Security of computers and the networks that connect them is increasingly
becoming of great significance. Computer security is defined as the protection
of computing systems against threats to confidentiality, integrity, and
availability. There are two types of intruders: the external intruders who are
unauthorized users of the machines they attack, and internal intruders, who
have permission to access the system with some restrictions. Due to the fact
that it is more and more improbable to a system administrator to recognize and
manually intervene to stop an attack, there is an increasing recognition that
ID systems should have a lot to earn on following its basic principles on the
behavior of complex natural systems, namely in what refers to
self-organization, allowing for a real distributed and collective perception of
this phenomena. With that aim in mind, the present work presents a
self-organized ant colony based intrusion detection system (ANTIDS) to detect
intrusions in a network infrastructure. The performance is compared among
conventional soft computing paradigms like Decision Trees, Support Vector
Machines and Linear Genetic Programming to model fast, online and efficient
intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special
track at WSTST 2005, Muroran, JAPA