17,396 research outputs found

    Finding groups in data: Cluster analysis with ants

    Get PDF
    Wepresent in this paper a modification of Lumer and Faieta’s algorithm for data clustering. This approach mimics the clustering behavior observed in real ant colonies. This algorithm discovers automatically clusters in numerical data without prior knowledge of possible number of clusters. In this paper we focus on ant-based clustering algorithms, a particular kind of a swarm intelligent system, and on the effects on the final clustering by using during the classification differentmetrics of dissimilarity: Euclidean, Cosine, and Gower measures. Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as e.g. k-means, etc. Among the many bio-inspired techniques, ant clustering algorithms have received special attention, especially because they still require much investigation to improve performance, stability and other key features that would make such algorithms mature tools for data mining. As a case study, this paper focus on the behavior of clustering procedures in those new approaches. The proposed algorithm and its modifications are evaluated in a number of well-known benchmark datasets. Empirical results clearly show that ant-based clustering algorithms performs well when compared to another techniques

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    Finding and tracking multi-density clusters in an online dynamic data stream

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Change is one of the biggest challenges in dynamic stream mining. From a data-mining perspective, adapting and tracking change is desirable in order to understand how and why change has occurred. Clustering, a form of unsupervised learning, can be used to identify the underlying patterns in a stream. Density-based clustering identifies clusters as areas of high density separated by areas of low density. This paper proposes a Multi-Density Stream Clustering (MDSC) algorithm to address these two problems; the multi-density problem and the problem of discovering and tracking changes in a dynamic stream. MDSC consists of two on-line components; discovered, labelled clusters and an outlier buffer. Incoming points are assigned to a live cluster or passed to the outlier buffer. New clusters are discovered in the buffer using an ant-inspired swarm intelligence approach. The newly discovered cluster is uniquely labelled and added to the set of live clusters. Processed data is subject to an ageing function and will disappear when it is no longer relevant. MDSC is shown to perform favourably to state-of-the-art peer stream-clustering algorithms on a range of real and synthetic data-streams. Experimental results suggest that MDSC can discover qualitatively useful patterns while being scalable and robust to noise
    • …
    corecore