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Abstract

Distributed Control for Robotic Swarms Using

Centroidal Voronoi Tessellations

by

Shelley Rounds, Master of Science

Utah State University, 2008

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

This thesis introduces a design combining an emerging area in robotics with a well

established mathematical research topic: swarm intelligence and Voronoi tessellations, re-

spectively. The main objective for this research is to design an economical and robust

swarm system to achieve distributed control. This research combines swarm intelligence

with Voronoi tessellations to localize a source and create formations. Extensive software

coding must be implemented for this design, such as the development of a discrete centroidal

Voronoi tessellation (CVT) algorithm.

The ultimate purpose of this research is to advance the existing Mobile Actuator and

Sensor Network (MASnet) platform to eventually develop a cooperative robot team that

can sense, predict, and finally neutralize a diffusion process. Previous work on the MASnet

platform has served as a foundation for this research. While growing closer to the MASnet

goal, results also provide stimulating discoveries for mathematical and swarm research areas.

(144 pages)
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Chapter 1

Introduction

1.1 Overview

This research is a contribution to the MASnet project, which includes developing al-

gorithms for phototaxis and formation control using CVTs. The objective is for a swarm

of mobile robots to communicate with each other on the MASnet plaform to achieve these

tasks. In the process, many discoveries have been uncovered and the MASnet platform

system has been improved.

This chapter serves as an introduction of ideas and tools used to create the desired

algorithms. Chapter 2 explains the MASnet platform in detail as well as improvements on

the platform robots. The platform setup and more communication details for phototaxis

are discussed in Chapter 3. In-depth explanations of phototaxis and formation control

algorithms are given in Chapters 4 and 5, respectively. Finally, a list of contributions along

with suggestions of future work is presented in Chapter 6.

1.2 Motivation

Unfortunately, war and military threats continue to rise at home and abroad. Security

and defense efforts are sorely needed in the face of warfare and terrorism. However, surveil-

lance, search, and rescue tactics are extremely hazardous and tedious for soldiers. The

CSOIS has successfully developed robots to perform these tasks. The MASnet platform

of CSIOS is intended to help the security effort. Previously, CSIOS has focused on single

robots; currently, MASnet brings robot swarms to the foreground.

The ultimate goal of the platform is to sense, model, predict, and control a diffusion

process. The robots should cooperate with each other to neutralize a toxic area till humans

are safe to enter. Simulation results on this subject have been achieved [2, 3].
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For this research, a team of robots successfully track a dynamic non-diffusing source.

This can be extremely useful in locating chemical, radiological, and nuclear weapons or any

source that can be detected by sensors. This research also presents an extremely flexible and

self-healing formation control algorithm. Formations for search efforts and battle tactics are

crucial. Finally, this thesis evaluates the effect of robot number, initial starting positions,

and sensor number on the performance of the swarm. In critical moments, it is important

for the robots to work efficiently. This research delivers robot results for new and advanced

techniques with these applications in mind.

1.3 Swarm Intelligence and Emergent Behavior

Swarming behavior in biological systems is an astonishing phenomenon. Many species

adopt swarming behaviors to complete specific tasks such as foraging, guarding, traveling,

or simply surviving. Figure 1.1 shows examples of swarms in nature. Perhaps the most

extraordinary observation of swarming behavior is the mass global behavior that emerges

from a group of agents, although each agent is only aware of itself and nearest neighbors [4].

A swarm can be defined as a group of distributed agents—such as ants, birds, crickets or

robots—which have only local knowledge and communication. These local interactions and

each agent’s individual behavior cause a global emergent behavior. As previously mentioned,

this emergent behavior is the miracle and most powerful tool for any swarm system.

In recent years, engineers have begun to apply this powerful tool to robotics. Formerly,

(a) A flock of geese (U.S. Fish and Wildlife
Service http://www.fws.gov/midwest/

swanlake)

(b) A school of fish (IEEE CDC
2004 at Paradise Island, Ba-
hamas)

Fig. 1.1: Swarm examples in nature.
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robots have been built to sense, actuate, and explore alone, requiring large communications

ranges, complicated code and some human control to traverse the terrain. Using swarm

intelligent robots, however, can drastically reduce communication ranges, programming

code, and human control. Applying swarms to mobile robotic networks can eliminate any

need for human control, creating a fully autonomous system. The culmination of these

attributes leads to a much more robust and cost-effective system.

Since the emergence of swarm robotics, an abundance of applications have been sug-

gested. Some of which include:

� Environmental monitoring,

� Mine detection,

� Herding,

� Mapping.

Such applications can be implemented using swarms in a variety of ways. For example, each

swarm agent may use behavioral, control, consensus, and mathematical algorithms or any

combination of these algorithms. This research plans to experiment with a mathematical

Voronoi tessellation algorithm to monitor the environment and distribute each agent in

specified patterns.

1.4 Wireless Sensor Networks

The idea of using a swarm of simple robots in place of a single sophisticated robot

offers many advantages in military, industrial, and commercial applications as discussed

in sec. 1.3. With a group of sensors and actuators it is possible to sense and act on a

distributed environment such as temperature, electromagnetic waves, or a cloud of toxic

gas. By regularly updating these sensors and actuators, a closed-loop system, also known

as cyber-physical systems (CPS), can also characterize and track dynamic environments.

These sensors and actuators must be networked together in order to coordinate with

each other to monitor and control the environment. This network is called wireless sensor
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network (WSN). A WSN is comprised of nodes which typically include sensors and/or ac-

tuators, microprocessors, and wireless communication modules [2]. Nodes in a WSN are

designed to have low-power consumption, low-cost, mesh networking, and low-data through-

put. Many communication protocols are designed specifically for WSNs which emphasize

power efficiency, for longer battery life, and are less concerned with bandwidth use. Some

current application examples of WSNs include:

� Industrial control and monitoring,

� Security monitoring,

� Agriculture and field observation,

� Patient monitoring.

More information on WSN can be found in Wireless Sensor Networks: Architectures and

Protocols [5]. For this thesis, a group of heterogeneous nodes will communicate in a WSN

to calculate Voronoi tessellations.

1.5 Voronoi Tessellations

A Voronoi tessellation refers to a region, containing p generating points, separated into

cells where each cell contains one generating point and every point in the cell is closest to

its generating point [6]. Voronoi tessellations are mathematically defined as follows.

Given a region Ω ∈ RNand a set of generating points {pi}ki=1 ⊂ Ω , let the Voronoi cell

Vi corresponding to the generator pi be

Vi = { q∈ Ω| |q − pi| < |q − pj | j = 1, . . . , k, j 6= i} (1.1)

i = 1, . . . , k,

where the set of Voronoi cells {Vi}ki=1 creates a Voronoi tessellation on Ω. While the

Euclidean norm |q − pi| is defined as
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|q − pi| =
√

(q1 − pi1)2 + (q2 − pi2)2 + . . .+ (qN − piN )2. (1.2)

Equation (1.1) simply compares the distance between points on the region, q, and

generators, p. If a point q is closest to the generator pi, then that point belongs to the

Voronoi cell Vi. This concept can be used to create a discrete Voronoi tessellation. An

example of Voronoi tessellations created by a random distribution of points can be seen in

fig. 1.2. Notice that each generator’s cell is only affected by its nearest neighbors. Therefore,

in order to construct any Voronoi tessellation, each generator should only be aware of its

nearest neighbors.

1.5.1 Centroidal Voronoi Tessellations

Given a density over the region of interest, a CVT is a Voronoi tessellation in which

the generators are the centroids (centers of mass according to the given density) of its

Fig. 1.2: Random Voronoi tessellation created in NetLogo, a multi-agent simulation soft-
ware.
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corresponding cell [7]. The mathematical definition is as follows.

Given a density function ρ(q) ≥ 0 defined on Ω, the mass centroid p∗i for each Voronoi

cell Vi is given by

p∗i =

∫
Vi
ρ(q)qdq∫

Vi
ρ(q)dq

for i = 1, . . . , k, (1.3)

where q is a point in the cell Vi. The discrete version is given by

p∗i =

∑
Vi

∑N
j=1 ρjqj∑

Vi

∑N
j=1 ρj

for i = 1, . . . , k, (1.4)

where N is the number of sampled points in the Voronoi cell Vi. The tessellation constructed

by (1.3) is a centroidal Voronoi tessellation, provided that
∫
Vi
ρ(q)dq ≥ 0, if and only if

pi = p∗i for i = 1, . . . , k.

In other words, the points pi are not only the generators for the Voronoi cells Vi, but also

the mass centroids for those cells [8].

These diagrams are extremely useful in many fields for their geometric properties.

CVTs typically create elegant diagrams where the concentration of generators can be con-

trolled by the given density function. CVTs have many applications which include territorial

animal behavior, image and data compression, multi-dimensional integration, partial differ-

ential equations, and optimal sensor and actuator locations [7]. Figure 1.3 shows a diagram

of mouthbreeder fish territories with a centroidal Voronoi tessellation fit.

1.5.2 Energy Function

CVTs minimizes the energy function which is a useful property for many applications.

The equation for the energy function is below.

HV (p) =
∫
Vi

|q − pi|2 ρ(q)dq for i = 1, . . . , k (1.5)
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Fig. 1.3: Mouthbreeder territories with a Voronoi tessellation fit (from Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams).

The discrete version is given by

HV (p) =
∑
Vi

N∑
j=1

|qj − pi|2 ρj , (1.6)

which is also known as the variance, cost, or error function [7]. This energy function

evaluates the location error of the generators, pi, according to the density ρ(q). The following

proof shows that a CVT is a necessary condition to minimize the energy function in (1.5).

Proof. Evaluate a small variation on the generating point, pj

HVj (pj + ε)−HVj (pj) =
∫
Vi

ρ(q)
{
|q − pj − ε|2 − |q − pj |2

}
dq.

Expand and simplify the expression in brackets

HVj (pj + ε)−HVj (pj) =
∫
Vj

ρ(q)ε {ε+ 2(pj − q)} dq.

Divide by ε
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HVj (pj + ε)−HVj (pj)
ε

=
∫
Vj

ρ(q){ε+ 2(pj − q)} dq.

Take the limit as ε→ 0

H′Vj
(pj) = 2

∫
Vj

ρ(q)(pj − q)dq.

Now, distribute the terms

H′Vj
(pj) = 2pj

∫
Vj

ρ(q)dq − 2
∫
Vj

qρ(q)dq.

For the minimum solution, the derivative must be zero. Therefore,

pj =

∫
Vj
qρ(q)dq∫

Vj
ρ(q)dq

,

which corresponds to the mass centroid equation (1.3) [9].

1.5.3 CVT Algorithms

CVT algorithms are typically used to locate static sources. However, if the source

or distribution moves slower than the CVT convergence rate, dynamic tracking can be

achieved. It follows that the speed of the target is limited to the convergence rate. Because

the target is unknown, the convergence rate must be increased to track quicker moving

targets.

Perhaps the most common and basic algorithm to construct discrete CVTs is the

Lloyd’s algorithm. This algorithm is a clear-cut iteration between building Voronoi tessel-

lations and computing their centroids [10]. Lloyd’s algorithm is described below [8].

Given a region Ω, a density function ρ(x, y) defined for all x ∈ Ω, and a positive integer

k,

1. Select an initial set of k points {pi}ki=1 as the generators;
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2. Construct the Voronoi cells {Vi}ki=1 associated with the generators;

3. Find the mass centroid of each Voronoi cell. These centroids become the new set of

generators;

4. If the new generating points meet a given convergence criterion, terminate; otherwise,

return to step 2.

Lloyd’s method requires few iterations, but each iteration is expensive to calculate the pre-

cise Voronoi tessellation and mass centroid. A second commonly used method for computing

CVTs is the MacQueen algorithm. This algorithm does not require any precise construction

of Voronoi tessellations or mass centroids; thus taking advantage of discrete CVTs. The

MacQueen’s algorithm is below [10].

