11 research outputs found

    Performance analysis of change detection techniques for land use land cover

    Get PDF
    Remotely sensed satellite images have become essential to observe the spatial and temporal changes occurring due to either natural phenomenon or man-induced changes on the earth’s surface. Real time monitoring of this data provides useful information related to changes in extent of urbanization, environmental changes, water bodies, and forest. Through the use of remote sensing technology and geographic information system tools, it has become easier to monitor changes from past to present. In the present scenario, choosing a suitable change detection method plays a pivotal role in any remote sensing project. Previously, digital change detection was a tedious task. With the advent of machine learning techniques, it has become comparatively easier to detect changes in the digital images. The study gives a brief account of the main techniques of change detection related to land use land cover information. An effort is made to compare widely used change detection methods used to identify changes and discuss the need for development of enhanced change detection methods

    Evaluation of Efficiency between Classification Methods and Spectral Indices in Cropped Area Estimation of Shush County

    Get PDF
    Introduction Agriculture is the essential sector for promoting food security. Crop area estimation (CAE) can meet the requirements of the crop monitoring plan. The organizing basis of the cultivation pattern is recognizing the types of crops and examining the condition of their crop area. Shush county in Khuzestan Province has 300,000 hectares of the crop area. It is one of the agricultural hubs of Iran because it has a record annual production of more than two million tons of strategic crops such as wheat, sugar beet, and corn. CAE affects the amount of net production and shortage or surplus of produce for market steadiness. Traditional approaches for CAE are time-consuming and costly and are not widely enforceable. Remote sensing (RS) data provide good information for decision-makers by determining the crop type and the crop area. RS data has made it possible to avoid continuous reference to agricultural lands with less time and cost than another usual method and accurate CAE. Also, the use of multi-time images during the growing season of agricultural products allows the use of spectral curves when related to the crop calendar of each crop. This spectral curve is almost separate for each product and increases the ability to distinguish between products. Therefore, multi-temporal images support segregation based on multispectral images of products. The current study follows a speedy method with appropriate accuracy established on satellite image classification algorithms and spectral indices to identify and separate crops with RS data in Shush County.Materials and Methods Landsat-8 data with path/row coordinates 166/38 extracted from the USGS website were used to identify and separate the cultivated lands of the region. The reason for choosing Landsat images is the relatively suitable temporal and spatial resolution, availability, and the appropriate time distribution with the product growth period. The Landsat 8 carries 2-sensors, OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). The OLI sensor with a spatial resolution of 30 meters has 8-bands in the visible spectrum, near-infrared (NIR), short-wavelength infrared (SWIR), and a panchromatic band with a spatial resolution of 15 meters. The TIRS sensor can record thermal infrared radiation with a spatial resolution of 100 meters with the help of 2-bands in atmospheric windows of 10.6 to 11.2 micrometers for band 10 and 11.5 to 12.5 micrometers for band 11. This research used bands 1-7 of the Landsat-8 OLI sensor with a spatial resolution of 30 meters after the initial corrections of satellite images. The spectral similarity between the region's dominant crops has made it impossible to select a single image to differentiate and extract the cultivation pattern. Wheat and barley have a high spectral similarity. The peak of the greenness of these products is in the first four months of the year, which has high NDVI values at this time. Therefore, choosing a good time to separate the crops was feasible by referring to the Khuzestan Organization Agriculture-Jihad (KOAJ) and receiving the regional crops calendar in 2018-19. Then, the low-level cloud cover images on April 24, June 27, and August 30, 2019, were selected for classification based on the crop calendar. Planting, harvesting, maximum greenness, and ripening information of the dominant crops in the area were pivotal in obtaining image dates. In dates selected related to the images were considered planting, harvesting, maximum greenery, and ripening information of the region's dominant crops.Results and Discussion According to the results, from total crop area in Shush county (163313.7 hectares) is allocated about 103513.2 hectares (63.4% of the county's crop area) to the ANN, about 102875.1 hectares (63.0% of the county's crop area) to the SVM, and about 102,277.3 hectares (62.6% of the county's crop area) to the NDVI, which in comparison with the KOAJ statistics, has an error of 0.11, 6.2 and 1.8%, respectively.This difference is the similarity of the reflective spectrum in some places, which affects the separability and recognition of phenomena and increases the error in estimating the area under cultivation of different crops. The highest and lowest errors in estimating the area under cultivation in the artificial neural network method were in barley and rice crops, respectively, in the support vector machine method were in wheat and rice crops, respectively, and in NDVI index were in wheat and barley crops, respectively. The difference between the cropped area obtained from classification methods and NDVI index with cropped area statistics of Agricultural-Jihad Organization may be due to the following: First, the cultivation history of different has caused problems such as reflections of diverse agricultural lands in one image. Second, the agricultural lands in this area are small. Most of them are under one hectare. Also, the crops in this area are diverse. Third, the smallest region that the image used in the present study can distinguish is about 900 square meters, which is a large number for the agricultural lands of the study area and causes errors.Conclusion The study results showed that the support vector machine method had the lowest error in CAE than the artificial neural network method, which indicates the higher accuracy of the support vector method in identifying and separating crops in the region. Comparing the area obtained from the NDVI index with the statistics of the Agricultural-Jihad Organization of Khuzestan province and evaluating the accuracy of this method indicated the higher efficiency of spectral indices in CAE for the region compared to classification methods. The NDVI index minimizes the error values of the results due to having a threshold and better identification of vegetation density. Therefore, based on the accuracy assessment results and comparing the cropped area with the KOAJ statistics, the utilization of the NDVI index provides the best CAE in the region

