1,193 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    Load Balancing in Cloud Computing: A Survey on Popular Techniques and Comparative Analysis

    Get PDF
    Cloud Computing is universally accepted as the most intensifying field in web technologies today. With the increasing popularity of the cloud, popular website2019;s servers are getting overloaded with high request load by users. One of the main challenges in cloud computing is Load Balancing on servers. Load balancing is the procedure of sharing the load between multiple processors in a distributed environment to minimize the turnaround time taken by the servers to cater service requests and make better utilization of the available resources. It greatly helps in scenarios where there is misbalance of workload on the servers as some machines may get heavily loaded while others remain under-loaded or idle. Load balancing methods make sure that every VM or server in the network holds workload equilibrium and load as per their capacity at any instance of time. Static and Dynamic load balancing are main techniques for balancing load on servers. This paper presents a brief discussion on different load balancing schemes and comparison between prime techniques

    A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments

    Get PDF
    The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. In this paper we describe an ant colony optimisation (ACO) algorithm that, when combined with local and tabu search, can find shorter schedules on benchmark problems than other techniques found in the literature

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Hybrid scheduling algorithms in cloud computing: a review

    Get PDF
    Cloud computing is one of the emerging fields in computer science due to its several advancements like on-demand processing, resource sharing, and pay per use. There are several cloud computing issues like security, quality of service (QoS) management, data center energy consumption, and scaling. Scheduling is one of the several challenging problems in cloud computing, where several tasks need to be assigned to resources to optimize the quality of service parameters. Scheduling is a well-known NP-hard problem in cloud computing. This will require a suitable scheduling algorithm. Several heuristics and meta-heuristics algorithms were proposed for scheduling the user's task to the resources available in cloud computing in an optimal way. Hybrid scheduling algorithms have become popular in cloud computing. In this paper, we reviewed the hybrid algorithms, which are the combinations of two or more algorithms, used for scheduling in cloud computing. The basic idea behind the hybridization of the algorithm is to take useful features of the used algorithms. This article also classifies the hybrid algorithms and analyzes their objectives, quality of service (QoS) parameters, and future directions for hybrid scheduling algorithms

    Classification and Performance Study of Task Scheduling Algorithms in Cloud Computing Environment

    Get PDF
    Cloud computing is becoming very common in recent years and is growing rapidly due to its attractive benefits and features such as resource pooling, accessibility, availability, scalability, reliability, cost saving, security, flexibility, on-demand services, pay-per-use services, use from anywhere, quality of service, resilience, etc. With this rapid growth of cloud computing, there may exist too many users that require services or need to execute their tasks simultaneously by resources provided by service providers. To get these services with the best performance, and minimum cost, response time, makespan, effective use of resources, etc. an intelligent and efficient task scheduling technique is required and considered as one of the main and essential issues in the cloud computing environment. It is necessary for allocating tasks to the proper cloud resources and optimizing the overall system performance. To this end, researchers put huge efforts to develop several classes of scheduling algorithms to be suitable for the various computing environments and to satisfy the needs of the various types of individuals and organizations. This research article provides a classification of proposed scheduling strategies and developed algorithms in cloud computing environment along with the evaluation of their performance. A comparison of the performance of these algorithms with existing ones is also given. Additionally, the future research work in the reviewed articles (if available) is also pointed out. This research work includes a review of 88 task scheduling algorithms in cloud computing environment distributed over the seven scheduling classes suggested in this study. Each article deals with a novel scheduling technique and the performance improvement it introduces compared with previously existing task scheduling algorithms. Keywords: Cloud computing, Task scheduling, Load balancing, Makespan, Energy-aware, Turnaround time, Response time, Cost of task, QoS, Multi-objective. DOI: 10.7176/IKM/12-5-03 Publication date:September 30th 2022

    Hybrid Meta-heuristic Algorithms for Static and Dynamic Job Scheduling in Grid Computing

    Get PDF
    The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. Allocating jobs to computational grid resources in an efficient manner is one of the main challenges facing any grid computing system; this allocation is called job scheduling in grid computing. This thesis studies the application of hybrid meta-heuristics to the job scheduling problem in grid computing, which is recognized as being one of the most important and challenging issues in grid computing environments. Similar to job scheduling in traditional computing systems, this allocation is known to be an NPhard problem. Meta-heuristic approaches such as the Genetic Algorithm (GA), Variable Neighbourhood Search (VNS) and Ant Colony Optimisation (ACO) have all proven their effectiveness in solving different scheduling problems. However, hybridising two or more meta-heuristics shows better performance than applying a stand-alone approach. The new high level meta-heuristic will inherit the best features of the hybridised algorithms, increasing the chances of skipping away from local minima, and hence enhancing the overall performance. In this thesis, the application of VNS for the job scheduling problem in grid computing is introduced. Four new neighbourhood structures, together with a modified local search, are proposed. The proposed VNS is hybridised using two meta-heuristic methods, namely GA and ACO, in loosely and strongly coupled fashions, yielding four new sequential hybrid meta-heuristic algorithms for the problem of static and dynamic single-objective independent batch job scheduling in grid computing. For the static version of the problem, several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimising the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other traditional, heuristic and meta-heuristic approaches selected from the bibliography. To model the dynamic version of the problem, a simple simulator, which uses the rescheduling technique, is designed and new problem instances are generated, by using a well-known methodology, to evaluate the performance of the proposed hybrid schedulers. The experimental results show that the use of rescheduling provides significant improvements in terms of the makespan compared to other non-rescheduling approaches

    Ant colony optimization algorithm for dynamic scheduling of jobs in computational grid

    Get PDF
    Computational grid is gaining more importance due to the needs for large-scale computing capacity. In computational grid, job scheduling is one of the main factors affecting grid computing performance. Job scheduling problem is classified as an NP-hard problem.Such a problem can be solved only by using approximate algorithms such as heuristic and meta-heuristic algorithms.Among different optimization algorithms for job scheduling, ant colony system algorithm is a popular meta-heuristic algorithm which has the ability to solve different types of NP-hard problems.However, ant colony system algorithm has a deficiency in its heuristic function which affects the algorithm behavior in terms of finding the shortest connection between edges.This research focuses on a new heuristic function where information about recent ants’ discoveries has been considered.The new heuristic function has been integrated into the classical ant colony system algorithm.Furthermore, the enhanced algorithm has been implemented to solve the travelling salesman problem as well as in scheduling of jobs in computational grid.A simulator with dynamic environment feature to mimic real life application has been development to validate the proposed enhanced ant colony system algorithm. Experimental results show that the proposed enhanced algorithm produced better output in term of utilization and makespan in both domains
    • …
    corecore