Given a region Ω, a density function ρ(x, y) defined for all x ∈ Ω, and a positive integer

k,

1. Select an initial set of k points {pi}ki=1 as the generators; set the integer array Ji = 1

for i = 1, . . . , k;

2. Pick a random point q ∈ Ω;

3. Find the generator pi closest to the point q; denote the index of that pi as i∗;

4. Set pi∗ ← Ji∗pi∗+q
Ji∗+1 and Ji∗ ← Ji∗ + 1;

5. pi∗ , along with the unchanged points {pi}ki=1,i 6=i∗ are the new set of generating points;

6. If the new generating points meet a given convergence criterion, terminate; otherwise,

return to step 2.

Notice that the integer array Ji keeps track of the number of updates for pi. Despite the

absence of these calculations the algorithm still converges to a CVT [11]. However, each

iteration only moves one generator and many iterations are needed for convergence. A

combination of the few iterations of Lloyd’s method and the cheap computation of the

MacQueen’s method can create a faster converging CVT algorithm for robots.
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1.6 MAS2D

A new simulation platform called MAS2D, derived from Diff-MAS2D [12], is used to test

these algorithms. MAS2D is designed to receive any moving or static distribution over the

region Ω = [0, 1]2.

Robots are modeled as particles by second order dynamics [13]

p̈i = ui, (1.7)

where ui is the control signal. To minimize the function in (1.5), the control law is set to

follow a CVT

ui = kp(pi − p∗i )− kdṗi, (1.8)

where p∗i is the mass centroid of Vi, and both kp and kd are positive constants. The final

term in (1.8) introduces viscous damping [14]. kd is the damping coefficient and ṗi is the

velocity of robot i. This term eliminates possible oscillation as the robot approaches its

destination. MAS2D and Diff-MAS2D act as the MASnet platform to observe robot behavior

given certain static, dynamic, or diffusing densities.
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Chapter 2

MASnet Platform

A WSN combined with a platform encapsulates the ongoing MASnet project that began

in 2003 at CSOIS. Several robots, which act as the wireless sensor and actuator mobility

nodes, can move on top of the MASnet platform. The general purpose for the platform is

to study and research swarm engineering tasks such as formation building, environmental

monitoring, and tracking. To keep the requirements of swarm engineering, the robots have

limited communication and sensing capabilities. Despite restricted communication, robots

are able to coordinate with each other to perform these tasks. A concept of the platform

used for the this research is shown in fig. 2.1.

The MASnet system is made up of five to six elements.

1. 2.5 x 4 x 0.15 m Plexiglasr surface with wooden supports

2. Sensor array (optional)

3. Sensed element (fog, light, etc.)

4. Pseudo-GPS (pGPS) camera

5. MicaZ robots

6. Base-station

The robots execute commands, from the base-station, on the platform; the pGPS cam-

era monitors the robots position; the camera information is displayed on the base station

computer; and the base station sends commands back to the robots. The sensor array is

used only for the CVT phototaxis experiment. In the phototaxis experiment, a mobile light

source is held above the platform while the sensors, under the platform, measure the light

distribution.
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Fig. 2.1: Concept of the MASnet platform.

The base station functionality is coded in a program called RobotCommander written

in C++ exclusively for MASnet. The platform is made of off-the-shelf products and open

source software to keep the system flexible and low-cost. More details on MASnet platform

development is described in PungYu Chen’s and Zhongmin Wang’s theses [2, 3, 15]. See

fig. 2.2 for a picture of the actual MASnet platform.

2.1 Original MASmote Robots

Each robot is a small, two-wheel, differentially driven robot built of mainly commercial,

off-the-shelf parts which can be easily redesigned; see fig. 2.3. The robots are assembled to

be simple, compact, and inexpensive for swarm research. These robots are battery powered

(using four AA batteries), self-contained, and can easily communicate with the base station

and other robots. The dimensions of the robots are only 9.5 x 9.5 x 6.5 cm [16]. Red

markers with individual patterns are placed on top of each robot for pGPS detection and

identification.

Each robot is also equipped with the following parts:

� 1 MicaZ programming board,

� 2 servo motors,

� 2 encoders,
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Fig. 2.2: MASnet platform.

Fig. 2.3: MASnet robots (MASmotes).
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� 2 photo-diodes,

� 2 IR sensors.

The next sections provide descriptions of the robot parts.

2.1.1 MicaZ Motes

The MicaZ programming board, or MicaZ mote, is developed by Crossbow for commu-

nication, sensing, and computation of the individual robots [17]. See fig. 2.4 for a picture

of the 58 x 32 x 13 mm MicaZ mote.

The board is equipped with an 8 MHz ATmega 128L main CPU with 128KB pro-

grammable flash memory, 4KB EEPROM and 512KB flash memory to store sensor readings.

It also has changeable pulse-width modulation outputs with eight 10-bit ADC channels. A

CC2420 RF transceiver chip handles the wireless communication at 2.4 GHz with a maxi-

mum communication rate of 250 kbps.

The mote can be interfaced to a sensor board or a programming station by a 51-pin

connector. The mote operates on a 3 V supply given by two AA batteries mounted on

the mote. The mote is also equipped with three LEDs for status display and debugging

purposes.

Fig. 2.4: MicaZ mote.
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2.1.2 Servo Motors and Encoders

The robots are driven by two customized Futaba S9254 servo motors. These motors are

controlled by a full duty cycle pulse-width modulated signal specified in the robot code. At

100% duty cycle, the robots can move at a maximum speed of approximately 57.6 cm/sec.

The servo motors produce an estimated torque and speed of 47.2 oz.-in. and 0.06 sec/60,

respectively, with an input voltage of 4.8 V [18].

Two high resolution encoders called Wheel Watchers from Nubotics [19] are used to

calculate the position of the robots. These encoders have an angular resolution of 128 counts

per revolution.

2.1.3 Photo-Diodes

OPT101 integrated circuits currently serve as the photo sensors in the MASnet project

and return light intensity readings by 10-bit (4-digit) numbers [20]. Two sensors are placed

on the front and back of the robots for sensing below the platform. See fig. 2.5 for a picture

of the light sensors. Notice that the sensors are surrounded by black rubber tubing. The

tubing minimizes interference from external light sources.

These sensors are chosen for their built-in transimpedance amplifier and monolithic

photo-diode. Previous models of the MASnet robots include unreliable photoresistors that

Fig. 2.5: Robot photo sensors (bottom view).
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require additional op-amp feedback circuitry. These photoresistors respond sluggishly in

which the output depends on the input voltage. Ultimately, it was decided to use a more

consistent, accurate, and much less complicated photo-diode circuit. Characterization for

the photo-diode circuit is presented in fig. 2.6. To test for a constant output voltage, the

supplied voltage is varied with increments of 0.5 V while measuring a constant light source.

From the plot, the output is fairly constant for input voltages above 3.7 V (instead of the

2.7 V given in the data sheet); however, because the robots cannot operate below 4 V, the

photo sensors will not operate in the nonlinear region.

2.1.4 IR Sensors

The robots are also equipped with two IR sensors which can detect distances from

other objects. The sensors are mounted in front of the robot to avoid colliding with each

other and other nearby objects. See fig. 2.7 for the IR sensor locations.

These GP2D120 IR sensors made by Sharp return 10-bit (4-digit) numbers according

to the distance from the object sensed. These sensors also have a maximum saturation

range between 2.5 and 4 cm [21]. An experiment has been conducted to characterize the

IR sensors with the weakest case scenario. Because IR sensors respond weakest to black

objects, sensor readings are taken while approaching a black wall. See fig. 2.8 for the

characterization results.

The robot approached the black wall in increments of 0.5 cm. For each increment,

Fig. 2.6: Photo sensor characterization (courtesy of Heather Nelson).
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several readings are recorded and the average is plotted in the figure. Observe that reliable

readings occur beyond 4 cm and an object can be sensed as far as 50 cm, which is much

larger than the 30 cm range specified in the data sheet.

2.2 New MASmote Robots (MASmote Gen-II)

MASnet has undergone many upgrades and changes during the course of the project.

This section explains the evolution of the robot design on the platform, where 10 MASmotes,

or robots, were originally designed for the Mica2 mote [16]. Once Crossbow released the

MicaZ technology, four robots were upgraded in hardware and software to work with the

MicaZ. Since then, these four robots have been altered for other MASnet experiments

leaving them nonfunctional for CVT experiments.

(a) Front view (b) Side view

Fig. 2.7: Robot IR sensors.

Fig. 2.8: IR sensor characterization (courtesy of Florian Zwetti).
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Before any CVT experiments can be tested on the MASnet platform, all remaining

robots need to be upgraded and designed to work with the MicaZ mote. Although there is

substantial documentation on building original MASmotes [22], documentation on building

MicaZ MASmotes was nonexistent before this project. Additionally, the physical design

was messy and difficult to understand with poorly soldered components and floating proto-

boards, where shorts happened often.

2.2.1 Design Improvements

The old MASmotes have been updated and improved by reverse engineering the original

MicaZ design. See Table 2.1 for a list of the parts needed to build a second generation

MASmote from scratch. Most parts in the list are also used on the first generation MicaZ

MASmotes. However, there are several fundamental differences in design between previous

and current MASmotes designs. For clarification, the original robots designed for the Mica2

mote are called Mica2 MASmotes; the first robots designed for the MicaZ mote are the first

generation MicaZ MASmotes; and the new robots designed here are the second generation

MicaZ MASmotes.

Table 2.1: Parts list.
Part Number Qty. Description

R157-BLACK-ORING-WHEEL 2 servo driven wheels from Acroname Robotics [23]

R238-WW01-KIT 2 wheel encoder kits by Nubotics [19]

S03N-2BB 2 servo motors from GWS [24]

R146-GP2D120 2 IR proximity sensors from Sharp [21]

OPT101 2 photo-diodes from Burr-Brown [20]

MPR2400CA 1 MicaZ mote from Crossbow [17]

N/A 1 MARK III chassis kit from Junun [25]

495-1047-1-ND 2 10nf capacitors from Digi-Key

P1318-ND 1 1000µf capacitor from Digi-Key

N/A 1 protoboard

N/A 4 2kΩ resistors

N/A 4 3.3kΩ resistors
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Battery Pack Attachment

The backbone of the design begins with the chassis which includes a scoop to balance

the robot, a base to support the robot and battery pack, and a small Plexiglasr support to

eventually mount a photo-diode. The MARK III comes with Velcro to attach the battery

pack to the base. The Velcro was originally used for this purpose for the Mica2 MASmotes

[22]. However, the Velcro attachment, deemed too weak and unreliable for the MASmotes,

was replaced by bolts joining the battery pack to the base with 3.5 cm standoffs. See fig. 2.9

for an illustration.

Fig. 2.9: Battery pack attached to the base.
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Fig. 2.10: Plexiglasr support dimensions (courtesy of Angel Cortes and Jordan Wirth).

Photo-Diode Plexiglasr Support

A Plexiglasr support holds the new photo-diode described in sec. 2.1.3 to the front

of the robot. Figure 2.10 shows the dimensions of the Plexiglasr. A soldering iron softens

the Plexiglasr, allowing the sheet to bend 90◦ along the dotted line in the figure. The top

flap is bolted to a 1.5 x 0.5 in protoboard, which holds the photo-diode circuit while the

bottom portion is attached to the chassis base.

Voltage Divider Mount

The first generation MASmote held a precarious protoboard of voltage dividers to

limit the encoder input voltage. The board was not mounted to any part of the robot, the

poor soldering caused sporadic shorts, and the unkempt wires made it extremely difficult to

maintain. An example of a first generation voltage divider circuit can be seen in fig. 2.11(a).