    Spatio–temporal variation of vegetation heterogeneity in groundwater dependent ecosystems within arid environments

    Get PDF
    Climate change, land cover change and the over–abstraction of groundwater threaten the existence of Groundwater-Dependent Ecosystems (GDE), despite these environments being regarded as biodiversity hotspots. The vegetation heterogeneity in GDEs requires routine monitoring in order to conserve and preserve the ecosystem services in these environments. However, in–situ monitoring of vegetation heterogeneity in extensive, or transboundary, groundwater resources remain a challenge. Inherently, the Spectral Variation Hypothesis (SVH) and remotely-sensed data provide a unique way to monitor the response of GDEs to seasonal or intra–annual environmental stressors, which is the key for achieving the national and regional biodiversity targets. This study presents the first attempt at monitoring the intra–annual, spatio–temporal variations in vegetation heterogeneity in the Khakea–Bray Transboundary Aquifer, which is located between Botswana and South Africa, by using the coefficient of variation derived from the Landsat 8 OLI Operational Land Imager (OLI)

    Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery

    Get PDF
    The land area covered by freely available very high-resolution (VHR) imagery has grown dramatically over recent years, which has considerable relevance for forest observation and monitoring. For example, it is possible to recognize and extract a number of features related to forest type, forest management, degradation and disturbance using VHR imagery. Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or Sentinel has allowed for monitoring of parameters related to forest cover change. Although automatic classification is used regularly to monitor forests using medium-resolution imagery, VHR imagery and changes in web-based technology have opened up new possibilities for the role of visual interpretation in forest observation. Visual interpretation of VHR is typically employed to provide training and/or validation data for other remote sensing-based techniques or to derive statistics directly on forest cover/forest cover change over large regions. Hence, this paper reviews the state of the art in tools designed for visual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as issues related to interpretation of VHR imagery and approaches to quality assurance. We have also listed a number of success stories where visual interpretation plays a crucial role, including a global forest mask harmonized with FAO FRA country statistics; estimation of dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and drivers of forest change

    An Approach for Unsupervised Change Detection in Multitemporal VHR Images Acquired by Different Multispectral Sensors

    No full text
    This paper proposes an approach for the detection of changes in multitemporal Very High Resolution (VHR) optical images acquired by different multispectral sensors. The proposed approach, which is inspired by a recent framework developed to support the design of change-detection systems for single-sensor VHR remote sensing images, addresses and integrates in the general approach a strategy to effectively deal with multisensor information, i.e., to perform change detection between VHR images acquired by different multispectral sensors on two dates. This is achieved by the definition of procedures for the homogenization of radiometric, spectral and geometric image properties. These procedures map images into a common feature space where the information acquired by different multispectral sensors becomes comparable across time. Although the approach is general, here we optimize it for the detection of changes in vegetation and urban areas by employing features based on linear transformations (Tasseled Caps and Orthogonal Equations), which are shown to be effective for representing the multisensor information in a homogeneous physical way irrespectively of the considered sensor. Experiments on multitemporal images acquired by different VHR satellite systems (i.e., QuickBird, WorldView-2 and GeoEye-1) confirm the effectiveness of the proposed approach

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Spatial characterization of vegetation diversity with satellite remote sensing in the khakea-bray transboundary aquifer

    Get PDF
    >Magister Scientiae - MScThere have been increasing calls to monitor Groundwater-Dependent Ecosystems (GDEs) more effectively, since they are biodiversity hotspots that provide several ecosystem services. The accurate monitoring of GDEs is an indispensable under Sustainable Development Goal (SDG) 15, because it promotes the existence of phreatophytes. It is imperative to monitoring GDEs, since their ecological significance (e.g., as biodiversity hotspots) is not well understood in most environments they exist. For example, vegetation diversity in GDEs requires routine monitoring, to conserve their biodiversity status and to preserve the ecosystem services in these environments. Such monitoring requires robust measures and techniques, particularly in arid environments threatened by groundwater over–abstraction, landcover and climate change. Although in–situ methods are reliable, they are challenging to use in extensive transboundary groundwater resources such as the Khakea-Bray Transboundary Aquifer
    corecore