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Abstract: This article presents OpStream, a novel approach to cluster dynamic data streams. The1

proposed system displays desirable features, such as a low number of parameters, good scalability2

capabilities to both high-dimensional data and numbers of clusters in the data set, and it is based on3

a hybrid structure using deterministic clustering methods and stochastic optimisation approaches to4

optimally centre the clusters. Similarly to other state-of-the-art methods available in the literature,5

it uses “microclusters” and other established techniques, such as density-based clustering. Unlike6

other methods, it makes use of metaheuristic optimisation to maximise performances during the7

initialisation phase, which precedes the classic online phase. Experimental results show that8

OpStream outperforms the state-of-the-art in several cases and it is always competitive against9

other comparison algorithms regardless of the chosen optimisation method. Three variants of10

OpStream, each coming with a different optimisation algorithm, are presented in this study. A11

thorough sensitive analysis is performed by using the best variant to point out OpStream robustness12

to noise and resiliency to parameters changes.13

Keywords: dynamic stream clustering; online clustering; metaheuristics; optimisation;14

population-based algorithms; density-based clustering; k-means centroid; concept-drift;15

concept-evolution16

1. Introduction17

Clustering is the process of grouping homogeneous objects based on the correlation among18

similar attributes. This is useful in several common applications that require the discovery of hidden19

patterns among the collective data to assist decision making, e.g. bank transaction fraud detection [1],20

market trend prediction [2,3], and network intrusion detection system [4]. Most traditional clustering21

algorithms developed relies on multiple iterations of evaluation on a fixed set of data to generate the22

clusters. However, in practical applications, these detection systems are operating daily, whereby23

millions of input data points are continuously streamed indefinitely, hence imposing speed and24

memory constraints. In such dynamic data stream environments, keeping track of every historical data25

would be highly memory expensive and, even if possible, would not solve the problem of analysing26

big data within the real-time requirements. Hence, a method of analysing and storing the essential27

information of the historical data in a single pass is mandatory for clustering data streams.28

In addition, dynamic data clustering algorithm needs to address two special characteristics that29

often occurs in data streams which is known as concept-drift and concept-evolution [5]. Concept drift30

refers to the change of underlying concepts in the stream as time progress, i.e. the change in the31
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relationship between the attributes of the object within the individual clusters. For example, customer32

behaviour in purchasing trending products always changes in between seasonal sales. Meanwhile,33

concept evolution occurs when a new class definition has evolved in the data streams, i.e. the number34

of clusters has changed due to the creation of new clusters or deprecation of old clusters. This35

phenomenon often occurs in the detection system whereby an anomaly has emerged in the data traffic.36

An ideal data stream clustering algorithm should address these two main considerations to effectively37

detect and adapt to changes in the dynamic data environment.38

Based on recent literature, metaheuristics for black-box optimisation have been greatly adopted39

in traditional static data clustering [6]. These algorithms have a general-purpose application domain40

and often displays self-adaptive capabilities, thus being able to tackle the problem at hand, regardless41

of its nature and formulation, and return near-optimal solutions. For clustering purposes, the so-called42

“population-based” metaheuristic algorithms have been discovered to be able to achieve better global43

optimisation results than their “single-solution” counterparts [7]. Amongst the most commonly used44

optimisation paradigms of this kind, it is worth mentioning the established Differential Evolution (DE)45

framework [8–10], as well as more recent nature-inspired algorithms from the Swarm Intelligence (SI)46

field, such as the Whale Optimisation Algorithm (WOA) [11] and the Bat-inspired algorithm in [12],47

here referred to as BAT. Although the literature is replete with examples of data clustering strategies48

based on DE, WOA and BAT for the static domain, as e.g. those presented in [13–16], a little is done49

for the dynamic environment due to the difficulties in handling data streams. The current state of50

dynamic clustering is therefore unsatisfactory as it mainly relies on algorithms based on techniques,51

such as density microclustering and density grid-based clustering, which requires the tuning of several52

parameters to work effectively [17].53

This paper presents a methodology for integrating metaheuristic optimisation into data stream54

clustering, thus maximising the performance of the classification process. The proposed model does not55

require specifically tailored optimisation algorithms to function, but it is a rather general framework to56

use when highly dynamics streams of data have to be clustered. Unlike similar methods, we do not57

optimise parameters of a clustering algorithm but use metaheuristic optimisation in its initialisation58

phase, in which the first clusters are created, by finding the optimal position of their centroids. This is59

a key step as the grouped points are subsequently processed with the method in [18] to form compact,60

but informative, microclusters. Hence, by creating the optimal initial environment for the clustering61

method, we make sure that the dynamic nature of the problem will not deteriorate its performances. It62

must be noted that microclusters are lighter representations of the original scenario which are stored63

to preserve the “memory” of the past classifications. These play a major role since aid subsequent64

clustering processes when new data streams are received. Thus, by a non-optimal microclusters store65

in memory can have catastrophic consequences in terms of classification results. In this light, our66

original use of the metaheuristic algorithm finds its purpose and results confirm the validity of our67

idea. thee proposed clustering scheme efficiently track changes and spot patterns accordingly.68

The remainder of this paper has the following structure:69

• section 2 discusses the recent literature and briefly explains the logic behind the leading data70

stream clustering algorithms;71

• section 3 establishes the motivations and objectives of this research and presents the used72

Metaheuristic Optimisation methods, the employed performance metrics, and the considered73

data sets for producing numerical results;74

• section 4 gives a detailed description of each step involved in the proposed clustering system,75

clarifies its working mechanism and show methodologies for its implementation;76

• section 5 describes the performance metrics used to evaluate the system and provides77

experimental details to reproduce the presented results;78

• section 6 presents and comments on the produced results, including comparison among different79

variants of the proposed system, over several evaluation metrics;80

• section 7 outlines a thorough analysis of the impact of the parameter setting for the optimisation81

algorithm on the overall performance of the clustering system;82
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• section 8 summarises the conclusions of this piece of research.83

2. Background84

There are two fundamentals aspects to take into consideration in data stream clustering, namely85

concept-drift and concept-evolution. The first aspect refers to the phenomenon when the data in the86

stream undergoes changes in the statistic properties of the clusters with respect to the time [19,20]87

while the second to the event when there is an unseen novel cluster appearing in the stream [5,21].88

Time window models are deployed to handle concept-drift in data streams. These are usually89

embedded into clustering algorithms to control the quantity of historical information used in analysing90

dynamic patterns. Currently, there are four predominant window models in the literature [22]:91

• the “damped time window” model, where historical data weights are dynamically adjusted by92

fixing a rate of decay according to the number of observations assigned to it [23];93

