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ABSTRACT 

There have been increasing calls to monitor Groundwater-Dependent Ecosystems (GDEs) 

more effectively, since they are biodiversity hotspots that provide several ecosystem services. 

The accurate monitoring of GDEs is an indispensable under Sustainable Development Goal 

(SDG) 15, because it promotes the existence of phreatophytes. It is imperative to monitoring 

GDEs, since their ecological significance (e.g., as biodiversity hotspots) is not well understood 

in most environments they exist. For example, vegetation diversity in GDEs requires routine 

monitoring, to conserve their biodiversity status and to preserve the ecosystem services in these 

environments. Such monitoring requires robust measures and techniques, particularly in arid 

environments threatened by groundwater over–abstraction, landcover and climate change. 

Although in–situ methods are reliable, they are challenging to use in extensive transboundary 

groundwater resources such as the Khakea-Bray Transboundary Aquifer. To avoid these 

setbacks, remote sensing technologies have spatially explicit landscape-scale capabilities for 

characterising vegetation diversity in GDEs. Remotely-sensed data and the Spectral Variation 

Hypothesis (SVH) have the inherent capability to provide a unique opportunity to monitor the 

vegetation diversity of GDEs, and their response to seasonal or intra–annual environmental 

stressors. Therefore, this research seeks to review the trends and milestones in using remote 

sensing for characterising vegetation diversity in GDEs, and use satellite remote sensing data 

(i.e., Sentinel-2 MSI and Landsat 8 OLI) to characterise the vegetation diversity in the Khakea-

Bray Transboundary Aquifer. In addition, this thesis aims to monitor the spatio–temporal 

variations of vegetation diversity in the Khakea-Bray Transboundary Aquifer. Overall, the 

remote sensing data demonstrated the potential of characterising vegetation diversity in the 

Khakea-Bray Transboundary Aquifer (R2 = 0.61 and p = 0.0003). It was observed that the 

vegetation diversity in the Khakea-Bray Transboundary Aquifer was concentrated more around 

natural pans and along roads, fence lines and rivers, and that the changes in vegetation diversity 

within these areas was driven mainly by land conversion and climate variability. These findings 

are imperative for natural resource managers seeking to conserve the Khakea-Bray 

Transboundary Aquifer and to achieve the national or regional biodiversity targets. More 

importantly, this work provides a spatially explicit framework on how GDEs can be monitored 

in semi-arid environments, to achieve the SDGs. 
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1.0. CHAPTER 1 

GENERAL INTRODUCTION 

 

 

Environmental heterogeneity in the Khakea-Bray Transboundary Aquifer                             

(Photo: Courtesy of Kudzai Mpakairi, 2022) 
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1.1. Monitoring Groundwater-Dependent Ecosystems in Arid Environments  

Groundwater is an important water resource (Moosdorf and Oehler, 2017, Liggett and Talwar, 

2009) and the existence of most coastal, aquatic and terrestrial ecosystems depends on its 

availability (Liggett and Talwar, 2009, Murray et al., 2003, Eamus et al., 2015). Terrestrial 

vegetation (e.g. phreatophytes) accesses soil moisture through capillary action, which is 

supported by the cohesion theory (Bouwer, 2002, Bian et al., 2009, Kang et al., 2003). 

Consequently, if groundwater is inaccessible to the plant roots, this might affect groundwater-

dependent ecosystems (GDEs) and lead to changes in the ecosystem’s structure and function, 

such as increased vegetation dieback and invasive species (Kang et al., 2003).Most global 

GDEs are under threat because the rate of groundwater extraction for agriculture, municipal 

and recreational purposes usually exceeds the rate of groundwater recharge (Murray et al., 

2003). These competing claims on groundwater use for ecosystem or livelihood needs requires 

policies that rationalize groundwater use, especially for those GDEs under threat, such as the 

Khakea-Bray Transboundary Aquifer (hereafter referred to as Khakea-Bray TBA) (Shah, 2005, 

Wiek and Larson, 2012). Henceforth, to suppress the possible ramifications of groundwater 

drawdown and conserve some of the keystone species in GDEs, they require characterization 

and constant monitoring.  

The characterization of GDEs is pivotal for their conservation and management, and 

characterising GDEs includes understanding the diversity and composition of the vegetation, 

as well as its response to groundwater drawdown. Understanding these components could assist 

with rationalizing groundwater use for ecosystem or livelihood needs. However, the current 

field techniques for characterising GDEs are either time-consuming, laborious or costly 

(Manfreda et al., 2018). Although field techniques are reliable and accurate, these setbacks 

limit their applicability (Manfreda et al., 2018, Madonsela et al., 2017). Geographic 

Information Systems (GIS) and remote sensing methods may be useful and provide reliable 

information, even in areas where a priori information on vegetation diversity is unavailable 

(Madonsela et al., 2017, Nagendra and Rocchini, 2008). For example,  the Rao’s Q can provide 

estimates of the vegetation diversity of any environment (Torresani et al., 2019). Using such 

metrics and remote sensing data can allow the characterization of GDEs with ease (Torresani 

et al., 2019). However, using remote sensing for characterising GDEs depends on the spatial 

and spectral resolution of the remote sensing data used. High spatial and spectral resolution 
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data are available from Unmanned Aerial Vehicles (UAVs) and commercial satellites 

(Manfreda et al., 2018), while new generation satellites, such as Sentinel-2 MSI, Landsat 8 OLI 

and Landsat 9, may be useful since they are free. These satellites have medium-resolution data 

that might be coupled to improve the characterization of extensive transboundary aquifers, such 

as the Khakea-Bray TBA.  

The successful characterisation of vegetation diversity will provide a framework for monitoring 

the spatial and temporal variations in vegetation diversity, as well as the drivers of these 

dynamics. This is important, since the Khakea-Bray TBA is predominantly arid and an 

increased groundwater draw-down will most likely intensify the proliferation of invasive 

species, and the imminent effects of climate change may lead to desertification, which will 

affect the communities around the GDEs. However, there is a dearth of literature on these 

aspects for the Khakea-Bray TBA, even though the GDEs support livelihoods. Several 

communities around the Khakea-Bray TBA rely on the groundwater for their survival. These 

communities are part of Africa’s population settled in GDEs, estimated to be ~ 32,8 million in 

2015 (Nijsten et al., 2018). Given that the Khakea-Bray TBA is important for the survival of 

livelihoods and ecosystems, reliable and timely techniques for monitoring its vegetation 

diversity are imperative. This thesis addresses some of these aspects.  

1.2. Aim and Objectives  

The aim of the study is to use GIS and remote sensing techniques to characterize the vegetation 

diversity in the Khakea-Bray Transboundary Aquifer. 

1.2.1. Objectives 

The objectives of this thesis are: 

1. to review the advances that have been made in the remote sensing of vegetation 

diversity in GDEs within arid environments; 

2. to spatially characterize vegetation diversity in the Khakea Khakea-Bray TBA by using 

remote sensing; and 

3. to detect the spatio-temporal trends in vegetation diversity and the drivers of these 

changes in GDEs. 
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1.3. Research questions 

This thesis addresses the following research questions: 

1. Has remote sensing been a reliable technique when monitoring vegetation diversity in 

GDEs? 

2. To what extent can remote sensing be used to characterize the vegetation diversity of 

GDEs? 

3. How does the vegetation diversity vary over space and time, and what drives these 

changes in GDEs? 

1.4. Conceptual framework 

This thesis presents a framework of how GIS and remote sensing methods can be used to 

monitor GDEs in arid and semi-arid environments, the potential of informing decision-makers 

on the key priority areas in GDEs that need conservation. In addition, it provides the necessary 

rudimentary information for the conservation of the Khakea-Bray TBA. The conceptual 

framework of the work undertaken is shown in Figure 1.1 below: 

 

 

Figure 1.1 Conceptual framework of the key concepts covered in this thesis. 
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1.5. Description of the study area  

The research in this thesis focused on the Khakea–Bray TBA (formerly the Pomfret–

Vergelegen Transboundary aquifer), which measures ~30 000 km2 and spans across north–

western South Africa and south–western Botswana (Figure 1.2). The Khakea–Bray TBA is 

supported by the low–yielding Khakea–Bray dolomitic aquifer, which measures approximately 

~5375.7 km2. Rainfall is the main source of recharge to this dolomitic aquifer, with geological 

lineaments, shallow dolomite outcrops, and alluvial channels along the Molopo River serving 

as recharge areas (Godfrey and Van Dyk, 2002a). However, the recharge to the Khakea–Bray 

dolomitic aquifer is limited by the low infiltration rate because of the thick Kalahari sands (>15 

m) and the high rate of evaporation (2050–2250 mm per annum) (Altchenko and Villholth, 

2013, Turton et al., 2006, Godfrey and Van Dyk, 2002a). 

The Khakea–Bray TBA is characteristic of a semi–arid environment, owing to the low annual 

rainfall (range 107–928 mm) that it receives in the summer months (October–March) (Godfrey 

and Van Dyk, 2002a). The Khakea–Bray TBA is mainly dominated by the Eastern Kalahari 

Bushveld Bioregion supporting Molopo Bushveld, Mafikeng Bushveld, and Kuruman 

Mountain Bushveld (Spickett et al., 2011, Van Dyk, 2005, Mucina and Rutherford, 2006). The 

bushveld is predominantly Senegalia nigrescens and Vachellia grandicornuta shrubland 

intermixed with Scorzonera humilis, Eragrostis spp, Ziziphus mucronate, Leucas martinicensis 

and Lipia javani. These vegetation species are facultative phreatophytes (i.e. will use 

groundwater when it is available). However, information on the significance or distribution of 

these vegetation types in the Khakea–Bray TBA is unavailable.  

Agriculture and wildlife ranching are the main land-uses in the Khakea–Bray TBA, with 

irrigated agriculture using the bulk of the available groundwater (Turton et al., 2006). In 2002, 

the groundwater level was reported to have lowered from 20 m to 60 m, due to the unsustainable 

extraction of groundwater for agricultural purposes (Godfrey and van Dyk, 2002b, Seward and 

van Dyk, 2018). The total area under irrigation in 1990 had increased by 13.95 ha, from 100 

ha (Godfrey and Van Dyk, 2002a). The irrigated farmlands used ~11.1 Mm3 per annum more 

than the annual recharge in the area and this caused the dewatering of the Khakea–Bray TBA 

(Altchenko and Villholth, 2013, Turton et al., 2006, Godfrey and Van Dyk, 2002a). After the 

groundwater in the Khakea-Bray TBA lowered, deeper boreholes were sunk and livelihoods 

dependent on shallower boreholes were affected (Seward and van Dyk, 2018). The lowering 
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of the groundwater restricted GDV access to groundwater, risking the ecosystem to invasion 

by alien plant species (Seward and van Dyk, 2018). The lack of information on the ecological 

status of the Khakea–Bray TBA, along with the high rate of groundwater abstraction, provide 

the basis for the need to monitor the spatio–temporal variation of species diversity. 

 

 

Figure 1.2 Location of the Khakea–Bray Transboundary Aquifer in southern Africa.  

1.6. Thesis outline 

This thesis is comprised of five chapters, which demonstrate the use of remote sensing in the 

characterization of vegetation diversity in GDEs. Three of the chapters are presently under 

review in peer-reviewed journals. Although an effort was made to minimize the repetition and 

overlaps, instances of overlap and repetition may still be noted, since the chapters are linked 

and reinforce each other, as they aim to demonstrate how remote sensing can characterize the 

vegetation diversity in GDEs.  
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Chapter One introduces the general background of the thesis and presents the significance of 

the conservation and monitoring of GDEs in arid environments. This is followed by the aim 

and objectives of the thesis, the research questions, the conceptual framework, and a 

description of the study area.  

Chapter Two reviews the advances that have been made in the use of remote sensing for the 

monitoring and characterization of GDEs within arid environments. 

Chapter Three demonstrates the applicability of the Spectral Variation Hypothesis (SVH) for 

characterising the vegetation diversity of GDEs in the Khakea-Bray TBA. This chapter also 

assesses the most suitable measures that can be used for detecting the spectral heterogeneity in 

GDEs. This chapter presents the materials and methods used, the results of the research and a 

discussion of the key observations.  

Chapter Four identifies the spatio-temporal variation of vegetation diversity in GDEs within 

the Khakea-Bray TBA. It also identifies the drivers of spatio-temporal change in the vegetation 

diversity, as well as the methods and materials used, the results and a discussion of the main 

findings.  

Chapter Five finally presents a synthesis of the main findings of the study, the conclusions 

that can be drawn and the recommendations on how best to conserve GDEs in arid 

environments. 
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2.0. CHAPTER 2 

ADVANCES IN THE REMOTE SENSING OF VEGETATION 

DIVERSITY IN GROUNDWATER-DEPENDENT ECOSYSTEMS 

(GDEs) WITHIN ARID ENVIRONMENTS: A REVIEW OF THE 

APPROACHES AND FUTURE TRENDS 

 

Dry natural water pan in the Khakea-Bray Transboundary Aquifer during the onset of the wet 

season (Photo: Courtesy of Kudzai Mpakairi, 2022) 

 

This chapter is based on: 

Mpakairi, K.S., Dube, T., Dondofema, F. and Dalu, T. Advances in the remote sensing of 

vegetation diversity in Groundwater-Dependent Ecosystems (GDEs) within arid environments: 

A review of the approaches and future trends. Ecological Engineering (Under review) 
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2.1. Abstract  

There have been increasing calls to monitor Groundwater Dependent Ecosystems (GDEs) more 

effectively, since they are biodiversity hotspots for keystone plant species. The accurate 

monitoring of GDEs is an indispensable pursuant for Sustainable Development Goal (SDG) 

15. SDG 15 promotes the protection and sustainable use of terrestrial ecosystems, 

phreatophytes included. The monitoring of GDEs requires robust measures and techniques, 

particularly in arid environments that face the threat of groundwater draw-down, climate 

change and species extinction. Geographic Information Systems (GIS) and remote sensing 

offer the spatially explicit and landscape-scale capability of characterizing the vegetation 

diversity in GDEs, in addition to monitoring their structure and function. This chapter reviews 

how remote sensing has been used to characterize vegetation diversity in GDEs within arid 

environments. It also discusses the trends in using remote sensing and the role of spatial and 

spectral resolution, and some of the methods that have been used in the mapping of vegetation 

diversity in GDEs. It was observed that geospatial technologies can undoubtedly contribute 

towards our current understanding of the global state of GDEs with high accuracy, regardless 

of the prohibitive costs associated with it. Remote sensing utilizes the spectral response of 

vegetation to electromagnetic radiation when monitoring vegetation diversity, and GIS can 

map the diversity. Using remote sensing has increased over the past 20 years, with the Landsat 

and Moderate Resolution Imaging Spectroradiometer (MODIS) being the most-used sensors. 

However, considering the spatial resolution of these datasets vis-à-vis the spatial extent and the 

patchy nature of GDEs, the utility of broadband multispectral sensors cannot detect the subtle 

phenotypical and structural characteristics of the vegetation. Thus, new-generation sensors 

with improved sensing characteristics, such as Sentinel-2, and the future launch of 

hyperspectral sensors such as EnMap and HyspIRI, will most likely improve the 

characterization of GDEs. Sensor selection is critical for the characterization of GDEs, since 

the optical properties of vegetation diversity are complex and driven by several environmental, 

physiological, and structural factors. The data fusion of active and passive sensors may be 

useful for characterizing GDEs. Finally, future opportunities are presented that should be 

explored for the monitoring of vegetation diversity in GDEs, such as Unmanned Aerial 

Vehicles (UAVs), Phenocam data, advanced machine learning, Cloud computing and 

Radiative Transfer Models (RTMs). 
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2.2. Introduction  

Several global ecosystems depend on the availability of groundwater for their existence (Pérez 

Hoyos et al., 2016). These ecosystems include rivers and lakes (Saylam et al., 2020), 

subterranean aquifers (Humphreys, 2006), wetlands and springs (Huang et al., 2020b), as well 

as estuarine and near-shore ecosystems (Pérez Hoyos et al., 2016). Groundwater dependency 

usually depends on several environmental factors (i.e. hydrogeological settings), namely, the 

evapotranspiration rate, precipitation, and temperature (Huang et al., 2020b). For instance, 

most ecosystems in tropical and boreal biomes are independent of the groundwater because of 

the surplus surface water from preceding precipitation (Eamus et al., 2015). However, given 

the low precipitation and limited surface water resources in arid environments (e.g. savannah 

and deserts), groundwater dependency is key for the existence of phreatophytes (Qiu et al., 

2019, Meyers et al., 2021, Alaibakhsh et al., 2017). In arid environments, the groundwater 

balances the water deficit induced by the high evapotranspiration rates and changes in surface 

water  storage (Dawson, 1996, Eagleson, 1978), which facilitates the existence of 

Groundwater-Dependent Ecosystems (GDEs) (Eamus and Froend, 2006, Pérez Hoyos et al., 

2016). Groundwater-Dependent Ecosystems in arid environments are characterized by 

vegetation communities with a taproot system (i.e. phreatophytes) (Alaibakhsh et al., 2017). 

