture, 19(2):89-111.

14. Bohm, M., and Stone, R., 2004, “Representing Functionality to Support Reuse: Conceptual and
Supporting Functions,” Proceedings of DETC’04, DETC2004-57693, Salt Lake City, UT.

15. Bohm, M. and Stone, R., 2004, “Product Design Support: Exploring a Design Repository
System,” Proceedings of IMECE’04, IMECE2004-61746, Anaheim, CA.

16. Stock, M., Bohm, M., Stone, R. and Hubing, N., 2003, “Using Product Architecture-Based
Design Methods to Get Smart in the Battlefield,” Proceedings of the International Conference on
Engineering Design, ICED 03, Paper 1192, Stockholm, Sweden.

17. Bohm, M., Stone, R. and Szykman, S., 2003, “Enhancing Virtual Product Representations for
Advanced Design Repository Systems,” Proceedings of DETC2003, DETC2003/CIE-48239,
Chicago, IL.

From an engineering standpoint, design is the perhaps one of the toughest topics

to truly grasp. This difficulty is likely due to the emphasis of modern design techniques

157

on abstracting the problem and identifying this fuzzy, hard to explain concept of

functionality. Yet, this is the area of engineering where innovation takes root and where

minds need the most nurturing. Numerous studies have shown that early design is the

best place in a product’s life cycle to promote innovation, reduce risks, control costs and

avoid delays.

In summary, the design repository, morph matrix search, and Form Follows Form

methodologies will have a significant impact on engineering design innovation by

offering a new paradigm for AI-based concept generation. As a result of this new

application of computational thinking in a previously manual phase of engineering

design, this research has democratized the concept generation process and increased the

number, quality and breadth of concept variants that can be generated by any

engineering designer. Finally, third party validation of the work is in progress and is

already finding utility in the methods.

158

3. REFERENCES

[1] Szykman, S., Sriram, R., and Smith, S. (1996), Proceedings of the NIST Design
Repository Workshop, Gaithersburg, MD, National Institute of Standards and
Technology, November.

[2] Murdock, J., Szykman, S., and Sriram, R., 1997, “An Information Modeling
Framework to Support Design Databases and Repositories,” Proceedings of
DETC'97, DETC97/DFM-4373, Sacramento, CA.

[3] Szykman, S., Racz, J., and Sriram, R., 1999, “The Representation of Function in
Computer-Based Design,” Proceedings of the ASME Design Theory and Methodology
Conference, DETC99/DTM-8742, Las Vegas, NV.

[4] Shooter, S., Keirouz, W., Szykman, S., and Fenves, S., 2000, “A Model For
Information Flow In Design,” Proceedings of the ASME Design Theory and
Methodology Conference, DETC2000/DTM-14550, Baltimore, MD.

[5] Szykman, S., 2002, “Architecture and Implementation of a Design Repository
System,” Proceedings of DETC2002, DETC2002/CIE-34463, Montreal, Canada.

[6] Svensson, D. and Malmqvist, J., 2001, “Integration of Requirement Management
and Product Data Management Systems,” Proceedings of DETC2001,
DETC2001/CIE-21246, Pittsburgh, PA.

[7] Bohm, M., Stone, R., and Szykman, S., 2005, “Enhancing Virtual Product
Representations for Advanced Design Repository Systems,” Journal of Computer
and Information Science in Engineering, 5(4): 360-372.

[8] Szykman, S., Sriram, R., and Regli, W., 2001, “The Role of Knowledge in Next-
generation Product Development Systems,” Journal of Computer and Information
Science in Engineering, 1(1): 3-11.

[9] Szykman, S., Fenves, S., Keirouz, W., and Shooter, S., 2001, “A Foundation for
Interoperability in Next-Generation Product Development Systems,” Computer-
Aided Design, 33(7): 545-559.

[10] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2005, “A
Computational Technique for Concept Generation,” Proceedings of IDETC/CIE
2005, DETC2005-85323, Long Beach, CA.

159

[11] Bryant, C., Stone, R., McAdams, D., Kurtoglu, T., and Campbell, M., 2005,
“Concept Generation from the Functional Basis of Design,” International
Conference on Engineering Design, ICED 05, Melbourne, Australia.

[12] Bohm, M., Stone, R., Simpson, T., and Steva, E., 2008, “Introduction of a Data
Schema: To Support a Design Repository,” Computer-Aided Design, 40(7): 801-811.