The second generation MASmote design now has a mounted protoboard 6 x 2 cm. This

board holds the voltage divider circuit and is mounted to the front of the MASmote with 1

cm standoffs. Observe fig. 2.11(b) for a picture of the mounted circuit. Compare the first

and second generation voltage divider circuits and notice how the second generation is much

more organized. The soldered connection is much more cohesive, the board is mounted and

sturdy, and the circuit itself is more organized. Currently, there has been no shorts or loose

wires with the new voltage divider mount.
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Servo Motors

The first generation MicaZ MASmote used servo motors from Futaba. The second

generation simply “recycled” the GWS servo motors from old Mica2 MASmotes. A table

comparing the size, weight, speed and torque of both motors is shown in Table 2.2. Notice

that both motors are extremely similar with the exception of speed. The Futaba motor

moves about four times faster than the GWS motor at 4.8 V.

The higher speed may seem an advantage for the robots; however, experiments show

that robots with the GWS motor are much more accurate and quickly converge to their

desired locations without overshoot. Because of the latency of the GPS camera and receiving

encoder information from the robots, faster motors tend to overshoot and oscillate around

desired positions.

PCB

The printed circuit board connects all the robots electrical components (motors, en-

coders, photo-diodes, and IR sensors) to the MicaZ, which processes the data. Slight changes

(a) First generation MASmote volt-
age divider

(b) Second generation MASmote
voltage divider

Fig. 2.11: First and second generation voltage divider circuits.

Table 2.2: Specifications for the GWS and Futaba motors.
Model Size Weight Speed @ 4.8V Torque @ 4.8V

L x W x H mm g oz sec/60◦ oz-in

(GWS) S03N 2BB 40 x 20 x 40 41 1.44 0.23 47

(Futaba) S9254 41 x 20 x 36 49 1.7 0.06 47.2
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Fig. 2.12: Left: Mica2 PCB; Right: MicaZ PCB.

must also be made to the PCB to facilitate the changes in other parts and designs discussed

in this chapter. A picture of the old Mica2 PCB and new MicaZ PCB can be seen in

fig. 2.12. The yellow circles indicate the parts that should be taken out for the new PCB

design. The modifications are simple; remove the two IC chips and resistors 17 and 18.

For convenience, wires connecting the PCB to robots components are separated by

connectors. It is difficult to analyze and maintain the first generation MASmotes without

having to solder and swim around wires. Separating the PCB by connectors makes it

possible to disconnect parts quickly and easily with no soldering necessary.

2.2.2 Final Design

Once all the improvements and modification from sec. 2.2.1 are finished, the final robot

can be seen in fig. 2.13. Compare this to the first generation MicaZ MASmotes in fig. 2.3.

Notice that the new generation is much more organized. The new, more stable design also

improves robot position accuracy and ease of maintenance where circuit shorts no longer

occur. For complete documentation on building a second generation MASmote, refer to

Generation II MAS-Motes Construction Manual [26].
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(a) Perspective view (b) Back view

Fig. 2.13: Second generation MicaZ MASmote.

2.3 Software Description

2.3.1 TinyOS and nesC

The MASmote system uses TinyOS, an event-driven operating system designed for

wireless sensor networks with limited memory. The TinyOS system can be valuable for

multi-agent applications for its low coding and memory requirements, which can reduce

time and cost for building individual agents and the system as a whole [27].

The TinyOS system is developed in nesC, a concurrent extension of C, created at the

University of California at Berkley [17, 27–30]. This programming language is primarily

used for embedded systems such as the WSN on the MASnet platform [29]. nesC simplifies

accessing hardware through interrupts and low-level control. The programming language is

attractive for projects which require executing several tasks for that very reason. Tmote,

discussed in the next chapter, and MicaZ motes are both programmed with nesC.

2.3.2 RobotCommander

The base-station computer is programmed to read and process information coming from

the base-station mote (gateway mote) and pGPS camera, and send commands through the

gateway. A program written for this purpose, RobotCommander, is developed in C++ with

Microsoft Foundation Classes (MFC) for a user-friendly GUI application. See fig. 2.14 for

a screen capture of the RobotCommander GUI.
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Fig. 2.14: RobotCommander GUI.

Image processing—which includes lens radial distortion compensation, robot marker

detection, and screen rendering—occurs continually in the main application while all other

functions are event driven [1]. The primary functions of RobotCommander are listed as

follows [2].

� Real-Time Image Processing

– Control camera and video stream

– Capture and analyze pGPS images

– Transform marker positions from pGPS image to the MASnet platform coordi-

nates

� Communication

– Receive messages from motes through the gateway

– Send commands to robots

� Logging (i.e. robot positions, sensor readings, etc.)

� Providing a GUI
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– Show pGPS image, robot, and communication information, etc.

– Issue commands

RobotCommander finds the position of each robot in the pGPS image by identifying unique

robot markers. Each marker is assigned to a certain robot. See fig. 2.15 for four robots

with their assigned markers. These markers are detected by a modified version of the AR-

ToolKit [2,31], which detects the red frame first and then recognizes the robot by identifying

the symbol. Once a robot is detected, its id, position, and angle information can be logged

and broadcast to all robots.

The RobotCommander GUI shows the pGPS image and marks detected robots by

red circles. Among other functions, the user can point and click on any place in the GUI

image for robots to follow. These point-to-point commands are indicated by green circles

in fig. 2.14. For information on operating the MASnet platform, refer to Appendix B. For

a list of all files that comprise RobotCommander, see Appendix C.

Fig. 2.15: Robots with red markers.
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Chapter 3

Heterogeneous Swarm System

3.1 System Setup

This particular setup is used solely for the CVT phototaxis experiment which is dis-

cussed in detail in Chapter 4. For this experiment an array of at least nine light sensors

are evenly distributed over the platform. These sensors measure light intensity at their

discrete positions. Light data is sent through the radio to the base-station for CVT anal-

ysis. Meanwhile, at least four robots moving atop the platform periodically send encoder

position information, and receive pGPS information and movement commands according

to the RobotCommander CVT analysis.

3.1.1 Base-Station

As described in the setup, the base-station carries a heavy computation and communi-

cation load. At least 13 motes must communicate with the base-station simultaneously with

multiple messages. In the future, the setup can be more decentralized, where the individual

robots calculate their own CVTs. However, this experiment relies on the base-station for

communication handling and CVT calculations. To perform all these tasks, the base-station

is split up into three layers that run concurrently [22].

SerialForwarder passes messages from the gateway mote to the RobotCommander pro-

gram and vice-versa.

Image Processing captures and analyzes the pGPS image for robot identification in

RobotCommander.

Robot Analysis analyzes given data and initiates robot commands in RobotCommander.
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Even considering these three divide-and-conquer layers, the gateway involved with the

first layer must send and receive several messages in a short amount of time. If not handled

carefully, congestion and packet-loss may occur often. To alive communication, instead of

sending pGPS messages for each robot individually, RobotCommander packs the messages

in an array, which is sent out periodically. The array is broadcast to all robots, but each

robot only reads its own pGPS message and ignores the rest of the array. An additional

remedy to packet-loss is controlling how often messages are sent from the base-station,

robots, and light sensors. This technique is discussed in sec. 4.4.1.

3.1.2 Light Sensors

The base-station must receive wireless data from the robots and light sensors. Ten

robots are available; however, light sensors must be provided. It has been decided to

use Tmote Sky motes from Sentilla, previously Moteiv, for their on-board light sensors,

compact size, and easy on-board USB programming. Unfortunately, Tmotes need to pass

messages to the MicaZ gateway mote and cross-communication between these two motes

has not yet been accomplished. This research introduces a heterogeneous swarm system

consisting of first generation and second generation robots using MicaZ motes and Tmote

Sky light sensors. The following sections describe the Tmote Sky module and how to setup

cross-communication.

3.2 Tmote Sky

Tmote Sky is a low-power wireless mote designed specifically for WSNs. The Tmote

Sky, produced by Sentilla, replaces the old Telos mote, produced by Crossbow. For compat-

ibility with sensors, actuators, and other wireless mote modules, Tmote Sky is compliant

with USB and IEEE 802.15.4 industry standards. This mote includes temperature, humid-

ity, visible light, and IR light sensors with 16 pins for on-board expansion. These on-board

sensors, with an option to expand, increase robustness and adaptability while decreasing

mote cost. Tmote Sky also comes with TinyOS support for easy integration with wireless

protocols and accessible open source software [32]. See fig. 3.1 for a front and back view of
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Fig. 3.1: Front and back of Tmote Sky (from Tmote Sky datasheet).

the Tmote Sky with labeled components. The nominal dimensions of the Tmote without

battery pack and antenna are 1.26 x 2.58 x 0.26 in.

A list of Tmote Sky parts and features is given below [32].

� 250kbps 2.4GHz IEEE 802.15.4 Chipcon wireless transceiver

� Interoperability with other IEEE 802.15.4 devices

� 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

� Integrated ADC, DAC, supply voltage supervisor, and DMA controller

� Integrated on-board antenna with 50m range indoors / 125m range outdoors
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� Integrated humidity, temperature, and light sensors

� Fast wakeup from sleep (< 6µs)

� Hardware link-layer encryption and authentication

� Programming and data collection via USB

� 16-pin expansion support and optional SMA antenna connector

� TinyOS support: mesh networking and communication implementation

The Tmote Sky operates between 2.1 and 3.6 V provided by two AA batteries. When

connected to a computer, the Tmote operates on 3 V from that computer and does not

require batteries. The programming language for the Tmote Sky is nesC 1.2 while the

MicaZ is programmed with an older version, nesC 1.1. See nesC 1.2 Language Reference

Manual for a list of changes between nesC 1.1 and 1.2 [28]. Once the programming is

finished the Tmote can operate independent of any computer [33].

Currently, the Tmote Sky comes with two light sensors from the Hamamatsu Corpora-

tion [32]. The two photo-diodes are S1087 for sensing visible light spectrum (PAR sensor)

and S1087-01 for sensing IR and visible light (TSR sensor). These sensors are surrounded by

a ceramic package which blocks interference light entering the active area from the back or

side for more accurate readings. A table of basic specification can be seen in Table 3.1 [34].

Any photo-diode can be used with the Tmote Sky as long as the dimensions are similar

to the PAR and TSR sensors. However, the present sensors are sufficient for this research.

It has been decided to use the less sensitive PAR sensor for current experiments on the

MASnet platform. The PAR sensor can filter interfering light and concentrate on the light

source more easily.

Table 3.1: Specifications for the PAR and TSR sensors.
Part Number Size Spectral Response Range Peak Sensitivity Wavelength

L x W x H mm nm nm

S1087 (PAR) 5 x 6 x 13.5 320 - 730 560

S1087-01 (TSR) 5 x 6 x 13.5 320 - 1100 960
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3.3 MicaZ and Tmote Cross-Communication

The goal is for Tmotes to sense and send PAR readings while the MicaZ gateway mote

receives PAR data for analysis. In order for this to occur, the MicaZ must understand

the messages coming from the Tmotes. Although both MicaZs and Tmotes operate with

TinyOS, their messages sent through the radio are fundamentally different. While operating

on the same frequency channel, Tmote message bytes do not match MicaZ message bytes.

The CRC check fails on the receiving MicaZ and the message is dropped.

However, the Telos mote by Crossbow can communicate with the MicaZ as well as

other Crossbow developed motes. Fortunately, because of similar design, Tmote Sky’s

can be programmed as Telos motes allowing cross-communication between MicaZs and

Tmotes. The procedure is simple. While a Tmote is connected to a computer, in the

Cygwin environment under the directory with the desired application, type the following.

make telosb install.[node number]

3.3.1 TinyOS Messages

TinyOS messages or packets that travel through the radio are called active messages. If

motes operate on the same channel and protocol, but use different active message formats,

they cannot communicate. The TinyOS message format implemented by Crossbow consists

of an address, message type, group ID, data length, payload data, and CRC. See fig. 3.2 and

Table 3.2 for a diagram, separated by bytes, and explanation of the TinyOS active message

format.