These vegetation communities rely strongly on the depth of the groundwater, and the 

groundwater draw-down can significantly affect the ecosystem structure and its functioning 

(Kang et al., 2003, Lv et al., 2013). 

Groundwater-dependent vegetation communities (e.g. in the Mojave Desert and Succulent 

Karoo) are biodiverse hotspots and provide a habitat and refuge for several species under threat 

(i.e. faunal endemism) (Alaibakhsh et al., 2017, Pengra et al., 2007). In arid environments, 

phreatophytes (e.g. the Shepherd's tree (Boscia albitrunca)) are keystone plant species and can 

assist with plant facilitation because they are capable of redistributing groundwater to the 

shallower parts of the soil profile to benefit co-existing species (Xu et al., 2015, Lv et al., 2013, 

Coletti et al., 2017). Groundwater redistribution is important for species that might not adapt 

fast enough to the changes in groundwater draw-down (i.e. the hydrological regime) (Coletti 

et al., 2017, Stella and Bendix, 2018). Inherently, the hydrological regime of groundwater and 

its chemical composition influences the diversity of plant species in GDEs (Műnch et al., 2013). 

For instance, calcium-rich wetlands have a low species diversity, when compared to the less 

acidic wetlands, because the species richness peaks at an intermediate pH (Cornwell and 
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Grubb, 2003, Olde Venterink et al., 2003). However, the high acidity or alkalinity in other 

GDEs has also facilitated the existence of endemic species (e.g. Prosopis tamarugo) (Decuyper 

et al., 2016, Scott and Baer, 2019). Plant facilitation and the interaction of groundwater with 

the vegetation in GDEs make these environments biodiversity hotspots.  

To maintain the biodiversity and ecosystem health in GDEs, it is important to understand their 

response to environmental stressors (e.g. climate change, groundwater draw-down, droughts, 

pollution and wildfires) (Lv et al., 2013, Alaibakhsh et al., 2017, Coletti et al., 2017, Stella and 

Bendix, 2018). The methods used for monitoring ecosystem health in GDEs also include  

hydrogeological approaches (e.g. using environmental tracers or piezometers), which involves 

the collection of specific space-and-time data to understand ecosystem health from the 

interaction of the groundwater with Groundwater-Dependent Vegetation (GDV) (Eamus et al., 

2015). However, it may be impossible to monitor the entire GDE by using hydrogeological 

approaches; therefore, indicators of an ecosystem’s health are used instead (Eamus et al., 2015, 

Caldwell et al., 1998). These indicators include the flow magnitude, the extreme point, and the 

indicator species. Indicator species are commonly used, since species have varying adaptive 

capacities to environmental stressors and it is impossible to monitor them simultaneously 

(Decuyper et al., 2016, Stella and Bendix, 2018). Although widely used, these methods are 

limited in their spatial coverage and might not provide wall-to-wall coverage of the structure 

and functioning of the historical ecosystem. 

To avoid the use of indicator species in the monitoring of GDEs, robust and spatially-explicit 

methods are needed to conserve their biodiversity (Rocchini et al., 2015). By using geospatial 

techniques, mainly Geographic Information Systems (GIS) and remote sensing, the 

biodiversity in GDEs can be monitored with improved coverage and resolution (e.g. from the 

extent of the wetland to the extent of the watershed) (Meyers et al., 2021, Alaibakhsh et al., 

2017). Countless studies exist on using geospatial techniques for monitoring vegetation 

diversity in GDEs. However, when measuring their vegetation diversity with geospatial 

techniques, it is important to understand the aspect of diversity to be measured (i.e. the species, 

phylogenetic or functional diversity). Coupled with the hydrogeological approaches, remote 

sensing can provide managers and policymakers with robust information on the condition of 

the vegetation, and such knowledge can contribute to making informed decisions on the 

conservation of biodiversity in GDEs (Műnch et al., 2013, Coletti et al., 2017). Numerous 

reviews are available on the types of GDE, their distribution, as well as their response to climate 
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change and groundwater variability (Eamus and Froend, 2006, Orellana et al., 2012, Boulton 

and Hancock, 2006, Pérez Hoyos et al., 2016, Eamus et al., 2015), and these reviews provide 

a detailed overview on using geospatial technologies for mapping GDEs globally. But this 

chapter seeks to add rudimentary knowledge on how remote sensing technologies can delineate 

and characterise the vegetation diversity in GDEs within arid environments. This review is one 

of the first to provide a detailed overview of the progress of remote sensing technologies in the 

delineation and characterisation of vegetation in GDEs in such environments. The aim of this 

chapter is to review research articles that focus on earth observation technologies between 2000 

and 2020 in the monitoring of vegetation diversity in GDEs. It focuses primarily on literature 

published in English language on GDEs within arid environments, which was retrieved from 

SCOPUS, the Web of Science, and other related databases. 

Relevant literature was retrieved by using the following search words: "remote sensing”, 

"groundwater dependent vegetation”, "vegetation diversity”, "arid environment" or “semi-arid 

environments”. The combination of the search words was varied, to improve the output. The 

ninety articles retrieved were further screened, to exclude those that focused on environments 

that were not arid or semi-arid. The screening was generalized, and articles that focused on 

other themes, for example, urban diversity or agriculture, were also excluded. The articles 

finally reviewed were distributed across all the continents, except Antarctica, and they 

represented the GDEs within arid environments (see Figure 2.1). 
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Figure 2.1 Global distribution of the transboundary aquifers and arid regions in the world. 

The red circles are proportional circles that show the number of studies 

reviewed in each country. Data on transboundary aquifers are accessible from 

https://ggis.un-igrac.org/view/tba, and the data for arid and semi-arid regions 

are available from Hoekstra et al. (2010). 

2.3. Progress of remote sensing in the monitoring of vegetation diversity in GDEs 

Species extinction has reached an alarming rate since the dawn of the 21st century, and the 

species in GDEs are no exception (Elewa and Abdelhady, 2020). It is disturbing to note that 

climate change will probably exacerbate the extinction rate of plant species in arid 

environments (Elewa and Abdelhady, 2020, Carpenter and Bishop, 2009). The use of remote 

sensing has increased over the years; it offers many capabilities and can also monitor vegetation 

diversity in GDEs in arid environments (see Figure 2.1).  

Studies on the mapping and monitoring of vegetation (or plant species) diversity, using remote 

sensing, began with coarse resolution space-borne sensors (e.g. the Advanced Very High-

Resolution Radiometer (AVHRR)) and gradually progressed to using high-resolution airborne 

sensors (e.g. the Portable Remote Imaging Spectrometer (PRISM)) (Table 2.1). Over the past 

20 years reviewed, Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) 
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have been the most-used sensors (Figure 2.2); they are available and relatively accurate for 

monitoring vegetation diversity, hence their continued use. Unlike other sensors (e.g. 

Worldview 2 and QuickBird), Landsat and MODIS are non-commercial, they have a global 

coverage and are easily accessible through various platforms (e.g. 

https://earthexplorer.usgs.gov/ or https://earthdata.nasa.gov/). In addition, they both have a 

moderate spatial and spectral resolution. Commercial remote sensing data are expensive, given 

the high cost of these platforms and the payload instruments used (Whitehead and Hugenholtz, 

2014, Wang et al., 2019). However, remote sensing data from commercial satellites are more 

ideal for monitoring the vegetation diversity in GDEs in arid environments, and they provide 

accurate results.  

The capabilities of high-resolution imagery have remained unquestionable over the years. 

Nonetheless, when using remote sensing data, there is a trade-off between using the most 

accurate data, or using the available data (Eamus et al., 2015, White et al., 2016b). 

Understanding species diversity in arid environments requires the use of high spatial- and 

spectral-resolution sensors. The following sections discuss the role of spatial and spectral 

resolution in the monitoring of vegetation diversity. 
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Figure 2.2 Trends in the use of remote sensing sensors for mapping vegetation diversity in 

Groundwater-Dependent Ecosystems (GDEs) in arid environments. UAS refers 

to an Unmanned Aircraft System and IRS refers to the Indian Remote Sensing 

Satellite. The insert shows the increase in the number of studies on the 

vegetation diversity in GDEs over the past 20 years. 
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Table 2.1 Remote sensing sensors that are capable of monitoring vegetation diversity in GDEs have different specifications. These sensors 

can be broadly classified into active and passive sensors, or they can be grouped based on their resolution (i.e., spatial or spectral 

resolution).  

 

Active Sensors Passive Sensors 

 

Sensor/Instrument Name 

Spatial 

resolution 

Number of 

Spectral 

bands  Author Sensor/Instrument Name 

Spatial 

resolution 

Number of 

Spectral 

bands Author 

H
ig

h
 S

p
at

ia
l 

R
es

o
lu

ti
o
n
 

DJI Mavic pro quadrotor 

drone 0.02 cm  3 

Qiu et al. 

(2019) SPOT 7 1,5 m 3 

Rahimizadeh et 

al. (2020) 

Zeiss RMK Top aerial 

photography 0.2 m 3 

Tuxen et al. 

(2011) QuickBird 3 m 4 

Rocchini et al. 

(2007) 

AisaEAGLE 1 m 129 

Schäfer et al. 

(2016) HyMap 5 m 128 

Oldeland et al. 

(2010) 
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Phantom 4 drone 1.5 m 5 

Scher et al. 

(2020) Rapideye 5 m 5 Li et al. (2017) 

Carnegie Airborne 

Observatory (CAO) 

Airborne 2 m 214 

Féret and 

Asner (2014) IKONOS 4 m 4 

Warren et al. 

(2014) 

M
ed

iu
m

 s
p
at

ia
l 

re
so

lu
ti

o
n

 

ALOS PALSAR  10 m L-band 

Scarth et al. 

(2019) Sentinel-2 10-60 m 13 

Fauvel et al. 

(2020) 

GEDI-LiDAR 25 m NA 

Schneider et al. 

(2020) Landsat +ETM 30 m 8 

Curtis et al. 

(2019) 

Sentinel-1 5-40 m C-band 

Fauvel et al. 

(2020) 

Indian Remote Sensing 

Satellite (IRS) 1B LISS 2 36,25 m 

 

Nagendra and 

Gadgil (1999) 

L
o
w

 s
p
at

ia
l 

re
so

lu
ti

o
n

 

   

 

MERIS 300 m 15 

Berberoglu et al. 

(2009) 
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RADARSAT  1-100 m C-band 

Gomes and 

Maillard 

(2006) MODIS 500 m 36 Pau et al. (2012) 

    AVHRR 8 km 5 

von Wehrden and 

Wesche (2007) 
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2.4. The Spectral Variation Hypothesis (SVH) and the role of resolution in 

delineating and characterising GDEs 

The optical properties of vegetation are complex and driven by many environmental, 

physiological and structural factors (Lauver, 1997). Regardless of its complexity, the Spectral 

Variation Hypothesis (SVH) supports the use of remote sensing for characterising the 

vegetation in GDEs (Rocchini et al. 2004, Heumann et al. 2015, Schmidtlein and Fassnacht 

2017). The hypothesis posits that spectral heterogeneity is a function of ecosystem 

heterogeneity (Rocchini et al., 2007, Rocchini et al., 2010a), which means that vegetation 

spectra are related to the structure and composition of an ecosystem (Rocchini, 2007). Essential 

Biodiversity Variables (EBVs), a measure of spectral variation (e.g. the Leaf Area Index (LAI), 

the Net Primary Production (NPP), as well as the Chlorophyll content and flux), have been 

proposed for relating the vegetation spectra and ecosystem composition (Skidmore et al., 2021, 

Haase et al., 2018). However, most of these EBVs usually represent canopy traits (e.g. 

aboveground biomass and vegetation canopy height) and work best in temperate and equatorial 

regions that are characterized by closed canopy cover and minimal understory vegetation 

(Schneider et al., 2020, Gara et al., 2018). Therefore, the applicability of the SVH in GDEs 

goes beyond using the measures of spectral variation (EBVs), owing to the sparsely distributed 

vegetation in GDEs.  

When characterising or delineating the vegetation diversity in GDEs, sensor selection is 

critical. Notwithstanding the merits of using Landsat and MODIS data, the accurate 

delineation, or characterization, of GDEs requires the use of high spatial- and spectral- 

resolution sensors (Barron et al., 2014). As suggested by Nagendra and Rocchini (2008), "the 

devil is in the detail" when using remote sensing for characterising vegetation diversity. High 

spatial- and spectral-resolution sensors are more capable than medium-resolution sensors 

(Rocchini et al., 2015). High spatial- and spectral-resolution sensors avoid the possibility of 

spectral mixing, since the size of the pixel will match the size of the object (i.e. the plant 

species) (Lausch et al., 2016). With medium-resolution sensors, several plant species may 

cluster in one pixel, and because of spectral mixing, the spectra of the dominant species are 

usually reflected (Lausch et al., 2016). This will affect the correct estimation of the species 

diversity for that pixel (Figure 2.3). The spectral mixing of features with other environmental 

factors is also possible with medium-resolution sensors. For instance, arid environments are 
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heterogeneous and the soil brightness may affect the vegetation spectra (Madonsela et al., 

2017). In addition, spectral bands from medium-resolution sensors are too coarse for 

discriminating similar phylogenetic plant species ; thus, there is a need for narrow spectral 

bands from hyperspectral sensors (e.g. HyMap or the NASA Airborne Visible and Infrared 

Imaging Spectrometer (AVIRIS)) (Lopatin et al., 2017, Carlson et al., 2007).  

Conceptually, spectral bands from hyperspectral sensors can discriminate between different 

plant species, even after phenotypic plasticity (Cavender-Bares et al., 2020). However, spectral 

bands from hyperspectral sensors are redundant and highly correlated (Rocchini et al., 2013). 

The dispersion of vegetation in arid environments might also influence misclassifications, 

owing to an increase in within-pixel variability (i.e. more noise) when using high-resolution 

sensors (e.g. QuickBird) (Nagendra, 2001, Rocchini et al., 2010a). Nevertheless, the 

capabilities of high spatial- and spectral-resolution data in mapping vegetation diversity remain 

unmatched.  

2.5. Active Sensors and the Monitoring of Vegetation Diversity in GDEs 

Active sensors (e.g. LiDAR and RADAR) are also capable of seamlessly delineating and 

characterising GDEs. Unlike passive sensors, LiDAR provides several structural vegetation 

metrics that can help to assess the vegetation diversity in GDEs. These metrics (e.g. the tree 

height and height diversity index) can help to complement the high-resolution imagery, when 

assessing vegetation diversity (Scher et al., 2020, Listopad et al., 2015). Integrating field data 

and airborne imagery from Unmanned Aerial vehicles (UAVs), or LiDAR, has provided useful 

insights into vegetation diversity within GDEs. For example, when using low altitude UAVs, 

Qiu et al. (2019) could detect the vegetation diversity in the Tengger Desert, China. The major 

setback of using UAVs for monitoring GDEs is that they are costly, that they have limited 

spatial coverage and work best with localized GDEs. In addition, GDEs in arid environments 

are characterized by sparsely distributed shrublands, which means that LiDAR metrics may not 

be useful.  

Ultimately, whether airborne or space-borne sensors are used, high spatial- and spectral-

resolution sensors are better suited for delineating and mapping species diversity in GDEs 

within arid environments. The mapping and delineating accuracy decreases when low spatial- 

and spectral-resolution sensors are used.  
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Figure 2.3 Conceptual framework of how the hyperspectral resolution allows the spectral 

discrimination of species, compared to when multispectral resolution sensors 

are used. A high spatial resolution increases between pixel variations, while a 

low spatial resolution increases within pixel variations. 

2.6. Approaches to the Mapping of Vegetation Diversity with Remote Sensing in 

GDEs 

2.6.1. Guiding principles for mapping vegetation diversity with remote sensing 

Using remote sensing to delineate GDEs has grown over the years, owing to the synoptic view 

offered by earth observation tools (Gou et al., 2015, White et al., 2016a, Huntington et al., 

2016). However, the complexity of remote sensing techniques varies, depending on the GDE 

type, the spectral response, and the extent. The applicability and transferability of these 

methods also vary across landscapes, owing to their environmental heterogeneity. Over the 

years, researchers like (Chen et al., 2014, Eamus et al., 2015, Kreamer et al., 2014, Műnch et 

al., 2013, Parker et al., 2018) have also acknowledged that using remote sensing for delineating 

and characterising GDEs requires a robust field-dataset for calibrating the remote sensing 

models.  
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Several measures of vegetation diversity focus on alpha-diversity (i.e. the local species 

variation) or beta-diversity (the species turnover) (Rocchini et al., 2010a). Each metric used to 

estimate vegetation diversity (i.e. whether beta or alpha diversity) has underlying assumptions, 

which are important and should be understood prior to its use. Species richness, which is a 

measure of alpha-diversity, is a commonly used measure of vegetation diversity (John et al., 

2008, Rocchini et al., 2005). Although its use in estimation vegetation diversity has been 

criticized (Oldeland et al., 2010, Schmidtlein and Fassnacht, 2017), it is easy to measure at 

different spatial scales. Instead of species richness, measures such as the Rao Q and Bray-

Curtis dissimilarity index, a measure of beta-diversity, have been suggested (Féret and Asner, 

2014). For example, the Bray-Curtis dissimilarity index focuses mainly on the differences in 

species composition in two study sites (Ricotta and Podani, 2017, Rocchini et al., 2010b), and 

the index is convenient when exploring the environmental heterogeneity hypothesis and the 

SVH hypothesis (Rocchini et al., 2010b). However, equally important to the selection of a 

diversity metric is the selection of a suitable sampling extent and sampling effort (Rocchini et 

al., 2010b). A differing plot size or sampling effort might provide different results on the 

species diversity in the same study area (Rocchini et al., 2010b).  

