
IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 1

Finding and Tracking Multi-Density Clusters in
Online Dynamic Data Streams

Conor Fahy and Shengxiang Yang, Senior Member, IEEE ,

Abstract—Change is one of the biggest challenges in dynamic stream mining. From a data-mining perspective, adapting and tracking
change is desirable in order to understand how and why change has occurred. Clustering, a form of unsupervised learning, can be
used to identify the underlying patterns in a stream. Density-based clustering identifies clusters as areas of high density separated by
areas of low density. This paper proposes a Multi-Density Stream Clustering (MDSC) algorithm to address these two problems; the
multi-density problem and the problem of discovering and tracking changes in a dynamic stream. MDSC consists of two on-line
components; discovered, labelled clusters and an outlier buffer. Incoming points are assigned to a live cluster or passed to the outlier
buffer. New clusters are discovered in the buffer using an ant-inspired swarm intelligence approach. The newly discovered cluster is
uniquely labelled and added to the set of live clusters. Processed data is subject to an ageing function and will disappear when it is no
longer relevant. MDSC is shown to perform favourably to state-of-the-art peer stream-clustering algorithms on a range of real and
synthetic data-streams. Experimental results suggest that MDSC can discover qualitatively useful patterns while being scalable and
robust to noise.

Index Terms—Data stream clustering, multi-density clustering, concept drift, concept evolution, swarm intelligence, change detection

F

1 INTRODUCTION

ANALYSING data-streams in real-time is a natural and
necessary progression from traditional batch data-

mining. Clustering data streams requires additional consid-
erations to traditional clustering. As in all stream-mining
tasks, speed and memory constraints exist; often only a
single pass of the data is afforded and it is not practical to
store all processed data. In non-stationary streams change
is a further consideration. A stream-clustering algorithm
should be able to detect and adapt to change. Ideally,
this change would be tracked and a ‘narrative’ could be
inferred from the pattern-changes over time. Furthermore,
by understanding and tracking the underlying patters, we
can identify deviations from these patterns - an indication of
change or anomaly.

Change in a stream can happen in a number of ways;
Let S = [xt]∞t=0 denote a stream where x is a vector in d
dimensions at time t. Let Y represent the set of k discovered
clusters: Y = {y1, . . . , yk}. We can represent the assignment
of a point xi to a cluster yj ∈ Y over time as a conditional
probability P t(yj |xi); the probability of xi belonging to a
cluster yj at time t. One possible change in a data-stream
can occur in the form of concept drift. This occurs if the
characteristics of the data change, i.e., if the underlying
process generating x changes. For example, sampling from
source distribution Cj decreases and sampling from Cj+1

increases. Typically, this kind of drift is referred to as virtual
drift, a change in P (x). A second type of drift is known as
real drift: a change in P (y|x). For example, at time t point xi
is assigned to cluster yj , but at t+δ, xi is assigned to cluster

Manuscript received 4 September, 2018; Revised 13 January, 2019 and 22
March, 2019; accepted 5 May 2019. (Corresponding author: Shengxiang
Yang)
The authors are with the Centre for Computational Intelligence (CCI), School
of Computer Science and Informatics, De Montfort University, The Gateway,
Leicester LE1 9BH, U.K. (email: {conor.fahy, syang}@dmu.ac.uk).

ym. This would occur, in this example, if clusters yj and ym
have drifted into different positions in the feature space.

Another possible change is concept evolution. Concept
evolution occurs when an entirely new cluster ym, i.e.,
ym 6∈ Y , appears in the stream. Assuming a fixed k can
lead to a poorer clustering performance. Concept evolution
is a particular challenge as it relates to one of the most
fundamental questions in clustering - how many clusters
are present in the data? This is difficult in dynamic environ-
ments as this number will change over time. Density based
clustering methods can discover the natural clusters in data
without requiring their number to be specified a-priori.

Density based methods identify clusters as areas of the
feature space with high density separated by areas of low
density. Dense areas are described using micro-clusters. A
micro-cluster is a d-dimensional sphere with a centre c and a
radius r. Micro-clusters have a maximum radius of ε, where
r ≤ ε. A data point is assigned to a micro-cluster if it falls
within the area of the micro-cluster. The set of micro-clusters
that are connected form the macro-cluster. This allows for
arbitrarily shaped clusters to discover dense areas of the
feature space.

The maximum radius permitted for each micro-cluster,
the ε-neighbourhood, defines the concept of ‘dense’. This is
a sensitive parameter; if it is too large, multiple concepts will
be clustered as one. If too small, no clusters will form at all.
Furthermore, if this parameter is global, i.e., each cluster
is constrained by the same value of ε, then performance
will degrade when the stream contains clusters of varying
densities. As an example, a Gaussian source distribution
that generates n points with a low variance will be more
‘dense’ than the same process with a large variance. A global
ε imposes limitations on the type of clusters that can be
discovered. For example, embedded or overlapping clusters
will be missed if only using a single concept of density.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228196599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 2

Recent proposals to capture multi-density clusters [3],
[10] in a data-stream (and clustering data streams in general
[6], [13], [18]) rely on a number of sensitive user-defined
parameters. The values of these parameters greatly affect
the clustering performance and not much consideration is
given to their practicality in a non-stationary environment.
For example, how should these parameters be tuned? If
we follow traditional methods, we could use a portion of
the stream as a test set and use this to find the best set of
parameters. However, in a dynamic environment, it is likely
that the best values for these parameters will change over
time.

Motivated by these challenges, we propose a Multi
Density Stream Clustering (MDSC) algorithm. In MDSC,
clusters are discovered with an adaptive ε, local to each
cluster. Each newly incoming data point is treated as a single
micro-cluster which attempts to merge with existing, live
clusters. If the micro-cluster can not merge with an already
discovered cluster, it attempts to merge with a micro-cluster
in the outlier buffer. Otherwise, it joins the buffer as a
new micro-cluster. This buffer is checked periodically for
new clusters. A micro-cluster will age if no new data is
added and it will eventually disappear if it is no longer
relevant. This mechanism of ageing micro-clusters and an
outlier buffer allows concept drift to be tracked and noise
to be effectively treated. The interval at which the buffer
is checked and the rate at which micro-clusters age are
determined by a single user-defined parameter. A second
user-defined parameter determines the age at which micro-
clusters are considered no longer relevant and removed.
These are the only user parameters and their values will
depend on the velocity of the stream and the granularity
the user wishes to examine it.

A swarm intelligence approach is used to discover new
clusters in the buffer. The process is inspired by the nest-
building behaviour of certain species of ant. Micro-clusters
form ‘nests’ with similar micro-clusters. The similarity be-
tween each nest is estimated in an iterative, decentralised
way, similar to the collective memory of an ant colony in
the form of pheromone trails. Clusters are formed based
on these nests and their similarity. We use an ant-inspired
swarm-intelligence, as opposed to other swarm intelligence
approaches (for example fire-fly [40], PSO [31], or artificial
bee-colony [23]) because of this path-building ‘memory’
mechanism in the form of pheromone trails.

In summary, the main contributions of this paper are:

• The parameter ε in MDSC is adaptive and local to
each cluster allowing for the discovery of clusters
with varying densities.

• Discovered clusters are maintained online and la-
belled in order to track changes. Streams can be anal-
ysed in real time or at higher levels of granularity.

The rest of the paper is organised as follows: Section
2 provides an overview of related work in the literature.
Section 3 presents our proposed algorithm in detail. Section
4 outlines our experimental set-up. An analysis on the
algorithm’s scalability and robustness to noise is reported in
Section 6, a sensitivity analysis in Section 7 and an analysis
of the time and space requirements is presented in Section

8. Discussion and conclusions are offered in Sections 9 and
10, respectively.

2 RELATED WORK

Stream-clustering algorithms typically adopt the two-phase
online/offline approach proposed in CluStream [1]. The au-
thors suggest that a stream clustering algorithm could con-
sist of an on-line phase which summarises the data and an
off-line phase which clusters the summaries. CluStream in-
troduced the concept of the micro-cluster to summarise the
data. A micro-cluster is a temporal extension to the cluster-
feature vector proposed in BIRCH [38]. In CluStream, data
is summarised online and the offline clustering of the micro-
clusters is based on the k-means algorithm [17]. Density
based methods have been extended for data-streams using
the two-phase approach [13], [6], [34], [35]. Density based
clustering [11] is an attractive method for clustering data
streams because it is robust to noise, the number of clusters
does not have to be specified a-priori, and arbitrarily shaped
clusters can be discovered - as opposed to hyper-elliptical
shapes as in k-means and its variants.

MR-Stream [35] partitions the search space into discrete
cells and uses a tree structure to store this space partitioning.
New data points are assigned to a cell and the tree structure
is updated on-line. The off-line clustering is performed on
the summarised tree. ClusTree [24] also uses a tree structure
to maintain summaries of the data stream and the sum-
maries are clustered using the k-means algorithm. Similar
to MR-Stream, D-Stream [34] partitions the search space into
discrete grid sections. Newly arriving data is mapped onto
a grid and then clustered offline.