• the “sliding time window” model, where only the most recent past data observations are94

considered with a simple First-In-First-Out (FIFO) mechanism as in [24];95

• the “landmark time window” model, where the data stream is analysed in batches by96

accumulating data in a fixed-width buffer before being processed;97

• the “tilted time window” model, where granularity level of weights gradually decreases as data98

point gets older.99

As for concept-evolution, most of the existing data stream clustering algorithms are designed100

following a two-phases approach, i.e. consisting of an online clustering process followed by an offline101

one, which was first proposed in [25]. In this work, the concept of microclusters was also defined102

to design the so-called “CluStream” algorithm. This method forms microclusters having statistical103

features representing the data stream online. Similar microclusters are then merged into macro-clusters,104

keeping only information related to the centre of the densest region. This is performed offline, upon105

user request, as it comes with information losses since merged clusters can no longer be split again to106

obtain the original ones.107

In terms of online microclustersing, most algorithms in the literature are distance-based [22,26,27],108

whereby new observations are either merged to existing microclusters or form new microclusters109

based on a distance threshold. The earliest form of distance-based clustering strategy is the process110

of extracting information about a cluster into the form of a Clustering Feature (CF) vector. Each CF111

usually consists of three main components: 1) a linear combination of the data points referred to as112

Linear Sum vector
−→
LS; 2) a vector

−→
SS whose components are the Squared Sums of the corresponding113

data points components; 3) the number N of points in a cluster.114

As an instance, the popular CluStream algorithm in [25] makes use of CF and the tilted time115

window model. During the initialisation phase, data points are accumulated to a certain amount before116

being converted into some microclusters. On the arrival of new streams, new data are merged with the117

closest microclusters if their distance from the centre of the data point to the centre of the microclusters118

is within a given radius (i.e. ε-neighbourhood method). If there is no suitable microclusters within this119

range, a new microclusters is formed. When requested, the CluStream uses the k-means algorithm120

[28] to generate macro-clusters from microclusters in its offline phase. It also implements an ageing121

mechanism based on timestamps to remove outdated clusters from its online components.122

Another state-of-the-art algorithm, i.e. DenStream, is proposed in [18] as an extension of123

CluStream using the damped time window and a novel clustering strategy named “time-faded124

CF”. DenStream separates the microclusters into two categories: the potential core microclusters125

(referred to as p-microclusters) and the outlier microclusters (referred to as o-microclusters). Each entry126

of the CF is subject to a decay function that gradually reduces the weight of each microclusters at127

a regular evaluation interval period. When the weight falls below a threshold value, the affected128

p-microclusters are degraded to the o-microclusters, and they are removed from the o-microclusters if129

the weights deteriorates further. On the other hand, o-microclusters that have their weights improved130
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are promoted to p-microclusters. This concept allows new and old clusters to gradually form online,131

so addressing the concept evolution issue. In the offline phase, only the p-microclusters are used for132

generating the final clusters. Similar p-microclusters are merged employing a density-based approach133

based on the ε-neighbourhood method. Unlike other commonly used methods, in this case clusters134

can assume an arbitrary shape and no a-priori information is needed to fox the number of clusters.135

An alternative approach is given in [29], where the proposed STREAM algorithm does not136

store CF vectors but directly compute centroids on-the-flight. This is done by solving the “k-Median137

clustering” problem to identify the centroids of K clusters. The problem is structured in a form whereby138

the distance from data points to its closest cluster has associated costs. Using this framework, the139

clustering task is defined as a minimisation problem to find the number and position of centroids140

that yield the lowest costs. To process indefinite length of streaming data, landmark time window is141

used to divide the streams into n batches of data, and the K-median problem solving is performed on142

each chunk. Although the solution is plausible, the algorithm is evaluated to be time-consuming and143

memory expensive in processing streaming data.144

The OLINDDA method proposed in [30] extends the previously described centroid approach145

by integrating the ε-neighbourhood concept. This is used to detect drifting and new clusters in the146

data stream, with the assumption that drift changes occur within the existing cluster region whilst147

new clusters form outside the existing cluster region. The downside of the centroid approach is148

that the number of K centroids needs to be known a-priori, which is problematic in a dynamic data149

environment.150

There is one shortcoming for the two-phases approach, i.e. the ability to track changes in the151

behaviour of the clusters is linearly proportional to the frequency of requests for the offline component152

[31]. In other words, the higher the sensitivity to changes, the higher the computational cost. To153

mitigate these issues, an alternative approach has been explored by researchers to merge these two154

phases into a single online phase. FlockStream [32] deploys data points into a virtual mapping of a155

two-dimensional grid, where each point is represented as an agent. Each agent navigates around the156

virtual space according to a model mimicking the behaviour of flocking birds, as done in the most157

popular SI algorithms, e.g. those in [33–35]. The agent behaviour is designed in a way such that similar158

(according to a given metric) birds will move in the same direction as its closest neighbours, forming159

different groups of the flock. These groups can be seen as clusters, thus eliminating the need for a160

subsequent offline phase.161

MDSC [36] is another single-phase method exploiting the SI paradigm inspired by the162

density-based approached introduced in DenStream. In this method, the Ant Colony Optimisation163

(ACO) algorithm [37] is used to optimally group similar microclusters during the online phase. In164

MDSC, a customised ε-neighbourhood value is assigned to each cluster to enable “multi-density”165

clusters to be discovered.166

Finally, it is worth mentioning the ISDI algorithm in [38], which is equipped with a windowing167

routine to analyse and stream data from multiple sources, a timing alignment method and a168

deduplication algorithm. This algorithm is designed to deal with data streams coming from different169

sources in the Internet of Things (IoT) systems and can transform multiple data streams, having170

different attributes, into cleaner data sets suitable for clustering. Thus, it represents a powerful tool171

allowing for the use of streams classifiers, as a.g. the one proposed in this study, in IoT environments.172

3. Motivations, Objectives and Methods173

Clustering data streams is still an open problem with room of improvement [39]. Increasing the174

classification efficiency in this dynamic environment has a great potential in several application fields,175

from intrusion detection [40] to abnormalities detection in patients physiological streams data [41]. In176

this light, the proposed methodology draws its inspiration from key features of the successful methods177

listed in section 2, with the final goal of improving upon the current state-of-the-art.178
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A hybrid algorithm is then designed by employing, along with standard methods as e.g. CF179

vectors and the landmark time windows model, modern heuristic optimisation algorithms. Unlike180

similar approaches available in the literature [37,42,43], the optimisation algorithm is here used during181

the online phase to create optimal conditions to the offline phase. This novel approach is described in182

details in section 4.183

To select the most appropriate optimisation paradigm, three widely used algorithms, i.e. WOA,184

BAT and DE, were selected from the literature and compared between them. We want to clarify that185

the choice of using three metaheuristic methods, rather than other exact or iterative techniques, was186

made to be able to deal with ch alleging characteristics of the optimisation problem at hand, e.g. the187

dimensional of the problem can vary according to the data set, the objective functions is highly non188

linear and not differentiable, which make them not applicable or time-inefficient.189