The local field measures of diversity, as well as using the correct method for relating the field-

measured species diversity and remote sensing spectra, are important for the delineation and 

characterization of GDEs in arid environments. The acceptability, accuracy, and precision of 

these methods in estimating vegetation diversity in GDEs is imperative, and it includes the 

classification methods, the empirical methods, and the vegetation indices. The methods will be 

summarized in the following sections: 

2.6.2. Image classification and its applicability in the measurement and delineation of 

vegetation diversity in GDEs  

Image classification techniques have been used to assess species diversity at a landscape level 

in regional and continental studies (Luis Hernandez-Stefanoni and Ponce-Hernandez, 2004). 

This is supported by the Environmental Heterogeneity Hypothesis (EHH), which theorizes that 

diverse vegetation types have a spatial or environmental heterogeneity that is highly diverse 

(Scott and Baer, 2019, Rocchini et al., 2010a).  

Image classification can either be supervised (i.e. the use of training data to characterize the 

image spectra) or unsupervised (i.e. clustering the image spectra into several homogeneous 
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strata) (Nagendra and Gadgil, 1999). The classified vegetation types can be used as indicators 

of vegetation diversity at a GDE level (Páscoa et al., 2020, Fasona et al., 2020, Lauver, 1997, 

Schäfer et al., 2016). Although heterogeneous environments support more species than 

homogenous environments, classification algorithms have varying accuracies and care must be 

taken when selecting those that are to be used (Schäfer et al., 2016, Nagendra and Gadgil, 1999, 

Tuxen et al., 2011, Laliberte et al., 2004, Iglesias et al., 2012). 

2.6.3. Empirical methods for measuring vegetation diversity in GDEs by using remote 

sensing 

Species diversity is correlated to the productivity of an ecosystem. This is supported by the 

productivity hypothesis, which states that vegetation diversity increases with the increasing 

productivity of an ecosystem (Tilman et al., 1996). This phenomenon has been observed around 

the equator, where the species diversity is high, and it decreases with the increasing distance 

away from the equator (Decuyper et al., 2016, Taddeo et al., 2019). In the same way, remote 

sensing can measure ecosystem productivity from vegetation greenness (e.g. NDVI and EVI) 

(Scher et al., 2020, Rocchini et al., 2015). Greener areas within a GDE infer the productivity 

of an ecosystem (i.e. the availability of vegetation), and the vegetation diversity in those areas 

is expected to be high (Oindo and Skidmore, 2002). Owing to the relationship between 

ecosystem productivity, species richness and vegetation greenness, empirical methods have 

been used, when measuring species diversity (Scher et al., 2020, Rocchini et al., 2015).  

Statistical methods have been used to explore and establish the empirical relationship between 

the field measures of vegetation diversity (e.g. the species richness or species evenness) and 

vegetation spectral images (Taddeo et al., 2019, Oindo and Skidmore, 2002, John et al., 2008). 

They base their premises on the SVH and productivity hypothesis, in that the field-measured 

spatial diversity is correlated with the spectral heterogeneity (Oldeland et al., 2010). The 

regression analysis has been used to explore the relationship between the field measures of 

diversity and spectral bands in the GDEs. For instance, John et al. (2008) successfully used 

MODIS-derived productivity indices to estimate the species richness of Inner Mongolia, China, 

by using statistical models. Years later, Xu et al. (2016) also estimated the species richness of 

China by using the Spatial Linear Regression Model (SLRM). To improve the coefficient of 

determination in estimating the vegetation diversity in GDEs, researchers have also explored 

the use of machine learning algorithms and the inclusion of biotic and abiotic variables (e.g. 
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the NDVI, the percent tree cover and the maximum average NDVI) (Oindo and Skidmore, 

2002). For example, Silveira et al. (2019) used Fisher's alpha, a proxy of tree species diversity, 

to characterize the diversity and biomass in Brazil. Although the estimated diversity of tree 

species correlated well with the measured field data (R2=0.63), the results still required the 

interpretation of the field data, thus limiting their transferability to other areas, including GDEs 

(Table 2.2). 

The empirical relationship between the field and remote sensing measures of vegetation 

diversity has been well established. However, in most instances, the empirical relationship is 

not linear and requires the use of ancillary factors to improve the accuracy of the statistical or 

machine learning models (Silveira et al., 2019, Taddeo et al., 2019). When more variables are 

used to improve a model’s performance, this defies the law of parsimony (Vandekerckhove et 

al., 2014), which states that the best model is less complicated and has fewer variables (Gauch, 

1993, Fauvel et al., 2015). However, there is a trade-off between a model’s accuracy and its 

simplicity. On the one hand, parsimonious models may not be highly predictive and when more 

variables (i.e. complex models) are used to improve a model’s accuracy, this limits the 

transferability of the model to a new dataset. Therefore, most studies that use hyperspectral 

data use Partial Least Squares Regression (PLSR) models, which reduces the dimensionality 

in highly dimensional datasets with collinear variables (Gara et al., 2018, Gara et al., 2019, 

Fauvel et al., 2015). Therefore, caution must be exercised when using low spatial- and spectral-

resolution sensors that require additional variables to improve a model’s accuracy.  
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Table 2.2 The effect of spatial and spectral resolution when using remote sensing for 

measuring vegetation diversity. The estimation of vegetation diversity increases 

when sensors with a high spatial and spectral resolution are used. 

Sensor Type Accuracy 

Number of 

spectral bands 

Spatial 

resolution Region References 

Carnegie Airborne 

Observatory (CAO) 

Airborne R2 = 0.64 214 2 m 

Amazonian forest, 

Peru 

Féret and Asner 

(2014) 

AisaEAGLE R2 = 0.53 129 1 m 

Taita-Taveta, 

Kenya Schäfer et al. (2016) 

QuickBird R2 = 0.48 5 3 m Tuscany, Italy Rocchini et al. (2007) 

Phantom 4 drone R2 = 0.30 5 1,5 m 

Illinois, United 

States Scher et al. (2020) 

Landsat TM R2 = 0.45 7 30 m 

Murray Valley 

National Park, 

Australia Curtis et al. (2019) 

Landsat OLI R2 = 0.35 8 30 m 

Eastern provinces, 

South Africa 

Madonsela et al. 

(2017) 

MODIS R2 = 0.33 36 250 m 

Hawaii Island, 

United States Pau et al. (2012) 

AVHRR R2 = 0.19 5 8 km 

Mongolian Gobi, 

Mongolia 

von Wehrden and 

Wesche (2007) 
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2.6.4. Vegetation indices as indicators of GDEs and vegetation diversity in GDEs  

Vegetation Indices (VI), particularly the Normalized Difference Vegetation Index (NDVI) and 

the Normalized Difference Water Index (NDWI) have been frequently and successfully used 

to map GDEs in most environments (Parker et al., 2018, Huang et al., 2020a). The red, red-

edge, Near-Infrared (NIR), and Shortwave Infrared (SWIR) spectral regions are the main 

spectral bands used to calculate vegetation indices (Sharifi, 2020, Xie et al., 2018). Vegetation 

emissivity is low in other parts of the spectral region; hence, these regions are rarely used. 

Vegetation emissivity in red, red-edge, NIR and SWIR is driven by xanthophyll, carotene, and 

chlorophyll pigments (chlorophyll a and b (Xie et al., 2018, Zarco-Tejada et al., 2000). In 

addition, the morphological and chemical properties of leaves and other vegetation parts are 

also responsible for the reflectance in the green visible range (500-600 nm) and the NIR region 

(Sims and Gamon, 2003, Colwell, 1974).  

Groundwater-Dependent Vegetation (GDV) is usually distinct from other vegetation types 

because it is productive during the dry periods. GDVs can be identified by using the measures 

of soil moisture and vegetation productivity (e.g. NDVI and NDWI), when assessing the 

vegetation phenology in a dry season or drought period (Emelyanova et al., 2018, Alaibakhsh 

et al., 2017, Barron et al., 2014, Gou et al., 2015, Huntington et al., 2016, Huang et al., 2020a). 

For instance, Huang et al. (2020a) used NDVI and NDWI from a MODIS and Landsat ETM 

to monitor the vegetation dynamics and its response to variations in the groundwater depth. In 

this way, Huang et al. (2020a) delineated GDVs in the Shiyang River Basin, China. A major 

setback of using vegetation indices, such as EVI, NDVI and NDWI, is that they have been 

observed to saturate at a high biomass (Barron et al., 2014). For this reason, the NDVI 

explained 30% of the woody species richness in the Hawaiian dry forests (Pau et al., 2012). 

The relationship between the VIs and vegetation is complex and indirect; it could be influenced 

by other biotic (e.g. vegetation structure) and abiotic (e.g. precipitation) variables with a direct 

relationship with the VI that is used (Pau et al., 2012, von Wehrden and Wesche, 2007, 

Madonsela et al., 2017).  

Instead of using the NDVI, Parker et al. (2018) proposed the use of the Foliage Projective 

Cover (FPC), which measures the photosynthetically projected foliage of the vegetation and 

does not saturate at a high biomass. Unlike the NDVI and EVI, which work well in areas with 

intermediate biomass (e.g. boreal environments), the FPC can map the spectral heterogeneity 
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of sparsely-distributed vegetation communities, which are characteristic of arid environments 

(Scarth et al., 2019, Curtis et al., 2019). When used to delineate GDEs in Queensland, Australia, 

the FPC, along with other environmental variables (precipitation and vegetation class), 

adequately delineated the GDEs for that environment (Parker et al., 2018). Vegetation indices, 

including the FPC, have gained popularity, since they are easy to compute; however, the spatial 

and spectral resolution of the sensor used to compute the index is equally important (Teillet et 

al., 1997). Different results are yielded when comparing vegetation diversity with a vegetation 

index calculated from a low spatial- and spectral-resolution sensor and one calculated from a 

high spatial- and spectral-resolution sensor (Figure 2.3).  

2.6.5. Other geospatial methods for characterising and delineating GDEs 

Following the SVH and EHH hypothesis, the spectral distance method assumes spectral 

variability, infers habitat heterogeneity and can measure vegetation diversity (Rocchini et al., 

2009, Rocchini et al., 2015). The method is premised on the notion that the spectral similarity 

decreases with the increasing spectral distance (Figure 2.4) (Rocchini et al., 2015). The method 

calculates the spectral distance between the plot centroids on a multidirectional plot of spectral 

reflectance (Rocchini et al., 2010b). The spectral distance can also be calculated from the 

centroids of clustered spectra on a multidirectional plot of spectral reflectance (Rocchini et al., 

2015), which relate to a homogenous vegetation type. The greater the spectral distance between 

the centroids, the more heterogeneous the species will be and the more diverse the ecosystem 

is likely to be (Rocchini et al., 2009, Rocchini et al., 2007). The spectral distance method has 

been used mainly with the Euclidean distance method for estimating the beta-diversity (Warren 

et al., 2014, Rocchini et al., 2009). However, this method relies on using hyperspectral data or 

high-temporal resolution sensors, such as MODIS. Therefore, using the spectral distance 

method with multispectral sensors may affect the characterization of GDEs  

Interpolation techniques have also proved to be worthwhile in mapping species diversity in 

GDEs (Hernandez-Stefanoni and Ponce-Hernandez, 2006). These techniques assume that 

ecological processes (e.g. seed dispersal) follow a spatial pattern and these patterns influence 

the distribution of vegetation communities and species diversity (Moreno et al., 2018, Cheng 

et al., 2020). Interpolation techniques can generalize the species diversity that is measured from 

point data, to areas that were not measured (Hernandez-Stefanoni and Ponce-Hernandez, 2006, 

Moreno et al., 2018). For instance, Cheng et al. (2020) successfully interpolated species 
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diversity for the Badain Jaran Desert in China. Although the method is not statistically robust, 

it provides initial assessments that can guide environmentalists and policymakers on the species 

diversity in GDEs.  

 

 

Figure 2.4 Species that are closer together usually have spectra that are clustered and 

similar, but as the distance between the species increases, they become more 

dissimilar, owing to the environmental heterogeneity. Thus, species similarity 

decreases with increasing spectral distance. When species become dissimilar, 

the species diversity increases.   
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2.7. The Challenges and Opportunities of Using Remote Sensing to Delineate and 

Characterize GDEs 

Using remote sensing to characterise or delineate GDEs comes with several opportunities and 

challenges. As shown in the previous sections, monitoring vegetation diversity in GDEs 

requires the use of high spectral- and spatial-resolution sensors. However, high spectral-

resolution sensors (e.g., HySpex) are costly or have a low spectral resolution (e.g., IKONOS 

and Worldview-4). Spectral bands from new-generation satellites (e.g. Sentinel-2 and 

WorldView-2) offer reasonable opportunities, given the presence of red-edge and near-infrared 

spectral bands (Fu et al., 2020). The red-edge spectral region can detect subtle differences in 

the phenology of the vegetation (Cho et al., 2012, Mutanga et al., 2012) and this may be useful 

in observing phreatophytes in GDEs.  

A trade-off exists as to whether high spatial- or spectral-resolution sensors should be used. 

Hyperspectral sensors reduce the instance of spectral mixing by spectrally discriminating 

species, based on their spectral signature, but this is impossible with low spectral resolution 

sensors. The launch of the Environmental Mapping and Analysis Program (EnMap) 

hyperspectral space-borne sensor (Fischer et al., 2017, Guanter et al., 2015) will most likely 

improve the characterisation of vegetation diversity in GDEs. The upcoming EnMap will 

provide spectral information in the 420 nm–2450 nm spectrum at a spatial resolution of 30 m 

(Guanter et al., 2015). These specifications could be useful for monitoring GDEs in arid 

environments, especially when coupled with the LiDAR data. By including structural metrics 

from the Global Ecosystem Dynamics Investigation (GEDI), LiDAR could enhance the 

estimation of vegetation diversity in the absence of high spatial-resolution sensors, thus 

improving the spectral discrimination of species in GDEs (Coyle et al., 2019).  

Several ecological processes occur before the revisit period of a satellite sensor and low 

temporal resolution sensors (e.g., SPOT-5), which may affect our understanding of the 

vegetation phenology and thus the delineation of GDEs. Using Phenocams may assist in the 

timely monitoring of changes in the vegetation phenology in response to the groundwater 

dynamics (Aasen et al., 2020). Phenocams (e.g., LUPUSNET HD–LE971) use imagery from 

digital cameras to monitor the phenology of vegetation at a high temporal resolution 

(Richardson et al., 2018, Aasen et al., 2020). Although they may have a limited swath extent, 

they may improve the identification of GDEs on a local or regional scale.  
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Depending on the imagery, remote sensing data require a moderate to high computational 

power (Christophe et al., 2011). On average, a 1500-pixel image can be processed in ~51 

minutes with a low-performing computer, whereas this could take 4 minutes 30 seconds with 

a high-performing computer, (Christophe et al., 2011). Using the Google Earth Engine (GEE) 

minimizes the need for high computational power, because most of the data available on the 

GEE platform are ready for analysis (Gorelick et al., 2017, Kumar and Mutanga, 2018). The 

Google Earth Engine (GEE) is a Cloud computing platform for processing and accessing the 

multi-petabytes of remote sensing data (Gorelick et al., 2017). Access to data cubes of remote 

sensing data can enhance the identification and mapping of GDEs by using the algorithms 

available within the GEE platform. GEE has been used mainly for vegetation and forestry 

research (Kumar and Mutanga, 2018), and it offers endless possibilities for the characterisation 

of GDEs. 

Limited field-measured data on GDVs can be used for the calibration of empirical models, 

especially for regional and global assessments (Bongaarts, 2019). Field measurements of 

vegetation diversity are costly, spatially-limited and can sometimes be destructive, especially 

when used to calibrate Radiative Transfer Models (RTMs) (Li and Wang, 2013). Although 

remote sensing may enhance our understanding of vegetation diversity, field-measured data 

are irreplaceable. In addition, most of the biodiversity in arid environments is present in the 

subterranean layer and may not be observable when using passive remote sensing sensors. 