Other fields are also required in TinyOS messages, but these fields are not sent or

received over the radio. They are only used internally for each individual node. These

fields include signal strength (2 bytes), acknowledge signal (1 byte), and a timestamp (2

Fig. 3.2: TinyOS message format (from Octave Technology).
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Table 3.2: TinyOS message description (from Octave Technology).

bytes) [35]. The purpose for the acknowledge signal, called “ack,” is explained in the next

section.

3.3.2 MAC Protocol

The MAC protocol that transmits and receives these active messages is the Carrier

Sense Multiple Access—a contention based protocol designed to accommodate several nodes

communicating on the same channel—with collision avoidance (CSMA/CA) [36, 37]. To

send a packet, the transmitter checks to see if the receiver is free. If the channel is busy the

packet is delayed and retries later; otherwise, the transmitter sends a preamble followed by

the active message. The receiver, after detecting a preamble, accepts the active message and

finally transmits an “ack” signal to inform the transmitter that the message was received.

For an illustration of this procedure, see fig. 3.3.

There are several advantages in using the CSMA/CA protocol for this WSN. Networks

can be easily scalable since resources are allocated on-demand. CSMA/CA is also much
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Fig. 3.3: Timing diagram of network send/receive (from Mica High Speed Radio Stack).

more flexible than scheduled protocols such as Time Division Multiple Access (TDMA) or

Frequency Division Multiple Access (FDMA) because there are no communication clusters,

or precise synchronization with time required, and direct node-to-node communication is

possible [36]. This protocol has also influenced the development of many new WSN specific

protocols. Some of these protocols include S-MAC [38], LPRT [39], B-MAC, RT-Link,

MMSN, HyMAC [40], and SIP [41]. Optimizing the communication protocol is not the

focus of this work but may be included in future work.

3.4 Implementation

The previous section explains a simple way for a MicaZ to receive Tmote data by

the CSMA/CA protocol and answers how messages are structured. Tmote messages are

then forwarded to RobotCommander in the first base-station layer; see sec. 3.1.1. This

section shows specifically how a Tmote message can be understood in RobotCommander

and presents code for Tmotes and RobotCommander to do so.
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3.4.1 nesC

The original program used for the Tmotes was an altered application of “Oscilloscope”

developed at UC Berkeley. This application gathered all sensor data—humidity, tempera-

ture, TSR, PAR, internal temperature, and internal voltage—by a state machine over four

second intervals, but only sent the PAR reading over the radio. This program wastes power

and time by gathering unnecessary readings through a state machine. Tmotes programmed

with this application would stop sending messages within hours (with 100% duty cycle). A

second application written to gather and send only PAR readings, which lasts an average of

seven days (with 100% duty cycle), replaces the original application. The interval between

sent messages is determined by one variable instead of a state machine.

This application includes an interface called “Oscope” which sends sensor data in a

structured format. The definition of the Oscope interface can be found in the . . ./opt/

moteiv/tinyos-1.x/tos/lib/Oscope folder in the Cygwin directory. An excerpt of Os-

cope.h is below.

33 enum
34 {
35 OSCOPE BUFFER SIZE = 10,
36

37 AM OSCOPEMSG = 10,
38

39 };
40

41 typedef struct OscopeMsg
42 {
43 uint16 t sourceMoteID;
44 uint16 t lastSampleNumber;
45 uint16 t channel;
46 uint16 t data[OSCOPE BUFFER SIZE];
47 } OscopeMsg t;

This OscopeMsg is the payload data sent wirelessly (see Table 3.2), where

sourceMoteID specifies the node number programmed for each mote.

lastSampleNumber timestamps when the last sample was taken.

channel specifies which sensor the data corresponds to (PAR, TSR, temperature, etc.).
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data indicates an array of 10 sensor readings.

The message is sent as soon as ten sensor readings are gathered. Finally, the variable

AM OSCOPEMSG is the unique message type which is set to 10 (0x0A). As described in Ta-

ble 3.2, the message type variable identifies what message will be received.

3.4.2 RobotCommander

Once the Tmotes send reliable PAR sensor messages, RobotCommander must receive

and analyze the data. First, the structure and message type are defined in a header file, such

as the Oscope.h code above. For all messages coming into RobotCommander (robot sensor

messages, pGPS, light readings, etc.) the message type is compared in a switch statement,

which executes code for that certain message. For a Tmote PAR reading, the variables in

the OscopeMsg structure are saved in an array for CVT calculation and displayed in the

Communication Dialog box. This dialog box, for debugging purposes, shows the incoming

and outgoing messages that are received/sent.

A Tmote logging function has also been added to the RobotCommander GUI that

executes in the switch statement mentioned above. A second program written in MATLAB,

called “Read Tmote,” reads Tmote log files, produces light reading plots for each Tmote,

and provides an animation of light intensity over time. Figs. 3.4(a) and 3.4(b) show a plot

and screen capture from the program.

The animation is intended to simulate the MASnet platform. Light readings are in

(a) (b)

Fig. 3.4: Plot and screen capture from Read Tmote program.
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digital units with a maximum of 1024 and minimum of 0. Locations and coordinates match

the actual platform. Because of the accuracy of the Read Tmote program, it is a powerful

development tool for robot CVTs. For information on setting up the heterogeneous swarm

system, refer to Appendix B.
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Chapter 4

Multi-Robot Phototaxis Using Centroidal Voronoi

Tessellations

There are many scenarios and techniques possible for controlling a distributed envi-

ronment considering the sensors and actuators may be stationary or mobile, connected, or

independent. Researchers have experimented with chemical plum tracking [42], dynamic dif-

fussion [8,43], boundary estimation [44], etc. However, these experiments solely use source

information for convergence. In this project, an array of stationary sensors characterize the

environment to build a centroidal Voronoi tessellation, while actuators move according to

the tessellation. CVTs include nearest neighbor information, which make collision avoid-

ance, cooperative control, and dynamic target tracking possible in a single algorithm. CVT

is also a non-model based mathematical method that asymptotically converges to a field

emitting source [45].

Previous work on CVTs briefly examines the effect of fewer sensors on convergence [3].

Exploring ways to decrease the number of sensors needed for convergence dramatically

reduces cost and setup time for a sensor array. It is also impractical to have several hundred

sensors setup in an indoor or relatively small outdoor setting. Fewer sensors can easily

dissolve in the background, making a livable monitored environment. A new light estimation

algorithm is introduced and included in the CVT algorithm to assure predictable robot

convergence despite fewer sensors.

CVT-based taxis methods can be used in many applications such as chemotaxis, nuclear

hazard detection, electromagnetic (EM) radio jammer localization, hot spot detection in

forest fire mop-ups, etc. CVTs have not yet been applied to actual robots before to the

author’s best knowledge. All previous work appears in simulation or partial hardware

application. This work advances swarm engineering and Voronoi tessellation algorithms as
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a whole by applying CVTs to actual robots on a real platform. This research also introduces

the light estimation algorithm as a method to accommodate fewer sensors.

4.1 Swarm Design Approach

Global swarm behavior can be complex and volatile. Scientific procedures for swarm

behavior have been introduced to break down the complicated process for much more pre-

dictable results. The first swarm procedure, proposed by S. Kazadi, includes two steps [46]:

1. Generate a swarm condition,

2. Fabricate behaviors that satisfy the swarm condition.

These steps are simple and practical. To create global swarm behavior, define the desired

condition (foraging, flocking, etc.) and create behaviors to satisfy it. One may argue this

procedure is too basic and does not help simplify the difficult swarm task.

For this project, a second, more detailed swarm design approach is used based on

Kazadi’s original procedure [47]:

1. Identify desired emergent behavior,

2. Select or devise a set of behaviors and motivators,

3. Choose appropriate input for the above behavior motivators,

4. Generate an algorithm to combine behavior motivators,

5. Simulate global behavior,

6. Apply global behavior to robots.

All steps in this process, with the exception of the first, depends on the previous steps. If

one step does not work, the previous step should be modified for a successful swarm. This

ladder dependency organizes a swarm design and helps identify problem areas in the design.

These procedures were originally created for behavioral algorithms. Mathematical mod-

els were previously believed to be too difficult to develop because of the complex interactions
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and unknown variables of global swarm behavior. Swarming requires general behaviors in-

stead of the exact calculations mathematical models bring [47]. However, this project

successfully follows the six-step swarm design approach using a mathematical non-model

based algorithm without compromising general behaviors or complexity. The remainder of

this chapter will explain the phototaxis CVT design through each step of the swarm design

approach and compare results with a behavioral algorithm.

4.2 CVT Phototaxis Design

4.2.1 Identify Emergent Behavior

Step one of the design process defines the overall desired robot behavior. Examples of

swarm behavior which can be combined to create an emergent behavior include [47]:

� Aggregation,

� Flocking,

� Foraging,

� Following,

� Grouping,

� Docking,

� Dispersion,

� Homing,

� Herding,

� Shoaling, etc.

A clearly defined task is needed to find required behavior motivators for the second step.

The main goal of this project is to find and track a moving light source where the location

is unknown. Specific tasks to achieve this goal are:
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1. Rendezvous at a light source,

2. Follow light gradient towards light source,

3. Collision avoidance.

With these behaviors in mind selecting motivators is straightforward whether using behav-

ioral or mathematical algorithms.

4.2.2 Select Behavior Motivators

Behavior motivators are algorithms that can be run by the individual agents or that

allow each agent to react to local knowledge. Motivators constitute the individual agent’s

behavior and can react to a single or multiple inputs. A combination of motivators creates

an emergent swarm behavior [47].

As mentioned in Chapter 1, the CVT algorithm has many behaviors “built in.” For

this project the robots act as the generators for CVTs. Because Voronoi cells are convex

polygons that never overlap, one robot or generator cannot collide with another. This

inherent property of CVTs covers collision avoidance [48,49].

Also, if a region of interest is given a concentrated density, the CVT will cause the

robots to aggregate or rendezvous toward the maximum peak of that density. During this

aggregation the robots’ paths follow the gradient of the density. This behavior satisfies

the first and second motivator given the maximum of the density function is placed at the

location of the light.

An additional observation shows that the robots can also converge to the light source

simultaneously. The proof in sec. 1.5.2 shows that to minimize the energy function in (1.5)

the generators simultaneously approach a CVT configuration. Granted, each generator may

approach their CVT location at different rates depending on how far they are from that

location and other generators. However, if the robot kinematics respond well enough to

commands, a simultaneous rendezvous can be achieved. Considering these advantages to

CVTs only one rendezvous motivator is needed for cooperative phototaxis.
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4.2.3 Choose Inputs

Currently a CVT is calculated on the base-station computer that can communicate

with all robots and sensors. In the future, a more decentralized design will be extremely

beneficial. Specific inputs will change as the algorithm gradually becomes more decentral-

ized. For now, inputs required for the rendezvous motivator with CVTs include:

1. Array of light readings,

2. Position at each light reading,

3. Position of each robot.

Light readings are gathered by wireless sensors. Robots positions are gathered by a combi-

nation of pGPS and encoders.

4.2.4 Phototaxis CVT Algorithm

CVT Algorithm for Robots

An array of sensors is placed evenly over a platform, which serves as the region of

interest. The number of sensors is not a concern at this point. These sensors measure light

density over the platform at their corresponding positions to construct the discrete density

function ρ(x, y). The light readings and robot positions, pi, are gathered to build a Voronoi

Tessellation. Note that the density function ρ(x, y) is only sampled at certain points qj ,

where j = 1, . . . , l, and l is the total number of sensors. The combined Lloyd-MacQueen

method for robots is as follows.