DenStream [6] is a popular stream clustering algorithm
and widely used as a benchmark [3], [13], [15]. Data points
are read online and summarised as micro-clusters. Den-
Stream uses the time-dampened window model to give
higher weights to recent data and when a clustering request
is made by a user, these micro-clusters are clustered off-
line using a traditional density-based clustering algorithm
[11]. However, as noted in [15], the off-line clustering is
computationally expensive and, furthermore, the off-line
clustering only happens at the request of the user. This
presents a dilemma because frequent requests could better
discover changes in the stream but they are costly. Infre-
quent requests are less costly but could potentially miss
changes in the stream. Efforts have been made to address
this problem by merging the on-line and off-line phases
into a single on-line phase in CEDAS [18], FlockStream [15],
SOStream [20] and SVStream [36].

CEDAS [18] uses a graph structure to store the relation-
ship between on-line micro-clusters, micro-clusters act as
nodes in a graph and their edges form the the macro-cluster.
Micro-clusters are either an outlier or part of a cluster and
all are time-weighted. A micro-cluster has an ‘energy’ level
and if it is not updated, it loses this energy until it is
considered no longer relevant and is removed. SOStream
is based on DBSCAN [11] and self-organising maps while
SVStream [36] is based on the one-class support vector do-
main description classification method [33]. FlockStream [15]
is a bio-inspired swarm intelligence approach which also
combines the online/offline approach into a single online

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 3

phase. FlockStream is modelled on the flocking behaviour
of birds as proposed in Reynolds’ Boids [29].There are many
more techniques for density clustering that are similar to
the ones described here and a comprehensive review of
density based stream clustering is given in [4]. A common
shortcoming among all of these algorithms is their inability
to detect clusters of varying densities.

The reason for this restriction to a single concept of
density is the use of global parameters for each cluster.
Algorithms which use micro-clusters as the summarisation
mechanism [6], [13], [15] define the micro-cluster parameters
globally. The ε-neighbourhood defines the maximum radius
for a micro-cluster and the minPoints parameter defines
how many points a micro-cluster must contain before it
can be defined as ‘dense’. These parameters apply to every
discovered cluster. Solutions have been proposed to the
multi-density problems in stationary batch data. Most are
extensions of the DBSCAN algorithm [11]. However, these
algorithms are not suitable for data streams because they
require more than a single pass of the data or require
prohibitively high computational time.

Methods for discovering multi-density clusters in
streams have been proposed in MuDi [3] and ADStream
[10]. Both combine a density-based and grid-based approach
to clustering data streams. They use the two phase on-
line/offline approach. MuDi proposes a further extension to
DBSCAN called M-DBSACN which is used to form multi-
density clusters. ADStream uses a combination of density
clustering and affinity propagation clustering [16] to find
clusters off-line based on the data mapped to the grid.
Among other parameters, the size of each grid is an im-
portant consideration as it defines the concept of ‘dense’. In
each of these algorithms it is a sensitive, global user-defined
parameter.

We previously proposed Ant Colony Stream Clustering
(ACSC) [13], a swarm inspired clustering method. ACSC
extends some of the fundamental micro-cluster concepts
introduced in Denstream [6]. These micro-clusters are con-
sidered as ‘ants’ which self-organise to form ‘nests’ with
similar ants. Established nests form the macro-cluster. It
uses the two-phase approach which makes it impossible
to automatically track clusters and furthermore, it was re-
stricted to finding clusters of a single level of density. We
further proposed ACMDSC [14] as a potential method to
discover multi-density clusters but this method also relies
on the two phase approach and requires sensitive, static
parameters. The proposed approach in this paper builds on
the same DenStream fundamentals (outlined in the Section
3, Preliminaries) and uses some of the same concepts as
ACSC (ants, nests , and pheromone trails) but outlines a
novel clustering mechanism in order to cope with multi-
density clusters in an on-line setting.

In summary, density based clustering has advantages in
that arbitrary shaped clusters can be discovered (as opposed
to just hyper-spherical), the number of clusters does not
have to specified a-priori and data can be compactly sum-
marised as micro-clusters. The majority of density stream
clustering methods adopt the two phase, on-line/off-line
approach whereby data is first summarised online and then
clustered offline (CluStream [1], ClusTree [24], DenStream
[6], D-Stream [34], MR-Stream [35], ACSC [13], and others).

The disadvantages of this approach are that a) the behaviour
of clusters cannot be tracked over time and b) only clusters
of a single density can be discovered. Recently, MuDi [3]
and AD-Stream [10] have been proposed to discover multi-
density clusters in streaming data, however they require
sensitive, static parameters and use the two phase approach.
The two-phase approach has been combined into a sin-
gle online phase (Flockstream [15], CEDAS [18], SOStream
[20], SVStream [36]) potentially (with small algorithmic ex-
tensions) allowing for on-line tracking, however they are
unable to deal with multi-density clusters. The method
proposed in this paper aims to fill the space here; an online
method allowing multi-density clusters to be discovered
and tracked over time.

3 PROPOSED MULTI-DENSITY STREAM CLUSTER-
ING (MDSC) ALGORITHM

3.1 Preliminaries
We introduce the fundamental micro-cluster concepts origi-
nally proposed in [6] and extended in [15], [13], [14].

A micro-cluster containing N points { ~Xi}, i = {1, ..., N},
is described using four components: N, the number of
points contained in the micro-cluster, each of which is an n-
dimensional vector; LS, the linear sum of these points (i.e.,
N∑
i=1

~Xi); SS, the squared sum of these points (i.e.,
N∑
i=1

~X2
i);

and a time stamp lastEdit. LS and SS are n-dimensional
vectors. From the first three components, we can obtain the
centre c and radius r of the micro-cluster [1], as follows:

c =
LS

N
(1)

r =

√
SS

N
−
(
LS

N

)2

(2)

The fourth component, lastEdit, records the most recent time
a micro-cluster was updated.

Micro-clusters are increment-able so at time T a point
p in d dimensions can be absorbed into an existing micro-
cluster m:

m.N += 1

m.LSi = m.LSi + pi,∀i ∈ {1, 2, ..., d}
m.SSi = m.SSi + p2i ,∀i ∈ {1, 2, ..., d}

m.lastEdit = T

(3)

where pi is the ith dimension of point p. Two existing micro-
clusters mi and mj can merge into a new micro-cluster mk,
iff rmk

≤ ε, where rmk
is the radius of mk, as follows:

mk = (Ni +Nj , ~LSi + ~LSj , ~SSi + ~SSj , T) (4)

Two micro-clusters mi and mk are said to be density
reachable if:

dist(cmi
, cmk

) ≤ ε (5)

where cmi and cmk
are the centres of mi and mk, respec-

tively, and dist(cmi , cmk
) is the Euclidean distance between

cmi and cmk
. The lastEdit component is used to calculate the

micro-cluster’s age:

age = T − lastEdit (6)

where T is the current time-step in the stream.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 4

3.2 Finding New Clusters in the Buffer

During the initialisation step of the algorithm, λ points are
collected in the buffer and the initial clusters are discovered.
Any points not belonging to a cluster are retained in the
buffer. Once the clusters are live, incoming data points are
processed and those points which are not assigned to an
existing cluster are passed to the outlier buffer. This buffer
is periodically checked. Clusters are discovered in two steps
in an ant-inspired, swarm intelligence approach; initially,
micro-clusters form ‘nests’ with similar micro-clusters and
subsequently, similar nests are grouped to form the cluster.

3.2.1 Finding Nests

The step begins with a list of all micro-clusters currently
stored in the buffer and a program variable ε-init. An
appropriate value for ε is discovered adaptively using ε-init
as an initial ‘starting point’.

In the biological metaphor, the micro-clusters are ants
and a nest is a grouping of similar ants. Ants are iteratively
assigned to nests representing dense areas of the data. The
first ant creates the first nest and subsequent ants can either
join an existing nest or form a new one.

Each ant visits each nest in succession and evaluates the
nest’s suitability by comparing itself with all ants currently
in the nest. Formally, the similarity of ant a with nest k is
defined as follows:

Sim(a, k) =
1

nk

nk∑
j=1

dist(a, kj) (7)

where nest k already has nk ants present in it (i.e., k =
{k1, k2, ..., knk

}). Ant a joins the most similar nest provided
its similarity score is equal to or below the initial value of
ε-init (ε-init is a program variable). If not, it forms a new
nest.

As an ant evaluates each nest, it ‘remembers’ its sim-
ilarity with each nest (Eq. (7)). Upon joining a nest or
establishing a new nest, the similarity of the selected nest
with all its neighbouring nests is updated. This similarity
update happens in a decentralised, iterative way, similar
to pheromone trails in an ant colony and these similarity
scores are recorded in a matrix, which is referred to as
the Pheromone Matrix (PM). The pheromone trail to each
neighbouring nest is a rolling average updated whenever
a new ant joins the nest. Formally, the pheromone trail
between nests k and l is the average of each ant i in nest
k’s similarity (Eq. (7)) with nest l:

ph(k, l) =
1

nk

nk∑
i=1

Sim(ki, l) (8)

where nk is the number of ants in nest k and ki is the i-th
ant in nest k.