[13] Shooter, S., Simpson, T., Kumara, S., Stone, R., and Terpenny, J., 2005, “Toward a
Multi-Agent Information Management Infrastructure for Product Family
Planning and Mass Customisation,” International Journal for Mass Customisation,
1(1): 134-155.

[14] Bohm, M., Vuchovich, J., and Stone, R., 2007, “An Open Source Application for
Archiving Product Design Information,” Proceedings of DETC’07, DETC2007-
35401, Las Vegas, NV.

[15] Antonsson, E. and Cagan, J., 2001, Formal Engineering Design Synthesis, New
York, NY, Cambridge University Press.

[16] Pahl, G. and Wallace, K., 2002, Using the Concept of Functions to Help Synthesize
Solutions, London, Springer.

[17] Otto, K., 2001, “A process for modularizing product families,” International
conference on engineering design, ICED 01, Glasgow, Scotland.

[18] Shah, J.J., Vargas-Hernández, N., Summers, J.S., and Kulkarni, S., 2001,
“Collaborative Sketching (C-Sketch) – An Idea Generation Technique for
Engineering Design,” Journal of Creative Behavior, 35(3): 168-198.

[19] Roth, K., 2002, Design Catalogs and Their Usage, London, Springer.

[20] Ward, A., 1989, “A Theory of Quantitative Inference Applied to a Mechanical
Design Compiler,” Doctoral Thesis, Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, MA.

[21] Ward, A. and Seering, W., 1993, “Quantitative Inference in a Mechanical Design
'Compiler',” Journal of Mechanical Design, 115: 29-35.

[22] McAdams, D.A. and Wood, K.L., 2002, “A Quantitative Similarity Metric for
Design-by-Analogy,” Journal of Mechanical Design, 124(2): 173-182.

[23] Altshuller, G., 1984, Creativity as an Exact Science, Luxembourg, Gorden and
Breach.

160

[24] Zwicky, F., 1969, Discovery, Invention, Research - Through the Morphological
Approach, Toronto, The Macmillian Company.

[25] Pahl, G. and Beitz, W., 1996, Engineering Design: A Systematic Approach, Springer
Verlag.

[26] Otto, K. and Wood, K., 2001, Product Design: Techniques in Reverse Engineering,
Systematic Design, and New Product Development, New York, Prentice-Hall.

[27] Ullman, D.G., 2002, The Mechanical Design Process 3rd Edition, New York,
McGraw-Hill, Inc.

[28] Ulrich, K.T. and Eppinger, S.D., 2004, Product Design and Development, Boston,
MA, McGraw-Hill/Irwin.

[29] Cutherell, D., 1996, “Chapter 16: Product Architecture,” in The PDMA Handbook
of New Product Development, M. Rosenau Jr., Editor, Wiley and Sons.

[30] Hubka, V. and Ernst Eder, W., 1984, Theory of Technical Systems, Berlin, Springer-
Verlag.

[31] Otto, K. and Wood, K., 1996, “A Reverse Engineering and Redesign
Methodology for Product Evolution,” Proceedings of the 1996 ASME Design Theory
and Methodology Conference, 96-DETC/DTM-1523, Irvine, CA.

[32] Otto, K. and Wood, K., 1997, “Conceptual and Configuration Design of Products
and Assemblies,” in ASM Handbook, Materials Selection and Design, ASM
International.

[33] Pimmler, T. and Eppinger, S. (1994). Integration Analysis of Product Decompositions.
ASME Design Engineering Technical Conferences & Computers and Information
in Engineering Conference.

[34] Schmidt, L. and Cagan, J., 1995, “Recursive Annealing: A Computational Model
for Machine Design,” Research in Engineering Design, 7(2): 102-125.

[35] Shimomura, Y., Tanigawa, S., Takeda, H., Umeda, Y., and Tomiyama, T., 1996,
“Functional Evaluation Based on Function Content,” Proceedings of the 1996
ASME Design Theory and Methodology Conference, 96-DETC/DTM-1532, Irvine,
CA.

[36] Radcliffe, D. and Lee, T.Y., 1989, “Design Methods Used by Undergraduate
Engineering Students,” Design Studies, 10(4): 199-207.

161

[37] Cross, N., 1994, Engineering design methods: Strategies for product design, 2nd Ed.,
Chichester, UK, John Wiley & Sons.