Given a region Ω, a density function ρ(x, y) defined for all x ∈ Ω, and positive integers

k and l,

1. Select an initial set of k points {pi}ki=1(robot starting positions) as the generators;

2. Select the sampled points {qj}lj=1 ∈ Ω where ρ(qj) = ρ(xj , yj);
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3. Find the generator pi closest to the point qj for each sampled point; assign the set of

points qj with closest generator pi to Vi (this builds the discrete approximation of the

Voronoi cells{Vi}ki=1 );

4. Find the discrete mass centroid of each Voronoi cell. These centroids become the new

set of generators;

5. Give the robots command to move to the new generating points;

6. If the new generating points meet a given convergence criterion, terminate; otherwise,

return to step 2.

Step three of this algorithm can be obtained by looping though sensor and robot data.

This step is also the application of (1.1) which compares the distances between generators,

pi, and points, q to assign the Voronoi cell Vi. Notice that a single iteration of this new

Lloyd-MacQueen method changes all generators pi at once, as in the Lloyd method, while

an explicit computation of Voronoi tessellations is not needed, much like the MacQueen

method. The best of both algorithms are now combined for faster convergence.

Density Function

Before the CVT algorithm can be applied, a density ρ(x, y) is required. Originally,

the readings from the sensors served as the density. However, interference from other light

sources and sensor noise caused sporadic results. Secondly, the light source could be too

broad or asymmetrical for the robots to aggregate neatly around the source. Third, robots

will follow unique light sources in different ways. Each light source has its own distribution

characterized by intensity and drop-off rate.

The desired response requires robots to find and track any light source identically,

regardless of the light characteristics. To accomplish this, the density is modeled after a

Gaussian distribution. The center of the distribution, (xc, yc), occurs at the location of the

light. Below is the Gaussian function
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ρ(x, y) = c exp−σ[(x−xc)2+(y−yc)2], (4.1)

where c is the intensity of the Gaussian, and σ is the drop-off rate. A large σ is desired for

concentrated densities. A plot of a Gaussian density can be seen in fig. 4.1 where c = 1,

σ = 500, xc = 0.5, and yc = 0.5. The general Gaussian density in (4.1) achieves extremely

robust rendezvous behavior. Results of this density can be seen in the following sections.

Light Estimation Algorithm

In order to plot the density function, the location of the light source must be known.

Unfortunately, the number of sensors is limited and the source may not lie directly over

any sensor. Therefore, a light estimation algorithm is needed to approximate the location

of the light source. A precise characterization of the light is typically done to create an

Fig. 4.1: Plot of the Gaussian function for rendezvous.
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equation fit, piece-wise function, or zone intensity levels of the light distribution. However,

such exact calculations are only useful for that particular light. Assuming the light source

is unknown, the light estimation algorithm must find any light source within the region of

interest.

This project introduces such an algorithm. Instead of characterizing the distribution

of a specific light, consider the general intensity equation for the spreading of light [50],

i(x, y) =
c

[(x− xc)2 + (y − yc)2]σ/2
. (4.2)

Again, c is the intensity and σ is the drop-off rate. See fig. 4.2 for a plot of the light intensity

equation (4.2) where c = 1, σ = 0.3, xc = 0.5, and yc = 0.5.

In this case, the intensity at each sensor reading, {i(xj , yj)}lj=1 is known. Through

signal processing and least mean square techniques the intensity, c, the drop-off rate, σ,

Fig. 4.2: Plot of the general light intensity distribution.
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and the location of the light, (xc, yc) can be found. First, take the log of the intensity

equation

λ(x, y) = log c− 1
2
σ log

[
(x− xc)2 + (y − yc)2

]
,

where λ = log (i) .

Combine all known sample readings in matrix form



λ(x1, y1)

λ(x2, y2)

...

λ(xl, yl)


=



1 − 1
2

log
[
(x1 − xc)2 + (y1 − yc)2

]
1 − 1

2
log
[
(x2 − xc)2 + (y2 − yc)2

]
...

...

1 − 1
2

log
[
(xl − xc)2 + (yl − yc)2

]


 log c

σ



⇒ λ̄ = A(qc)b̄(c, σ),

where qc = (xc, yc).

Because we are dealing with measured values, noise and interference are introduced and the

squared error
∥∥∥λ̄− Â(qc)ˆ̄b(c, σ)

∥∥∥2
, where a hat indicates an estimated matrix or vector,

must be minimized:

min
ˆ̄b,qc

∥∥∥λ̄− Â(qc)ˆ̄b(c, σ)
∥∥∥2

= min
q̂c

(
λ̄TP(qc)λ̄

)
= min

q̂c

E(qc), (4.3)

where P(q̂c) = I− Â(ÂT Â)−1ÂT = I− Â
(
Â−1∗

)
,

and Â−1∗ is the pseudoinverse of Â.

The right hand side of (4.3) finds the x and y positions where E(qc) is an absolute

minimum. The minimum value can be found by iterating through x and y positions and

calculating E(qc) for each iteration. Finally, light intensity c and drop-off rate σ are derived

from the matrix Â associated with the minimum value
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ˆ̄b =

 log ĉ

σ̂

 =
(
Â−1∗

)
λ̄. (4.4)

Because the phototaxis project only requires an estimation of the location of the light

(xc, yc), (4.4) is not used, but can be extremely useful in identifying different light sources.

Unfortunately, iterating through the entire region of interest may take too much time.

The algorithm can be much faster if only a fraction of all x and y positions are evaluated. A

recursive light position estimation algorithm helps reduce the number of iterations needed.

The algorithm focuses or “zooms in” on the critical area and ignores the rest of the region.

Given a region Ω, an array of light intensity readings, {ij}lj=1 and position at each

reading qj ,

1. Find the log of each reading, λj(q) = log [ij(q)] ;

2. Begin with a large step size ∆ and critical area Ω;

3. Iterate through x and y positions by step size ∆ over the critical area to find the

minimum E(q);

(a) Â =



1 −1
2 log

[
(x1 − x)2 + (y1 − y)2

]
1 −1

2 log
[
(x2 − x)2 + (y2 − y)2

]
...

...

1 −1
2 log

[
(xl − x)2 + (yl − y)2

]


;

(b) P = I− Â(ÂT Â)−1ÂT = I− Â
(
Â−1∗

)
;

(c) E(q) = min
(
λ̄TPλ̄

)
;

(d) ∆← ∆
10 ; critical area ← q ± 5∆;

(e) If step size ∆ reached the minimum step, continue to step 4; otherwise, repeat

step 3.

4. Return the estimated light position qc ← q.
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By combining light location estimation, the Gaussian density function and the basic CVT

algorithm for robots a successful cooperative phototaxis can be achieved. To test the per-

formance of these algorithms, they are first placed in a simulated environment. Once kinks

are solved in simulation, the phototaxis algorithm is ready to apply to physical robots.

4.3 Simulation

Simulation is an important step for swarm design that allows the designer to study and

adjust agent behaviors relatively quickly compared to hardware implementation. Simulation

can also be used to differentiate between algorithm mistakes and hardware problems once

in the hardware phase.

4.3.1 Results

In this simulation nine static sensors are evenly placed over Ω to show phototaxis

performance with a limited amount of sensors. Four robots are also evenly placed over the

Ω. The control law for the robots is set to

ui = 3(pi − p∗i )− 3ṗi.

The light source is placed at the bottom left corner (0, 0) with the distribution:

i(x, y) =
1

(x2 + y2)0.3/2
.

The Gaussian density function for CVT rendezvous is set to

ρ(x, y) = exp−100[(x−xc)2+(y−yc)2] .

After the center of the light source is calculated, fig. 4.3 shows the Gaussian density

with the center of the estimated light location at (0, 0).

The time step is set to 0.05 seconds. Robots compute desired positions every 0.2

seconds. Progression of the simulation is shown in fig. 4.4. The X’s indicate sensors, O’s
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Fig. 4.3: Plot of the Gaussian function with estimated light location (0, 0).

indicate robot paths and the red asterisk indicates the estimated position of the light source.

Notice how the robots drive toward the source while keeping their square formation. This is

achieved by the nature of CVTs; no formation control consensus algorithms are used. The

robots converge to a CVT and arrive simultaneously at the source after 5 seconds. Similar

behaviors occur at different light locations and with dynamic light sources. For the robots

to gather closer to the light, the Gaussian density parameter σ should be increased.

4.3.2 Proof of Convergence

MAS2D and Diff-MAS2D assume the passive, second order dynamics described in (1.7)

with the control law in (1.8). The control input preserving the zero dynamics (ṗi = 0) is

also assumed to be ui = 0. The desired result is for the robots to converge to a CVT. In

other words, the robot positions must approach their mass centroids

pi → p∗i .
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(a) Initial postitions (b) Robot motion

Fig. 4.4: Progression of simulated robots for phototaxis.

With this in mind, position control laws which should approach a CVT can be consid-

ered a tracking problem where pi tracks p∗i . Lyapunov functions provide proof of convergence

for such tracking problems.

Proposition 4.3.1. For the closed-loop system in equation (1.8), the robots converge asymp-

totically to a particular centroidal Voronoi tessellation, assuming the tessellation set is finite.

Proof. For convenience, the control law in equation (1.8) is rewritten here

p̈i = ui = kp(pi − p∗i )− kdṗi.

Consider the following Lyapunov function for the control law

V (pi) =
1
2
kp ‖pi − p∗i ‖

2 +
1
2
ṗ2
i .

Find the derivative of the Lyapunov function

V̇ (pi) = kp(pi − p∗i )ṗi + ṗip̈i.
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Factor out ṗi and substitute the control law for p̈i

V̇ (pi) = ṗi [kp(pi − p∗i )− kp(pi − p∗i )− kdṗi] .

Cancel terms and simplify the expression

V̇ (pi) = −kdṗ2
i ≤ 0.

Therefore, the Lyapunov derivative is negative semi-definite. However, V̇ (pi) = 0 if and

only if ṗi = 0. Now, examine the control law in this special case given the zero dynamics

assumption

ui = 0 = kp(pi − p∗i )

⇒ pi = p∗i .

Therefore, by LaSalle’s principle, the robots asymptotically converge to a specific centroidal

Voronoi tessellation (pi = p∗i ) if the tessellation set is finite.

4.4 Robot Implementation

Now that phototaxis works in simulation, the algorithm is ready to be tested on physical

robots.

4.4.1 MASnet Challenges

The transition from simulation to hardware can be challenging considering the im-

perfect responses of the robots and heavy communication traffic. Remember, the robots

are cheap and each one has its own idiosyncrasies while nine Tmotes and four robots are

communicating simultaneously with the base-station. Problems of packet loss and proces-

sor lock-ups can occur. Optimizing controllable variables can lessen, if not eliminate these

problems. A discussion of these challenges follows.

First, it was difficult to find an adequately concentrated Gaussian without returning a
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zero density in at least one Voronoi cell. Each cell must have a density greater than zero to

find the mass centroid. Several numbers were tested for c and σ from the Gaussian equation

(4.1). The optimal response occurs when c = 1024, which is the maximum light reading

and σ = 10−5, where the region of interest is 3000 x 2300 mm. The mass centroid can be

calculated and the robots converge inches from the light source.

Convergence rate was also a problem on the platform. CVTs can be calculated several

times a second, but the light estimation took approximately 1 minute when each x and y

position was evaluated with a step size of 10 mm. This algorithm was replaced with the

recursive algorithm which can estimate the light in less than a second, beginning with a

step size of 1000 mm.

Once the entire CVT algorithm could be calculated within a second, several mass cen-

troid commands had to be sent to the robots every minute. Frequent CVT recalculation is

needed for dynamic environments. Unfortunately, too much communication caused packet-

loss and processor freezes. The robots could not move or send and receive any data. After

experimenting, the optimal rate for CVTs without impairing the four robots is 2 seconds.

4.4.2 Results

Nine experiments were conducted with a stationary light source at different locations

on the platform. For these experiments, an incandescent light was held above the platform

by hand. The initial configuration is setup similar to the simulation. See fig. 4.5(a) for

the initial startup from RobotCommander. Robots are indicated by red circles, Tmotes are

indicated by teal squares, the region of interest is indicated by a blue rectangle, and the

light sits on the top right corner. The average time it takes to surround the light source

is 13.5 seconds. See Table 4.1 for a table of average convergence times according to four

different light locations.