Once all the ants have been assigned to their respective
nests, the contents of each nest are merged into a single
micro-cluster (Eq. (4)) with no restriction on maximum radius
(i.e., ε = 1). The pseudo-code for this step is presented
in Algorithm 1. Micro-clusters formed in this stage will
vary in size, both in terms of radius and number of points
contained. At the end of the step we have n nests, each

Algorithm 1 Create Nests
Input: List of micro-clusters in buffer, parameter ε-init
Output: Nests and Pheromone Matrix

1: for <each micro-cluster m> do
2: if <nests> then
3: for <each nest n> do
4: Calculate similarity of m to n (Eq. (7))
5: if <similarity ≥ ε > then
6: Add m to n
7: Update pheromone trail (Eq. (8))
8: else if <No suitable nest> then
9: Create a new nest

10: Add m to the new nest
11: Initialise pheromone trail
12: for <each created nest n> do
13: Merge n into single micro-cluster

14: return Nests, Pheromone Matrix

containing a single micro-cluster and a PM describing the
similarity between each pair of nests as follows:

PM =

N1 N2 . . . Nn

0 ph(N1, N2) . . . ph(N1, Nn) N1

ph(N2, N1) 0 N2

...
...

. . .
... . . .

ph(Nn, N1) 0 Nn

(9)

3.2.2 Creating Clusters
The previous step summarised the buffer contents into a
fewer number of heterogeneous micro-clusters, represented
as a set of nests. In this step, clusters are discovered incre-
mentally, starting with the most dense. This allows for the
discovery of embedded and overlapping clusters.

A new cluster C is seeded with the densest nest in the
set of nests as follows:

seed = max
k∈Nests

(k.N) (10)

Taking this nest as the initial nest, initNest, we find its closest
neighbour, closestNest, in the pheromone matrix, as follows:

We merge these two nests into a single nest, the seed
nest. Cluster C’s ε-value is taken as the radius of this seed
nest. Intuitively, clusters which are more sparse will have
a greater distance between the initial nest and its closest
neighbour (and consequently a larger ε). Conversely, more
compact clusters will have a shorter distance and a smaller
ε.

Along with ε, cluster C requires an additional value,
threshold, in order to group similar, density reachable nests
which remain in the buffer. This determines if a nest added
to C is a border nest. A border nest is a nest which is density
reachable to C but has a density (N) of less than α times
the density of initNest. For example, if initNest contains 100
points and α = 0.1, a border nest will contain 10 or fewer
points. Threshold is local to C and relative to the density of
C , controlled by a static program-variable α. Formally;

threshold = initNest.N ∗ α (11)

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 5

Algorithm 2 Initialise Cluster
Input: Nests, Pheromone Matrix PM , Parameter α
Output: Cluster C

1: Find the densest nest initNest in Nests (Eq. (10))
2: initialDensity = initNest.N
3: Find initNest’s closest neighbour closestNest (Eq. (12))
4: Merge initNest and closestNest into new micro-cluster
seed

5: Initialse new cluster C := seed
6: C.ε := rseed
7: C.threshold := initialDensity ∗ α
8: Remove initNest and closestNest from Nests and PM
9: return C

Border Nest
𝑁 ≤ 𝑖𝑛𝑖𝑡𝑁𝑒𝑠𝑡. 𝑁 ∗ α

initNest

Cluster C

Fig. 1: Illustrative example of cluster C in black. Although
the red micro-cluster is density reachable to C , it is only via
a border nest so does not become part of C .

This seeding process is outlined in Algorithm 2.
Nests in the buffer which are density reachable to a

border nest in C and not reachable to any other nest in C
are not added to C . They remain in the buffer. This is
illustrated in Fig. 1. This mechanism promotes the formation
of homogeneous, pure clusters by preventing two (or more)
similar concepts being clustered as one due to a small num-
ber of intermediary points. Furthermore, because nests are
formed starting with the most dense (and therefore smallest
ε), overlapping and embedded clusters can be discovered.

closestNest = max(PM [:, initNest]) (12)

Once all nests which are density reachable to C are
identified, the overall size of C is calculated - this is simply
the number of data points described by C . If this size
is greater than a minimum cluster size (proportionate to
λ), C is added to the set of online clusters. If C contains
fewer points than the minimum cluster size, the clustering
operation is undone and the original micro-clusters remain
in the buffer.

Before adding C to the set of online clusters, it is given
a unique ID. This is a global parameter clusterNum, which
is assigned to a cluster and then incremented, i.e., the first
cluster is labelled as 1, the second as 2, and so on.

Outlier and noise points will unlikely ever get clustered
and, because they are subject to an ageing process, they will
eventually disappear in the buffer.

The pseudo-code for finding clusters from the initial
nests is outlined in Algorithm 3.

Algorithm 3 Find Clusters
Input: Nests, Pheromone Matrix PM ,

parameters minClusterSize, clusterNum
Output: Discovered Cluster(s)

1: newSeed := true
2: addedNest := true
3: while <Nests> do
4: if <newSeed = true> then
5: C := Initialise cluster (Algorithm 2)
6: newSeed := false
7: while <addedNest> do
8: addedNest := false
9: for <Each nest n> do

10: if <n is density reachable to
a non-border nest in C> then

11: Add n to C
12: Determine if n is a border nest (Eq. (11))
13: Delete n from Nests
14: Delete n from Pheromone Matrix
15: addedNest := true
16: if <C.size ≥ minClusterSize> then
17: Merge micro-clusters in C (Eq. 4)
18: C.label := clusterNum
19: clusterNum++
20: Add C to discovered clusters
21: newSeed := true
22: return Discovered Clusters

3.3 Incoming Points
Online clusters are maintained as a set of connected micro-
clusters. Each cluster has a unique id and a unique ε value.
A newly arriving point p in d dimensions is first converted
to a micro-cluster m as follows:

m.N = 1

m.LSi = pi,∀i ∈ {1, 2, ..., d}
m.SSi = pi

2,∀i ∈ {1, 2, ..., d}
m.lastEdit = T

(13)

The incoming micro-cluster attempts to join an existing
cluster, checking each one beginning with the most compact,
i.e., the cluster with the smallest ε value. The new micro-
cluster checks if it is density reachable (Eq. (5)) to any
micro-cluster in the selected cluster. If so, it attempts to
merge (Eq. (4)). If the merging operation is a success, the
merged micro-cluster’s time-stamp is updated, otherwise,
the newly-arrived micro-cluster is just added to the clus-
ter (un-merged). If the newly arriving micro-cluster is not
density reachable to any micro-cluster in any of the existing
clusters, it is passed to the buffer. Here, it attempts to merge
with a micro-cluster already present in the buffer, otherwise
it joins the buffer as a new micro-cluster.

4 EXPERIMENTAL SETUP

MDSC is evaluated in a number of ways. Initially, we
evaluate MDSC’s performance on 4 real-data benchmark
data-streams across three external metrics. We select 4 data-
streams from different fields to examine the performance of
the algorithm without any parameter tuning. We compare

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 6

the performance of MDSC with four peer density clustering
algorithms. We then examine the algorithm’s performance
with synthetic data-streams exhibiting concept drift, con-
cept evolution and clusters with varying densities. Finally,
we examine the qualitative performance of the discovered
clusters on a data-stream we collected from an air-quality
monitoring system in Leicester City, UK.

4.1 Peer Algorithms
MCSC is evaluated against four state-of-the-art peer algo-
rithms; MuDi [3], CEDAS [18], DenStream [6] and ACSC
[13]. Similar to MDSC, they each employ micro-clusters to
identify dense areas of the stream. DenStream is one of the
original density-based stream clsutering algorithms. Data
is summarised online and clustered offline with DBSCAN
[11]. ACSC is an ant-inspired approach using the tumbling
window model. Clusters are discovered at fixed intervals.
MuDi also finds clusters at fixed intervals, incoming points
are assigned to a grid structure and when a grid’s density
reaches a certain threshold, a micro-cluster is formed. These
micro-clusters are clustered offline using an extension to
DBSCAN which allows for the discovery of multi-density
clusters. CEDAS uses a graph structure to find clusters,
points are assigned to micro-clusters which act as nodes in a
graph structure. Connected ‘nodes’ form the macro-cluster.

4.2 Data Sets
The performance of MDSC is compared to the peer algo-
rithms across seven benchmark datasets. Though the data
sets themselves are static, each point is read sequentially,
simulating a stream. These streams are dynamic in that they
exhibit concept drift and concept evolution. Three datasets
are taken from the Non-Stationary Environment Archive
used in [8] and made publicly available by the authors1.
Two of these datasets are synthetic and are composed of
non-stationary 2-D Gaussian clusters. 2CSurr is composed
of two clusters with different densities. One cluster is sta-
tionary and the other is dynamic, exhibiting virtual concept
drift (a change in P (x)). The other dataset, 4CR, consists
of 4 clusters rotating anti-clockwise, an example of real
virtual drift (a change in P (y|x)). The third dataset taken
from this archive is a real-world problem based on the use
of keystroke dynamics to recognise users by the natural
pattern of their typing rhythm, which is likely to change
over time. It is based on 4 different users typing a 10-key
password 400 times. The 10 variables measure the flight-
time between each key, i.e., the time difference between a
key being released and the next one being pressed, giving a
total of 1,600 samples with 10 dimensions.