A brief introduction of the three selected algorithms is given below in section 3.1. Regardless of190

the specific population-based algorithm used for performing the optimisation step, each candidate191

solution must be encoded as an n-dimensional real-valued vector representing the K cluster centres for192

initialising the following density-based clustering method.193

Two state-of-the-art deterministic data stream clustering algorithms, namely DenStream and194

CluStream, are also included in the comparative analysis to further validate the effectiveness of the195

proposed framework.196

The evaluation methodology employed in this work consists in running classification experiments197

over the data sets in section 3.2 and measuring the obtained performances through the metrics defined198

in section 3.3.199

3.1. Metaheuristic Optimisation methods200

This section gives details on the implementation of the three optimisation methods used to test201

the proposed system.202

3.1.1. The Whale Optimization Algorithm203

The WOA algorithm is a swarm-based stochastic metaheuristic algorithm inspired by the hunting204

behaviour of humpback whales [11]. It is based on a mathematical model updated by iterating the205

three search mechanisms described below:206

• the “shrinking encircling prey” mechanism is exploitative and consists in moving candidate207

solutions (i.e. the whales) in a neighbourhood of a the current best solution in the swarm (i.e. the208

prey solution) by implementing the following equation:209

−→x (t + 1) = −→x best(t)−
−→
A ∗ −→D best with


−→
A = 2−→a ∗ −→r −−→a

−→
D best = 2−→r ∗ −−→xbest(t)−−→x (t)

(1)

where: 1) −→a is linearly decreased from 2 to 0 as iterations increase (to represent shrinking as210

explained in [7]); 2) −→r is a vector whose components are randomly sampled from [0, 1] (t is the211

iteration counter); 3) the “∗” notation indicates the pairwise products between two vectors.212

• the “spiral updating position” mechanism is also exploitative and mimics the swimming pattern
of humpback whales towards the prey in a helix-shaped form through equations (2) and 3:

−→x (t + 1) = ebl ∗ cos (2πl) ∗
∣∣∣−→d ∣∣∣+−→x best(t) (2)

with −→
d =

∣∣∣−→x best(t)−−→x (t)
∣∣∣ (3)
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where b is a constant value for defining the shape of logarithmic spiral; l is a random vector in213

[−1, 1]; the “|. . . |” symbol indicates the absolute value of each component of the vector;214

• the “search for prey” mechanism is exploratory and uses a randomly selected solution −→x rand
as “attractor” to move candidate solutions towards unexplored areas of the search space, and
possibly away from local optima, according to equations (4) to (5):

−→x (t + 1) = −→x rand(t)−
−→
A ∗ −→D + rand (4)

with −→
D rand =

∣∣∣2−→a ∗ −→r ∗ −−→xrand(t)−−→x
∣∣∣ . (5)

The reported equations implement a search mechanism which mimics movements made by215

whales. Mathematically, it is easier to understand that some of them refer to explorations moves across216

the search space, while others are exploitation move to refine solutions within their neighbourhood.217

To have more information on the metaphor inspiring this equations, their formulations and their218

role in driving the research within the algorithm framework, one can see the survey article in [6]. A219

derailed scheme describing the coordination logic of the three previously described search mechanism220

is reported in algorithm 1.221

Algorithm 1 WOA pseudocode

1: Generate initial whale positions xi, where i = 1, 2, 3, . . . , NP
2: Compute fitness of each whale solution and identify xbest
3: while t < max iterations do
4: for i = 1, 2, . . . , NP do
5: Update a, A, C, l, p
6: if p < 0.5 then
7: if |A| < 1 then
8: Update position of current whale xi using equation 1
9: else if |A| ≥ 1 then

10: xrand ← random whale agent
11: Update position of current whale xi with equation 4
12: end if
13: else if p ≥ 0.5 then
14: Update position of current whale xi with equation 2
15: end if
16: end for
17: Calculate new fitness values
18: Update Xbest
19: t = t + 1
20: end while
21: Return xbest

With reference to algorithm 1, the initial swarm is generated by randomly sampling solutions in222

the search; the best solution is kept up to date by replacing it only when an improvement on the fitness223

value occurs; the optimisation process lasts for a prefixed number of iterations, here indicated with224

max budget; he probability of using the shrinking encircling rather than the spiral updating mechanism225

is fixed at 0.5.226

3.1.2. The BAT Algorithm227

The BAT algorithm is a swarm-based searching algorithm inspired from the echolocation abilities228

of bats [12]. Bats use sound wave emission to generate echo that measures the distance of its prey229

based on the loudness and time difference of the echo and sound wave. To reproduce this system and230

exploit it for optimisation purposes, the following perturbation strategy must be implemented:231

fi = fmin + ( fmax − fmin) · β (6)
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vi(t + 1) = vi(t) + (xi(t)− xbest) · fi (7)

xi(t + 1) = xi(t) + vi(t) (8)

where xi is the position of the candiate solution in the search space (i.e. the bat), vi is its velocity,232

fi is referred to as “wawes frequency” factor and β is a random vector in [0, 1]n (where n is the233

dimentionality of the problem). fmin and fmax represent the lower and upper bounds of the frequency234

respectively. Typical values are within 0 and 100. When the bat is close to the prey (i.e. current best235

solution), it gradually reduces the loudness of its sound wave while increasing the pulse rate. The236

pseudocode depicted in algorithm 2 shows the the working mechanism of the BAT algorithm.237

Algorithm 2 BAT pseudocode

1: Generate initial bats Xi (i = 1, 2, 3, . . . , NP) and their velocity vectors vi
2: Compute fitness values and find xbest
3: Initialise pulse frequency fi at xi
4: Initialise pulse rate ri and loudness Ai
5: while t < max iterations do
6: for i = 1, 2, 3, . . . , NP do
7: xnew ←move xi to a new position with equations 6–8
8: end for
9: for i = 1, 2, 3, . . . , NP do

10: if rand() > ri then
11: xnew ← xbest added with a random
12: end if
13: if rand() < Ai and f (xnew) improved then
14: Xi ← xnew
15: Increase ri and decrease Ai
16: end if
17: end for
18: Update xbest
19: t = t + 1
20: end while
21: Return xbest

To have more detailed information on the equations used to perturb the solutions within the238

search space in the BAT algorithm, we suggest reading [44].239

3.1.3. The Differential Evolution240

The Differential Evolution (DE) algorithms are efficient metaheuristics for global optimisation241

based on a simple and solid framework, first introduced in [45], which only requires the tuning of242

three parameters, namely the scale factor F ∈ [0, 2], the crossover ratio CR ∈ [0, 1] and the population243

size NP. As shown in algorithm 3, despite using crossover and mutation operators, which are typical244

of evolutionary algorithms, it does not require any selection mechanism as solutions are perturbed245

one at a time by means of the 1-to-1 spawning mechanising from the SI field. Several DE variants can246

be obtained by using different combination of crossover and mutation operators [46]. The so-called247