Using Ground Penetrating Radar (GPR) may yield promising results in the observation of 

stygofauna or the functional traits of roots for biodiversity monitoring in GDEs. However, 

using GPR requires technical expertise because of the several pre-processing procedures 

required before the data can become useful.  

Algorithms (for empirical models) that have been used to explore the relationship between 

vegetation diversity and its spectral traits have not produced convincing results. Of the studies 

reviewed in this paper, the coefficient of determination (R2) between field-measured vegetation 

diversity and its spectral traits was below 0.60. Although they are significant, the low R2 would 

be acceptable only for regional and global estimates of vegetation diversity and not for 

localized studies. The localized estimation of vegetation diversity should produce a high R2 (R2 

>0.7) because there is manageable spectral variance in the local environment, compared to 

regional or global areas. Instead, when these low values (R2 < 0.6) are used for estimating 

vegetation diversity in global and regional studies, they may underestimate or overestimate the 
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vegetation diversity, affecting the allocation of resources (Hu et al., 2019). Using Radiative 

Transfer Model (RTMs) can prevent problems related to algorithm use and selection. They use 

physically-based models that estimate biodiversity by using forward-modelling or inverse-

modelling (Kattenborn et al., 2017). RTMs have been used to success estimate the spectral 

traits of vegetation in other environments (Gara et al., 2018, Kattenborn et al., 2017, Gara et 

al., 2019).  

2.8. Conclusions 

Groundwater is a key resource for obligatory or non-obligatory groundwater-dependent 

ecosystems, which may provide habitat for endemic or threatened species. Remote sensing 

allows the characterisation of the extent and location, vegetation diversity, structure, and 

composition of GDEs, and their response to stressors. This chapter reviewed the published 

literature on delineating and characterising vegetation diversity in GDEs by using remote 

sensing, particularly in arid environments. The focus was on understanding the remote sensing 

techniques that can delineate and characterise vegetation diversity in GDEs. The chapter also 

focused on exploring the effects of the resolution on the delineation and characterising GDEs 

in arid environments. 

The chapter showed that studies using remote sensing have increased over the past 20 years 

and that the Landsat and MODIS data have been used more frequently. However, owing to the 

issues relating to spatial and spectral resolution, future work on the characterisation of GDEs 

with remote sensing will require UAS and next-generation sensors. Whilst UAS and 

Phenocams offer unlimited capabilities for estimating vegetation diversity, only a handful of 

the studies that were reviewed had used their data. The high cost associated with the image 

acquisition and processing of UAS and Phenocam data is a major deterrent. Nonetheless, the 

use of GEE, RTM and GEDI LiDAR data may improve vegetation estimation.   

The chapter revealed the following: 

1. High spatial and spectral resolution sensors are pivotal in the discrimination of 

vegetation species in GDEs. High spatial- and spectral-resolution sensors have a high 

spectral discrimination and low within-pixel variability.  

2. Empirical and image classification techniques are more reliable when delineating or 

characterising GDEs within arid environments.  
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3. The Google Earth Engine (GEE), Radiative Transfer Models (RTMs), and LiDAR-

derived metrics offer several capabilities when monitoring the vegetation diversity in 

GDEs and should be explored in future studies: and  

4. Next-generation hyperspectral sensors (e.g., EnMap and HyspIRI) will significantly 

improve the global estimation of vegetation diversity. The high spectral resolution of 

these sensors, along with their robust algorithms or RTMs, will allow the effortless 

global monitoring of vegetation diversity in GDEs.   
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3.0. CHAPTER 3 

THE SPATIAL CHARACTERISATION OF VEGETATION DIVERSITY 

IN GROUNDWATER-DEPENDENT ECOSYSTEMS, USING 

SENTINEL-2 MSI IMAGERY 

 

Vegetation diversity around a wet natural water pan in the Khakea-Bray TBA                                

(Photo: Courtesy of Kudzai Mpakairi, 2022) 

 

This chapter is based on: 

Mpakairi, K.S., Dube, T., Dondofema, F. and Dalu, T. The spatial characterization of 

vegetation diversity in groundwater-dependent ecosystems, using Sentinel-2 MSI imagery. 

Remote Sensing (Accepted) 
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3.1. Abstract 

Groundwater-Dependent Ecosystems (GDEs) are under threat from the over-abstraction of 

groundwater, which significantly affects their conservation and effective management. 

Although the socio-economic significance of GDEs is understood, their ecosystem services or 

ecological significance (e.g. biodiversity hotspots) in arid environments remain under-studied. 

Therefore, under Sustainable Development Goal (SDG) 15, the characterization, or 

identification, of biodiversity hotspots in GDEs improves their management and conservation. 

In this study, we present the first attempt to spatially characterize the vegetation diversity in 

the GDEs within the Khakea-Bray Transboundary Aquifer. Vegetation diversity was also used 

as a proxy for identifying priority conservation areas and biodiversity hotspots. Following the 

Spectral Variation Hypothesis (SVH), we used remotely sensed data (i.e. Sentinel-2 MSI) to 

characterize the vegetation diversity. This involved using the Rao’s Q to measure vegetation 

diversity from several measures of spectral variation and validate the measured vegetation 

diversity using field-measured data. It was observed that the Rao’s Q has the potential to 

spatially characterise the vegetation diversity of GDEs in the Khakea-Bray Transboundary 

Aquifer. Specifically, we found that the Rao’s Q was related to field-measured vegetation 

diversity (R2 = 0.61 and p = 0.0003) and that the Coefficient of Variation (CV) was the best 

measure for deriving the Rao’s Q. The vegetation diversity was more concentrated around the 

natural pans and along the roads, fence lines and rivers. In addition, vegetation diversity was 

observed to decrease with increasing distance (>35 m) away from the natural water pans and 

that it simulated an inverse piosphere. Overall, findings from this study will be vital for natural 

resource managers when conserving the Khakea-Bray Transboundary Aquifer. The baseline 

information for identifying priority conservation areas within the Khakea-Bray Transboundary 

Aquifer is provided. This work provides a pathway for resource managers to achieve SDG 15, 

as well as the national and regional Aichi biodiversity targets. 

 

Keywords: Khakea-Bray Transboundary Aquifer; Rao’s Q; vegetation diversity; GDE 
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3.2. Introduction  

Transboundary groundwater resources are extensive and challenging to monitor or manage for 

most partner countries (Seward and van Dyk, 2018, Turton et al., 2006). The extent and 

capacity of the underlying aquifers, and the Groundwater-Dependent Ecosystems (GDEs) in 

these environments, are usually unknown (Turton et al., 2006, Davies et al., 2013),  regardless 

of the ecosystem services that are offered by the GDEs (e.g. water purification and nutrient 

cycling) (Eamus et al., 2016, Murray et al., 2006). The over-abstraction of groundwater, 

climate change and groundwater pollution are the main threats to GDEs (Sousa et al., 2014, 

Wu et al., 2020). These threats will most likely intensify as the demand for groundwater 

increases in the future (Clifton et al., 2010, Wu et al., 2020); this, in turn, will affect the water 

and food security of rural populations whose livelihoods depend upon the GDEs (Programme, 

2006, Kreamer et al., 2015, Kløve et al., 2014). Nevertheless, managing or conserving the 

unknown is impossible, and this is the case with the Khakea-Bray Transboundary Aquifer 

(hereafter called the Khakea-Bray TBA) (Seward and van Dyk, 2018). Characterising the 

Khakea-Bray TBA landscape and understanding its ecological and economic significance 

could advance its conservation and management.  

Most GDEs are biodiversity hotspots (e.g. in the Mojave Desert and succulent Karoo) and 

facilitate the existence of regionally restricted species or species under threat (i.e. faunal 

endemism) (Alaibakhsh et al., 2017, Pengra et al., 2007). This is caused mainly by the 

redistribution of groundwater to the shallower parts of the soil profile by keystone species (e.g. 

the Shepherd's tree (Boscia albitrunca)) (Xu et al., 2015, Lv et al., 2013, Coletti et al., 2017). 

These keystone species make GDEs important conservation areas, since accessing the 

groundwater assists plant growth and maintains the species diversity in arid environments 

(Kløve et al., 2011, Howard and Merrifield, 2010, Barron et al., 2014). However, it can be 

challenging to identify GDEs in the absence of hydrogeological surveys In arid areas, GDEs 

can be observed around natural water pans that are supported by groundwater (De Klerk et al., 

2016, Fu et al., 2010). Around these natural water pans, the groundwater level is often high and 

can be easily accessed by Groundwater-Dependent Vegetation (GDV) (Eamus et al., 2006, 

Orellana et al., 2012, Barron et al., 2014). Ideally, areas around natural water pans are expected 

to be highly diverse, when compared to environments further away from them, where the 

groundwater level is low (Figure 3.1). Most studies have used field techniques to assess the 

species diversity around natural water pans, owing to their reliability and accuracy (Eamus and 
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Froend, 2006, Eamus et al., 2006, Kreamer et al., 2014, Meyers et al., 2021). However, these 

techniques are laborious when working in extensive regions, such as transboundary aquifers, 

and they may be costly in some resource-constrained environments, such as developing nations 

(Brown et al., 2007, Chao et al., 2014a, Chao et al., 2014b, Charlotte et al., 2019, Chen et al., 

2008, Hou et al., 2019, John et al., 2008, Chiloane et al., 2021).  

 

 

Figure 3.1 The conceptual interaction of groundwater and species diversity in arid 

environments. 

 

Remotely-sensed species diversity estimates, such as those provided by the Spectral Variation 

Hypothesis (SVH), are promising, in that they to provide an effective, rapid and direct 

assessment of the species diversity over complex and large landscapes (John et al., 2008, Li et 

al., 2017, Nakhoul et al., 2020, Woods and Sekhwela, 2003). Unlike the traditional measures 

of species diversity (e.g. Shannon-Weiner and Simpson’s D), the SVH uses spectral reflectance 

to characterise the species diversity of an ecosystem (Rocchini et al., 2007, Nagendra and 

Gadgil, 1999). The SVH posits that spectral heterogeneity is a function of environmental 

heterogeneity, and that heterogeneous landscapes are more diverse, with several ecological 

niches (Rocchini, 2007, Rocchini et al., 2005, Rocchini et al., 2004, Rocchini et al., 2017). 

From the spectral response of heterogeneous landscapes, one can identify unique spectra (i.e. 

spectral species) and thus quantify the species diversity of an ecosystem (Wang et al., 2016). 
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Spectral heterogeneity can be detected from measures of spectral variation (e.g. the Coefficient 

of Variation or NDVI) (Wang et al., 2016, Wang and Gamon, 2019). However, these measures 

should be able to detect the subtle differences in the spectral variance (Torresani et al., 2021a). 

Accurate measurements of spectral variation have been mostly derived from high spatial- and 

spectral-resolution sensors (Nagendra et al., 2010). Where broadband sensors (e.g. AVHRR) 

are used, the measurement of spectral variation may not distinguish the spectral reflectance of 

two species under phenotypic plasticity (Chen et al., 2020, Cavender-Bares et al., 2020), and 

when low spatial resolution sensors are used (e.g. MODIS), the spectral reflectance may be 

marred by spectral mixing (Rocchini et al., 2010a, Wang and Gamon, 2019). In such situations, 

the applicability of SVH is limited (Schmidtlein and Fassnacht, 2017). Using the Sentinel-2 

Multispectral Instrument (MSI) could bridge the gap between high spatial- and spectral-

resolution sensors, since the Sentinel-2 MSI has a medium spatial resolution (10-20 m) with 

key spectral bands (e.g. red-edge bands), which are important for vegetation mapping 

(Mandanici and Bitelli, 2016). Nonetheless, when characterising extensive or regional 

environments, using high spatial- and spectral-resolution sensors may not be feasible, owing 

to the computational and financial costs related to the scale of their application (Wang and 

Gamon, 2019).  

The common techniques for measuring species diversity by using the SVH include: (i) the 

distance from the spectral centroid in spectral space (Rocchini, 2007), (ii) the variations in the 

NDVI (Gould, 2000), (iii) the convex hull volume in the principal component space (Dahlin, 

2016), and (iv) the Rao’s Q (Torresani et al., 2021a). However, two decades after introducing 

the SVH, there is still no consensus about which method to use when measuring species 

diversity. A review of some methods is provided by Wang and Gamon (2019). Nevertheless, 

over the past decade, the Rao’s Q has gained popularity in the measurement of species diversity 

(Rocchini et al., 2017, Torresani et al., 2021b, Torresani et al., 2019). In several studies, it has 

outperformed some of the techniques that have been used for calculating species diversity, 

based on the SVH (Rocchini et al., 2017, Torresani et al., 2021a, Torresani et al., 2019). The 

Rao’s Q estimates spectral diversity by using the abundance and proportion of pixels, as well 

as the spectral distance between these pixels (Rocchini et al., 2017). Using the Rao’s Q for 

characterising species diversity can provide an a priori knowledge of the priority areas that 

need to be conserved in transboundary ecosystems. This is based on the use of vegetation 

diversity as a proxy for the stability of an ecosystem. Ideally, stable ecosystems are more 
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diverse, compared to degraded ecosystems (Barbosa et al., 2001, Fisher et al., 2012). 

Furthermore, the identification of priority conservation areas with a high biodiversity in 

extensive transboundary ecosystems is less costly, when compared to the managing the entire 

ecosystem (Ayyad, 2003, Bongaarts, 2019, Brown et al., 2007, Cavender-Bares et al., 2020).   

The Khakea-Bray TBA is one such transboundary ecosystem in which the priority areas with 

high biodiversity need to be identified. The Khakea-Bray TBA is a transboundary reservoir 

shared between Botswana and South Africa, and which is under threat from unsustainable 

groundwater abstraction and looming climate change (Eales, 2010, Bauer and Scholz, 2010, 

Davies et al., 2013). Despite the threats, no compelling policy exists between the two nations 

that share the aquifer on the utilisation of groundwater resources in the Khakea-Bray TBA 

(Ngobe, 2021, Seward and van Dyk, 2018). In 2002, Godfrey and van Dyk (2002b) estimated 

that the groundwater level had lowered by at least 40 m. When the groundwater level lowers, 

the GDEs that rely on the groundwater are affected, which leads to their degradation (Ngobe, 

2021, Seward and van Dyk, 2018). The GDEs under stress are susceptible to invasion by alien 

species, which may affect the regionally-restricted species within the GDE (Fisher et al., 2012, 

Pyšek and Richardson, 2010). Using the Rao’s Q and remote sensing data, species diversity 

can be a proxy for monitoring the health, structure and functioning of the Khakea-Bray TBA 

ecosystem. Therefore, we present the first attempt at characterising the vegetation diversity in 

the Khakea-Bray TBA. Our aim was to test how the vegetation communities in this TBA varied 

and to identify the most dominant vegetation types within this environment. We also tested the 

applicability of the Rao’s Q by spatially characterising the vegetation diversity in this 

ecosystem, and how vegetation diversity varied, depending on the distance (0 – 100 m) from 

the natural water pans (dry or wet). Understanding the vegetation diversity can help to identify 

the priority areas that need to be conserved or monitored for invasive species.  

3.3. Materials and Methods 

3.3.1. Field campaign and measuring species diversity  

Sixteen north-oriented plots were purposefully sampled around the natural pans (dry and wet) 

within the Khakea-Bray TBA. Natural water pans are surface depressions filled with rainwater 

or groundwater seepage (Arendt et al., 2021). These pans were selected because they were 

linked to the Khakea-Bray dolomite aquifer, which supports all the GDEs within this ecosystem 
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(Godfrey and van Dyk, 2002b, Van Dyk, 2005). The natural water pans were considered to be 

wet when water was available, and dry when there was no water in them. Since GDEs are more 

common in these areas, owing to the high groundwater level that supports these natural pans, 

the sampling was conducted around them (Brown et al., 2007). The sampling plots measured 

400 m2 (i.e. 20 m × 20 m) and were within 1 km of a natural water pan. The random placement 

of the plots ensured that they were at least 100 m away from each other, in all directions, to 

avoid biased sampling from autocorrelation. This was also done to avoid overlapping pixels 

when relating field measured data and remote sensing imagery. In each sampled plot, the focus 

was on the composition of woody and herbaceous plant species, as well as their corresponding 

abundance. Notwithstanding the other forms of vegetation physiognomy, the grasses and 

forbes were grouped into one class (i.e. Eragrostis spp). The species were identified by using 

field guides (e.g. (Van Wyk, 2013)) or mobile applications (e.g. iNaturalist and PlantSnap). 

Where the species could not be identified, a specimen was taken to the local botanist for 

identification.  The plots were sampled during the dry season of 2021 (June–July). This period 

was selected as it is characterized by low rainfall and because the GDVs are usually productive 

during the dry period, owing to their access to groundwater. This period also excludes non-

GDVs, since vegetation that is dependent on the surface water usually dries up soon after the 

wet season (Chiloane et al., 2021, Eamus et al., 2016).  

