150 research outputs found

    On fault tolerance and scalability of swarm robotic systems

    Get PDF
    This paper challenges the common assumption that swarm robotic systems are robust and scalable by default. We present an analysis based on both reliability modelling and experimental trials of a case study swarm performing team work, in which failures are deliberately induced. Our case study has been carefully chosen to represent a swarm task in which the overall desired system behaviour is an emergent property of the interactions between robots, in order that we can assess the fault tolerance of a self-organising system. Our findings show that in the presence of worst-case partially failed robots the overall system reliability quickly falls with increasing swarm size. We conclude that future large scale swarm systems will need a new approach to achieving high levels of fault tolerance. © 2013 Springer-Verlag

    Towards Swarm Calculus: Urn Models of Collective Decisions and Universal Properties of Swarm Performance

    Full text link
    Methods of general applicability are searched for in swarm intelligence with the aim of gaining new insights about natural swarms and to develop design methodologies for artificial swarms. An ideal solution could be a `swarm calculus' that allows to calculate key features of swarms such as expected swarm performance and robustness based on only a few parameters. To work towards this ideal, one needs to find methods and models with high degrees of generality. In this paper, we report two models that might be examples of exceptional generality. First, an abstract model is presented that describes swarm performance depending on swarm density based on the dichotomy between cooperation and interference. Typical swarm experiments are given as examples to show how the model fits to several different results. Second, we give an abstract model of collective decision making that is inspired by urn models. The effects of positive feedback probability, that is increasing over time in a decision making system, are understood by the help of a parameter that controls the feedback based on the swarm's current consensus. Several applicable methods, such as the description as Markov process, calculation of splitting probabilities, mean first passage times, and measurements of positive feedback, are discussed and applications to artificial and natural swarms are reported

    Safety in Numbers: Fault Tolerance in Robot Swarms

    Get PDF
    The swarm intelligence literature frequently asserts that swarms exhibit high levels of robustness. That claim is, however, rather less frequently supported by empirical or theoretical analysis. But what do we mean by a 'robust' swarm? How would we measure the robustness or – to put it another way – fault-tolerance of a robotic swarm? These questions are not just of academic interest. If swarm robotics is to make the transition from the laboratory to real-world engineering implementation, we would need to be able to address these questions in a way that would satisfy the needs of the world of safety certification. This paper explores fault-tolerance in robot swarms through Failure Mode and Effect Analysis (FMEA) and reliability modelling. The work of this paper is illustrated by a case study of a wireless connected robot swarm, employing both simulation and real-robot laboratory experiments

    Towards temporal verification of swarm robotic systems

    Get PDF
    A robot swarm is a collection of simple robots designed to work together to carry out some task. Such swarms rely on the simplicity of the individual robots; the fault tolerance inherent in having a large population of identical robots; and the self-organised behaviour of the swarm as a whole. Although robot swarms present an attractive solution to demanding real-world applications, designing individual control algorithms that can guarantee the required global behaviour is a difficult problem. In this paper we assess and apply the use of formal verification techniques for analysing the emergent behaviours of robotic swarms. These techniques, based on the automated analysis of systems using temporal logics, allow us to analyse whether all possible behaviours within the robot swarm conform to some required specification. In particular, we apply model-checking, an automated and exhaustive algorithmic technique, to check whether temporal properties are satisfied on all the possible behaviours of the system. We target a particular swarm control algorithm that has been tested in real robotic swarms, and show how automated temporal analysis can help to refine and analyse such an algorithm. © 2012 Elsevier B.V. All rights reserved

    Space-Time Continuous Models of Swarm Robotic Systems: Supporting Global-to-Local Programming

    Get PDF
    A generic model in as far as possible mathematical closed-form was developed that predicts the behavior of large self-organizing robot groups (robot swarms) based on their control algorithm. In addition, an extensive subsumption of the relatively young and distinctive interdisciplinary research field of swarm robotics is emphasized. The connection to many related fields is highlighted and the concepts and methods borrowed from these fields are described shortly

    An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems

    Get PDF
    © 2016 Elsevier Ireland Ltd Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots

    Distributed Control for Robotic Swarms Using Centroidal Voronoi Tessellations

    Get PDF
    This thesis introduces a design combining an emerging area in robotics with a well established mathematical research topic: swarm intelligence and Voronoi tessellations, respectively. The main objective for this research is to design an economical and robust swarm system to achieve distributed control. This research combines swarm intelligence with Voronoi tessellations to localize a source and create formations. Extensive software coding must be implemented for this design, such as the development of a discrete centroidal Voronoi tessellation (CVT) algorithm. The ultimate purpose of this research is to advance the existing Mobile Actuator and Sensor Network (MASnet) platform to eventually develop a cooperative robot team that can sense, predict, and nally neutralize a diusion process. Previous work on the MASnet platform has served as a foundation for this research. While growing closer to the MASnet goal, results also provide stimulating discoveries for mathematical and swarm research areas
    corecore