29,737 research outputs found

    Large-scale Complex IT Systems

    Get PDF
    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challenges and issues in the development of large-scale complex, software-intensive systems. Central to this is the notion that we cannot separate software from the socio-technical environment in which it is used.Comment: 12 pages, 2 figure

    A Security Pattern for Cloud service certification

    Get PDF
    Cloud computing is interesting from the economic, operational and even energy consumption perspectives but it still raises concerns regarding the security, privacy, governance and compliance of the data and software services offered through it. However, the task of verifying security properties in services running on cloud is not trivial. We notice the provision and security of a cloud service is sensitive. Because of the potential interference between the features and behavior of all the inter-dependent services in all layers of the cloud stack (as well as dynamic changes in them). Besides current cloud models do not include support for trust-focused communication between layers. We present a mechanism to implement cloud service certification process based on the usage of Trusted Computing technology, by means of its Trusted Computing Platform (TPM) implementation of its architecture. Among many security security features it is a tamper proof resistance built in device and provides a root of trust to affix our certification mechanism. We present as a security pattern the approach for service certification based on the use TPM.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    Supporting the automated generation of modular product line safety cases

    Get PDF
    Abstract The effective reuse of design assets in safety-critical Software Product Lines (SPL) would require the reuse of safety analyses of those assets in the variant contexts of certification of products derived from the SPL. This in turn requires the traceability of SPL variation across design, including variation in safety analysis and safety cases. In this paper, we propose a method and tool to support the automatic generation of modular SPL safety case architectures from the information provided by SPL feature modeling and model-based safety analysis. The Goal Structuring Notation (GSN) safety case modeling notation and its modular extensions supported by the D-Case Editor were used to implement the method in an automated tool support. The tool was used to generate a modular safety case for an automotive Hybrid Braking System SPL

    A dynamic systems engineering methodology research study. Phase 2: Evaluating methodologies, tools, and techniques for applicability to NASA's systems projects

    Get PDF
    A study of NASA's Systems Management Policy (SMP) concluded that the primary methodology being used by the Mission Operations and Data Systems Directorate and its subordinate, the Networks Division, is very effective. Still some unmet needs were identified. This study involved evaluating methodologies, tools, and techniques with the potential for resolving the previously identified deficiencies. Six preselected methodologies being used by other organizations with similar development problems were studied. The study revealed a wide range of significant differences in structure. Each system had some strengths but none will satisfy all of the needs of the Networks Division. Areas for improvement of the methodology being used by the Networks Division are listed with recommendations for specific action

    Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers

    Get PDF
    The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified

    Collaborative improvement as an inspiration for supply chain collaboration

    Get PDF
    The battlefield of competition is today moving from the level of\ud individual firms to the one of the extended enterprises, that is, networks of customers and their suppliers. This paper discusses how learning and continuous improvement today take place in processes based on daily collaboration at intercompany level, i.e. Extended Manufacturing Enterprises (EMEs). The purpose of the paper is to present a preliminary theory on Collaborative Improvement (CoI), i.e. continuous improvement at the EME level. Based on a literature review on Supply Networks, and Continuous Improvement and on evidence from two explorative case studies, the paper proposes a model for Collaborative Improvement in EMEs and discusses a research approach based on Action Research and Action Learning to further develop preliminary theory and actionable knowledge on how to foster and sustain CoI in EMEs
    • 

    corecore