9 research outputs found

    Two frameworks for integrating knowledge in induction

    Get PDF
    The use of knowledge in inductive learning is critical for improving the quality of the concept definitions generated, reducing the number of examples required in order to learn effective concept definitions, and reducing the computation needed to find good concept definitions. Relevant knowledge may come in many forms (such as examples, descriptions, advice, and constraints) and from many sources (such as books, teachers, databases, and scientific instruments). How to extract the relevant knowledge from this plethora of possibilities, and then to integrate it together so as to appropriately affect the induction process is perhaps the key issue at this point in inductive learning. Here the focus is on the integration part of this problem; that is, how induction algorithms can, and do, utilize a range of extracted knowledge. Preliminary work on a transformational framework for defining knowledge-intensive inductive algorithms out of relatively knowledge-free algorithms is described, as is a more tentative problems-space framework that attempts to cover all induction algorithms within a single general approach. These frameworks help to organize what is known about current knowledge-intensive induction algorithms, and to point towards new algorithms

    Active Learning of Classification Models from Enriched Label-related Feedback

    Get PDF
    Our ability to learn accurate classification models from data is often limited by the number of available labeled data instances. This limitation is of particular concern when data instances need to be manually labeled by human annotators and when the labeling process carries a significant cost. Recent years witnessed increased research interest in developing methods in different directions capable of learning models from a smaller number of examples. One such direction is active learning, which finds the most informative unlabeled instances to be labeled next. Another, more recent direction showing a great promise utilizes enriched label-related feedback. In this case, such feedback from the human annotator provides additional information reflecting the relations among possible labels. The cost of such feedback is often negligible compared with the cost of instance review. The enriched label-related feedback may come in different forms. In this work, we propose, develop and study classification models for binary, multi-class and multi-label classification problems that utilize the different forms of enriched label-related feedback. We show that this new feedback can help us improve the quality of classification models compared with the standard class-label feedback. For each of the studied feedback forms, we also develop new active learning strategies for selecting the most informative unlabeled instances that are compatible with the respective feedback form, effectively combining two approaches for reducing the number of required labeled instances. We demonstrate the effectiveness of our new framework on both simulated and real-world datasets

    A blackboard-based system for learning to identify images from feature data

    Get PDF
    A blackboard-based system which learns recognition rules for objects from a set of training examples, and then identifies and locates these objects in test images, is presented. The system is designed to use data from a feature matcher developed at R.S.R.E. Malvern which finds the best matches for a set of feature patterns in an image. The feature patterns are selected to correspond to typical object parts which occur with relatively consistent spatial relationships and are sufficient to distinguish the objects to be identified from one another. The learning element of the system develops two separate sets of rules, one to identify possible object instances and the other to attach probabilities to them. The search for possible object instances is exhaustive; its scale is not great enough for pruning to be necessary. Separate probabilities are established empirically for all combinations of features which could represent object instances. As accurate probabilities cannot be obtained from a set of preselected training examples, they are updated by feedback from the recognition process. The incorporation of rule induction and feedback into the blackboard system is achieved by treating the induced rules as data to be held on a secondary blackboard. The single recognition knowledge source effectively contains empty rules which this data can be slotted into, allowing it to be used to recognise any number of objects - there is no need to develop a separate knowledge source for each object. Additional object-specific background information to aid identification can be added by the user in the form of background checks to be carried out on candidate objects. The system has been tested using synthetic data, and successfully identified combinations of geometric shapes (squares, triangles etc.). Limited tests on photographs of vehicles travelling along a main road were also performed successfully

    Artificial Intelligence and Human Error Prevention: A Computer Aided Decision Making Approach: Technical Report No. 4: Survey and Analysis of Research on Learning Systems from Artificial Intelligence

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryU.S. Department of Transportation / DOT FA79WA-4360 ABFederal Aviation Administratio

    Classification with overlapping feature intervals

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1995.Thesis (Master's) -- -Bilkent University, 1995.Includes bibliographical references leaves 83-88.This thesis presents a new form of exemplar-based learning method, based on overlapping feature intervals. Classification with Overlapping Feature Intervals (COFI) is the particular implementation of this technique. In this incremental, inductive and supervised learning method, the basic unit of the representation is an interval. The COFI algorithm learns the projections of the intervals in each class dimension for each feature. An interval is initially a point on a class dimension, then it can be expanded through generalization. No specialization of intervals is done on class dimensions by this algorithm. Classification in the COFI algorithm is based on a majority voting among the local predictions that are made individually by each feature.Koç, Hakime ÜnsalM.S

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    Data mining using neural networks

    Get PDF
    Data mining is about the search for relationships and global patterns in large databases that are increasing in size. Data mining is beneficial for anyone who has a huge amount of data, for example, customer and business data, transaction, marketing, financial, manufacturing and web data etc. The results of data mining are also referred to as knowledge in the form of rules, regularities and constraints. Rule mining is one of the popular data mining methods since rules provide concise statements of potentially important information that is easily understood by end users and also actionable patterns. At present rule mining has received a good deal of attention and enthusiasm from data mining researchers since rule mining is capable of solving many data mining problems such as classification, association, customer profiling, summarization, segmentation and many others. This thesis makes several contributions by proposing rule mining methods using genetic algorithms and neural networks. The thesis first proposes rule mining methods using a genetic algorithm. These methods are based on an integrated framework but capable of mining three major classes of rules. Moreover, the rule mining processes in these methods are controlled by tuning of two data mining measures such as support and confidence. The thesis shows how to build data mining predictive models using the resultant rules of the proposed methods. Another key contribution of the thesis is the proposal of rule mining methods using supervised neural networks. The thesis mathematically analyses the Widrow-Hoff learning algorithm of a single-layered neural network, which results in a foundation for rule mining algorithms using single-layered neural networks. Three rule mining algorithms using single-layered neural networks are proposed for the three major classes of rules on the basis of the proposed theorems. The thesis also looks at the problem of rule mining where user guidance is absent. The thesis proposes a guided rule mining system to overcome this problem. The thesis extends this work further by comparing the performance of the algorithm used in the proposed guided rule mining system with Apriori data mining algorithm. Finally, the thesis studies the Kohonen self-organization map as an unsupervised neural network for rule mining algorithms. Two approaches are adopted based on the way of self-organization maps applied in rule mining models. In the first approach, self-organization map is used for clustering, which provides class information to the rule mining process. In the second approach, automated rule mining takes the place of trained neurons as it grows in a hierarchical structure
    corecore