“DE/best/1/bin” scheme is adopted in this study, which employs the best mutation strategy and the248

binomial crossover approach. Pseudocode and other details regarding these operators are available in249

[10].250
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Algorithm 3 DE pseudocode

1: Generate initial population xi with i = 1, 2, 3, . . . , NP
2: Compute fitness of each individual and identify xbest
3: while t < max iterations do
4: for i = 1, 2, 3, . . . , NP do
5: Xm ← mutation . “best/1” as explained in [10]
6: xoff ← crossover(Xi, Xm) . “bin” as explained in [10]
7: Store the best individual between xo f f and xi in the ith position of a new population
8: end for
9: end

10: Replace the current population with the newly generated population
11: Update xbest
12: end while
13: Return xbest

3.2. Datasets251

Four synthetic data sets were generated using the built-in stream data generator of the “Massive252

Online Analysis” (MOA) software [47]. Each synthetic data set represents different data streaming253

scenarios with varying dimensions, clusters numbers, drift speed and frequency of concept evolution.254

These data sets are:255

• the 5C5C data set, which contains low dimensional data with a low rate of data changes;256

• the 5C10C data set, which contains low dimensional data with a high rate of data changes;257

• the 10D5C data set, which is a 5C5C variant containing high dimensional data;258

• the 10D10C data set, which is a 5C10C variant containing high dimensional data.259

Moreover, the KDD-99 data set [48], containing real network intrusion information, was also260

consdered in this study. It must be highlighted that the original KDD-99 data set contains 494021 data261

entries representing network connections generated in military network simulations. However, only262

10% of the entries were randomly selected for this study. Each data entry contains 41 features and 1263

output column to distinguish the attack connection from the normal network connection. The attacks264

can be further classified into 22 attack types. Streams are obtained by reading each entry of the data set265

sequentially.266

Details on the five employed data sets are given in table 1.267

Table 1. Name and Description of Synthetic Datasets and Real Dataset

Name Dimension Clusters No. Samples Drift Speed Event Frequency Type
5D5C 5 3–5 100,000 1,000 10,000 Synthetic

5D10C 5 6–10 100,000 5,000 10,000 Synthetic
10D5C 10 3–5 100,000 1,000 10,000 Synthetic

10D10C 10 6–10 100,000 5,000 10,000 Synthetic
KDD–99 41 2–23 494,000 Not Known Not Known Real

3.3. Performance Metrics268

To perform an informative comparative analysis three metrics were cherry-picked from the data269

stream analysis literature [42,43]. These are referred to as F-Measure, Purity and Rand-Index [49].270

Mathematically, these metrics are expressed with the following equations:271

F-Measure =
1
k

k

∑
i=1

ScoreCi (9)

Purity =
1
k

k

∑
i=1

PrecisionCi (10)
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Rand-Index =
True Positive + True Negative

All Data Instances
(11)

where
PrecisionCi =

Visum
nCi

(12)

ScoreCi = 2 ·
PrecisionCi · RecallCi

PrecisionCi + RecallCi

(13)

RecallCi =
Visum
Vitotal

(14)

and272

• C is the solution returned by the clustering algorithm (i.e. the number of clusters k);273

• Ci is the the ith cluster (i = {1, 2, . . . , k});274

• Vi is the class label with the highest frequency in Ci;275

• Visum is the number of instances labelled with Vi in Ci;276

• Vitotal is the total number of Vi instances identified in the totality of clusters returned by the277

algorithm.278

F-Measure represents the harmonic mean of the Precision and Recall scores, where the best value279

of 1 indicates ideal Precision and Recall, while 0 is the worst scenario.280

Purity is used to measures the homogeneity of the clusters. Maximum purity is achieved by the281

solution when each cluster only contains a single class.282

Rand-Index computes the accuracy of the clustering solution from the actual solution, based on283

the ratio of correctly identified instances among all the instances.284

4. The Proposed System285

This article proposes “OpStream”, an Optimised Stream Clustering Algorithm. This clustering286

framework consists of two main parts: the initialisation phase and the online phase.287

During the initialisation phase, a number λ of data points are accumulated through a landmark288

time window, the unclassified points are initialised into groups of clusters via the centroid approach,289

i.e. generating K centroids of clusters among the points.290

In the initialisation phase, the landmark time window is used to collect data points which are291

subsequently grouped into clusters by generating K centroid. The latter, are generated from by solving292

K-centroid cost optimisation problems with fast and reliable metaheuristic for optimisation. Hence,293

their position is optimal and lead to high-quality predictions.294

Next, during the online phase, the clusters are maintained and updated using the density-based295

approach, whereby incoming data points with similar attributes (i.e. according to the ε-neighbourhood296

method) form dense microclusters in between two data buffers, namely p-microclusters and297

o-microclusters. These are converted into microclusters with CF information to store a “light” version298

previous scenarios in this dynamic environment.299

In this light, the proposed framework is similar to advanced single-phase methods. Howevere, it300

requires a preliminary optimisation process to boost its classification performances.301

Three variants of OpStream are tested by using the three metaheuristic optimisers described in302

section 3. These stochastic algorithms (as the optimisation process is stochastic) are compared against303

the two DenStream and CluStream state-of-the-art deterministic stream clustering algorithms.304

The following sections describe each step of the OpStream algorithm.305

4.1. The Initialisation Phase306

This step can be formulated as a real-valued global optimisation search problem and addressed307

with metaheuristic of black-box optimisation. To achieve this goal, a cost function must be designed308
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to allow for the individualisation of the optimal position of the centroid of a cluster. These processes309

have to be iterated K times to then form K clusters by grouping data according to their distance from310

the optimal centroids.311

The formulation of the cost function plays a key part. In this research, the “Cluster Fitness” (CF)
function from [50] was chosen as its maximisation leads to a high intra-cluster distance, which is
desirable. Its mathematical formulation, for the κth (κ = 1, 2, 3, . . . K) cluster, is given below

CFκ =
1
K

K

∑
κ=1

Sκ (15)

from where it can be observed that it is computed by averaging the K clusters’ Silhouettes “Sκ”. These,
represents the average dissimilarity of all the points in the cluster, and are calculated as follows

Sκ =
1
nk

∑
i∈Cκ

βi − αi
max{αi, βi}

(16)

where αi and βi are the “Inner Dissimilarity” and the “Outer Dissimilarity” respectively.312

The former value measures the average dissimilarity between a data point i and other data points
in its own cluster Cκ∗ . Mathematically, this is expressed as:

αi =
1

(nk∗ − 1) ∑
j∈Cκ∗

j 6=i

dist(i, j) (17)

with dist(i, j) being the Euclidean distance between the two points, and nk∗ is the total number of313

points in cluster Cκ∗ . The lower the value, the better the clustering accuracy.314