MDSC is also tested on the popular Network Intru-
sion benchmark dataset used in [6], [13], [15], [18]. This
dataset is composed of seven weeks of simulated network
requests on the DARPA network. Requests can be ‘normal’
or ‘malicious’. The non-stationary ‘malicious’ class contains
substantial drift as it is composed of 23 different types of
attacks. The Forest Cover data-stream is another popular
benchmarking data-stream. It is composed of 54 carto-
graphic variables describing forest coverage in Roosevelt

1. https://sites.google.com/site/nonstationaryarchive/

TABLE 1: Description of datasets used in experiments. R =
Real Data, VD = Virtual Drift, RD = Real Drift, MD = Multi-
Density, CE = Concept Evolution

Dataset Classes Features Examples Characteristic

Real
Network 2 39 250,000 R, VD
Forest 7 54 580,000 R, VD, CE
Key stroke 4 10 1,600 R, VD, MD
COIL 20 1,024 1,440 R,VD,CE,MD
Air Quality unknown 7 35,040 R, unknown

Synthetic
2CSurr 2 2 50,000 VD,MD
4CR 4 2 144,000 RD
20D 5-10 20 150,000 RD,VD,MD,CE

National Forest of northern Colorado and is widely used in
the stream-mining literature [1], [3], [24], [13] as it exhibits
fairly rapid virtual drift. We also include a high-dimensional
data-stream, COIL2. This is a dataset of 20 grey-scale images
in 1024 dimensions (32 by 32 pixels) and exhibits concept
evolution.

In order to evaluate the performance of MDSC on a
stream exhibiting all of the challenging stream character-
istics: concept evolution, real drift, virtual drift and multi-
density clusters, we generated a further synthetic data-
stream with a dimensionality of 20. Clusters are Guassian
and at periodic drift-intervals we shift the centre and the
variance of each one to simulate drift and varying densities.
At each drift interval, we randomly add or remove a cluster
(within bounds) to simulate concept evolution. SynStream is
a tool we developed to create this type of synthetic stream
and we will offer this to the community for benchmarking
and testing at due time.

A real-life stream is taken from UK-AIR database main-
tained by the Department of Environment, Food and Rural
Affairs (DEFRA)3. The data-stream is taken from a single
monitoring site in Leicester City and provides seven hourly
air-quality measurements regarding Ozone (O3), Nitric Ox-
ide (NO), Nitrogen Dioxide (NO2), Nitrogen Oxides (NOx),
Particulate Matter 2.5 (PM2.5), Non-volatile PM2.5 (PMnv),
and volatile PM2.5 (PMv). These seven pollutants are mea-
sured in micrograms (one-millionth of a gram) per cubic
meter air or µg/m3. We examine data from January 1st 2014
to April 1st 2017.

In summary, we experiment on 5 real and 3 synthetic
data-streams exhibiting real concept drift (both sudden and
gradual), virtual concept drift (gradual and sudden), con-
cept evolution, and multi-densities. We evaluate on streams
with dimensionality ranging from 2 to 1,024. The details of
each dataset is displayed in Table 1.

4.3 Performance Metrics

In the comparative study, we use three external metrics: the
Purity, F-Measure (or F-Score) [22] and Rand Index [28]. We
use external metrics because the ground truth is known and
the performance is measured with respect to this ground

2. http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

3. https://uk-air.defra.gov.uk/data/

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 7

truth. In each of these metrics an ideal clustering will return
a score of 1 and a bad solution will have a result close to
0. The purity metric measures the homogeneity of a cluster.
The F-Measure is the harmonic mean of the precision and
recall scores and the Rand Index measures the accuracy of
the clustering solution. It measures the number of correct
decisions and penalises false positives and false negatives.

In the following, R represents the clustering result re-
turned by the algorithm. R contains n clusters. In every
identified cluster Ri (i = {1, · · · , n}), V i represents the
most frequently appearing class label in cluster Ri, V isum
is the number of instances of V i in Ri, and V itotal represents
the total number of instances of V i in the current window.
From these, we define the following features for cluster Ri:

precisionRi
=
V isum
‖Ri‖

(14)

recallRi
=
V isum
V itotal

(15)

ScoreRi
= 2 ∗ precisionRi

∗ recallRi

precisionRi
+ recallRi

(16)

Overall, Purity (P) and F-Measure (F) can now be ex-
pressed in terms of the total number of clusters identified,
as follows:

P =
1

n

n∑
i=1

precisionRi (17)

F =
1

n

n∑
i=1

ScoreRi (18)

The Rand Index (R) is calculated as follows:

R =
TP + TN

TP + FP + TN + FN
(19)

where TP, TN, FP, and FN denote the number of true
positive, true negative, false positive and false negative
decisions, respectively.

MuDi and CEDAS are deterministic but ACSC and
MDSC are stochastic. We run each stochastic algorithm 50
times and report the mean value. To statistically evaluate
the results, we compare MDSC’s scores with the closest
(better or worse) performance from the peer algorithms.
For the deterministic algorithm, we use the non-parametric
One-Sample Wilcoxen Signed-Rank Test [37]. We reject the
null hypothesis that the distribution of MDSC’s results
are symmetric around the corresponding peer result with
p < 0.05. To compare with ACSC we use the Wilcoxen Rank
Sum test [37] and reject the null hypothesis that both results
come from the same distribution with p < 0.05.

When evaluating MDSC on the air-quality stream (with
no ground truth), we use an internal evaluation metric: the
Silhouette Coefficient (SC) [30]. The SC is a measure of how
similar a data instance is to its own cluster (cluster cohesion)
compared to instances in other clusters (cluster separation).
For each instance i we denote by A the cluster to which i
belongs. We find the average similarity (we call a(i)) of i to
all other instances in A:

a(i) =
1

‖A‖ − 1

∑
j∈A,j 6=i

dist(i, j) (20)

Next, for any cluster C which is not A, we find the
average similarity from i to C as follows:

d(i, C) =
1

‖C‖
∑
j∈C

dist(i, j) (21)

After finding d(i, C) for all clusters (C 6= A), we take the
minimum distance b(i), formally b(i) = min(d(i, C)).

The cluster B with this minimum value is referred to
as the Silhouette of A. The SC value s(i) is calculated as
follows:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(22)

The SC value for the whole cluster A is the mean of all
instances i in A and the SC for the clustering solution R
(where R = {K1,K2, ...,Kn}) is the mean of all Silhouette

values in R (i.e., 1
n

n∑
i=0

s(Ki)). The SC value lies between −1
and 1, where 1 represents a good clustering solution.

5 PERFORMANCE EVALUATION

Datasets are transformed into data-streams by taking each
individual instance in order. At each λ intervals, we evaluate
the live clusters on the three external metrics: Purity, F1-
Score and Rand Index. MuDi and CEDAS are deterministic,
but MDSC and ACSC are stochastic. So, the results reported
are the average over 50 runs, along with the results of their
respective statistical tests, where “s+” and “s−” indicates
MDSC performs significantly better than and significantly
worse than the best peer result, respectively, and “=” indi-
cates no significant difference.

5.1 Comparative Evaluation
The comparative results are presented in Table 2. We first
evaluate MDSC on four real data benchmarks. MDSC, on
average,performs better than each peer algorithm despite
requiring no parameter tuning for each specific stream.

Parameters for the peer algorithms are tuned (using
the first n points in the stream as a training set) on each
specific stream. On each stream we use a value of 4 for β, so
micro-clusters which have not been updated in 4 λ intervals
are removed. We use λ = 100. Overall, purity levels are
comparative with ACSC but each of four peer-algorithms
are outperformed on the F1 and Rand Index metrics.

As these are real datasets, it is difficult to tell whether
MDSC outperforms the peer algorithms because of the
clustering mechanism itself or because the streams contain
different densities. From the adaptive ε values, we can infer
that Network and Forest contain a single level of density
(Forest ≈ 0.2 and Network ≈ 0.11). However, on COIL
and Keystroke, MDSC finds clusters with varying densities
(0.005 to 0.26 on COIL, 0.002 to 0.01 on keyStroke).
The progression of these streams using the three metrics is
presented in Fig. 2 for COIL and Fig. 3 for KeyStroke.