Table 4.1: Average convergence time according to light locations.
Location Middle Corners Edges Overall

Convergence Time 10 s 18.5 s 14 s 13.5 s
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Similar convergence results occur for dynamic CVTs provided the light does not move

faster than the algorithm reconfigures. Screen shots of one particular experiment can be

seen in fig. 4.5. The upper left robot was intentionally impaired to show the robust nature

of the algorithm. It is difficult to tell the exact location of the light from the image because

of the pGPS camera’s inherent distorted view. However, phototaxis behavior can still be

observed. The phototaxis CVT algorithm is also easily scalable. Robots can be added at

any time and include themselves in the surrounding group. Visit the YouTube channel

http://www.youtube.com/user/MASnetPlatform for videos of static and dynamic CVT-

based phototaxis experiments on the MASnet platform. The nesC code for CVT-based

phototaxis can be found in Appendix A.

4.4.3 Proof of Convergence

Unfortunately, robots on the MASnet platform do not use a position control law and a

Lyapunov function cannot prove convergence. Instead, movement is controlled by heading.

Therefore, a general mathematical proof will show that applications using any variation of

the Lloyd algorithm to compute CVTs—any algorithm that iterates between computing

Voronoi tessellations and moving generators—converges to the desired tessellation.

For clarity, the energy function in (1.5) is redefined as a function of the pair (Q,P):

HV(Q,P) =
k∑
i=1

∫
Vi(Q)

|q − pi|2 ρ(q)dq,

where Q is the set of any points within each cell, Q = {qi}ki=1; {Vi(Q)}ki=1 are the Voronoi

regions with respect to the points {qi}ki=1; and P is the set of distinct generators. The set

of mass centroids is defined as T(P) = {p∗i }
k
i=1.

Some properties of the energy function, discussed in Convergence of the Lloyd algorithm

for computing centroidal Voronoi tessellations, must be described before the proof [51].

Lemma 4.4.1. Let ρ be a positive and smooth density function defined on a smooth bounded

domain Ω. Then
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(a) Initial positions

(b) t = 14s (c) t = 36s

(d) t = 54s (e) t = 58s

Fig. 4.5: Progression of MASnet robots for phototaxis.
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1. H is continuous and differentiable in Ω̄k × Ω̄k;

2. H(P,T(P)) = minYH(P,Q);

3. H(P,P) = minYH(Q,P).

This Lemma simply shows that CVT sets minimize the energy function, H as discussed in

sec. 1.5.2. The next Lemma describes the relation between the set of mass centroids, T,

and Lloyd iterations.

Lemma 4.4.2. Let {Pn}∞1 be the sequence of generating point sets from the Lloyd algo-

rithm, where n is the number of iterations. Then

1. Pn = T(Pn−1);

2. H(Pn ,Pn) ≤ H(Pn−1,Pn−1).

This Lemma implies that the energy function monotonically decreases as Lloyd iterations

continue. With these Lemmas in mind, convergence to a certain CVT can be obtained.

Theorem 4.4.3. Any limit point P of the Lloyd algorithm is a fixed point, and thus, (P,P)

is a critical point of H [51]. The set of limit points P comprise a distinct centroidal Voronoi

tessellation.

Proof. Because H(Pn,Pn) is monotonically decreasing (Lemma 4.4.2.2)

H(P,P) = limH(Pnj ,Pnj ) = infH(Pn,Pn).

It is also known that because H(P,P) is a minimum (Lemma 4.4.1.3)

∂H(U,Pn)
∂U

|U=Pn = 0.

Therefore, it is also true that
∂H(P,P)

∂P
= 0.
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If ∂H(P,U)
∂U |U=P = 0, then (P,P) is a critical point of H and we are finished. Otherwise,

there exists some Q such that

H(P,Q) < H(P,P).

Thus, for small enough δ and large enough nj

H(Pnj ,Q) < H(P,Q) + δ

< H(P,P)

≤ H(Pnj +1,Pnj +1) Lemma 4.4.2.2

≤ H(Pnj ,Pnj +1) Lemma 4.4.1.3,

which contradicts Lemma 4.4.2.1 that claims

H(Pnj ,Pnj +1) = min
Y
H(Pnj ,Q).

Because the set of limit points P is fixed and each point is a mass centroid (P∞ = T(P∞)

from Lemma 4.4.2.1), these points converge to a fixed and distinct CVT.

4.5 CVT Versus Behavioral Phototaxis

Dynamic phototaxis has been previously achieved using behavioral algorithms [47].

This section presents a brief summary of the behavioral phototaxis design on the MASnet

platform and compares results with the new CVT phototaxis algorithm proposed in this

thesis.

4.5.1 Behavioral Phototaxis Design

The general desired phototaxis behavior is explained in sec. 4.2.1. However, the be-

havior motivators and inputs needed are much different for a behavioral design. Figure 4.6

shows a diagram of the behavior motivators and inputs needed to perform both the behav-

ioral and CVT algorithms. The behavioral algorithm requires two more behavior motivators
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(a) Behavioral algorithm

(b) CVT algorithm

Fig. 4.6: Algorithm comparison for the first three steps of phototaxis.

and an additional input.

Individual algorithms are needed for each behavior motivator in this case. The gradient

climbing algorithm switches between a curve left state and a curve right state. Fifteen

previous light measurements are stored in an array for each robot. At constant intervals,

each robot compares its current light reading to previous light readings. If the current

reading is greater, the state switches; there is no change otherwise. These states cause a

swimming motion that generally follows the light gradient but is much less smooth and

direct than the CVT algorithm robot motion. See fig. 4.7 for an illustration. The dots

indicate the path of the robot.

It is important to note that the light readings come from the light sensors on each

robot, see fig. 2.5, whereas the light readings for CVTs come from the stationary sensor

array. Admittedly, there are several advantages to having collocated sensors and actuators.

In this experiment, sensors are dynamic and all functionality is performed on one micro-

processor—no cross-communication or separate applications are needed. Future work on
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Fig. 4.7: Gradient climbing of one robot (courtesy of William Bourgeous).

collocated sensors and actuators for CVTs can be significant to research.

The second algorithm needed for behavioral phototaxis is consensus. Robot cooperation

is required for all robots to simultaneously meet at the light source. The information state

for the ith robot, xi, is the average of the front and back light sensors. A consensus is

reached with the following equation

ẋi = −
∑

j∈Γi(t)

αij (xi(t)− xj(t)) , (4.5)

where ẋi is the consensus variable, which is broadcast to all in-range robots; Γi(t) is the

set of robots that can communicate with robot i; and α is a positive scalar. The consensus

variable is then scaled to modify the ith robot’s velocity as follows.

v̇i = vb

[
1 +

ẋi − xi
ẋi

]
, (4.6)

where v̇i is the robot’s velocity and vb is the base velocity of the individual robots.

The third behavior motivator for the behavioral approach, is the confidence level.

Merely, if at least two robots have found a light source, the robots begin gradient climbing.

Finally, collision avoidance was originally programmed for the robots, but the additional al-

gorithm proved too much for the robots computational capabilities. The collision avoidance

algorithm is simple, but robots cannot perform this on top of the gradient climb, consensus,

and confidence level algorithms. The CVT algorithm, however, does not require stitching

complicated behavioral algorithms together.

Also, consider that these behavioral algorithms only work for a stationary light source.
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Once the robots reach the light, the gradient climbing state switches to a light follow state.

This light follow algorithm divides light intensity readings into 10 zones according to the

characterization of one specific incandescent light. A potential field keeps the robots within

zone 6 of the light. Figure 4.8 is a state flow diagram for dynamic phototaxis demonstrating

a potential field. In contrast, the CVT algorithm does not require switching between states

and the light estimation allows any light source to be identified, which eliminates the need

for characterizing a particular light source.

4.5.2 Behavioral Phototaxis Results

Two well-documented trials using behavioral phototaxis are explained here. One robot

is intentionally disabled in each trial to show the robustness of the system. The incandescent

light is placed under the platform on the left side. The first trial consists of three robots and

converges after 58 seconds. The second trial converges after 38 seconds with four robots.

Convergence rates are typically slowed by the robots’ inability to locate the light source and

the slow convergence of the consensus algorithm. On average, the CVT algorithm converges

nearly four times faster than the behavioral algorithm.

Fig. 4.8: Light follow algorithm state flow diagram.
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Chapter 5

Formation Control Using Centroidal Voronoi Tessellations

Advances in sensors, mesh networking protocols, microcontrollers, etc., provide oppor-

tunities to develop small and cheap autonomous robots. These simple robots working in a

swarm can perform tasks much more efficiently and reliably than one large robot. Moreover,

robots moving in a formation are useful for space, military, and search and rescue tasks such

as fire mop-up crews and GPS satellite formations.

A handful of techniques have been developed for robotic formation control. Some of

these techniques are listed as follows.

Artificial Potentials uses virtual leaders as moving reference points and artificial poten-

tials to keep a desired spacing between robots [52].

Generalized Coordinates characterizes the desired formation by location, orientation,

and shape coordinates [53].

Virtual Structure considers the entire formation group as one unit, which is typically

used in spacecrafts or small satellites [54].

Behavioral Control keeps formations by behavioral algorithms inspired by swarms and

flocks in nature [55].

Leader-Follower allows one robot to lead a group, or creates chains of robot leaders and

followers [2, 3].

This chapter introduces results for an emerging CVT formation control technique. CVT

formation control research is scarce and has not yet been applied to actual robots to the

authors knowledge [45,48]. This research presents the first physical implementation results
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of CVT formation control and compares these results with other formation control tech-

niques. The simplicity of the algorithm presents its advantages over other formation control

techniques.

This research also explores optimal starting positions for any CVT application. The

objective is to quickly converge to the desired CVT, which can be used in many real-world

applications. For example, suppose fire clean up robots are deployed near a fire. The robots

should be able to locate the hot spots accurately and as quickly as possible. The impact

of robot number and optimal control gains is also studied. Finally, this thesis discusses a

relationship between CVTs and the basic consensus method, which explains fundamental

behaviors for CVTs and consensus.

5.1 Previous Formation Control Work

Several experiments for formation control have been conducted on the MASnet plat-

form. All previous formation work is decentralized. In other words, each robot contains its

own controller or consensus algorithm to converge to a certain formation. Four separate

algorithms and formations have been tested: the leader-follower approach [2, 3], discrete

rendezvous, axial alignment, and dynamic formations [1,56]. The following sections discuss

these algorithms.

5.1.1 Leader-Follower Method

The most developed formation control method on the MASnet platform is the leader-

follower technique. There are many leader-follower scenarios, but all scenarios include at

least one leader that follows commands by the operator and one follower that adapts to

the movements of the leader(s). MASnet leader-follower experiments implement a distance-

heading controller requiring at least one leader and one follower where each follower must

communicate with its leader and each leader must communicate with all its followers. Es-

sentially, the controller allows the designated follower(s) to track the leader’s heading θf

while keeping a constant distance rf from the leader. See fig. 5.1 for an illustration.
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Fig. 5.1: Leader-follower controller parameters (courtesy of Pengyu Chen).

To keep the formation, the follower recalculates its desired position and heading by the

following equation.


x

y

θ

 =


rf cos(θf + θl)

rf sin(θf + θl)

0

+


xl

yl

θl

 ,

where (xl, yl, θl) indicate the position and heading of the leader. The follower updates its

calculations every time pGPS information is received. Unfortunately, during experiments, it

has been discovered that followers become lost when they stray more than 15 cm from their

desired positions, which happens quite frequently [2]. To avoid breaking the formation the

follower sends a WAIT 4 ME signal to the leader, which stops till the followers reach their

desired position. This successfully keeps formation, but movement is slow and choppy. In

one experiment, three followers formed an equilateral triangle around the stationary leader.