The latter value measures the minimum distance between a data point i to the centre of all clusters,
excluding its own cluster Cκ∗ . Mathematically, this is expressed as:

βi = min
κ=1,...,K

k 6=κ∗

(
1
nk

∑
j∈Cκ
k 6=κ∗

dist(i, j)

)
(18)

where nk∗ is the number of points in cluster Cκ∗ . The higher the value, the better the clustering.315

These two values are contained in [−1, 1], whereby 1 indicates ideal case and −1 the most316

undesired one.317

A similar observation can be done for the fitness function CFκ [50]. Hence, the selected318

metaheuristics have to be set-up for a maximisation problem. This is not an issue since every319

real-valued problem of this kind can be easily maximised with an algorithm designed for minimisation320

purposes by simply timing the fitness function by −1, and vice-versa.321

Regardless of the dimensionality of the problem n, which depends on the data set (as shown in322

table 1), all input data are normalised within [0, 1]. Thus, the search space for all the optimisation323

process is the hyper-cube defined as [0, 1]n.324

4.2. The Online Phase325

Once the initial clusters have been generated, by optimising the cost function formulated in section326

4.1, clustered data points must be converted into microclusters. This step requires the extraction of CF327

vectors. Subsequently, a density-based approach is used to cluster data stream online.328

4.2.1. microclusters Structure329

In OpStream, each CF must contain four components, i.e. CF= [N,
−→
LS,
−→
SS, timestamp], where330

• N∈ N is the number of data points in the microclusters;331
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•
−→
LS ∈ Rn is the linear sum of the data points in the microcluster, i.e.

−→
LS =

N

∑
i=1

−→xi ;

•
−→
SS ∈ Rn is the squared sum of the data points in the microclusters i.e.

−→
SS[j] =

N

∑
i=1

(−→xi [j]
)2

; j = 1, 2, 3, . . . , n

• timestamp indicates when the microclusters was last updated and it is needed to implement the
ageing mechanism, used to remove outdated microclusters while new data accumulated in the
time window are available, defined via the following equation

age = T − timestamp (19)

where T is the current time-stamp in the stream a threshold, referred to as β, is used to332

discriminate between suitable and outdated data points.333

From CF, the centre c and radius r of a microclusters are computed as follows:334

c =
−→
LS
N

(20)

r =

√√√√√−→SS
N
−

−→LS
N

2

(21)

as indicated in [18,43].335

The obtained r value is used to initialise the ε-neighbourhood approach (i.e. r = ε), leading to336

the formation of microclusters as explained in section 2. This microclusters, which is derived from a337

cluster formed in the initialisation phase, is now stored in the p-microclusters buffer.338

4.2.2. Handling Incoming Data Points339

In OpStream, for each new time window, a data point p is first converted into a “degenerative”
microclusters mp containing a single point and having the following initial CF properties:

mp.N = 1

mp.
−→
LSi = pi i = 1, 2, 3 . . . , n

mp.
−→
SSi = p2

i i = 1, 2, 3 . . . , n

mp.timestamp = T

Subsequently, initial microclusters have to be merged. This task can efficiently be addressed
by considering pairs of microclusters, say e.g. mi and mj, and computing their Euclidean distance
dist(cmi , cmj). If mi is the cluster to be merged, its radius r must be worked out as shown in section
4.2.1 and then be merged with mi if

dist(cmi , cmj) ≤ ε (ε = r). (22)

Two microclusters satisfying the condition expressed with equation 22 are said to be
“density-reachable”. The process described above is repeated until there are no longer density-reachable
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microclusters. Every time two microclusters are merged, e.g. mi and mj, the CF properties of the newly
generated microclusters, e.g. mk, are assigned as follows:

mk.N = mi.N + mj.N

mk.
−→
LS = mi.

−→
LS + mj.

−→
LS

mk.
−→
SS = mi.

−→
SS + mj.

−→
SS

mk.timestamp = T

where T is the time at which the two microclusters were merged.340

When the condition in equation 22 is no longer met by a microclusters, this is moved to the341

p-microclusters buffer. If the newly added microclusters and other clusters in the p-microclusters buffer342

are density-reachable, then they are merged. Otherwise, a new independent cluster is stored in this343

buffer.344

This mechanism is performed by a software agent, referred to as the “Incoming Data Handler”345

(IDH), whose pseudocode is reported in algorithm 4 to further clarify this process and allow for its346

implementation.347

Algorithm 4 IDH Pseudocode

1: Input: Data point p
2: Convert p into micro cluster mp
3: Initialise merged = false
4: for mc in p-microclusters do
5: if merged is false then
6: if mp is density reachable to mc then
7: if new radius ≤ εmc then
8: Merge mp with mc
9: else

10: Add mp to p-microclusters
11: end if
12: merged = true
13: end if
14: end if
15: end for
16: if merged is false then
17: for each mc in o-microclusters do
18: if merged is false then
19: if mp is density-reachable to mc then
20: if new radius ≤ εmc then
21: Merge mp with mc
22: merged = true
23: end if
24: end if
25: end if
26: end for
27: end if
28: if merged is false then
29: Add mp to o-microclusters
30: end if
31: end
32: return

4.2.3. Detecting and Forming New Clusters348

Once microclusters in the o-microclusters buffer are all merged, as explained in section 4.2.2, only349

the minimum possible number of microclusters with the highest density exist. The microclusters with350

the highest number of points N is then moved to an empty set C to initialise a new cluster. After351

calculating its centre c, with equation 20, and radius r, with equation 21, the ε-neighbourhood method352

is again used to find density-reachable microclusters. Among them, a process is undergone to detect353
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the so-called border microclusters [36] inside C, which obviously are not present during the first iteration354

as C initially contains only one microclusters. Border microclusters are defined as density reachable355

microclusters that have density level that is below the density threshold of the first microclusters356

present in C. Having a threshold that is too high, cluster C will not expand, whilst having a value that357

is too low, cluster C will contain dissimilar microclusters. Based on the experimental data from the358

original paper [36], 10% threshold yields good performance.359

Once the border microclusters are identified, only surrounding microclusters that are density360

reachable to the non-border microclusters are moved to form part of C, according to the process361

indicated in section 4.2.2. Figure 1 graphically depicts C. The microclusters marked in red colour does362

not form as part of C because it is density reachable only to a border microclusters of C.363

Figure 1. A graphical representation of the “border microclusters” concept [36]

This process is iterated as shown in algorithm 5. The final version of C is finally moved to the
most appropriate buffer according to its size, i.e. if “C.N≥minClusterSize” all its microclusters are
merged together and the newly generate cluster C is moved to the p-microclusters buffer. If this does
not occur, the cluster C is not generated by merging its microclusters but they are simply left in the
o-microclusters buffer. The recommended method to fix the minClusterSize parameter is

minClusterSize =


2 if 10% of λ ≤ 2

10% of λ otherwise
(23)