To evaluate on streams that certainly contain different
densities, we use two synthetic streams: 2CSurr and 20D.
The comparative results are displayed in Table 2. MDSC
outperforms the others on each of the three metrics. 2CSurr
consists of two clusters (one stationary and one dynamic)
with different densities. The dynamic cluster is much more

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 8

TABLE 2: Average performance on each stream measured using Purity (P), F-Measure (F), Rand Index (R)

DenStream MuDi CEDAS ACSC MDSC

P F R P F R P F R P F R P F R

Network 1.00 0.61 0.80 0.97 0.87 0.81 0.99 0.95 0.96 1.00 0.95 0.94 0.99(s-) 0.93(s-) 0.94(s-)
Forest 0.79 0.10 0.51 0.73 0.47 0.52 0.86 0.48 0.59 0.88 0.59 0.64 0.89(s+) 0.61(s+) 0.66(s+)
KeySroke 0.86 0.16 0.54 0.61 0.46 0.70 0.87 0.61 0.67 0.88 0.56 0.68 0.88(=) 0.65(s+) 0.77(s+)
COIL 0.00 0.00 0.00 0.84 0.67 0.64 0.50 0.17 0.23 0.86 0.76 0.74 0.92(s+) 0.81(s+) 0.81(s+)
2CSurr 0.88 0.22 0.51 0.90 0.76 0.67 0.97 0.61 0.61 0.97 0.62 0.60 0.97(=) 0.89(s+) 0.80(s+)
4CR 1.00 0.67 0.71 0.94 0.94 0.91 0.98 0.95 0.96 1.00 0.95 0.97 1.00(=) 0.98(s+) 0.98(s+)
20D 0.84 0.22 0.23 0.92 0.87 0.94 0.98 0.79 0.93 0.96 0.77 0.93 0.99(s+) 0.94(s+) 0.97(s+)

Average 0.76 0.2 0.47 0.84 0.72 0.74 0.87 0.65 0.7 0.93 0.74 0.78 0.94 0.83 0.84

0 2 4 6 8 10 12 14

0.5

1

Time

P
e
rf
o
rm

a
n
c
e

COIL

Purity
F1

Rand Index

1

Fig. 2: Stream progression on the COIL stream.

0 2 4 6 8 10 12 14 16

0.5

Time

P
er
fo
rm

a
n
ce

KeyStroke

Purity
F1

Rand Index

1

Fig. 3: Stream progression on the Key Stroke stream.

compact and this is reflected in its ε-value of 0.012, much
smaller than the other cluster with a density of 0.029. We
present a comparative performance with ACSC on this
stream in Fig. 4. For illustrative purposes, we use a metric
called ‘score’, which is simply the average of Purity, F1 and
Rand Index, to show the progression. For these compar-
isons, we use ε value of 0.02 in ACSC. We use the second
synthetic stream 20D to illustrate the problems with tuning
a sensitive parameter such as this in a dynamic stream.
20D contains between 2 and 10 non-stationary clusters in
20 dimensions. The stream exhibits concept evolution, con-
cept drift (both real and virtual) and clusters with varying
densities, which was created using the previously described
SynStream. We take a “training” set from the stream, which
is the first n samples, and use the remaining stream as the
“test”. The result is displayed in Table 3. If we take the first
1,000 points as a “test set”, the best value for ε is 0.03; if
we take a test set of 5,000 points, the best value is much

0 5 10 15 20 25 30 35 40 45 500

0.2

0.4

0.6

0.8

1

Time

S
co
re

Comparative Performance

MDSC

ACSC

1

Fig. 4: Comparative performance on the 2CSurr stream.

TABLE 3: Tuning ε parameter

ε 1K 5K Full

0.1 0.62 0.72 0.73
0.09 0.62 0.72 0.74
0.08 0.60 0.75 0.77
0.07 0.62 0.76 0.74
0.06 0.63 0.74 0.73
0.05 0.63 0.74 0.74
0.04 0.65 0.68 0.72
0.03 0.67 0.62 0.70
0.02 0.66 0.55 0.69
0.01 0.47 0.50 0.64

larger at 0.07. Neither value gives the best performance over
the entire stream: in this case the value that gives the best
performance would be 0.08. This has implications in both
the practicality of parameter tuning and also, which final
result should be reported as a measure of the algorithm’s
performance.

5.2 Tracking Clusters

To illustrate how discovered, online clusters can be tracked
and their drift observed, we use two 2D data-streams
for illustrative purposes: 2CSurr and 4CR. 2CSurr, as
previously described, contains two clusters with varying
densities and displays virtual concept drift. 4CR consists
of 4 rotating clusters. The clusters rotate into positions pre-
viously occupied by a different cluster, showing real drift. To
illustrate this drift, we record the centre of discovered clus-
ters at each time-step and display these centres in a scatter

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 92CSurr Drift

Fig. 5: Drift in 2CSurr stream. Blue cluster is stationary and
red cluster drifting in direction of arrow. Center of clusters
are recorded every time-step and the drift is captured and
tracked.

X

Y

4CR Drift

C 1

C 2

C 3

C 4

Fig. 6: Drift in 4CR, where the first 50,000 samples are
presented. Underlying change represents a shift in P (y|X),
the conditional probability of cluster y given position X .
This underlying shift is tracked and can be seen in the
overlap between each cluster’s trail.

plot. In the 2CSurr stream, both clusters were tracked and
their trails are displayed in Fig. 5. In 4CR, the clusters share a
similar level of density, with ε = {0.02, 0.021, 0.022, 0.025}.
We display the positions of each over the first 50,000 points
in the stream. Clusters rotate into positions previously
occupied by a different cluster so the underlying change
represents a shift in P (y|x), the conditional probability of
cluster y given position x. This underlying shift is tracked
and can be seen in overlap between each cluster’s trail in
Fig. 6.

5.3 Qualitative Evaluation
The previous data-steams are all labelled and we were able
to objectively measure the performance of the algorithms
according to the known ground-truth. In this section, we
quantitatively evaluate the algorithm on a real-world data
stream in order to assess the utility of the discovered clus-
ters. We use the internal metric Silhouette Coefficient to
measure if the clusters are cohesive and well separated and
we attempt to discover insights from these clusters and their
behaviour over time. We evaluate the sensor readings from
an Air-Quality monitoring site in the city of Leicester in the
UK. We use this data to study the performance of MDSC
only and not as a case-study in air-quality in Leicester since
such a study would require data from a wider range of
sites and would need to factor external influences, such as
weather and wind etc.

The sensor records hourly measures of seven aspects of
air quality. We take readings from January 2014 to April 2017

TABLE 4: Initial clusters in Week 1

Cluster O3 NO NO2 NOx PM2.5 PMv PMnv

1 63.06 2.92 15.03 19.50 8.13 5.39 2.71
2 30.96 12.59 44.44 63.75 7.677 5.12 2.42
3 14.29 22.57 63.37 97.74 12.63 10.58 1.94

0 20 40 60 80 100 120 140 1600

1

2

3

4

5

6

Week

C
lu
st
er
s

Active Clusters

1

Fig. 7: Active clusters each week.

0 20 40 60 80 100 120 140 1600

0.2

0.4

0.6

0.8

1

Week

S
c
o
re

Silhouette Coe�ciant

1

Fig. 8: Silhouette coefficient on the Air Quality stream.

and read each point in the time order to simulate the original
stream. To evaluate the stream on a weekly level, we set λ
to 168 (24 hours by 7 days) and β to 4. So, micro-clusters
age every week and a micro-cluster which has not been
updated for 4 weeks (roughly 1 month) is considered no
longer relevant and removed. At each time-step, we record
the mean, min and max values of each live cluster (i.e.,
the mean, min and max of the cluster’s constituent micro-
clusters) and we record this for evaluation.

We examine the stream at a weekly level using appropri-
ate values for λ and β, we could set these to different values
for a monthly granularity (say, λ = 720, i.e., 24 hours times
30 days), daily (λ = 24), or real-time (λ = 1).

In week one, three clusters were discovered and their
mean values are displayed in Table 4. Cluster 1 has high
levels of Ozone (O3) but comparatively low levels of Ni-
trates (NOx) and Particulate Matter (PM2.5). Cluster 3 has
a quarter of the levels of O3 but higher levels of NOx and
PM2.5. Cluster 2’s levels lie between clusters 1 and 3. This
suggest an inverse relationship between O3 and NOx and
PM2.5. Over the course of the stream (171 weeks), between 2
and 6 clusters are active each week. We use ‘active’ to mean
that at least one new instance during the week was added
to a live cluster. Clusters can still be live but inactive (no
added points). The number of active clusters are displayed
in Fig. 7 and the corresponding Silhouette Coefficient (SC)
values are presented in Fig. 8.

The high SC scores suggest the live clusters are well
separated and cohesive except for a ’wobble’ at approx-
imately week 60. Of the active clusters, clusters 1 and 3

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 10

20 40 60 80 100 120 1400

50

100

150

200

Week

µ
g/
m

3

Cluster One Mean Values

O3
NOx
PM2.5

1

20 40 60 80 100 120 1400

50

100

150

200

Week

µ
g/
m

3

Cluster Three Mean Values

1

Fig. 9: Mean values of persistent two clusters in Air Quality stream.