The formation converged after 53 seconds.
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5.1.2 Consensus Rendezvous

Unlike the leader-follower approach, the rendezvous consensus algorithm does not re-

quire a leader. With a static or dynamic communication topology, the robots eventually

come to a common agreement. In this case, the objective of the rendezvous algorithm is

for all robots to converge to the group’s centroidal center. Let ri = (xi, yi) be the actual

position of the ith robot and let r∗i = (x∗i , y
∗
i ) be the desired position of the ith robot.

Robot rendezvous can be achieved by the following equation [1].

r∗i =

∑k
j=1 gijrj∑k
j=1 gij

, (5.1)

where k is the number of robots in the group and gij is a positive weighting factor if

robot i receives information from robot j, and 0 otherwise, according to the communication

topology matrix.

Perhaps the most intriguing aspect of (5.1) is that it mirrors the mass centroid equation

for CVTs in (1.4). This may be considered obvious since both equations are calculations of

centroids. However, a new proposition follows considering this relationship.

Proposition 5.1.1. Consider the mass centroid equation (1.4) for CVTs. The rendezvous

consensus equation (5.1) solves the mass centroid equation for individual Voronoi cells.

Therefore, the consensus equation, for each Voronoi cell, minimizes the energy function

(1.6) and converges to a CVT. Furthermore, unique and finite communication topologies

and weighting factors cause systems to converge to unique rendezvous centroids.

Proof. Isolate one Voronoi cell Vi in the discrete mass centroid equation (1.4). Suppose that

a group of robots (j = 1, . . . , N) within Vi serve as the sample points of that cell. In other

words, suppose rj = qj . Make this substitution in the mass centroid equation

p∗i =

∑N
j=1 ρjrj∑N
j=1 ρj

.

Now, the weighting factor gij acts as a sample density for each sample point or robot

(gij = ρj)
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p∗i =

∑N
j=1 gijrj∑N
j=1 gij

.

It is now easy to see p∗i = r∗i from (5.1).

Because unique densities converge to unique CVTs (Proposition 4.3.1 and Theorem 4.4.3),

specific communication topologies and weighting factors will converge to specific rendezvous

centroids.

Several consensus rendezvous experiments have been conducted with varying commu-

nication topologies and switching topologies. Four robots were placed at the four corners

of the platform. Experiments with a connected communication tree converged successfully.

The fastest convergence occurred with a fully connected topology at 11.58 seconds. Other

topologies converged between 15 and 20 seconds. Switching topologies converged between

24 and 45 seconds. See fig. 5.2 for results of selected experiments. Circles show robot

starting positions and the dots show the path of each robot.

Notice in these results that the robots collide with one another to converge to one

point. Unfortunately, the consensus algorithm does not include collision avoidance like

CVTs. This consensus algorithm converges to one point while the CVT algorithm converges

to a tessellation which avoids generator collisions [48,49].

5.1.3 Consensus Static Formations

Equation (5.1) is simply the fundamental consensus algorithm. This algorithm can

be expanded to converge to lines and shapes instead of one point. The axial alignment

algorithm allows robots to rendezvous to a line while the robots are separated by a small

distance δij . The equation for the axial alignment formation is as follows [1]:

r∗i =

∑k
j=1 gijhij(rj + δij)∑k

j=1 gij
. (5.2)
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(a) Fully connected (tf = 11.58s) (b) Not connected (tf = 6.93s)

(c) Connected (tf = 18.89s)

Fig. 5.2: Rendezvous consensus results (courtesy of William Bourgeous).

Figure 5.3 shows the communication topology and results of an axial alignment exper-

iment using (5.2). The robots are intended to converge to a line separated by 24 cm and

are initially placed, at random, on the platform. Observe, the robots eventually converge

to their desired positions with some overshoot.

5.1.4 Consensus Dynamic Formations

Finally, by adding a leader to the robot group, the platform can combine the axial

alignment algorithm and the leader-follower method to achieve dynamic formations [1].

Unfortunately, because of delays in the system, the robots cannot keep a straight line

formation. Followers can only lag behind the leader causing a V-formation.

Figure 5.4 shows the communication topology and results of the dynamic formation.

The head robot is the leader. Because of frequent divergence problems, the leader is pro-

grammed to move slow. Consequently, the dynamic formation holds well, provided the

leader moves slow enough for each robot to converge to its desired position.
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(a) Communication topology (b) Robot trajectories

Fig. 5.3: Axial alignment results (courtesy of William Bourgeous).

(a) Communication topology (b) Robot trajectories

Fig. 5.4: V-formation results (courtesy of William Bourgeous).
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5.2 CVT Formation Control

The rendezvous CVT formation has been demonstrated and analyzed in Chapter 4.

Essentially, a concentrated Gaussian function is given as the density ρ, where the maximum

is placed at the desired rendezvous point. Unlike the phototaxis experiment, the CVT

formation algorithm defines the rendezvous point. Therefore, an array of sensors is not

needed to find a rendezvous point.

Other formations can be created by density functions that form line segments, ellipses,

or other arbitrary polygons and curves [45]. For instance, consider an equation for an ellipse,

a(x− xc)2 + b(y− yc)2 = r2, where a, b, and r are positive scalars and (xc, yc) is the center

of the ellipse. The density function that creates an ellipse formation is as follows.

ρ(x, y) = exp−σ[a(x−xc)2+b(y−yc)2−r2]2 , (5.3)

where σ is a large positive gain. Compare (5.3) with the Gaussian density used for ren-

dezvous (4.1). Essentially, the ellipse density is a Gaussian density extended to a circle in-

stead of one point, much like (5.2) is a line extension of the consensus rendezvous equation.

This “extension” can form other lines and shapes as well. Examples of other formations

and their corresponding equations can be found in Table 5.1.

Finally, dynamic formations can easily be created by changing the center of the for-

mation over time (xc(t), yc(t)). Furthermore, the shape of the formation can evolve by

time-varying certain terms. For example, r(t) can change the size of an ellipse formation

while a(t) and b(t) can squeeze or widen the ellipse. These shape shifting formations are

useful when traversing through tight passageways, corners, etc.

5.3 Simulation Results

The MAS2D platform is used to test the performance of these densities. The first set of

experiments tested the effect of initial starting positions and number of robots on conver-

gence rate. The control law for the robots is set as previously to ui = 3(pi − p∗i )− 3ṗi.

For each formation (ellipse, line, and v-shape), a group of four, nine, and sixteen robots
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Table 5.1: CVT formation examples; ρ(x, y) takes the form e−σk
2
.

Formation k Image

line ax+ by + c

ellipse a(x− xc)2 + b(y − yc)2 − r2

v-shape a |x− xc|+ b(y − yc) + c
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were placed in four different initial configurations. These configurations include random

placement and even distribution over the entire region, or over one corner of that region.

See fig. 5.5 for examples of these initial configurations and their corresponding numbers for

future reference.

The simulation time step is set to 0.05 seconds. Robots compute desired positions every

0.2 seconds. The convergence time is determined by the energy function HV (p), which is

plotted at each time step. The tessellation converges as the energy function converges.

Illustrations of final positions for each formation can be found in fig. 5.6. A CVT approach

to formation control allows the robots even spacing without the need of rigid formations or

reference points as in other methods.

Figure 5.7 shows convergence rate bar plots for each formation. Each formation fol-

lows different convergence trends. However, configurations 3 and 4, which are uniform

distributions, typically converge faster. From these results, ideally, a CVT initial configu-

ration would give the quickest convergence, but if the formation is not known, uniformly

distributing robots is recommended.

(a) Starting position 1 (b) Starting position 2

(c) Starting position 3 (d) Starting position 4

Fig. 5.5: Starting positions for simulation experiment.
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(a) Ellipse (b) Line (c) V-Shape

Fig. 5.6: Final formation positions.

Also, notice the effect of robot number. An increase in robot number leads to an

increase in convergence rate for the ellipse formation as expected. However, this is not the

case for configurations 1 and 2 for the line and v-shape formations. This is caused by the

nature of random distributions. Some distributions may randomly be closer to the desired

CVT than others and, therefore, converge quicker.

It is important to note, here, that these four configurations are by no means represen-

tative of all possible initial robot configurations. These experiments attempt to provide a

rough analysis on robot CVT performance. As mentioned earlier, CVT formation control

is an emerging research topic, which is still in its infancy. Future research will include more

detailed analysis on convergence trends and optimal performance.

A second experiment evaluates the control law and its effects on the convergence.

Previous research presents a thorough assessment of the damping coefficient kv [57]. A low

kv will cause overshoot, while a high kv will cause slow convergence. The distance from the

robots’ desired position also changes the coefficient’s performance. The definition of “too

high” or “too low” is finally determined by the optimal damping coefficient, which is found

to be 3.

In this thesis, the influence of the proportional gain kp is presented. Using a group of

nine robots with a starting configuration 3, several values of kp are tested with each forma-

tion. See fig. 5.8 for a line plot of the results. Notice, convergence rates for all formations

monotonically decrease as a function of kp, although the decline occurs at different rates.

This drop-off takes place because higher proportional gains allow robots to move faster
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Fig. 5.7: Formation simulation results.

to their desired positions. Also, observe the concentrated convergence rates at kp = 10

and kp = 20. The line plot shows that convergence rates also approach a minimum as

kp increases. A gain of 5 allows a fast convergence rate for all three formations. Further

mathematical analysis can find models for convergence trends, which can further explain

the difference in drop-off rates and minimum convergence times.

Finally, several dynamic formations were also made. It has been discovered that for-

mations can keep well if the speed of the formation is less than or equal to the the speed of

the CVT algorithm. In simulation, this number is 0.05 units/s.

5.4 Robot Implementation Results

Experiments similar to the simulation tests have been conducted. Different densities

are programmed in RobotCommander for line, v-shape, rendezvous, and ellipse formations.

The base-station recalculates the CVT once every robot has reached its desired position.

Initial positions of the robots are set up similar to configuration 3 used in simulation (robots

are evenly distributed over the platform). Table 5.2 shows average convergence times for
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Fig. 5.8: kp influence on convergence rate.

Table 5.2: Average convergence time for each formation.
Formation Rendezvous Ellipse Line V-Shape

Convergence Time 13.5 s 10 s 44 s 12.5 s

all tested formations. Figure 5.9 shows examples of robot formations.

Similar convergence occurs for dynamic formations. Interestingly, the speed of the

formation does not need to be less than the speed of the algorithm. It is actually eas-

ier for robots on this platform to follow a faster formation because robots do not need

to reorient themselves as often with farther desired positions. Figure 5.10 shows screen

shots of a dynamic straight line formation. The red circles indicate robots and the green

circles indicate desired positions for each robot. Unlike a dynamic leader-follower for-

mation demonstrated in sec. 5.1.4, the CVT formation can keep a straight line where

robots move side by side regardless of network delay. Visit the YouTube channel http:

//www.youtube.com/user/MASnetPlatform for videos of static and dynamic CVT-based

formation control experiments on the MASnet platform. The nesC code for CVT-based

(a) Diagnal line (b) V-shape (c) Straight line

Fig. 5.9: Final robot formations.
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(a) t = 5s (b) t = 15s

(c) t = 31s (d) t = 49s

Fig. 5.10: Straight line dynamic formation.

formation control can be found in Appendix A.

5.5 CVT Versus Other Formation Control Techniques

The features of swarm design for multi-robot systems [47] are discussed in the following

section to demonstrate the advantages of a CVT-based formation control algorithm. Ex-

periments are conducted to showcase each feature and to compare other formation control

techniques previously explained in this chapter. The features of multi-robot swarm design

include [47]:

Robustness - The group continues operation despite individual robot failures.

Scalability - Robots can be added and/or removed from the group without reprogram-

ming.

Self-organization - A peacemaker or leader is not required for a robot swarm.

Flexibility - A robot group typically generates new solutions with each trial.
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Longevity - A group of robots can outlive a single robot.