These tasks are performed by the New Cluster Generator (NCG) software agent, whose364

pseudocode is shown in algorithm 5.365

Algorithm 5 New Cluster Generation Pseudocde

1: Input: o-microclusters
2: while o-microclusters is not empty do
3: Initialise cluster C using mc with highest N
4: addedMc = true
5: while addedMc is true do
6: addedMc = false
7: for mc in o-microclusters do
8: if mc is density-reachable to any non-border mc in C then
9: Add mc into C

10: Remove mc from o-microclusters
11: addedMc = true
12: end if
13: end for
14: end while
15: if the size of C is ≥minClusterSize then . minClusterSize is initialised with equation 23
16: Merge microclusters mc in C
17: Add C into p-microclusters
18: end if
19: end while
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4.3. OpStream General Scheme366

The proposed OpStream method involves the use of several techniques, such as metaheuristic367

optimisation algorithms, density-based and k-means clustering, etc. and requires a software368

infrastructure coordinating activities as those performed by the IDH and NCG agents. Its architecture369

is outlined with the pseudocode in algorithm 6370

Algorithm 6 OpStream Pseudocode

1: Launch AS . initialised with equation 24
2: initialisedFlag = false
3: while stream do
4: Add data point p into window
5: if initialisedFlag is true then
6: Handle incoming data streams with IDH . i.e. algorithm 4
7: end if
8: if window is full then
9: if initialisedFlag is false then

10: Optimise centres positions and initialise clusters . e.g. with algorithm 1, 2 or 3
11: initialisedFlag = true
12: else
13: Look for and generate new clusters with NCG . i.e. algorithm 5
14: end if
15: end if
16: end while

It must be added that an Ageing System (AS) is constantly run to remove outdated clusters.
Despite its simplicity, its presence is crucial in dynamic environments. An integer parameter β (equal
to 4 in this study) is used to compute the age threshold as shown below

age threshold = β · λ (24)

so that if a microclusters has not been updated in 4 consecutive windows will be removed from the371

respective buffer.372

5. Experimental Setup373

As discussed in section 3, OpStream performances are evaluated across four synthetic data sets374

and one real data set using three popular performance metrics. Two deterministic state-of-the-art375

stream clustering algorithms, i.e. DenStream [18] and CluStream [25], are also run with the suggested376

parameter settings available in their original articles for caparison purposes.377

The WOA algorithm was initially picked to implement OpStream framework, as this framework378

is currently being intensively exploited for classification purposes, but two more variants employing379

BAT and DE (as described in section 3) are also run to 1) show the flexibility of the OpStream to380

the use of different optimisation methods; 2) display its robustness and superiority to deterministic381

approaches regardless of the optimiser used; 3) establish the preferred optimisation method over the382

specific data sets considered in this study. For the sake of clarity, these three variants are referred383

to as WOAS–OpStream, BAT–OpStream and DE–OpStream to represent its respective metaheuristic384

optimiser used. To reproduce the results presented in this article, the employed parameter setting of385

each metaheuristic, as well as other algorithmical details, are reported below:386

• WOA: swarm Size = 20;387

• BAT: swarm sieze = 20, α = 0.53, γ = 4.42, ri = 0.42, Ai = 0.50 (i = 1, 2, 3, . . . , n);388

• DE: population Size = 20, F = 0.5, CR = 0.5;389

• the “max Iterations” value is set to 10 for all the three algorithms to unsure a fair comparison (the390

computational budget is purposely kept low due to the real-time nature of the problem);391
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• the three optimisation algorithms are equipped with the “toroidal” correction mechanism to392

handle infeasible solutions, i.e. solutions generated outside of the search space (a detailed393

description of this operator is available in [10]).394

Furthermore, the following parameter values are also required to run the OpStream framework:395

• λ = 1000, ε = 0.1, β = 4;396

Section 7 explains the role played by these parameters and how their suggested values were397

determined.398

Thus, a total of five clustering algorithms are considered in the experimentation phase. These399

were executed, with the aid of the MOA platform [47], for 30 times over each data set (instances400

order is randomly changed for each repetition) to produce, for each evaluation metric, average401

± standard deviation values. To further validate our conclusions statistically, the outcome of the402

Wilcoxon Rank-Sum Test [51] (with confidence level equal to 0.05) is also reported in all tables with403

the compact notation obtained from [52], where 1) “+” symbol next an algorithm indicated that the404

it is outperformed by the reference algorithm (i.e. WOA–OpStream); 2) a “−” symbol indicates that405

the reference algorithm is outperformed; 3) a “=” symbol shows that the two stochastic optimisation406

processes are statistically equivalent.407

6. Results and Discussion408

A table is prepared for each evaluation metric, each one displaying average value, standard409

deviation and the outcome of the Wilcoxon Rank-Sum test (W) over the 30 performed runs. The best410

performance on each data set is highlighted in boldface.411

Table 2 reports the results in terms of F-measure. According to this metric, the three OpStream412

variants generally outperform the deterministic algorithms. The only exception is registered over413

the KDDC–99 data set, where DenStream displays the best performance. From the statistical point of414

view, WOA–OpStream is significantly better than CluStream (with five “+” out of five cases), clearly415

preferable to DenStream (with four “+” out of five cases), equivalent to the DE–OpStream variant and416

and approximately equivalent the BAT–OpStream.417

Table 2. Average F-measure value ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
= WOA–OpStream) for WOA–OpStream against BAT–OpStream, DE–OpStream, DenStream and
CluStream on each data set.

Data set WOA–OpStream BAT–OpStream W DE–OpStream W DenStream W CluStream W
5D5C 0.924 ± 0.042 0.907 ± 0.041 + 0.923 ± 0.040 = 0.645 ± 0.016 + 0.584 ± 0.033 +
5D10C 0.868 ± 0.042 0.873 ± 0.048 = 0.879 ± 0.036 = 0.551 ± 0.019 + 0.602 ± 0.008 +
10D5C 0.903 ± 0.031 0.899 ± 0.028 = 0.904 ± 0.030 = 0.619 ± 0.021 + 0.398 ± 0.006 +

10D10C 0.873 ± 0.035 0.878 ± 0.028 = 0.876 ± 0.027 = 0.543 ± 0.020 + 0.380 ± 0.004 +
KDDC–99 0.460 ± 0.000 0.460 ± 0.000 = 0.460 ± 0.000 = 0.650 ± 0.000 - 0.140 ± 0.000 +

Similarly, regarding table 3, WOA–OpStream shows a slightly better statistical behaviour than418

BAT–OpStream, and it is statistically equivalent to DE–OpStream, also inters of Purity. However,419

according to this metric, the stochastic classifiers do not outperform thee deterministic ones but have420

quite similar performances. In terms of average value over the 30 repetitions, DE–OpStream and421

DenStream have the highest purity.422
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Table 3. Average Purity ± Standard Deviation and Wilcoxon Rank-Sum Test (reference =
WOA–OpStream) for WOA–opStream against BAT–OpStream, DE–OpStream, DenStream and
CluStream on each data set.