0 5 10 15 20
0

250

500

750

1,000

1,250

Time of Day

N
u
m
b
e
r
in

cl
u
st
e
r

Total points clustered (weekly data)

Cluster 3

Cluster 1

1

Fig. 10: Relative sizes of cluster 1 and 3 and the hours they
are most active.

are active throughout and represent the main underlying
pattern. Their levels of O3, NOx and PM2.5 are presented
in Fig. 9. NOx includes NO and NO2, and PM2.5 is the
combined total of volatile and non-volatile PM2.5. So we
reduce the seven measured variables to three just for clarity
of display.

Looking at the progression of cluster 1, we can observe
seasonal changes in the measured atmospheric gases. Levels
of O3 are higher in summer than in winter, the inverse of
NOx. These seasonal changes are tracked. Cluster 3 shows
an exaggerated version of the same trend, much higher
levels of NOx and PM2.5 but lower levels of O3. It has
been observed [19] that in an abundance of NOx, O3 is
‘scavenged’ as it reacts with NOx so this could explain the
symmetry of the two levels in Cluster 3. The trends also
suggest a correlation between NOx and PM2.5. Both are
comparatively low in cluster 1 and higher in cluster 3.

Clusters 1 and 3 capture the main underlying pattern of
the stream. Cluster 1 represents a pattern of low levels of air
pollution and is the largest cluster throughout. The relative
sizes of each are presented in Fig. 10 along with the time-
of-day they represent. The x-axis displays the 24 hours in a
day and the y-axis represents the total number of potential
hourly instances in the stream, in this case 1,197 (171 weeks
× 7 days, 1,197 instances of 10am, for example). Cluster 1
can be seen to be much larger. For Cluster 3, its higher levels
of NOx and PM2.5 occur more frequently at around 8am

and 6pm, typically rush-hour in a city. From this, we can
infer that cluster 1 represents the ’usual’ levels of air quality,
cluster 3 represents the rush-hour pattern and the remaining
number of instances are distributed in clusters that represent
anomalies or change. For example, cluster 5 was discovered
in week 7 and represented a pattern of high particulate
matter (≈ 26). This cluster was present until week 126 when
it disappeared and was not replaced suggesting a change in
the stream.

6 SCALABILTY AND ROBUSTNESS TO NOISE

6.1 Scalability
To evaluate the algorithm’s scalability, we generated syn-
thetic data sets with varying dimensionality and number
of clusters. As in [6], [13], the instances in each synthetic
stream are drawn from a series of Gaussian distributions
(each representing a cluster). The mean and variance of
each distribution are shifted every 5,000 points during the
generation process. We follow the notation used in [6] and
[13] to describe the streams: ‘B’ indicates the number of
data points (in hundreds of thousands), ‘C’ and ‘D’ indicate
the number of clusters present and the dimensionality of
each point, respectively. For example, B2C10D20 indicates
the data set contains 200,000 data points of 20 dimensions,
belonging to 10 different clusters.

The performance of the algorithm is measured in the
execution time using a λ value of 10,000 and β = 5. The
scalability of the algorithm, in terms of time, is evaluated
against an increasing number of clusters and also increasing
number of dimensions. In Fig. 11 (left), it can be seen that as
the dimensionality increases, the execution time increases
linearly, irrespective of the number of clusters, suggesting
that the dimensionality is a more important factor than
the number of clusters. This is confirmed when we fix the
dimensionality and increase the number of natural clusters
from 5 to 30, see Fig. 11 (centre). The stream takes roughly
the same processing time as the number of cluster increases,
with higher dimensional streams taking longer than lower
dimensional ones. As the amount of clusters increases, the
execution time increases only marginally.

As in [13] and [6], we evaluate the space complexity
of MDSC in terms of micro-clusters present at different λ
intervals. We use three previously described data streams
to evaluate this; 2CSurr, 4CR and the Network Intrusion
dataset. Fig. 11 (right) shows that as λ increases from 1,000
to 5,000, the number of micro-clusters generated increases,

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 11

10 20 30 400

2

4

6

Dimensions

E
x
e
c
u
ti
o
n
T
im

e

B2C20

B2C10

B2C5

1

5 10 15 20 25 300

1

2

3

4

5

Clusters

E
x
e
c
u
ti
o
n
T
im

e

B2C20

B2C10

B2C5

1

0.51 2 50
20
40
60
80
100
120

λ (thousands)

M
ic
ro
-C

lu
st
er
s

2CSurr

4CR

Network

1

Fig. 11: Scaling to the number of clusters, dimensions and memory requirements.

TABLE 5: Noise sensitivity on the Network stream

Noise Purity F-Measure R. Index Average#Nests

0% 0.99 0.91 0.88 2.14
3% 0.99 0.91 0.88 2.16
5% 0.99 0.91 0.87 2.2
8% 0.99 0.91 0.88 2.11
10% 0.99 0.91 0.88 2.05

TABLE 6: Noise sensitivity on 4CR

Noise Purity F-Measure R. Index Average#Nests

0% 0.99 0.94 0.96 4.12
3% 0.99 0.94 0.96 4.08
5% 0.99 0.94 0.95 4.09
8% 0.99 0.94 0.95 4.07
10% 0.99 0.93 0.95 4.04

at most, linearly on the Network Intrusion Dataset. On the
4CR and 2CSurr streams, the change is comparatively small
as λ increases.

6.2 Noise

To evaluate how robust the algorithm is to noise, we intro-
duce random samples to two datasets; Network Intrusion
(first 100,000 samples) and 4CR. To introduce 1% noise, we
replace 1% of the original data (in d dimensions) with arti-
ficial samples composed of d-dimensional random numbers
(within the same range of the original data), to evaluate with
5% noise, we replace 5% of the original data and evaluate
with a λ value of 1,000 and a β of 5. We evaluate streams
with varying levels of noise across the three external metrics
and also report the average number of live clusters in the
stream. The results on the two datasets are displayed in
Tables 5 and 6, respectively.

It can be seen that the added noise has hardly any effect
on the accuracy of the algorithm. Noise points are passed to
the buffer, where they remain while they age and disappear,
never joining the live clusters.

7 SENSITIVITY ANALYSIS

To examine the sensitivity of the algorithm to its parameters
we evaluate across four streams: Forest, Network Intrusion,
2CSurr and 4CR. We select these streams to cover a real data
streams (Network, Forest), real concept drift (4CR) and multi-
density clusters (2CSurr). MDSC requires two user-defined

parameters λ and β: λ determines the rate at which micro-
clusters age and the frequency at the which the buffer is
examined (e.g. if λ = 1 the buffer is checked after every
incoming point) while β determines the age at which micro-
clusters become irrelevant. These parameters determine the
granularity at which the stream is analysed and should be
judged according to the velocity of the stream, e.g., a stream
with one point a second versus a stream with 1,000 points a
second.

The sensitivity of these parameters to cluster quality is
presented in Fig. 12. It can be seen that over a range of values
the quantative performance is unaffected. The qualitative
values of the clusters will change though. For example, at a
higher λ, long-term patterns will be discovered but smaller
changes will be missed. Conversely, a smaller λ is more
sensitive to change but will miss broader patterns. Along
with these two user-defined parameters, there are three
program values. minClusterSize determines the minimum
size a cluster discovered in the buffer must be in order
to be added to the live clusters. This is proportionate to
the size of λ. For a smaller λ, the buffer is checked more
frequently so smaller clusters should be allowed. When the
buffer is checked infrequently, there will be potentially more
instances in the buffer, so clusters are required to be larger.
Fig. 12 (left) shows this parameter to be robust to values
above 0 across each data stream tested. For all experiments,
we use a value of 1% of λ with a minimum value of 2.

The parameter init-ε determines the initial value for ε
when forming nests in the buffer and is used as the initial
‘starting point’ for the adaptive ε for each cluster. From
Fig. 13 (right), it can be seen that, for values less than
0.01, the performance is stable across each stream. For all
experiments in this work, we use a value of 0.001. The final
program parameter is the α threshold value, which defines
a border nest in a cluster. This parameter is relative to the
number of points clustered in the seed nest of a cluster. A
larger seed will have a higher value for α. From Fig. 13
(left), we can see that the performance is stable across all
streams with a value greater than 0 and less than 0.7. For all
experiments discussed, we use a value of 0.1.

8 TIME AND MEMORY REQUIREMENTS

MDSC was shown to be scalable in terms of space and
time in the previous section (Sec. 7). Here, we discuss the
algorithm’s complexity and report empirical results on two
real data-streams; Network Intrusion and Forest Cover. We

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 12

0.1 0.25 0.5 0.75

0.5

0.6

0.7

0.8

0.9

1

minSize

S
co

re

1CSurr 4CR
Network Forest

1

0.1 0.5 1 1.5 2.0

0.5

0.6

0.7

0.8

0.9

1

λ

S
co

re

1CSurr 4CR
Network Forest

1

0.1 0.5 1 1.5 2.0

0.5

0.6

0.7

0.8

0.9

1

λ

S
co

re

1CSurr 4CR
Network Forest

1

Fig. 12: Sensitivity of minClusterSize, λ and β.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

α

S
c
o
r
e

1CSurr 4CR Network Forest

1

.00005 .0001 .0005 .001 .005 .01 .05 0.1

0.6

0.8

1

init-ε

S
c
o
r
e

1CSurr 4CR Network Forest

1

Fig. 13: Sensitivity of α and init−ε program variables.