[38] Ivashkov, M., 2004, “ACCEL: a Tool Supporting Concept Generation in the Early
Design Phase,” PhD Thesis, The Eindhoven University of Technology,
Eindhoven, The Netherlands.

[39] Wodehouse, A., Grierson, H., Ion, W.J., Juster, N., Lynn, A., and Stone, A.L.,
2004, “Tikiwiki: A Tool to Support Engineering Design Students in Concept
Generation,” International Engineering and Product Design Education Conference,
Delft, Netherlands.

[40] Sridharan, P. and Campbell, M., 2005, “A Study on the Grammatical
Construction of Function Structures,” Artificial Intelligence in Engineering Design,
Analysis and Manufacture, 19(3): 139-160.

[41] Du, X. and Chen, W., 2004, “Sequential Optimization and Reliability Assessment
for Probabilistic Design,” Journal of Mechanical Design, 126: 225-233.

[42] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and Wood, K., 2002, “A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts,” Research in Engineering Design, 13(2): 65-82.

[43] Stone, R. and Wood, K., 2000, “Development of a Functional Basis for Design,”
Journal of Mechanical Design, 122(4): 359-370.

[44] Kurtoglu, T. and Campbell, M., 2008, “Automated Synthesis of
Electromechanical Design Configurations from Empirical Analysis of Function to
Form Mapping,” Journal of Engineering Design, 20(1): 83-104.

[45] Kurtoglu, T., Campbell, M., Gonzalez, J., Bryant, C., Stone, R., and McAdams, D.,
2005, “Capturing Empirically Derived Design Knowledge for Creating
Conceptual Design Configurations,” Proceedings of IDETC/CIE 2005, DETC2005-
84405, Long Beach, CA.

[46] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D., 2008, “A
Component Taxonomy as a Framework for Computational Design Synthesis,”
Journal of Computers and Information Science in Engineering, Accepted, to appear.

[47] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D., 2005,
“Deriving a Component Basis for Computational Functional Synthesis,”
International Conference on Engineering Design, ICED'05, Melbourne, Australia.

162

[48] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., 2006, “A
Validation Study of an Automated Concept Generator Design Tool,” Proceedings
of IDETC/CIE 2006, DETC2006-99489, Philadelphia, PA.

[49] Bryant, C., Pieper, E., Walther, B., Kurtoglu, T., Stone, R., McAdams, D., and
Campbell, M., 2006, “Software Evaluation of an Automated Concept Generator
Design Tool,” Proceedings of the 2006 ASEE Annual Conference, ASEE-2006-1758,
Chicago, IL.

[50] Kurtoglu, T. and Campbell, M. (2007). Exploring the worth of automatically
generated design alternatives based on designer preferences. International Conference
on Engineering Design, Paris, France.

[51] Kurtoglu, T. and Campbell, M., 2008, “An Evaluation Scheme for Assessing the
Worth of Automatically Generated Design Alternatives,” Research in Engineering
Design, Accepted, To Appear.

[52] Sen, C., Caldwell, B., Summers, J., and Mocko, G., 2009, “Evaluation of the
Functional Basis using an Information Theoretic Approach,” Submitted to Journal
of Artifical Intelligence for Engineering Design, Analysis and Manufacturing.

[53] Thomas, J., Sen, C., Mocko, G., Summers, J., and Fadel, G., 2009, “Investigation of
the Interpretability of Three Function Structure Representations: A User Study,”
Submitted to ASME Design Entineering and Technical Conference, San Diego, CA.

163

VITA

Matt Robert Bohm was born on August 20th, 1979 in Joplin, Missouri. The son of

Roger and Bobbie Bohm grew up in Carthage, Missouri and attended Carthage public

schools from kindergarten until graduation. In high school, Matt excelled at physics and

math and was a founding member of Carthage High School’s solar car team. His

interest in math and science led him to the University of Missouri – Rolla in the fall of

1997 in pursuit of a degree in Mechanical Engineering. After completing his bachelor’s

degree, Matt extended his tenure at UMR in pursuit of a master’s degree in Mechanical

Engineering completed in May, 2004. Matt continued his study and earned a Ph.D. in

Mechanical Engineering from the Missouri University of Science in Technology in May,

2009.

	Information archival and reuse: drawing conclusions from the past
	Recommended Citation

	bohm_dissertation_06