Data set WOA–OpStream BAT–OpStream W DE–OpStream W DenStream W CluStream W
5D5C 0.998 ± 0.006 0.996 ± 0.007 + 0.998 ± 0.006 = 1.000 ± 0.000 = 0.998 ± 0.004 =
5D10C 0.992 ± 0.016 0.984 ± 0.022 = 0.987 ± 0.022 = 1.000 ± 0.000 - 0.998 ± 0.004 -
10D5C 1.000 ± 0.000 0.998 ± 0.004 + 1.000 ± 0.000 = 1.000 ± 0.000 = 1.000 ± 0.000 =

10D10C 0.999 ± 0.002 1.000 ± 0.002 = 1.000 ± 0.002 = 1.000 ± 0.000 = 1.000 ± 0.000 =
KDDC–99 1.000 ± 0.000 1.000 ± 0.000 = 1.000 ± 0.000 = 1.000 ± 0.000 = 0.420 ± 0.000 +

Finally, the same conclusions obtained with F-measure are drawn by interpreting the results in423

table 4, where the Rand-Index metric is used to evaluate classification performances. Indeed, all three424

OpStream variants statistically outperform the deterministic methods. This goes to show that the425

proposed method is performing very well regardless of the optimisation strategy, and it is always better426

or competitive with state-of-the-art algorithms. Unlike the case in table 2, the best performances in427

terms of average value or those obtained with DE rather than WOA. However, the difference between428

the two variants is minimal and the Wilocoxon Rank-Sum test does not detect differences between the429

two variants.430

Table 4. Average Rand-Index ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
= WOA–OpStream) for WOA–OpStream against BAT–OpStream, DE–OpStream, DenStream and
CluStream on each strdata set.

Data set WOA–OpStream BAT–OpStream W DE–OpStream W DenStream W CluStream W
5D5C 0.951 ± 0.018 0.945 ± 0.019 + 0.951 ± 0.017 = 0.825 ± 0.005 + 0.596 ± 0.041 +
5D10C 0.944 ± 0.020 0.947 ± 0.020 = 0.949 ± 0.016 = 0.753 ± 0.013 + 0.625 ± 0.018 +
10D5C 0.934 ± 0.017 0.932 ± 0.016 = 0.935 ± 0.017 = 0.814 ± 0.007 + 0.432 ± 0.033 +

10D10C 0.939 ± 0.020 0.941 ± 0.018 = 0.942 ± 0.017 = 0.746 ± 0.016 + 0.400 ± 0.020 +
KDDC–99 0.620 ± 0.000 0.620 ± 0.000 = 0.620 ± 0.000 = 0.820 ± 0.000 - 0.940 ± 0.000 -

Summarising, OpStream displays the best global performance, with WOA–OpStream and431

DE–OpStream being the most preferable variants. Statistically, WOA–OpStream and DE–OpStream432

have equivalent performances over different data sets and according to three different evaluation433

metrics. In this light, the WOA variant is preferred as requiring the tuning of only two parameters,434

against the three required in DE, to function optimally.435

A final observation can be done by separating results from synthetic data sets and KDDC–99. If in436

the first case the supremacy of OpStream is evident, a deterioration of the performances can be noted437

when the later data set is used. In this light, one can understand that the proposed method presents438

room for improvement of handling data streams with uneven distribution of class instances as those439

presented in KDDC–99 [53].440

7. Further Analyses441

In the light of what observed in section 6, the WOA algorithm is to be preferred over DE and BAT442

to perform the optimisation phase. Hence, it is reasonable to consider the WOA–OpStream variant as443

the default OpStream algorithm implementation.444

This section concludes this piece of research with a thorough analysis of this variant in terms of445

sensitivity, scalability, robustness and flexibility to handle overlapping multi-density clusters.446
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7.1. Scalability Analysis447

A scalability analysis is performed to test how OpStream behaves, in terms of execution time448

(seconds) needed to process 100, 000 data points per data set, over data sets having increasing449

dimension values or increasing number of clusters. Data sets suitable for this purpose are easily450

generated with the MOA platform, as previously done for the comparative analysis in section 6.451

This experimentation was performed in a personal computer equipped with an AMD Ryzen 5452

2500U Quad-Core (2.0GHz) CPU Processor and 8GB RAM. Opstream was run with the following453

parameter setting: λ = 1000, ε = 0.1, β = 4, WOA swarm size equal to 20 and maximum number of454

allowed iterations equal to 10.455

Execution time is plotted over increasing dimension values (for the the data points) in figure 2.456

Figure 2. Scalability to Number of Data Dimensions(data dimension value).

Execution time is plotted over increasing number of clusters (in the the data sets) in figure 3.457

Figure 3. Scalability (number of clusters).

Regardless of the number of clusters, execution time seems to grow linearly with the458

dimensionality of the data points, for low dimension values, to then saturate when the dimensionality459

is high. Lower the number of clusters, later the saturation phenomenon takes place. With 5 clusters460
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this occurs at approximately 40 dimension values. In the case of 20 clusters, saturation occurs earlier at461

approximately 25 dimension values. This is one of the strengths of the proposed method, as its time462

complexity does not require polynomial times.463

Conversely, no saturation takes place when execution time is measured by increasing the number464

of clusters. Also in this case, the time complexity seems to grow linearly with the number of clusters.465

7.2. Noise Robustness Analysis466

The MOA platform allows for the injection of increasing noise levels into the dataset 5D10C and467

10D5C data sets.468

The five noise levels indicated in figure 5 and 6 were used and the OpStream algorithm was run469

30 times for each one of the 10 classification problems (i.e. five noise levels × 2 data sets) with the same470

parameter setting used in section 7.1. Results were collected to display average F-Measure, Purity and471

Rand-Index relative to 5D10C, i.e. table 5, and 10D5C, i.e. table 6.472

Table 5. Average OpStream performances over or 5D10C at multiple noise levels.

Noise Level F-Measure Purity Rand-Index
0% 0.846 0.986 0.934
3% 0.798 0.988 0.909
5% 0.808 0.983 0.892
8% 0.768 0.993 0.881

10% 0.774 0.972 0.880

Table 6. Average OpStream performances over or 10D5C at multiple noise levels.