5 10 15 20 250

0.5

1

1.5

Time

S
e
c
c
o
n
d
s λ = 1k, 2k, 5k

1

5 10 15 20 250

1

2

Time

S
e
c
c
o
n
d
s λ = 1k, 2k, 5k

1

Fig. 14: Time requirements on Network Intrusion (left) and Forest-Cover (right) using different λ values.

refer to the number of clustered micro-clusters as N and
the number in the outlier buffer as M . Typically, M is much
smaller than N .

The time complexity of the algorithm depends on the
value of λ as this determines how frequently we examine
the buffer for new clusters. The complexity of joining a
live cluster is O(N); a newly arriving point tests if it is
density reachable with every micro-cluster in the discov-
ered clusters. Periodically, when we examine the buffer, the
processing time will increase. This increase is a function of
change and noise. If there is no change or noise, then the
buffer is empty and no further processing is required. If,
however, the buffer is not empty, then the processing time
increases to, in the worst case, O(M2) (The nest-building
stage of the buffer check requires O(M2) and the clustering
phase requires O(logM)). The time complexity of MDSC
is O(N) and at every λ intervals it requires an additional
O(M2). In total, the algorithm requires O(N + M2

λ).
Space is measured in terms of the number of micro-

clusters that have been clustered plus the number in the
outlier buffer: O(N +M).

We empirically measure the algorithm’s performance
using different λ values. Large values mean micro-clusters
will age more slowly, the buffer checked less regularly and
therefore a greater a number of micro-clusters. We report

the time requirement in seconds (Fig. 14) and the memory
requirements in MB (Fig. 15). We use a commercial profiler
[21] to measure the memory requirements as the stream
progresses. For clarity of display, we take the first 250,000
points in each stream.

For λ = 1, 000 we plot the average of 10 windows
(25 points), for a value of 2, 000 we plot the average of
5 windows (25 points) and for λ = 5, 000 we average 2
windows.

On the Network Intrusion Stream, the algorithm can
process 1,000 points in, on average, 0.11 seconds, requiring,
on average, 22MB. This rises with large values of λ. Similar
results are seen on the Forest Cover stream. It requires 0.14
seconds to process 1,000 points requiring 41MB, on average.

MDSC’s time and memory requirements are compared
with the four peer algorithms on the Network-Intrusion
stream and the Forest-Cover stream. The streams are evalu-
ated in windows of 1,000 and the average of each window
(and the deviation) is reported in Table 7. ACSC requires
the least time and memory with MDSC second showing
comparable performance in second.

9 DISCUSSION

MDSC extends some of the swarm intelligence inspired
aspects of density clustering introduced in ACSC, e.g.,

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 13

5 10 15 20 250

20

40

60

80

Time

M
B

λ = 1k, 2k, 5k

1

5 10 15 20 250

100

200

Time

M
B

λ = 1k, 2k, 5k

1

Fig. 15: Memory requirements on Network Intrusion (left) and Forest-Cover (right) using different λ values.

TABLE 7: Comparative time (secs.) and memory (MB) re-
quirements. Windows of size 1,000

Network Forest

Time (σ) Memory (σ) Time (σ) Memory (σ)

MDSC 0.11 (0.02) 22.0 (0.30) 0.14 (0.02) 31.1 (0.10)
ACSC 0.04 (0.02) 21.5 (0.07) 0.08 (0.02) 21.5 (0.09)
CEDAS 0.13 (0.03) 22.8 (0.10) 0.15 (0.02) 49.2 (0.30)
MuDi 0.19 (0.03) 27.1 (0.09) 0.49 (0.02) 56.4 (0.10)
DenStream 0.19 (0.07) 26.4 (0.11) 0.56 (0.09) 58.8 (0.30)

pheromone trails and the idea of micro-clusters forming
‘nests’. MDSC improves ACSC in two ways: clusters are
online and the ε parameter is adaptive and local to each
cluster. The adaptive ε has two benefits: 1) it removes the
need to tune a sensitive, data-dependent parameter, and 2)
it allows the discovery of multi-density clusters. This can be
seen in the comparative performance; on the streams which
contain multi-densities (COIL, Key Stroke, 2CSurr and 20D),
the proposed algorithm finds a better clustering solution.
When the stream contains a single density (Network, Forest,
4CR), the performance is comparable. The reason for this is
the adaptive ε and the way it is identified. Clusters are dis-
covered in order of density, i.e., more compact clusters are
identified first. This allows the discovery of clusters (with
a smaller ε) embedded in larger sparser clusters (with a
higher ε). Discovered clusters are uniquely labelled (cluster
1, cluster 2, . . .) and can therefore be tracked over time. This
was shown in the 2D synthetic data sets; the underlying drift
in the stream was discovered and tracked. This was further
illustrated in the case study on the Leicester air-quality
dataset. Discovered clusters were tracked despite seasonal
changes in the monitored atmospheric gases. Underlying
patterns were discovered along with their deviations, and
cyclic patterns were revealed. These live, labelled clusters
allow us to infer a broader picture of what is happening in
the stream and we can do this at different granularities.

We examined the stream at a weekly granularity. The
granularity is controlled by two parameters: λ, which deter-
mines the rate at which data ages, and β, which determines
how long data is relevant. Changing these two parameters
dictate the granularity at which the stream is analysed.
Analysing a stream at different granularities in parallel
could catch brief anomalies while revealing the broader
behaviour of the stream.

Along with λ and β, MDSC uses three program vari-

ables. These were shown to be stable on different data
and not sensitive to small changes. These static, global
values facilitate adaptive, local parameters for each cluster.
minPoints determines the minimum size a cluster must be.
This value is proportional to λ. Clusters each have a local
value for ε and this is discovered using init-ε as a starting
point. Similarly, each cluster has a local value threshold
which determines the border micro-clusters in that cluster.
A program-value α is a constant in the formulation of this
parameter threshold. The same value for each of these
program variables are used on each data stream evaluated
in the experimental section; minPoints = max(λ ∗ .01, 2),
init-ε = 0.001, and α = 0.1. The use of these program-values
to discover adaptive local values removes the need to tune
sensitive user-defined parameters in a stream.

Sensitive user-defined parameters in a non-stationary
data stream are potentially problematic and not much con-
sideration is given to their practicality. Often, parameters are
reported but not the method used to tune these parameters.
Following traditional machine learning methods, we could
take a subset of the stream and use this test-set to tune the
parameters. However, in a dynamic environment, sensitive
parameters are likely to change over time, especially (as
is realistic) if the stream contains concept evolution and
multi-density clusters. Furthermore, it may be easy to tune
these parameters on a test stream when the ground truth is
known, but in practical terms this is unrealistic. If a stream
clustering algorithm requires sensitive user parameters,
methods to tune these parameters should be outlined and
ideally, these methods should facilitate periodic parameter
updates.

10 CONCLUSIONS

In this paper, we proposed a Multi Density Stream Clus-
tering (MDSC) algorithm for on-line clustering of dynamic
data streams. MDSC attempts to address two problems -
the multi-density problem in density clustering whereby
clusters can only be discovered using a single concept of
density (ε) and the problem of discovering and tracking
change in a dynamic stream. The algorithm addresses the
former by discovering clusters with an adaptive ε local to
each cluster. To address the second problem of tracking
change, we maintain discovered clusters online. We label
each and observe its behaviour over time. Live clusters are
composed of smaller micro-clusters which are subject to an
ageing function. A newly arriving point is, if appropriate,
assigned to an existing cluster; otherwise, it is assigned to
an existing outlier micro-cluster, or joins the buffer as a

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 14

new micro-cluster. New clusters are periodically discovered
among the outliers. Micro-clusters which have not absorbed
new data age and are deleted if they are considered no
longer relevant. This allows clusters to adapt to the under-
lying drift and because of their unique label we can track
the pattern of this drift.

MDSC was evaluated across a number of benchmark
streams exhibiting concept evolution, real and virtual con-
cept drift, and multi-density clusters It was shown to
perform favourably to four peer algorithms. It was also
qualitatively evaluated on a real-life air-quality monitoring
stream. Results show that it can identify and track underly-
ing patterns despite seasonal changes and cyclic behaviour.
MDSC could discover and track patterns such as rush-
hour and a cyclic increase in pollutants during winter. A
correlative relationship between certain pollutants and an
inverse relationship between others were observed. MDSC
requires two user-defined parameters which depend on the
velocity of the stream and the granularity at which the user
wishes to analyse the stream. Along with these two user-
defined parameters, three program-variables which do not
require any manual tuning are used. These static, global
values facilitate adaptive, local parameters for each cluster.