The Shannon-Weiner Index (H) was used to calculate the species diversity in each plot. H is a 

commonly-used measure and characterizes the diversity of an area, based on its richness and 

evenness (Jost, 2010). H can be calculated as: 

 

𝐻′ = − ∑ 𝑝𝑖 ln 𝑝𝑖
𝑆
𝑖=1       Equation 3.1 

 

Where S is the total individuals in the plot and pi is the proportion of species i to S. 

However, H is an index of diversity and is not diversity itself (Jost, 2006, Chao et al., 2014b), 

hence the H values were converted to the effective number of species (i.e. true diversity) using 

an exponential function of H. The effective number of species helps to understand the true 

diversity of a community (Chao et al., 2014a), it  is linear and does not saturate at high values; 
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instead, it accurately provides the number of species related to a specific diversity value (Chao 

et al., 2014b, Chao et al., 2014a, Jost, 2006).   

3.3.2. Community composition and dominance 

Bootstrapping was used to extrapolate the species richness and estimate the number of 

unobserved species during data collection (Smith and van Belle, 1984, Phan et al., 2021). The 

technique is non-parametric and estimates the species richness from repeated resampling, under 

the assumption of randomness (Smith and van Belle, 1984). Bootstrapping was calculated in 

R, using the vegan package (Oksanen et al., 2007), with the following equation: 

 

𝑆𝑒 = 𝑆𝑜 + ∑ (1 − 𝑝𝑖)
𝑁𝑆𝑜

𝑖=1      Equation 3.2 

 

Where Se is the extrapolated species richness and So is the observed species richness. N is the 

number of plots and pi is the frequency of species i.  

To test whether there were differences in the community composition of the measured field 

data, this chapter used a Permutational Multivariate Analysis of Variance (PERMANOVA). 

PERMANOVA tests whether the centroids of dispersion are different between the groups 

(Razali and Wah, 2011, Anderson, 2001). For this study, PERMANOVA tested whether the 

observed species in each plot differed from the other sampled plots, by using distance matrices. 

The significance of the group differences was evaluated by using the p-value (Anderson, 2001). 

PERMANOVA was used because it is a robust measure capable of handling data that are not 

normally distributed, which was the case with our data (Shapiro-Wilk test, p < 0.05). 

PERMANOVA was run in R by using the vegan package. 

The dominance index (Y) was used to identify the most dominant species in the sampled plots 

(Lin et al., 2011, Guo et al., 2019). Species with Y > 0.02 were considered dominant, compared 

to all the other species (Lin et al., 2011, Guo et al., 2019, Xu and Chen, 1989). The Y is 

calculated by using the following formula:  
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𝑌𝑖 =
𝑁𝑖

𝑁
𝑓𝑖      Equation  3.3 

Where Yi is the dominance of species i and Ni is the abundance of species i. N represents the 

abundance of all the sampled species and fi is the frequency of species i.  

3.3.3. Image acquisition and processing  

Cloud-free Sentinel-2 Multispectral Instrument (MSI) imagery, which was corrected for its 

surface reflectance, was accessed through the Google Earth Engine (GEE) platform 

(https://code.earthengine.google.com). The surface reflectance data at 20 m provide for 

corrected geometric and atmospheric errors. The date the image was acquired coincides with 

the date when the fieldwork was conducted (25 June 2021). Cloud remnants were removed by 

using the mask function in GEE. The Normalized Difference Built-up Index (NDBI) and the 

Modified Normalized Difference Water Index (MNDWI) were also used to mask the built-up 

areas and water, respectively (Xu, 2008, Bhatti and Tripathi, 2014, Jiang et al., 2012). These 

indices were used, owing to their robustness in the mapping of water and built-up areas (Xu, 

2008, Bhatti and Tripathi, 2014, Jiang et al., 2012, Zha et al., 2003, Xu, 2006). This was done 

to avoid the reflectance from built-up areas and water from influencing the analysis. The bare 

surfaces were not removed since these show the absence of vegetation. A threshold of ≥ 0 for 

NDBI and ≥0 for MNDWI was used to identify the built-up areas and water, respectively. 

These values were selected, based on the literature (Xu, 2008, Bhatti and Tripathi, 2014, Jiang 

et al., 2012, Zha et al., 2003, Xu, 2006). 

 

MNDWI can be calculated as:  

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅 1

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅 1
     Equation    3.4 

 

and NDBI as: 

 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅 1−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 1+𝑁𝐼𝑅
      Equation    3.5 
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Where Green, NIR and SWIR 1 are reflectance regions in the green (B2), near-infrared (B8) 

and shortwave infrared (B11) from Sentinel-2 MSI, respectively.  

3.3.4. Calculating measures of spectral variation 

To characterize the vegetation diversity in the Khakea-Bray TBA, based on the SVH, the 

spectral variation measurements are usually used. Thirteen measures of spectral variation were 

used (Table 3.1). These measures were selected, based on their use in SVH studies and how 

they have been used to characterize landscapes in different environments (Laliberté et al., 2020, 

Madonsela et al., 2017, Oindo and Skidmore, 2002, Oldeland et al., 2010, Rocchini et al., 2004, 

Torresani et al., 2021a). Amongst the selected measures of spectral variation, all the spectral 

bands from Sentinel-2 MSI were also used, along with the first principal component of the 

spectral bands after the Principal Component Analysis (PCA). The first principal component 

accounts for the maximum variance and can be a measure of spectral variation (Madonsela et 

al., 2021, Torresani et al., 2019, Laliberté et al., 2020). All the other measures included were 

spectral vegetation indices commonly used to characterize the spectral heterogeneity in 

vegetated landscapes (Torresani et al., 2021b). 

Table 3.1 Remote sensing indices for measuring spectral variation, where Green is the 

reflectance in the green band, blue is the reflectance in the blue band, red is the 

reflectance in the red-edge band, Nir is the reflectance in the near-infrared band 

and Swir is the reflectance in the shortwave infrared band. 

 

Name Band Combination Reference 

Coefficient of variation (CV) 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑠

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑠
 

Madonsela et 

al. (2021) 

Enhanced Vegetation Index 

(EVI) 
2.5

𝑁𝑖𝑟 − 𝑅𝑒𝑑

(𝑁𝑖𝑟 + 6𝑅𝑒𝑑 − 7.5𝐵𝑙𝑢𝑒 + 1
 

Bohn et al. 

(2007) 
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Enhanced Vegetation Index 

(EVI) 2 
2.5

𝑁𝑖𝑟 − 𝑅𝑒𝑑

𝑁𝑖𝑟 + 2.4𝑅𝑒𝑑 + 1
 

Mondal (2011) 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 2 

2𝑁𝑖𝑟 + 1 − √(2𝑁𝑖𝑟 + 1)2 − 8(𝑁𝑖𝑟 − 𝑅𝑒𝑑)

2 
 
Jiang et al. 

(2007) 

Normalized Difference 

Vegetation Index (NDVI) 

(𝑁𝑖𝑟 − 𝑅𝑒𝑑)

(𝑁𝑖𝑟 − 𝑅𝑒𝑑
 

Jiang et al. 

(2006) 

Normalized Difference 

Phenology Index (NDPI) 

𝑁𝑖𝑟 − (0.74𝑅𝑒𝑑 + 0.26𝑆𝑤𝑖𝑟)

𝑁𝑖𝑟 + (0.74𝑅𝑒𝑑 + 0.26𝑆𝑤𝑖𝑟)
 

Xu et al. 

(2021) 

Optimized Soil Adjusted 

Vegetation Index (OSAVI) 
(1 + 𝐿)

𝑁𝑖𝑟 − 𝑅𝑒𝑑

𝑁𝑖𝑟 + 𝑅𝑒𝑑 + 𝐿 
 

L=0.16 

Rondeaux et 

al. (1996) 

Simple Ratio Index 𝑁𝑖𝑟

𝑅𝑒𝑑
 

Hayashi and 

Van der Kamp 

(2000) 

Soil Adjusted Vegetation Index 

(SAVI) 
(1 + 𝐿)

𝑁𝑖𝑟 − 𝑅𝑒𝑑

𝑁𝑖𝑟 + 𝑅𝑒𝑑 + 𝐿 
  

L=0.5 

Huete (1988) 

Renormalized Difference 

Vegetation Index (RDVI) 

𝑁𝑖𝑟 − 𝑅𝑒𝑑

√𝑁𝑖𝑟 + 𝑅𝑒𝑑 
 

Haboudane et 

al. (2004) 

Tasseled-cap Greenness Index 

(TCI) 

-0.28482 Blue+ 0.24353 Green+ 0.54364 Red+ 

0.72438 Nir- 0.084011 * Nir - 0.180012 Swir 

Crist and 

Kauth (1986) 
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3.3.5. Calculating vegetation diversity with the Rao’s Q, using remote sensing 

data 

Rao’s Q was used to measure the spectral diversity based on the measures of spectral variation. 

Originally, it was used in studies that focused on the functional diversity of taxa (Torresani et 

al., 2019, Torresani et al., 2021b); however, over the past decade, its use in the remote sensing 

community has increased (Torresani et al., 2021b). Unlike other indices (e.g. Simpson D, 

Pielou’s evenness, or H), which focus only on the abundance and proportion of the species, the 

Rao’s Q also accounts for the distance between the species (Torresani et al., 2021b). By means 

of remote sensing, the Rao’s Q calculates the diversity by using the pair-wise spectral distance 

between the digital values (DN) of pixels i and j (Torresani et al., 2021b, Khare et al., 2021). 

The Rao’s Q also incorporates the abundance and proportion of pixels i and j. The process is 

iterative and incorporates all the grids covering the study area. More information on the Rao’s 

Q can be found in Rocchini et al. (2017), and it is calculated as follows:  

 

𝑄𝑟𝑠 = ∑ ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗
𝐹
𝑗=𝑖+1

𝐹−1
𝑖=1      Equation  3.6 

 

Qrs represents the Rao Q applied to the remote sensing image and dij is the distance between 

the i th and j th pixel (dij = dji and dii=0). F is the selected image extent or plot area, with pi and pj 

being the proportion of pixel i and j to F, respectively.  

Rao’s Q was calculated in R (Team, 2020) for all the measures of spectral variation by using a 

3 × 3-pixel moving window with the spectralrao function, which is available in Rocchini et al. 

(2017) and Rocchini et al. (2019).  

The Rao’s Q calculated from the Enhanced Vegetation Index (EVI), the Enhanced Vegetation 

Index (EVI) 2, the Modified Soil Adjusted Vegetation Index (MSAVI) 2, the Normalized 

Difference Vegetation Index (NDVI), the Optimized Soil Adjusted Vegetation Index (OSAVI), 

the Simple Ratio Index (SR), the Soil Adjusted Vegetation Index (SAVI), the Renormalized 

Difference Vegetation Index (RDVI) and the Tasseled-cap Greenness Index (TCI) returned 

zero for over 50% of the study area; hence, the results were not considered. The Rao’s Q 

computes the pairwise differences and returns zero when the pairwise difference of the Digital 
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Numbers (DNs) from the measures of spectral variation is zero (Rocchini et al., 2017, Torresani 

et al., 2019). 

3.3.6. Evaluating remote sensing-derived diversity  

The coefficient of determination (R2) at a 95% confidence interval was used to examine the 

linear relationship between the remote sensing-derived diversity (i.e. Rao’s Q) and the field 

measured diversity (i.e. the effective number of species). R2 was used to examine the proportion 

of the variance between the Rao’s Q and the field measured diversity. The R2 was calculated 

for all the Rao’s Q metrics derived from the four measures of spectral variation, and the R2 was 
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executed in R, using the stats package. The entire methods section for this chapter is 

summarized in Figure 3.2. 

 

Figure 3.2 Summarised flowchart of the steps and processes followed to characterise the 

vegetation diversity in the Khakea-Bray TBA. The numbers show the main 

steps that were followed. 

3.3.7. The effect of distance from the natural water pan on vegetation diversity 

The best-performing measure of spectral variation was then selected to test the variation of 

Rao’s Q with the increasing distance from the natural pans. This was tested for the dry and wet 
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natural pans in the Khakea-Bray TBA. To test the response of species diversity to distance, 

non-overlapping buffers were created around the natural pans, and the corresponding Rao Q 

was derived by using zonal statistics in ArcMap 10.8 (ESRI, 2020). Curve estimation 

techniques were used to evaluate the relationship between the distance from the natural pan 

and the corresponding Rao’s Q. To achieve this, six regression models (i.e. linear, cubic, 

quadratic, inverse, logarithmic and polynomial) were run and evaluated by using the corrected 

Akaike Information Criterion (AICc) for the wet and dry natural pans. The AIC is an estimator 

of the model error and a model with a lower AIC is better, compared to a model with a higher 

AIC (Kletting and Glatting, 2009, Chamaillé‐Jammes et al., 2009). In addition, the AIC 

penalizes models for using more variables, hence balancing the model’s fitness and model 

simplicity (Kletting and Glatting, 2009). The AICc was used instead of the AIC, since it has 

been corrected for small sample sizes. Lastly, the student t-test (Ruxton, 2006) was used to test 

whether the derived Rao’s Q differed between the dry or wet natural pans.  

3.4. Results 

3.4.1. Species composition, diversity, and dominance  

Eighteen plant species were observed in the field (Appendix 1) and bootstrap extrapolation 

showed that at least 3.56 species were unseen. In addition, the species composition in the 

sampled plots did not differ significantly (p = 0.538), and the species diversity (the effective 

number of species) was observed to vary within the sampled plots. Most plots had a low species 

diversity (<2.5), with only a few plots having a high species diversity (>3). 

Of the observed plant species, the Eragrostis spp. was the most dominant (Dominance Index = 

7.3), followed by Senegalia nigrescens (Dominance Index = 1.91), Scorzonera humilis 

(Dominance Index = 1.09), and Leonotis ocymifolia (Dominance Index = 0.20) (Figure 3.3). 

Rare species, which were less dominant, were also observed within the sampled plots and 

included Ziziphus mucronate, Leucas martinicensis and Lipia javani. 
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Figure 3.3 Species dominance of the species observed in the sampled plots. The species 

dominance was measured by using the dominance index. Where Sp1 = Aloe 

maculate, Sp2 = Asparagus spp, Sp3 = Dracaena trifasciata, Sp4 = Ehretia 

rigida, Sp5 = Eragrostis spp, Sp6 = Leonotis ocymifolia, Sp7 = Trifolium 

repens, Sp8 = Grewia flava, Sp9 = Leucas martinicensis, Sp10 = Lipia javani, 

Sp11 = Meitinas Polyacantha, Sp12 = Olea spp., Sp13 = Opuntia ficas indica, 

Sp14 = Scorzonera humilis, Sp15 = Senegalia nigrescens, Sp16 = Ledebouria 

marginata, Sp17 = Kalanchoe spp and Sp18 = Ziziphus mucronate.  

3.4.2. Distribution and performance of spectral diversity from remote sensing 

data 

The remotely sensed diversity (Rao Q), which was derived from the measures of spectral 

variation, was observed to be higher in the south-western part of the study area. More 

specifically, the vegetation diversity was highest around the natural water pans and along the 

fence-lines, roads, and rivers (Figure 3.4). In other parts of the study area, the Rao Q was low 

or intermediate, typically in the grassland or cultivated areas. High spatial fidelity was observed 
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when all the spectral bands and the coefficient of variation were used. On the other hand, the 

NDPI and principal component had a low spatial fidelity.  

 

 

Figure 3.4 Species diversity (Rao Q) derived from the measures of spectral variation: (a) 

all the spectral bands, (b) coefficient of variation, (c) Normalised Difference 

Phenology Index (NDPI), and (d) principal component (The white returned NA 

values).  

 

The coefficient of determination showed that the vegetation diversity measured from the 

remote sensing data was related to the field data (R2>0.01). The association between the field-

measured vegetation diversity and the Rao’s Q was significantly high for the coefficient of 

variation and the reflectance of all the spectral bands (R2 > 0.3 and p < 0.05) (Figure 3.5). 
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However, the Normalised Difference Phenology Index and the first principal component did 

not exhibit a high association. 

 

 

Figure 3.5 Linear regression of field-measured species diversity and remotely sensed 

diversity (Rao Q) in the Khakea-Bray TBA. Remotely sensed diversity (Rao Q) 

was derived from 20 m spatial resolution of (a) all the spectral bands, (b) the 

Normalised Difference Phenology Index (NDPI), (c) the coefficient of 

variation, and (d) the principal component. 

3.4.3. Species diversity and distance from the natural pan 

The Rao’s Q between the wet and dry natural pans did not differ significantly (Figure 3.6). 

However, using curve estimation techniques, it was observed that the vegetation diversity 

around dry and wet natural pans was related to their distance from the natural pans. The 

http://etd.uwc.ac.za/ 
 



57 

 

logarithmic equation explained the relationship between vegetation diversity and distance from 

the wet and dry natural water pans (Table 3.2). 

Table 3.2 Curve estimation models for estimating the relationship between remotely 

sensed diversity (Rao Q) and distance from the wet natural pans. Y represents 

the vegetation diversity, b denotes the constant, C represents the intercept and 

X is the distance from the wet natural pans. The bold values show the 

significant model with the lowest AICc.  