Noise Level F-Measure Purity Rand-Index
0% 0.902 1.000 0.936
3% 0.856 1.000 0.899
5% 0.854 1.000 0.889
8% 0.848 1.000 0.884

10% 0.835 1.000 0.865

From these results, it is clear that OpStream is able to retain approximately 95% of its original473

performance as long as the level does not exceed the 5% level. Then, performances slightly decrease474

OpStream seems to be robust to noise, in particular when classifying data sets with high dimensional475

data points and a low number of clusters number.476

7.3. Sensitivity Analysis477

Five parameters must be tuned before using OpStream for clustering dynamic data streams. In478

this section, the impact of each parameter on the classification performance is analysed in terms of479

Rand-Index value.480

To perform a thorough sensitivity analysis481

• the size λ of landmark time window model is examined in the range [100, 5000] ∈ N;482

• the ε value for the ε-neighbourhood method is examined within [0, 1] ∈ R;483

• the effect of the age threshold is examined by tuning β in the interval [1, 10] ∈ N;484

• the WOA swarm sizes under analysis are obtained by adding 5 candidate solutions per485

experiment, from an initial value of 5 candidate solutions to a maximum of 30 candidate solutions;486
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• the computational budget for the optimisation process, expressed in terms of “max iterations”487

number, is increased by 5 iterations per experiment starting with 5 up to a maximum of 30488

iterations.489

OpStream was run on three data sets for this sensitivity analysis, namely 5D10C, 10D5C and KDDC–99,490

and results graphically shown in the figures reported below.491

Figure 4 shows that too high window sizes are not beneficial and the best performances are492

obtained win the rage [500, 2000] data points. In particular, a peak is obtained with a size of 1000 for493

the two artificially prepared data sets. Conversely, slightly inferior sizes might be preferred for the494

KDDC–99 data set. In general, there is no need in using more than 2000 data points are the performance495

will remain constant or slightly deteriorate.496

Figure 4. Sensitivity to the windows size parameter λ.

With reference to figure 5, it evident that ε does not require fine-tuning in a wide range as the best497

performances are obtained within [0.1, 0.2] and then linearly decreases over the remaining admissible498

values. This can be easily explained as too low values would prevent microclusters from merging499

while too high values will force OpStream to merge dissimilar clusters. In both cases, the outcome500

would be a very poor classification. This observation facilitates the tuning process as it means that501

worth trying values for ε are 0.1 and 0.2 and perhaps one or two intermediary values.502

Figure 5. Sensitivity to the ε-neighboured parameter ε.
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As for β, the curves in figure 6 show that OpStream is not sensitive to the value chosen for503

removing outdated clusters as long as β ≥ 2. This means that clusters can be technically be left in the504

buffers for a long time without affecting the performance of the classifier. From a more practical point505

of view, for memory issues, it is preferable to free buffers from unnecessary microclusters timely, A506

sensible choice is β = 4, as too low values might prevent similar clusters from being merged due to the507

lack of time required for performing such process.508

Figure 6. Sensitivity to the AS parameter β.

It can be noted that a small number of candidate solutions is used for the optimisation phase. This509

choice was made for multiple reasons. First, it’s been recently shown that a high number of solutions510

can increase structural biases of the algorithm [54], which is not wanted as the algorithm has to be511

“general-purpose” to handle all possible scenarios obtained in the dynamic domain. Second, due to the512

time limitations related to the nature of this application domain, a high number of candidate solutions513

is to be avoided as it would slow down the converging process. This is not admissible in real-time514

domain where also the computational budget is kept very low. Third, as shown in figure 7 the WOA515

method used in OpStram seems to work efficiently regardless of the employed number of candidate516

solutions, as long as it is greater than 20.517

Figure 7. WOA sensitivity to the swarm size.
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Similar conclusions can be done for the computational budget. According to figure 8, it is not518

necessary to prolong the duration of the WOA optimisation process for more than 10 iterations.519

This makes sense in dynamic domains where the problem changes very frequently thus making the520

exploitation phase less important.521

Figure 8. Sensitivity to maxIterations

7.4. Comparison with Past Studies on Intrusion Detection522

One last comparison is performed to complete this study. This is performed on a specific
application domain, i.e. network intrusion detection, by means of the “KDD–cup 99” database
[55]. The comparison algorithms employed in this work, i.e. DenStream and CluStream , were both
tested on this data set in their original papers [18] and [25] respectively. Despite the fact that OpStream
is not meant for data sets with overlapping multi-density clusters, as in KDD–cup 99, we executed it
over such data set to test its versatility. Results are displayed in table 7 where the last column indicates
the average performance of the ckustering method by computing

AVG =
F-Measure + Purity + Rand-Index

3
. (25)

Table 7. Results obtained with the KDD–cup 99 [55] data set for intrusion detection.

Algorithm F-Measure Purity Rand-Index AVG
OpStream 0.46 1.00 0.62 0.69
DenStream 0.65 1.00 0.82 0.82
ClusStream 0.14 0.42 0.94 0.50

Surprisingly, OpStream has an AVG better performance than CluStream, due to the fact that523

significantly outperforms it in terms of F-Measure and Purity, and display a state-of-the-art behaviour524

in terms of Purity value. As expected, DenStream provides the best performance, thus being preferable525

in this application domain unless a fast real-time response is required. In the latter case, its high526

computational cost could prevent DenStream from being successfully used [18].527

8. Conclusion and Future Work528

Experimental numerical results show that the proposed OpStream algorithm is a promising529

tool for clustering dynamic data streams as it is competitive and outperforms the state-of-the-art on530
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several occasions. This approach can then be applied in several challenging application domains531

where satisfactory results are difficult to be obtained with clustering methods. Thanks to its532

optimisation-driven initialisation phase, OpStream displays high accuracy, robustness to noise in533

the data set and versatility. In particular, we found out that its WOA implementation is efficient,534

scalable (both in term of data set dimensionality and number of clusters) and resilient to parameters535

variations. Moreover, due to a low number of parameters to be tuned in WOA, this optimisation536

algorithm is preferred over other approaches returning similar accuracy values as DE and BAT. Finally,537

this study clearly shows that hybrid clustering methods are promising and more suitable that classic538

approaches to address challenging scenarios.539

Possible improvements can be done to address some of the aspects arose during the experimental540

section. First, the deterioration of the performance over unevenly distributed data sets, as KDDC-99,541

will be investigated. A simple solution to this problem is to embed non-density-based clustering542

algorithms into the OpStream framework. Second, since the proposed methods do not benefit from543

prologues optimisation processes (as shown in figure 8), probably because of the dynamic nature of544

the problem, optimisation algorithm employing “restart” mechanisms will be implemented and tested.545

These algorithms usually work on a very short computational budget and handle dynamic domains546

better than other by simply re-sampling the initial point where a local search routine is applied, as e.g.547

[56], or by also adding to it information from previously past solution with the “inheritance” method548

[57–59].549

It is also worthwhile to extend OpStream to handle overlapping multi-density clusters in dynamic550

data streams, as these cases are not currently addressable and are common in some real-world scenarios,551

such as network intrusion detection [53] and Landsat satellite image discovery [60].552
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