Experimental results suggest that MDSC is a scalable, on-
line clustering algorithm and is robust to change and noise.
It can discover qualitatively useful patterns underlying the
data at different levels of granularity.

Future directions and extensions to MDSC could include
exploring the potential of using the clusters as an ensemble
of one-class classifiers for dynamic classification. Similarly,
the clusters could potentially be used to train a set of
regression models that make short term predictions for the
discovered patterns.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” Proc. 29th Int. Conf. Very Large
Data Bases, vol. 29, pp. 81–92, 2003.

[2] E. Amiga, J. Gonzalo, J. Artiles, J. and F. Vedejo, “A comparison
of extrinsic clustering evaluation metrics based on formal con-
straints,” Information Retrieval, vol. 12, no. 4, pp. 461–486, 2009.

[3] A. Amini, H. Saboohi, T. Herawan, and T.Y Wah. “MuDi-Stream:
A multi density clustering algorithm for evolving data stream,”
Journal of Network and Computer Applications, vol. 59, pp. 370–
385, 2016.

[4] A. Amini, T.Y. Wah and H. Saboohi. “On density-based data
streams clustering algorithms: A survey,” Journal of Computer
Science and Technology, vol. 29, no. 1, pp. 116–141, 2014.

[5] A. Bifet, G. Holmes, R. Kirby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11,
pp. 1601–1604, 2010.

[6] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” SDM, vol. 6, pp. 328–
339, 2006.

[7] C. Carmelo, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti.
“Enhancing density-based clustering: Parameter reduction and
outlier detection,” Information Systems, vol. 38, no. 3, pp. 317–
330, 2013.

[8] M. T. Chao, “Data stream classification guided by clustering on
nonstationary environments and extreme verification latency,”
Proc. 2015 SIAM Int. Conf. Data Mining, pp. 873–881, 2015.

[9] M. Dorigo, M. Birattari, and T. Stizle,“Ant colony optimization,”
IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, 2006.

[10] S. Ding, J. Zhang, H. Jia, and J. Qian. “An adaptive density data
stream clustering algorithm.” Cognitive Computation, vol. 8, no. 1,
pp. 30–38, 2016.

[11] M. Ester, H. P. Kriegel, J. Sander, and X. Xu,“A density-based
algorithm for discovering clusters in large spatial databases with
noise,” KDD, vol. 96, pp. 226–231, 1996.

[12] G. Esfandani and H. Abolhassani. ”MSDBSCAN: multi-density
scale-independent clustering algorithm based on DBSCAN,” Proc.
Int. Conf. on Advanced Data Mining and Applications, 2010.

[13] C. Fahy, S. Yang, and M. Gongora. “Ant colony stream clustering:
A fast density clustering algorithm for dynamic data streams,”
IEEE Trans on Cybern, vol. 49, no. 6, pp. 2215–2228, June 2019.

[14] C. Fahy, S. Yang, and M. Gongora. “Finding multi-density clusters
in non-stationary data streams using an ant colony with adaptive
parameters.” In Proc. 2017 IEEE Congress on Evolutionary Com-
putation, pp. 673–680, 2017.

[15] A. Forestiero, C. Pizzuti, and G. Spezzano, “A single pass al-
gorithm for clustering evolving data streams based on swarm
intelligence,” Data Mining and Knowledge Discovery, vol. 26, no.
1, pp. 1–26, Nov. 2011.

[16] B. J. Frey and D. Dueck, “Clustering by passing messages between
data points,” Science 315.5814, pp. 972-976, 2007.

[17] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means
clustering algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100–
108, 1979.

[18] R. Hyde, P. Angelov, and A. R. MacKenzie, “Fully online clus-
tering of evolving data streams into arbitrarily shaped clusters,”
Information Sciences, vol. 382-383, pp. 96–114, 2017.

[19] W. B. Innes, “Effect of nitrogen oxide emissions on ozone levels
in metropolitan regions,” Environmental Science and Technology,
vol. 15, no. 8, pp. 904–912, 1981.

[20] C. Isaksson, M.H Dunham, and M. Hahsler. “SOStream: Self or-
ganizing density-based clustering over data stream??. In Interna-
tional Workshop on Machine Learning and Data Mining in Pattern
Recognition (pp. 264-278). Springer, Berlin, Heidelberg. July 2012.

[21] J-Profiler: Java Profiler. https://www.ej-technologies.com/
products/jprofiler/overview.html, 21 11 2017.

[22] N. Jardine and C. J. van Rijsbergen, “The use of hierarchic cluster-
ing in information retrieval,” Information Storage and Retrieval,
vol. 7, no. 5, pp. 217–240, Dec. 1971.

[23] D. Karaboga, and B. Basturk.“ A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm”. Journal of Global Optimization, vol. 39, no. 3, pp. 459–
471, 2007

[24] P. Kranen, I. Assent, C. Baldauf, and T. Seidl, “The ClusTree:
indexing micro-clusters for anytime stream mining.” Knowledge
and Information Systems, vol. 29, no. 2, pp. 249–272, 2011.

[25] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Se-
mantics and evaluation techniques for window aggregates in data
streams,” In: Proc. 2005 ACM SIGMOD Int. Conf. on Management
of Data, pp. 311–322, 2005.

[26] X. Li, Y. Ye, M. J. Li,and M. K. Ng, “On cluster tree for nested and
multi-density data clustering,” Pattern Recognition, vol. 43, no. 9,
pp. 3130–3143, 2010.

[27] B. Liu, “A Fast Density-Based Clustering Algorithm For Large
Databases,” Proc. 5th Int. Conf. Machine Learning and Cybern.,
2006.

[28] W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” J. of the American Statistical Assoc., vol. 66, no. 336,
pp. 846, Dec. 1971.

[29] C. W. Reynolds, “Flocks, herds and schools: A distributed behav-
ioral model,” ACM SIGGRAPH Computer Graphics, vol. 21, no.
4, pp. 25–34, Aug. 1987.

[30] P. J. Rousseeuw and L. Kaufman. “Finding Groups in Data,” Wiley
Online Library, 1990.

[31] P. N. Suganthan,” Particle swarm optimiser with neighbourhood
operator”. In: Proc. 1999 IEEE Congress on Evol. Comput., vol. 3,
pp. 1958–1962, 1999.

[32] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining. Boston, MA: Pearson/Addison-Wesley, 2005, ch. 9, pp.
147–160.

[33] D. M. Tax and R.P Duin, 2004. “Support vector data description,”
Machine learning, vol. 54, no. 1, pp. 45-66. 2004.

[34] L. Tu and Y. Chen, “Stream data clustering based on grid density
and attraction,” ACM Trans. Knowledge Discovery from Data, vol.
3, no. 3, pp. 1–27, Jul. 2009.

[35] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-
based clustering of data streams at multiple resolutions,” ACM
Trans. Knowledge Discovery from Data, vol. 3, no. 3, pp. 1–28, Jul.
2009.

IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 2019 15

[36] C. D. Wang, J. H. Lai, D. Huang, and W. S. Zheng, “SVStream: A
support vector based algorithm for clustering data streams,” IEEE
Trans on Knowledge and Data Engineering, 2011.

[37] F. Wilcoxon and R. A. Wilcox. “Some rapid approximate statistical
procedures”. Lederle Laboratories, 1964.

[38] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: A new data
clustering algorithm and its applications,” Data Mining and
Knowledge Discovery, vol. 1, no. 2, pp. 141–182, 1997.

[39] Z. Xiong, R. Chen, Y. Zhang, and X. Zhang. “Multi-density dbscan
algorithm based on density levels partitioning.” Journal of Infor-
mation and Computational Science, vol. 9, no. 10, pp. 2739–2749,
2012.

[40] X. S. Yang, “Firefly algorithm, stochastic test functions and design
optimisation,” arXiv preprint arXiv:1003.1409. 2010.

Conor Fahy received a B.Sc. degree in Com-
puter Science from Dublin City University, Ire-
land in 2004. He received an M.Sc. degree in
Intelligent Systems from De Montfort University,
Leicester, UK in 2016, where he is currently pur-
suing a Ph.D. degree in the Centre for Computa-
tional Intelligence. His research interests include
swarm intelligence and ensemble methods for
unsupervised and semi-supervised learning in
dynamic environments.

Shengxiang Yang (M’00–SM’14) received the
B.Sc. and M.Sc. degrees in automatic control
and the Ph.D. degree in systems engineering
from Northeastern University, Shenyang, China
in 1993, 1996, and 1999, respectively.

He is currently a Professor in Computational
Intelligence and Director of the Centre for Com-
putational Intelligence, School of Computer Sci-
ence and Informatics, De Montfort University,
Leicester, U.K. He has over 270 publications.
His current research interests include evolution-

ary computation, swarm intelligence, artificial neural networks, data
mining and data stream analysis, and relevant real-world applications.
He serves as an Associate Editor/Editorial Board Member of eight
international journals, such as the IEEE Transactions on Evolutionary
Copmutation, IEEE Transactions on Cybernetics, Information Sciences,
Enterprise Information Systems, and Soft Computing.