Our results showed that species diversity decreased with the increasing distance from the 

natural pans (Figure 3.7). The decrease in species diversity around the wet natural pans was 

gradual and only peaked at ~40 m. However, the species diversity around the dry natural pans 

peaked at ~25 m and dropped sharply afterwards, with the increasing distance.  

Formula Type Wet pan Dry pan 

AICc AICc 

Y= b1X+C Linear -69.47 -66.61 

Y= C + b1log(X) Logarithmic -353.54 -348.76 

Y= C + b1/X Inverse -280.18 -123.34 

Y= C + b1X+b2X
2 Quadratic -78.07 -64.51 

Y= C + b1X+b2X
2 + b3X

3 Cubic -78.02 -77.09 

Y= C + b1X+b2X
2 + b3X

3+ b4X
4 Polynomial -74.40 -93.76 
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Figure 3.6 Mean variation in remotely sensed diversity (Rao’s Q) between wet and dry 

natural pans, using the coefficient of variation at 20 m spatial resolution. 

 

 

Figure 3.7 The response of remotely sensed species diversity (Rao’s Q) to the distance 

from the natural pan between (a) wet and (b) dry natural pans. 
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3.5. Discussion 

In this chapter, Sentinel-2 MSI was used to test whether the Spectral Variation Hypothesis 

(SVH) could characterize plant species diversity in Groundwater-Dependent Ecosystems 

(GDEs) within the Khakea-Bray TBA.  

3.5.1. Measures of spectral variation and their performance in estimating 

vegetation diversity 

The Rao’s Q estimated from the Coefficient of Variation (CV) performed better than the Rao’s 

Q estimated from all the other measures of spectral variation. In this study, the CV was used to 

measure the variability in spectral reflectance amongst pixels from all the spectral bands (Wang 

et al., 2018, Wang et al., 2016). CV is highly sensitive to the reflectance of rare and abundant 

species and is a measure of spectral variation (Madonsela et al., 2021, Wang et al., 2018). The 

CV has been used in different studies (Madonsela et al., 2021, Torresani et al., 2019, Wang et 

al., 2016), and it focuses on monitoring different aspects of the environment (Mapfumo et al., 

2016, Arnall et al., 2006). Owing to its ability to detect spectral heterogeneity, the performance 

of the CV is expected to be better than other measures of spectral variation (Mapfumo et al., 

2016, Madonsela et al., 2021). 

The structural and chemical properties of leaves usually drive the spectral heterogeneity 

observed in the spectral reflectance of vegetation (Laliberté et al., 2020). The low performance 

of the Normalized Difference Phenology Index and the first principal component in estimating 

the Rao’s Q can be explained by how these metrics capture more spectral heterogeneity in 

vegetated landscapes than in arid environments with intense soil reflectance (Xu et al., 2021, 

Oldeland et al., 2010). In addition, these measures may be more sensitive to a specific 

component of diversity (i.e. evenness, abundance, or dominance) (Madonsela et al., 2021, 

Madonsela et al., 2017). Therefore, these metrics may perform better in areas with a high 

environmental heterogeneity (e.g. temperate forests) or with a different measure of diversity 

(Wang et al., 2018, Laliberté et al., 2020).  

The SVH does not hold in all environments (Schmidtlein and Fassnacht, 2017), but its 

applicability has been successfully tested in several environments  including alpine conifers 

(Torresani et al., 2019) and grasslands (Lopes et al., 2017). This study presents the first attempt 

to utilize the Rao’s Q for characterising species diversity in GDEs within an arid environment. 
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The findings of this study are supported by the empirical data from field-measured diversity, 

which explain at least 61% of the remote sensing-derived vegetation diversity (Rao’s Q). When 

compared to other studies, for example Madonsela et al. (2017), Madonsela et al. (2021), 

Rocchini et al. (2004) and Lopes et al. (2017), the results are more robust. For example, 

Madonsela et al. (2017) and Rocchini et al. (2004) reported a low R2 (0 - 0.48) when explaining 

vegetation diversity in South Africa and Italy. The findings of this study are also credible since  

the Rao’s Q from several measures of spectral variation were calculated, unlike other studies, 

which only used single measures, such as the principal components (Laliberté et al., 2020), 

NDVI (Madonsela et al., 2017) or CV (Madonsela et al., 2021). The applicability of the SVH 

relies strongly on the measures of spectral variation used, and the measure should be able to 

detect the subtle differences in vegetation spectral reflectance with either medium- or low-

resolution sensors (Torresani et al., 2021a, Rocchini et al., 2010a). Although this chapter 

utilized a moderate-resolution sensor, Sentinel-2 MSI, using high-resolution sensors, could 

have improved the robustness of these results.  

The temporal variations in vegetation phenology may also have influenced the detection of 

spectral heterogeneity, since a single image, and not multi-temporal images, were used in this 

research study. Caution should also be taken when interpreting these results, since some areas 

within the Khakea-Bray TBA are not groundwater-dependent, whether they have a high or low 

vegetation diversity. These limitations do not take away from the merit of these results since 

they are rigorous and are clear and scientifically relevant. Future studies using the Rao’s Q 

could test it with data from multi-temporal, high-resolution imagery and compare it to other 

methods for measuring vegetation diversity from spectral reflectance.  

3.5.2. Distribution of vegetation diversity in the Khakea-Bray TBA 

Vegetation diversity, measured with the Rao’s Q, was the highest around the natural water pans 

and along rivers and roads. Groundwater from the Khakea-Bray dolomitic aquifer discharges 

into natural water pans and rivers, and this facilitates high vegetation diversity along, and 

around, these areas (Seward and van Dyk, 2018, Van Dyk, 2005, Ngobe, 2021). In addition, 

groundwater is usually enriched as it flows through different soils and some of these nutrients 

improve plant growth (Jansson et al., 2007, Smolders et al., 2010). Consequently, around 

natural water pans and along rivers (i.e. the riparian zone) species compete for the nutrients 

and water that are available from the groundwater. This is true since soil moisture and fertility 
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are limiting factors for plant growth in other parts of our study area, where the vegetation 

diversity was low. Just as competitive exclusion explains the low diversity in other parts of our 

study areas, niche partitioning might be responsible for the high vegetation diversity around 

natural water pans and along rivers (Egeru et al., 2015). 

As the groundwater level deepens, the competition between species will likely change and the 

vegetation diversity will be reduced (Ma et al., 2011). This phenomenon is supported by 

observations in this study that show how vegetation diversity decreases with the increasing 

distance from the natural water pans, thus resembling an inverse piosphere. The inverse 

piospheric response of vegetation diversity around natural water pans means that there is 

minimal utilization, or grazing of vegetation around natural water pans by livestock 

(Washington-Allen et al., 2004, Mpakairi, 2019), which gives them a selective advantage over 

other vegetation species, thus allowing the vegetation diversity to be high around natural water 

pans (Washington-Allen et al., 2004, Egeru et al., 2015). The observation of a high vegetation 

diversity around natural water pans and along rivers agree with previous research on how the 

vegetation diversity is reduced, as the groundwater depth decreases (Zhu et al., 2013, Ma et al., 

2011, Egeru et al., 2015). 

The results also showed that non-groundwater-dependent areas had a high vegetation diversity. 

This was observed along roads and fence lines. Roads are dispersal corridors (Spellerberg, 

1998), with high propagule pressure caused by the constant disturbance during maintenance 

and construction (Fowler et al., 2008). The constant disturbance changes the soil properties and 

improves its fertility (i.e. from the increased decomposition of nutrients) (Fallahchai et al., 

2018, Li et al., 2014b). The improved soil fertility facilitates the colonization of roads by 

synanthropic plant species, specifically ruderal apophytes, which can quickly establish 

themselves and therefore increase the vegetation diversity along roads (Zieliñska, 2007, Li et 

al., 2014b). This explains the observations made on the dominance of Eragrostis spp, since the 

species can easily invade and establish itself along roadsides (Roberts et al., 2021b, Roberts et 

al., 2021a). Our findings are similar to those of Li et al. (2014b), Marcantonio et al. (2013) and 

Zamani et al. (2019), whose observations showed that vegetation diversity along roadsides was 

mainly driven by fast-growing plant species. On the other hand, observations of a high species 

diversity along fence lines could plausibly be related to a community preference for using 

mixed-element fences that consist of living and non-living posts. Mixed-element fences consist 

of plant species that can easily resprout and that require minimal attention (Harvey et al., 2005). 
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In addition, the posts for mixed-element fences are made from several tree species for extra 

strength, thus influencing the vegetation diversity along the fence-line (Pulido-Santacruz and 

Renjifo, 2011).  

3.5.3. The implications of using vegetation diversity for monitoring and 

conserving GDEs  

There is a limited knowledge on biodiversity globally (i.e. the Linnean shortfall), and 

environments without ecological or economic significance are rarely prioritized in 

conservation programs, regardless of the associated Sustainable Development Goals (SDG) 

(Sætersdal and Gjerde, 2011). This approach has led to the degradation of many GDEs, since 

their significance was not realized in time (Murray et al., 2006, Regos et al., 2021). Although 

conservation is costly, identifying the priority conservation areas could help to manage 

ecosystems at risk of degradation (Knight et al., 2008). Although this approach is economically 

sound, it may put other ecosystems at risk (Knight et al., 2008, Sætersdal and Gjerde, 2011, 

Regos et al., 2021). The methodology in this study provides resource managers and ecologists 

with a framework for characterising and identifying priority conservation areas, where a priori 

information does not exist. Using the SVH and remotely sensed data can provide resource 

managers with insights into the vegetation diversity in the Khakea-Bray TBA, which can be a 

proxy for identifying the priority areas that need to be conserved or monitored for invasive 

species. 

3.6. Conclusions 

Understanding species diversity in GDEs is pivotal for the management and conservation of 

the Khakea-Bray TBA. Currently, field techniques are costly, and more innovative and accurate 

ways are being sought to provide us with some knowledge on species diversity in GDEs. Our 

study presents the first attempt to characterize vegetation diversity in a transboundary aquifer 

under threat from climate change and anthropogenic activities. This chapter provides evidence 

on how the SVH can be used with Sentinel-2 MSI to characterize the species diversity of GDEs 

within the Khakea-Bray TBA. This work also identifies the priority conservation areas in the 

Khakea-Bray TBA. Our work provides resources managers with a way of achieving the 

national and regional Aichi biodiversity targets, as well as for meeting SDG 15. Therefore, 
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future studies can use our methodology to provide a priori knowledge on all global ecosystems, 

including GDEs. 
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4.0. CHAPTER 4 

 SPATIO–TEMPORAL VARIATION OF VEGETATION DIVERSITY IN 

GROUNDWATER-DEPENDENT ECOSYSTEMS WITHIN ARID 

ENVIRONMENTS 

Vegetation heterogeneity around a wet natural pan during the dry season                                                           

(Photo: Courtesy of Kudzai Mpakairi, 2021) 

 

Mpakairi, K.S., Dube, T., Dondofema, F. and Dalu, T. Spatio–temporal variation of species 

diversity in groundwater-dependent ecosystems within arid environments. Ecological 

Informatics (In press) 
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4.1. Abstract  

Climate change, land cover change and the over–abstraction of groundwater threaten the 

existence of Groundwater-Dependent Ecosystems (GDE), despite these environments being 

regarded as biodiversity hotspots. The vegetation diversity in GDEs requires routine 

monitoring to conserve and preserve the ecosystem services in these environments. However, 

the in–situ monitoring of vegetation diversity in extensive, or transboundary, groundwater 

resources remain a challenge. Inherently, the Spectral Variation Hypothesis (SVH) and 

remotely-sensed data provide a unique way to monitor the response of GDEs to seasonal or 

intra–annual environmental stressors, which is the key for achieving the national and regional 

biodiversity targets. This chapter presents the first attempt at monitoring the intra–annual, 

spatio–temporal variations in vegetation diversity in the Khakea–Bray Transboundary Aquifer, 

which is between Botswana and South Africa, by using the coefficient of variation derived 

from the Landsat 8 OLI Operational Land Imager (OLI). The coefficient of variation was used 

to measure spectral heterogeneity, which is a function of environmental heterogeneity. 

Heterogenous environments are more diverse, compared to homogenous environments, and the 

vegetation diversity can be inferred from the heterogeneity of a landscape. The coefficient of 

variation was used to calculate the α‐ and β measures of vegetation diversity (the Shannon–

Weiner Index and the Rao’s Q, respectively), whilst the monotonic trends in the spatio–

temporal variation (January–December) of vegetation diversity were derived by using the 

Mann–Kendall non–parametric test. Lastly, to explain the spatio–temporal variations of 

vegetation diversity, a set of environmental variables were used, along with a machine-learning 

algorithm (Random Forest). The vegetation diversity was observed to be relatively high during 

the wet season and low during the dry season, and these changes were mainly driven by 

landcover- and climate–related variables. Significant changes in vegetation diversity were 

observed around natural water pans, along roads and rivers, and in cropping areas. These 

changes were better predicted by the Rao’s Q (MAE = 5.81, RMSE = 6.63 and %RMSE = 

42.41), than by the Shannon–Weiner Index (MAE = 30.37, RMSE = 33.25 and %RMSE = 

63.94). These observations on the drivers and changes in species diversity provide new insights 

into the possible effects of future landcover changes and climate variability on GDEs. This 

information is imperative, considering these environments are biodiversity hotspots that can 

support many livelihoods. More importantly, this work provides a spatially explicit framework 

on how GDEs can be monitored to achieve Sustainable Development Goal (SDG) Number 15. 
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Keywords: Khakea–Bray; Rao’s Q; Random Forest; vegetation diversity; Spectral Variation 

Hypothesis (SVH); Shannon–Weiner 
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4.2. Introduction 

In response to the stimuli caused by various biotic and abiotic factors, vegetation diversity is 

constantly changing (Yan et al., 2015, Miranda et al., 2009, Collins et al., 2010, Xia et al., 

2010). Understanding the drivers of vegetation diversity is imperative for the conservation of 

ecologically sensitive environments (e.g. Groundwater-Dependent Ecosystems (GDEs)) (van 

Engelenburg et al., 2018, Kløve et al., 2011, Kløve et al., 2014). Ideally, stable GDEs are 

expected to be more diverse, compared to degraded GDEs. In the context of vegetation 

diversity, stable GDEs are characterised by  several ecological niches that allow the existence 

of various species (Barbosa et al., 2001, Fisher et al., 2012). Landscape degradation affects the 

species pool and might affect vegetation communities, even after the restoration of the 

environment (i.e. the species pool hypothesis) (Eriksson, 1993, Lepš, 2001). The species pool 

hypothesis stipulates that environmental factors drive the species pool in most landscapes and 

that degraded landscapes have a lower species pool (Eriksson, 1993). Changes in the vegetation 

diversity within GDEs are driven by various threats. For example, in sub–Saharan Africa, these 

changes are predominantly driven by groundwater over–abstraction, land–use conversion, 

climate change and variability (Kløve et al., 2014, Chiloane et al., 2021, Orellana et al., 2012). 

Furthermore, the vegetation diversity in GDEs is also threatened by invasive species (Chiloane 

et al., 2021) and groundwater pollution (Rohde et al., 2017). To better conserve the biodiversity 

in GDEs, the spatio-temporal changes in vegetation diversity need to be understood, since 

vegetation communities respond differently, and at a different temporal scale, to environmental 

threats. These threats, along with inadequate policies and legislative frameworks, might drive 

the endemic species within GDEs to extinction (Kløve et al., 2011, Kløve et al., 2014, Kreamer 

et al., 2014). Therefore, it is important to understand the spatio–temporal variations of 

vegetation diversity, as well as the drivers of change, to inform policy and management 

programs.  

Climate is an important factor that explains the local (i.e. plot–level) and regional (i.e. 

longitudinal variations) changes in vegetation diversity (Collins et al., 2010, Yan et al., 2015). 

For example, water availability drives ~ 40% of the biological processes in most vegetated 

communities (Martiny et al., 2005) and the increased availability of water may improve the 

vegetation diversity of GDEs within arid environments (Dalu and Wasserman, 2022). 

However, during the dry season, competitive exclusion might lower the vegetation diversity in 

GDEs, which favors Groundwater-Dependent Vegetation (GDV) more than non–GDV (Dwire 
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and Mellmann-Brown, 2017). These changes in vegetation diversity may be intense in GDEs 

without keystone species capable of redistributing groundwater to the shallow parts of the soil 

profile (e.g. the Shepherd's tree Boscia albitrunca) (Humphreys, 2006, Eamus and Froend, 

2006). The existence of these keystone species makes up most of the GDE biodiversity 

hotspots, since they facilitate the faunal endemism of regionally-restricted species (Bird et al., 

2019, Dalu and Wasserman, 2022). However, when coupled with landcover changes, the 

biodiversity hotspots in GDEs are susceptible to degradation (e.g. the degraded GDE clusters 

in California, USA, and Central Asia) (Alaibakhsh et al., 2017, Pengra et al., 2007). 

Besides climate, land cover changes also drive the vegetation diversity in most ecosystems, 

including the GDEs (Boulangeat et al., 2014). Urbanization and the need for agricultural land 

are the predominant drivers of land conversion (Seto et al., 2011, Von Lampe et al., 2014). 

Like climate, the effects of land cover change on vegetation diversity are varied and depend on 

the land use. For example, land conversion to agriculture has been observed to decrease the 

vegetation diversity in tropical areas (Newbold et al., 2014), yet the same conversion in arid 

areas increases the vegetation diversity (Norfolk et al., 2015). It has been perceived that an 

increased vegetation diversity is expected in arid areas, since land conversion leads to a high 

species turnover, and the new species reduces the instance of species extermination (Graham 

et al., 2019). It is imperative to understand the influence of landcover on the spatio–temporal 

patterns of vegetation diversity in GDEs, since these environments are threatened by the 

expansion of agricultural land, to support the growing human population. Hence, to avert the 

likely effects of land–use and climate change on the stability of the vegetation diversity of 

GDEs, a proxy of ecosystem stability can be used to constantly monitor GDEs. 

Field techniques remain the most reliable and accurate techniques for measuring vegetation 

diversity, regardless of the environment (Beck and Schwanghart, 2010). However, monitoring 

the spatio–temporal variations of vegetation diversity with field techniques can be laborious 

and costly in extensive transboundary aquifers (Brown et al., 2007, Chen et al., 2008, John et 

al., 2008, Chiloane et al., 2021). Fortunately, the Spectral Variation Hypothesis (SVH) and 

remotely sensed data can provide a rapid and direct assessment of the vegetation diversity over 

large and complex landscapes (John et al., 2008, Li et al., 2017, Nakhoul et al., 2020, Woods 

and Sekhwela, 2003). The working assumption of the SVH is that vegetation diversity can be 

inferred from the spectral heterogeneity of any landscape, since it is a function of 

environmental heterogeneity (Rocchini et al., 2010b). Heterogenous environments are 
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expected to be more diverse, with several ecological niches (i.e. from the different vegetation 

types), compared to homogenous environments (Rocchini et al., 2004, Rocchini et al., 

2017).The SVH has been successfully explored in different environments, including alpine 

conifers (Torresani et al., 2019) and grasslands (Lopes et al., 2017). Although it does not hold 

in all environments (Schmidtlein and Fassnacht, 2017), its applicability in arid environments 

is promising. The SVH can provide estimates of the vegetation diversity in GDEs within arid 

environments where no prior information exists on the vegetation (e.g., the Khakea–Bray 

TBA). No a priori information exists on the vegetation diversity or ecological status of the 

Khakea–Bray TBA and the SVH can provide us with a starting point.  

The Khakea–Bray TBA is amongst some of the most under-studied and poorly-managed 

aquifers in southern Africa, yet it supports many livelihoods and GDEs (Seward and van Dyk, 

2018). The ecological consequences of groundwater draw-down on GDEs within the Khakea–

Bray TBA has not received attention, mainly because its socio–economic needs largely 

outweigh its ecological integrity (Davies et al., 2013, Nijsten et al., 2018, Ngobe, 2021). In 

2002, the aquifer was dewatered after the groundwater abstraction for irrigation increased to 

11.1 Mm3 per annum beyond the average capacity of the aquifer (6.9 Mm3 per annum) 

(Godfrey and Van Dyk, 2002a, Seward and van Dyk, 2018, Van Dyk, 2005). Although the land 

use has changed, the groundwater remains a key component for supporting key socio–

economic needs (Davies et al., 2013, Nijsten et al., 2018). However, the remaining biodiversity 

in the Khakea–Bray TBA remains threatened from continued groundwater abstraction, land–

use conversion and climate change. 

Vegetation diversity estimated from environmental heterogeneity using the SVH can be an 

indicator of ecosystem stability, and the spatio–temporal variations of ecosystem’s stability in 

the Khakea–Bray TBA can be monitored. The spatio–temporal variation approach allows the 

monitoring of environmental changes in GDEs and gives a better insight, compared to using 

the snapshot approach (Solano-Correa et al., 2018). The snapshot approach uses single–date 

imagery and might not provide the necessary information on the environmental processes 

before the image was acquired (Solano-Correa et al., 2018). Understanding the intra–annual, 

or seasonal, variations of vegetation diversity in the Khakea–Bray TBA can also advance its 

conservation and management, in the face of land-use conversion and climate variability. 

Therefore, this chapter presents the drivers of the spatio–temporal trends in species diversity 
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in the Khakea–Bray TBA, by using the SVH and Landsat–8 OLI Operational Line Imager 

(OLI).  

4.3. Materials and methods 

4.3.1. Data acquisition and processing 

Multi-year Landsat–8 OLI surface reflectance imagery (n = 535) was used for this analysis. 

Landsat–8 OLI was used to maintain the image homogenization and to reduce instances of 

geometric and spectral inconsistencies from using multi–sensor imagery. Surface reflectance 

data was preferred since it is corrected for geometric and atmospheric errors. The multi–year 

images used were acquired between January 2016 and December 2020 from the Google Earth 

Engine (GEE) platform (https://code.earthengine.google.com). The Landsat-8 OLI images 

were converted to monthly time–series composites derived from the median spectral 

reflectance of the multi–spectral bands (i.e., blue, green, red, near–infrared (NIR), and two 

short–wave infrared). Image compositing allows for the enhancement of spectral reflectance 

by removing the clouds and shade (Gxokwe et al., 2022). The 2016-2020 study period was 

selected, since the study region has been experiencing severe droughts, including the 

2015/2016 El Niño and the ongoing 2018–2021 southern Africa drought (Blamey et al., 2018, 

Marumbwa et al., 2021). The ongoing drought allows for the enhanced identification of 

Groundwater-Dependent Vegetation (GDV) since there is minimal surface water available for 

the non–GDVs.  

Since the study focused on monitoring the spatio–temporal variations of vegetation diversity, 

the built–up water and remnant cloud pixels were masked from the analysis. Cloud pixels were 

masked by using the QA band (QA60) with in–built functions in GEE, while the Normalized 

Difference Built–up Index (NDBI) and Modified Normalized Difference Water Index 

(MNDWI) were used to mask built–up and water pixels respectively. The NDBI and MNDWI 

indices were selected over other indices, based on their frequent use in water and built–up 

mapping (Xu, 2008, Bhatti and Tripathi, 2014, Jiang et al., 2012). The NDBI values greater 

than 0 and MNDWI values greater than 1 were considered built–up and water pixels, 

respectively. The MNDWI can be calculated as follows:  
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𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅
      Equation   4.1 

 

and NDBI as: 

 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
       Equation  4.2 

 

Where Green, NIR and SWIR are reflectance in the green, shortwave infrared, and near–

infrared spectral regions, respectively. 

From the masked imagery, the Coefficient of Variation (CV) was calculated to measure the 

spectral variation of all the images. The CV was used because it has been shown to outperform 

other measures, when estimating species diversity with remote sensing imagery (Madonsela et 

al., 2017, Madonsela et al., 2021). The CV was calculated using Equation 5.3 below:  

 

Coefficient of variation (CV) =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑠

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑𝑠
  Equation  4.3 

 

4.3.2. Environmental variables  

Climate and landcover variables were used to explain the drivers of vegetation diversity in the 

Khakea–Bray TBA. The climate data included the mean temperature, the minimum 

temperature, the maximum temperature, the annual precipitation, the potential 

evapotranspiration, and the wet day frequency. The climate data were provided monthly 

(January 2016 – December 2020), with a spatial resolution of 0.5° (Harris et al., 2020). The 

precipitation data were summed to derive annual totals, and for the other climate variables, the 

annual averages were used. The climate data were then averaged to derive the mean values for 

the 2016–2020 period. The climate data were accessed from the Climatic Research Unit 

gridded Time Series (CRU TS) v. 4.05 and downloaded from 
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https://crudata.uea.ac.uk/cru/data/hrg/. In addition to the climate data, land cover data from the 

European Space Agency (ESA)–Climate Change Initiative (CCI) available from 

http://2016africalandcover20m.esrin.esa.int/ was used. The landcover data have several 

landcover classes, including tree cover, shrub cover, grassland, cropland, aquatic vegetation or 

regularly flooded, lichens mosses / sparse vegetation, bare land, built-up land, snow and/or ice 

and open water areas. The Khakea-Bray is characteristic of shrubland savannah (i.e. bushveld) 

and the landcover data used included this vegetation class (i.e. shrub cover). These data were 

provided at 20 m and were derived from Sentinel–MSI imagery (Alkhalil et al., 2020). The 

landcover and climate variables were included, based on their generalized interaction with the 

groundwater and plant growth (Zhu et al., 2015, Eamus et al., 2006, Brolsma et al., 2010).  

4.3.3. Species diversity from remote sensing images 

To measure the spatio–temporal variation of vegetation diversity in the Khakea–Bray TBA, the 

study utilized α‐ and β‐diversity measures, the Shannon–Weiner Index and the Rao’s Q, 

respectively. The Shannon–Weiner Index calculates vegetation diversity by considering the 

abundance and richness of spectral values for the entire image (Rocchini et al., 2017) and it 

can be calculated by using Equation 5.4 below: 

 

𝐻′ = − ∑ 𝑝𝑖 ln 𝑝𝑖
𝑆
𝑖=1       Equation   4.4 

 

Where S is the image extent or plot area, and pi is the proportion of pixel i to S. 

Although the Shannon–Weiner Index is a commonly-used measure; it has been observed to get 

saturated over areas with high vegetation diversity and it is affected by subtle changes in the 

pairwise pixel values (Rocchini et al., 2017), which is the reason the Rao’s Q was also included. 

In remote sensing, the Rao’s Q calculates vegetation diversity from the pairwise spectral 

distance between the spectral values of pixel i and j (Torresani et al., 2021b, Khare et al., 2021). 

The measure also incorporates the abundance and proportion of pixels i and j. Rao’s Q is 

calculated as follows:  
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𝑄𝑟𝑠 = ∑ ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗
𝐹
𝑗=𝑖+1

𝐹−1
𝑖=1      Equation   4.5 

 

Where Qrs represents the Rao Q applied to the remote sensing image and dij is the distance 

between i th and j th pixel (dij = dji and dii=0). The selected image extent or plot area is F, with 

pi and pj being the proportion of pixel i and j to F, respectively.  

The coefficient of variation calculated from the pre–processed images was used to calculate 

the Rao’s Q and Shannon–Weiner index in R (Team, 2020), using the spectralrao function 

provided in Rocchini et al. (2017) and Rocchini et al. (2019). A 3 × 3 – pixel moving window 

was used when computing the vegetation diversity. 

4.3.4. Spatio–temporal variation analysis 

To measure the monthly spatio–temporal variations of the vegetation diversity in the Khakea–

Bray, the Mann–Kendall non–parametric test was used. This test measures the monotonic 

trends in time–series data and has been used in most studies, owing to its robustness (Libiseller 

and Grimvall, 2002, Shadmani et al., 2012). In this study, the Mann–Kendall test was used to 

detect trends in the seasonal vegetation diversity from the Rao’s Q and the Shannon–Weiner 

data. The p–value and S–values from the Mann–Kendall test were used to evaluate the 

significance of the trend and the rate of change in the species vegetation within the Khakea–

Bray TBA, respectively. The significance was tested at a p < 0.05 confidence interval.  

4.3.5. Drivers of species diversity spatio–temporal variation 

To determine the drivers in the spatio–temporal variation of vegetation diversity, the variable 

importance function in the random forest algorithm was used, which uses classification and 

regression trees to build a highly-predictive ensemble model (Mpakairi and Muvengwi, 2019, 

Breiman, 2001). The random forest algorithm was used, as it is insensitive to the data structure, 

it is highly predictive and it does not overfit (Breiman, 2001, Liaw and Wiener, 2002). This 

model was executed in R, using the caret and randomForest package (Kuhn, 2009, 

RColorBrewer and Liaw, 2018, Breiman, 2001, Liaw and Wiener, 2002). To build the random 

forest model, data from the Mann–Kendall test were used, which showed the spatio–temporal 

variations of vegetation diversity along with climate and land cover variables. The data used to 

build the model were derived from areas where the spatio–temporal changes in species 
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diversity were significant (i.e., p < 0.05). Seventy-five percent of the data was used for model 

training and the remaining twenty-five percent was used for model evaluation. To evaluate the 

accuracy of the model, the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) 

and the percentage RMSE (% RMSE) were used. The MAE, RMSE and % RMSE measure the 

agreement between the actual and predicted values of the model and can compare the predictive 

errors of different models (Piepho, 2019, Zhang, 2017). A model with a lower RMSE and MAE 

is considered highly predictive, when compared to a model with a higher RMSE and MAE 

(Chai and Draxler, 2014). In addition, a model with a low % RMSE means that the model has 

less residual variance than a model with a high % RMSE (Lin et al., 2016).  

To measure the variable contribution, the Increased Impurity Index (IncNodePurity) was 

utilized, following Mpakairi and Muvengwi (2019), Pal (2005), Svetnik et al. (2003). 

IncNodePurity measures how a variable decreases the Residual Sum of Squares (RSS) at each 

node for all the regression trees in a model (Svetnik et al., 2003, Pal, 2005). The variable with 

the highest IncNodePurity explained the changes in vegetation diversity more than the other 

variables. All the methods used are summarized in Figure 4.1. 
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Figure 4.1 Summarised flowchart showing the steps undertaken to detect the trends in 

vegetation diversity and to identify the drivers of the changes in vegetation 

diversity. 
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4.4. Results  

4.4.1. Spatio–temporal variation of species diversity 

Our results showed that the vegetation diversity was high during the wet season and low during 

the dry season. Peak species diversity was observed in April and the lowest species diversity 

was observed in September (Figure 4.2), and it also peaked in winter (July) before summer. 

These changes were more noticeable when using the Shannon–Weiner Index, rather than the 

Rao’s Q (Figure 4.3 and Figure 4.4). However, the changes in species diversity from the 

Shannon–Weiner Index were more generalized, when compared to those from the Rao’s Q, 

which showed more pronounced changes in the species diversity (Figure 4.5).  

 

 

 

Figure 4.2 Monthly average of species diversity measured by the Shannon–Weiner Index 

and the Rao’s Q.  
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Figure 4.3 Monthly changes in species diversity, as calculated by the Rao’s Q. 
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Figure 4.4 Monthly changes in species diversity, as calculated by the Shannon–Weiner 

Index.  

The results of the Mann–Kendall test for the monthly Shannon–Weiner Index and the Rao’s Q 

showed that the species diversity changed significantly around natural water pans, along roads 

and rivers, and in most farming areas. A significant decrease in species diversity was observed 

along the roads and a significant increase was observed in the cropping areas, around natural 

water pans and along rivers (Figure 4.5). 
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Figure 4.5 Spatio–temporal trends of species diversity as measured by (a) the Shannon–

Weiner Index and (b) the Rao’s Q, using the Mann–Kendall test. 

4.4.2. Drivers of variation in species diversity 

Our random forest models, using the Shannon–Weiner Index (MAE = 30.37, RMSE = 33.25 

and %RMSE = 63.94) and the Rao’s Q (MAE = 5.81, RMSE = 6.63 and %RMSE = 42.41), 

showed the environmental drivers and explain the changes in species diversity. The random 

forest model, using the Rao’s Q, performed better than when using the Shannon–Weiner Index, 

since the %RMSE, RMSE and MAE from the Shannon–Weiner Index were higher. Although 

the models performed differently, the effect of the environmental drivers on the changes in 

species diversity was relatively similar. 

Overall, the changes in species diversity were predominantly driven by land cover, 

precipitation, the mean temperature, and the wet day frequency (Figure 4.6). On the other hand, 

the maximum temperature, the minimum temperature, and the potential evapotranspiration 

contributed least to the changes in the species diversity. For land cover, the changes in species 

diversity were more noticeable in areas with water, cropland, shrubland and bare land cover 

(Figure 4.7). In addition, a low wet day frequency (< 4 days/year) facilitated the changes in 

species diversity more than a high wet day frequency (Figure 4.8). However, changes in the 

species diversity varied according to the precipitation. Changes in the species diversity were 
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observed in areas with high rainfall (> 380 mm/year), low rainfall (< 300 mm/year), or with 

relatively high mean temperatures (20.9 – 21.2ºC).  

 

 

Figure 4.6 Variable contribution to the spatio–temporal changes in species diversity from 

(a) the Shannon–Weiner and (b) the Rao’s Q random forest models. Where PRE 

refers to precipitation, WET represents wet day frequency, PET represents the 

potential evapotranspiration, TMN represents the minimum temperature, TMP 

is the mean temperature, TMX represents the maximum temperature and LC 

represents the landcover.  

http://etd.uwc.ac.za/ 
 



81 

 

 

 

Figure 4.7 Partial dependence plots from the Shannon–Weiner random forest model 

showing the response in the spatio–temporal variation of species diversity to (a) 

wet day frequency, (b) precipitation, (c) mean temperature, (d) potential 

evapotranspiration, (e) land cover (1 = Tree cover, 2 = Shrubland, 3 = 

Grassland, 4 = Cropland, 6 = Sparse vegetation, 7 = Bare land, 8 = Built-up 

areas) and (f) minimum temperature. The maximum temperature had zero 

contribution to the model, hence there was no partial dependence curve for this 

variable. 
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Figure 4.8 Partial dependence plots from the Rao’s Q random forest model showing the 

response in the spatio–temporal variation of species diversity to (a) wet day 

http://etd.uwc.ac.za/ 
 



83 

 

frequency, (b) precipitation, (c) mean temperature, (d) potential 

evapotranspiration, (e) land cover (2 = Shrubland, 3 = Grassland, 4 = Cropland, 

6 = Sparse vegetation, 7 = Bare land, 8 = Built–up areas and 10 = Open Water), 

(f) minimum temperature and (g) maximum temperature.  

4.5. Discussion 

It is imperative to understand the spatio–temporal variations of vegetative diversity for the 

conservation of the ecological integrity of GDEs within arid environments. Therefore, this 

chapter sought to detect the spatio–temporal variations of vegetative diversity in the Khakea–

Bray TBA by using remote sensing measures. Overall, the results showed how land cover and 

climate explain the intra–annual and seasonal changes in species diversity.  

Our observation on the response of vegetative diversity to seasonality can be associated with 

the phenological patterns of the vegetation and the relationship between climate and vegetation 

(Adole et al., 2016, Wessels et al., 2011). The primary productivity of plants has been observed 

to peak during the wet season and to decrease during the dry season, owing to limited water 

and nutrient availability (Byrne et al., 2013, Prevéy and Seastedt, 2014). These seasonal 

changes in productivity affect the vegetative diversity and have been observed in most 

environments, including arid areas (Kushwaha and Nandy, 2012, Aronson and Shmida, 1992, 

February et al., 2007). These patterns are important for arid environments in the context of 

climate change, since the precipitation and temperature seasonality is expected to increase 

(Scholes, 2020). The projected precipitation and temperature seasonality means that the 

seasons will most likely be extreme, and this might affect the adaptability of the plants, from 

one season to the other (Scholes, 2020, Zeppel et al., 2014). The effect of climate seasonality 

on vegetative diversity is also supported by our observations from the random forest model, 

which showed that changes in the vegetative diversity responded more to the precipitation and 

mean temperature. Rainfall drives at least 40% of the biological processes in most vegetated 

environments by supporting plant growth and development (Martiny et al., 2005). This explains 

why water availability is one of the driving variables behind the longitudinal variations in 

vegetative diversity (Collins et al., 2010, Yan et al., 2015). 

In arid areas, the effect of precipitation is more crucial than that of temperature, since subtle 

changes in precipitation have the potential to alter the structure and composition of the species 
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(Prevéy and Seastedt, 2014, Byrne et al., 2013). However, the negative feedback between wet 

day frequency and changes in vegetative diversity plausibly means that most species within the 

arid Khakea–Bray TBA have adapted to water stress, and that more precipitation might cause 

soil flooding. Soil flooding can suffocate the plant roots, and the reduced soil aeration will 

cause the death of the aboveground vegetation (Adler and Levine, 2007, Cleland et al., 2013). 

This is supported by the species pool hypothesis, which states that increased wetness will only 

support species  capable of surviving from the increased availability of water (Grace, 2001).  

The counter-intuitive observation on the negative interaction between changes in vegetative 

diversity and the increasing wet day frequency is corroborated by previous studies (Adler and 

Levine, 2007, Yan et al., 2015, Swemmer et al., 2007). For instance, Adler and Levine (2007) 

observed that the increasing precipitation did not affect the species richness in areas with plant 

annuals within the Colorado prairies. These findings are similar to observations by Cleland et 

al. (2013), who found that the regional species richness of grasslands was not influenced by 

annual precipitation; instead, the annual precipitation influenced the richness of the plots. 

These observations relate to our study since they are extensive and cover several landcover 

types.  

The changes in vegetative diversity around natural water pans, along roads and rivers, and in 

most farming areas, were supported by the results of the variable importance analysis, which 

showed that landcover (water, cropland, shrubland and bare land cover) explain most changes 

in the vegetative diversity. The onset of the farming season and the harvesting period in farming 

areas may explain the changes in spectral diversity vis–à–vis species diversity (Kindt et al., 

2004, Eilu et al., 2003); for example, the land-use change from cattle ranching to crop farming 

before the growing season, and back to cattle ranching after the rainy season (Dahlberg, 2000, 

Ramberg et al., 2006). These changes in land use are essential for supporting cattle ranching, 

which is mostly practiced in the Khakea–Bray TBA, and they therefore explain the trends in 

the vegetative diversity in farming areas. On the other hand, the seasonality of precipitation 

and groundwater availability could be driving the increases in species diversity around natural 

water pans and along rivers (Buchsbaum et al., 2006, Utete et al., 2018). The groundwater level 

is usually high, with the obligatory and facultative phreatophytes present around natural water 

pans and along rivers (Hoyos, 2016). Facultative phreatophytes will most likely remain present 

during the wet season, but in the dry season, the lowering of the groundwater level may affect 

them and lead to wilting or stunted growth (Ward et al., 2013, Buchsbaum et al., 2006). At a 
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later stage, the improved groundwater availability from groundwater recharge might improve 

the plant growth and the development of obligatory and facultative phreatophytes (Thomas, 

2014, Torres‐García et al., 2021). These dynamics of groundwater availability may explain the 

changes in vegetation diversity around natural water pans and along rivers. In addition, the 

changes around natural water pans could be related to the piosphere effect, because water 

resources benefit livestock more during the dry season and less during the wet season (Andrew, 

1988, Carbonell et al., 2021, Shezi et al., 2021). The aggregation of livestock and grazing 

around natural water pans creates a utilization gradient (Andrew, 1988, Shezi et al., 2021). Our 

observations on how the vegetation diversity changes around natural water pans, along roads 

and rivers, and in most farming areas, have been observed before in different environments 

(Msiteli-Shumba et al., 2017, Junk et al., 2006, Wei and Jiang, 2012, Li et al., 2014a, López-

Gómez et al., 2008).  

The results showed that the Rao’s Q performed better than the Shannon–Weiner Index, since  

it allows the monitoring of vegetation diversity across landscapes by incorporating the spectral 

distance (Rocchini et al., 2018, Khare et al., 2019). The Rao’s Q can estimate vegetation 

diversity at a community level, rather than at a plot or pixel-level, as with the Shannon–Weiner 

Index (Hernández-Stefanoni et al., 2012, Rocchini et al., 2018). These characteristics are ideal, 

since the Khakea–Bray TBA is an extensive landscape with several vegetation communities, 

and the Shannon–Weiner Index would be oversaturated from the high vegetation diversity 

(Khare et al., 2019, Rocchini et al., 2017). However, monthly changes in vegetation diversity 

were more noticeable with the Shannon–Weiner Index, since it can detect subtle changes in 

vegetation diversity, compared to the Rao’s Q (Féret and de Boissieu, 2020, Rocchini et al., 

2018). 

Vegetation growth and development are in sync with the precipitation and land cover patterns 

in most environments (Jamieson et al., 2012, Jolly and Running, 2004, Prasad et al., 2007). 

Understanding the spatio–temporal variations of vegetation diversity from the interaction of 

the vegetation, land use and climate patterns can assist to plausibly predict the effects of climate 

change and land cover on GDEs (van Engelenburg et al., 2018, Dwire et al., 2018, Xu and Su, 

2019). The results of this study are robust since they converge and support each other. The 

principle of converging evidence postulates that when the results converge, then the 

conclusions of these results are robust (Kuo et al., 2019). However, data on the groundwater 

level in the Khakea–Bray TBA were not available and future studies should include this 
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variable, when identifying the drivers of change in vegetation diversity. Regardless of these 

setbacks, our results have merit, and future studies could focus on the effects of climate change 

and variability, as well as land use, on the vegetation diversity in GDEs. 

4.6. Conclusions 

GDEs are sensitive environments and protect keystone species and regionally restricted 

species. Land–use, climate variability and change are expected to intensify the aridity of 

southern Africa, which will most likely affect the GDEs in these countries, since they are 

already at risk from other compounding factors, such as groundwater draw-down and 

unsustainable groundwater abstraction. There is a dearth of literature on the ecological or 

economic significance of the Khakea–Bray TBA, although its GDEs are under threat from 

climate change and unsustainable groundwater extraction and despite their relevance for 

sustaining livelihoods and biodiversity (Seward and van Dyk, 2018, Van Dyk, 2005). Hence, 

this study presents the first attempt at monitoring the spatio–temporal variations of vegetation 

diversity, as well as the drivers of these variations, in the Khakea–Bray TBA. The results will 

provide resource managers and ecologists with a priori information on the role of land cover 

and climate change in influencing the changes in vegetation diversity. The methods used in this 

study are robust and can monitor other GDEs in similar environments.  
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5.0. CHAPTER 5 

 THE SPATIAL CHARACTERISATION OF VEGETATION 

DIVERSITY WITH SATELLITE REMOTE SENSING: A GENERAL 

SYNTHESIS 

 

 

Vegetation diversity around a wet natural pan during the dry season                                                  

(Photo: Courtesy of Kudzai Mpakairi, 2021) 
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5.1. The mapping of GDEs in the Khakea-Bray Transboundary Aquifer  

Most GDEs are neglected and are usually only monitored when they are beyond restoration 

(Barron et al., 2014). This neglect emanates mainly from non-existent policies or strategies to 

ration the use of groundwater between the socio-economic and livelihood needs (Boulton and 

Hancock, 2006). In addition, research on the effects of groundwater draw-down on 

phreatophytes remains in its infancy for most environments where GDEs exist (Boulton and 

Hancock, 2006, Brown et al., 2007) and where the socio-economic needs largely outweigh the 

ecosystem needs, which leads to the over-abstraction of groundwater. Therefore, this thesis 

provides a framework on how remote sensing techniques can monitor GDEs, in order to avoid 

the looming effects of climate change, environmental degradation and groundwater over-

abstraction (Davies et al., 2013, Eamus and Froend, 2006). This work is imperative for the 

conservation of the Khakea-Bray TBA since it is being threatened by environmental 

degradation and the proliferation of invasive species. 

Remote sensing remains an invaluable tool for characterising the vegetation diversity of most 

environments, including GDEs. The Spectral Variation Hypothesis (SVH) supports the use of 

remote sensing for the estimation of vegetation diversity (Rocchini et al., 2015, Rocchini et al., 

2018); it postulates that spectral heterogeneity can measure environmental heterogeneity and 

that stable environments are more likely to have a greater heterogeneity than degraded 

environments (Rocchini et al., 2013). However, applying remote sensing for estimating 

vegetation diversity is still in its infancy and this thesis provides an approach on how remote 

sensing data can monitor GDEs.  

5.2. Summary of findings 

This thesis has sought to demonstrate the potential of remote sensing in the characterisation of 

vegetation diversity by using satellite sensors (Sentinel-2 and Landsat 8). As outlined in the 

previous chapters, characterising the vegetation diversity of transboundary environments is 

costly and requires the use of cost-effective, yet accurate and reliable, methods. Sentinel-2 and 

Landsat 8 satellite sensors were tested to determine their capabilities and efficacy, and the 

results showed that they are reliable and can monitor the vegetation diversity in GDEs. 

However, when using remote sensing data to characterise the vegetation diversity in GDEs, it 

is imperative to consider which metric to use for measuring the spectral variation of the 
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environment. This study demonstrated that the coefficient of variation is a reliable measure for 

spectral variability (i.e., environmental heterogeneity) when estimating vegetation diversity 

with the Rao’s Q. The Rao’s Q measured from the coefficient of variation was highly associated 

with field-measured vegetation diversity (R2 = 0.61 and p ≤0.0003). The other measures of 

spectral variation that were used to calculate the Rao’s Q were found to have minimal 

association with the field-measured vegetation diversity. This emphasises the importance of 

using the correct measure of spectral variation when estimating vegetation diversity with the 

Rao’s Q. In addition, although other algorithms, besides the Rao’s Q, are available for 

estimating vegetation diversity (e.g., Shannon-Weiner Index), the Rao’s Q remains a reliable 

metric, as shown by the results observed in this study. 

Besides characterising the vegetation diversity of GDEs, it is also important to understand the 

drivers behind the spatio-temporal dynamics of the vegetation diversity. In the Khakea-Bray 

TBA, the spatio-temporal variations of vegetation diversity follow the seasonal rainfall 

patterns, with high vegetation diversity during the wet season and low vegetation diversity 

during the dry season. The spatio-temporal changes of vegetation diversity in the Khakea-Bray 

are driven mainly by seasonal land conversion. Understanding the factors responsible for the 

spatio-temporal dynamics of vegetation diversity will improve the management of GDEs in the 

light of climate change and land cover changes, which are imminent in most African 

landscapes; as a result, sensitive environments, such as GDEs, need to be constantly monitored 

and their response to the vegetation diversity needs to be understood.  

It is possible to use satellite remote sensing to monitor transboundary GDEs. In most 

environments where GDEs exist, the funding is channelled mainly towards socio-economic 

issues and not environmental management, because of the associated costs, which are usually 

exorbitant. Satellite remote sensing provides resource managers with a cost-effective method 

for monitoring GDEs by solely understanding their vegetation diversity. The main advantage 

of using vegetation diversity for monitoring GDEs is that it can be easily derived from remote 

sensing data, and it can also be a proxy for monitoring the stability, structure and functioning 

of an ecosystem. Understanding the vegetation diversity of GDEs can help us to identify 

potential areas that need to be prioritised for conservation, or to identify the main factors 

responsible for the spatio-temporal dynamics of vegetation diversity. In this way, the 

ecosystem services provided by GDEs can be maintained for the livelihoods of those who rely 

on these environments.   
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The present environmental stressors on GDEs can lead to their degradation if priority 

conservation areas with keystone species are not identified and if essential environmental 

drivers of vegetation diversity are not realised. The framework in this thesis allows routine 

monitoring of GDEs even in areas where a priori information on ecosystem stability is not 

available. Even in the absence of funding, our framework could monitor GDEs for resource 

constrained managers.  

5.3. Conclusions  

The over-arching aim of this thesis was to test the use of remote sensing in the characterisation 

of the vegetation diversity in GDEs in arid environments. The findings of this thesis highlight 

the capabilities and use of satellite sensors within the Khakea-Bray TBA. Based on the 

objectives of this thesis originally set out, the following conclusions can be made: 

• the SVH, along with remote sensing data, are useful for explaining the vegetation 

diversity in GDEs; 

• when measuring the spectral heterogeneity, the coefficient of variation outperforms 

other measures, including the recently introduced NDPI; 

• vegetation diversity is more common around natural water pans, along rivers, fence-

lines, and roads, as well as cropland areas, and spatio-temporal changes in the 

vegetation diversity are also more common in these areas; and 

• land cover, precipitation, the mean temperature, and the wet day frequency are pivotal 

for driving the changes in vegetation diversity within GDEs. 

Overall, these results provide a framework for how GDEs can be characterised, since these 

areas are considered biodiversity hotspots, with several keystone species that support the 

existence of regionally restricted species.  

5.4. Recommendations 

This thesis shows how remote sensing can characterise the vegetation diversity of GDEs. The 

results of this research study also present a framework for identifying the drivers of spatio-

temporal changes in the vegetation diversity, by using satellite sensors. These 

recommendations are made for the monitoring of species diversity in future studies by using 

satellite remote sensing: 
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• vegetation diversity can be used as a valuable tool for monitoring the health and 

stability of ecosystems in GDEs; 

• next-generation multispectral and hyperspectral sensors (e.g., Landsat 9, EnMap and 

HyspIRI) have the potential to improve the estimation of vegetation diversity in 

GDEs;  

• future studies should test the potential integration of multi-source remote sensing 

datasets for characterising vegetation diversity in GDEs; and 

• future studies should also test the effects of land cover conversion and climate change 

on the inter-annual dynamics of vegetation diversity in GDEs. 
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7.0. Supplementary Material 

Supplementary Table 1 Species Inventory of all the species that were observed when 

sampling the field plots 

Species name Species abundance 

Aloe maculata 5 

Asparagus spp 87 

Dracaena trifasciata 21 

Ehretia rigida 8 

Eragostis spp 2477 

Grewia flava 18 

Kalanchoe spp 15 

Ledebouria marginata 4 

Leonotis ocymifolia 161 

Leucas martinicensis 1 

Lipia javani 1 

Meitinas Polyacantha 6 

Olea spp  11 

Opuntia ficas indica 16 

Scorzonera humilis L 647 

Senegalia nigrescens 566 

Trifolium repens 700 

Ziziphus moconata 1 
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