Low-cost - Less parts are required for a simple robot design.

5.5.1 Robustness

The system’s robustness is demonstrated in two ways: pushing robots out of the forma-

tion and intentionally impairing selected robots. In the first case, a disturbance is introduced

in the formation to observe its effects. Figure 5.11 shows screen shots of this test. After

the robots create a line formation in 32 seconds, a command is given for two robots to

break the formation in fig. 5.11(c). The robots, then, repair the formation within 9 seconds.

Additional experiments produce similar results.

The second robustness test observes the swarm’s ability to continue despite individual

robot failure. In this case, one robot is intentionally impaired while the CVT formation

continues. The disabled robot may be able to communicate, but not move, or vice-versa.

One trial is shown in fig. 5.12 using a dynamic line formation. Notice that the three left

robots compensate for the failed robot on the right. The swarm eventually distributes itself

evenly over the dynamic line.

(a) Initial positions (b) t = 32s (c) t = 41s

(d) t = 56s (e) t = 65s

Fig. 5.11: Results for the first robustness test.
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(a) Initial positions (b) t = 8s (c) t = 16s

(d) t = 33s (e) t = 47s

Fig. 5.12: Results for the second robustness test.

These tests successfully illustrate the robustness of the CVT-based formation control

algorithm. Other formation control techniques can also perform disturbance rejection, but

some can only tolerate a much smaller disturbance [1–3]. For example, the leader-follower

method in secs. 5.1.1 and 5.1.4 diverges if the follower is more than 15 cm away from its

desired positions [2].

Unlike disturbance rejection, robot failure is often a problem in formation control [1–3].

Most methods require rigid patterns and positions. The failure of one robot in the formation

can cause failure of the entire group. In the leader-follower method, each follower depends

on its leader [2]. If one leader fails, its followers also fail. In consensus, the failure of one

robots will permanently change the communication topology, which can cause divergence

or an undesirable consensus [1, 56,58].

5.5.2 Scalability

The scalability of the system is tested by placing new robots arbitrarily on the plat-

form, at random moments, during the formation task. Figure 5.13 shows screen shots of

one trial using a dynamic line formation. Notice, as each new robot appears, the group

reconfigures itself for an even line distribution across the platform. This behavior occurres
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(a) Initial position (b) t = 13s (c) t = 27s

(d) t = 43s (e) t = 81s

Fig. 5.13: Results for the scalability test.

for all scalability tests with different static and dynamic formation scenarios, proving its

strong reliability.

Considering other formation control methods, scalability is also often a problem [1–3].

It is difficult for new robots to enter or leave a rigid formation without group failure. The

number of robots included in a consensus formation is limited to the size of the commu-

nication topology matrix [1, 56, 58]. The CVT formation control algorithm is much more

scalable, allowing the formation to self-heal or reconfigure itself once robots are added or

taken away from the group.

5.5.3 Self-Organization

A CVT is extremely robust and easily scalable because of its self-organization property.

The swarm does not require a leader or peacemaker in the group. The CVT-based algorithm

requires information from the collective group and individual robots respond to the collective

information. In order to achieve this, robots rely on nearest neighbors, creating a web of

dependance. If one robot fails, robots continue to rely on other neighbors in the group. A

new robot can also be easily added to the web. Self-organization for CVT-based formation

control is evident in all experiments.
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5.5.4 Flexibility

Granted, a CVT-based swarm is much less flexible than a behavioral-based swarm.

Too much flexibility leads to unpredictable results. CVTs are intended to take much of

the guess work out of the algorithm’s performance by introducing a mathematical model

in place of a behavioral model. Theorems, propositions, and proofs presented in this thesis

are the products of analyzing the predictable properties of CVTs.

However, Theorem 4.4.3 shows that unique solutions to CVTs can be achieved by

changing the algorithm’s density function. The imperfection of the robots also cause each

robot to perform somewhat differently to commands. These two factors bring a limited

flexibility, allowing diverse, yet, reasonably predictable behaviors and solutions.

5.5.5 Longevity and Low-Cost

Longevity is a positive aspect of any multi-robot application. All formation control

techniques require multiple robots. However, a robot group can last longer if it remains

stable after individual robot failures. Therefore, the more robust a robot group is, the

longer it can last.

A simple, self-contained robot design helps individual robots to last longer. Any

swarm-based system, such as this CVT-based formation control system, should use simple

robots [47]. With several robots working together, a complicated robot design is unneces-

sary. Simple robot designs, with fewer hardware components, are much less expensive and

easier to build.

5.5.6 Other Advantages and Observations

For many multi-robot systems, a separate algorithm for collision avoidance is needed [1,

14,47]. Observe the consensus rendezvous results in sec. 5.1.2. The robots collide with each

other and contend for the rendezvous point. CVTs, however, converge to a tessellation to

avoid generator collisions [48,49].

It should be mentioned that collisions are still possible with CVT applications, although

is it much less frequent. Each robot/generator is represented by a point. The points do not
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collide, but the robots are much larger than one point. Future work can improve collision

avoidance by representing each robot/genreator as a square and implementing techniques

such as fractional potential fields [14].

Because of delay and divergence problems, dynamic formations previously implemented

on the MASnet platform move slow and choppy. The leader-follower approach often needed

the leader and followers to alternate between moving to keep the formation stable [2].

Because of system delay, a dynamic axial alignment formation could not hold [1]. The

followers would lag behind the leader creating a v-shape. The dynamic v-shape could hold

only if the formation moved slow enough for the robots to converge; see secs. 5.1.3 and 5.1.4.

The CVT-based formation, however, can keep a straight line formation and dynamic

formations do not need to move slower than the algorithm converges for success. Faster

moving formations are desirable because the robots do not need to reorient themselves as

often when moving farther distances. The heading controller used for the robots should be

improved to lessen this problem in the future.

Finally, with all CVT experiments, the robot group is able to evenly distribute them-

selves in the formation without the use of rigid structures or formations. This is an interest-

ing aspect of CVTs that is useful for self-healing once a robot is added or taken away from

the formation. However, for some formation control applications, rigid structures and exact

positions are needed. In these cases, CVT-based formation control should not be used.

Considering all of these aspects, CVTs is an extremely robust and scalable method for

formation control. Though it may take longer to converge, CVT-based formation control is

self-healing and does not require rigid structures. CVTs are beneficial to formation control

applications that do not demand precise positioning.
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Chapter 6

Conclusion

6.1 Contributions

In this thesis, several topics have been discussed related to the CVT phototaxis and

formation control algorithms. Some of these topics have been used or mentioned before.

Below is a list of new contributions presented in this thesis, separated by chapter:

� MASnet Platform

– New second generation MicaZ MASmote design

* Bolted battery pack mount

* Photo-diode Plexiglasr support

* Bolted voltage divider mount

* GWS servo motors

* PCB layout

� Heterogeneous Swarm System

– MicaZ and Tmote cross-communication

– Efficient light sensing application

– Tmote logging function

– “Read Tmote” program for analyzing Tmote data

� Phototaxis

– Light estimation algorithm

– CVT phototaxis algorithm
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– Simulation results and proof of convergence

– Robot implementation results and proof of convergence

� Formation Control

– Propose and proof of relationship between CVTs and consensus

– CVT formation control algorithm

– Analysis on control law, robot number, and robot initial positions

– Robot implementation results of static and dynamic formations.

6.2 Future Work

This research is simply the beginning of many possibilities. Suggestions for future work

on the MASnet platform and CVT algorithms in general are listed here:

� MASnet Platform

– Improve point-to-point robot control

– Increase the number of markers detected by RobotCommander

– Implement a more reliable communication protocol

– Reduce the need for pGPS

* Improve robot position estimation by Kalman filters, RF signal strength,

additional encoders, etc.

– Observe CVTs with fog diffusion

� CVT and Other Algorithms

– Create a true decentralized design

* Implement a mesh sensor network with a dynamic topology

* Limit the range of each robot

– Analyze and improve CVT performance in detail
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* Mathematically validate the effects of control law, initial starting positions,

and robot number

* Create models for convergence trends

* Improve collision avoidance by potential fields or other methods

– Experiment with collocated sensors

– Experiment with electromagnetic-taxis (EM-taxis)
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Appendix A

RobotCommander Code for CVT Algorithms

This appendix includes files and excerpts from the RobotCommander code for CVT

phototaxis and CVT formation control. For all excerpts, code added by the author is

commented with the name Shelley. For a list of all files used for RobotCommander, refer

to Appendix C.

Note. Some line numbers have been changed from the actual files for the reader’s con-

venience. Also, the listed code does not include all changes made by the author. Details

such as variable declarations are not included. To see all changes by the author, refer

to the latest RobotCommander code.

A.1 masnet Messages.h

This section includes code that allows RobotCommander to understand incoming Tmote

messages as described in sec. 3.4.2. These excerpts are from the file masnet Messages.h.

Message type definitions
187 enum MASNET MSG TYPE {
188 /* From mote to pc */
189 // 0 is reserved for error
190 AM MOTE SENSOR MSG = 1 /* sensor readings from motes*/
191 ,AM CMD COMPLETE MSG = 2 /* sent from mote to pc once all

current commands it has are completed */
192 ,AM EXCEPTION MSG = 3 /* error alert */
193 ,AM DEBUG MSG = 4
194 ,AM COLLECT MSG = 5
195

196 /* From Tmote to PC (tmote sensor data) added by Shelley 10132007*/
197 ,AM TMOTE MSG = 10 /*so PC can recognize Tmote messages*/
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Message structure definition
349 /* The following is added 10132007 to recieve Tmote messages by Shelley */
350 enum {
351 OSCOPE BUFFER SIZE = 10, //define constants
352 };
353

354 typedef struct OscopeMsg st {
355 uint16 t sourceMoteID;
356 uint16 t lastSampleNumber;
357 uint16 t channel;
358 uint16 t data[OSCOPE BUFFER SIZE];
359 } OscopeMsg;
360 /* ADDED by Shelley 10132007*/

A.2 VoronoiTessellation

The following files were added to RobotCommander to calculate CVTs and light esti-

mation, as well as perform phototaxis and formation control.

VoronoiTessellation.h

1 /***************************************************************
2 Header file added to calculate centroidal Voronoi tessellations
3 ****************************************************************/
4

5 #pragma once
6 #include "masnet def.h"
7 #include "masnet Messages.h"
8 #include <math.h>
9 #include <vector>

10 #include <matrix.h>
11

12 /*For matrix template*/
13 #ifndef NO NAMESPACE
14 using namespace std;
15 using namespace math;
16 #define STD std
17 #else
18 #define STD
19 #endif
20

21 #ifndef NO TEMPLATE
22 typedef matrix<double> Matrix;
23 #else
24 typedef matrix Matrix;
25 #endif
26 /*********************/
27

28 #define MASNET MAX TMOTES 9
29

30 typedef struct TmoteMsg st { //tmote (sensor) info



88

31 int sourceMoteID;
32 int lastSampleNumber;
33 int channel;
34 int PAR;
35 float X POS;
36 float Y POS;
37 int voronoiRobot; //robot assocciated with that tmote
38 } TmoteMsg;
39

40 typedef struct RobotMsg st { //robot (actuator) info
41 int mote;
42 int frontPhoto;
43 int backPhoto;
44 float x;
45 float y;
46 float angle;
47 } RobotMsg;
48

49

50 class CVoronoiTessellation
51 {
52 protected:
53 TmoteMsg tmote array[MASNET MAX TMOTES+1]; // index is tmote id
54 RobotMsg robot array[MASNET PGPS MAX ROBOTS+1];
55

56 //Added for light estimation
57 Matrix apos;
58 Matrix sinfo;
59 Matrix readings;
60 vector<int> robotIDs;
61 int timeCount;
62 float xcen, ycen;
63

64 // variables for comparing distances
65 int mini;
66 float min;
67 float temp;
68 float robotX;
69 float robotY;
70 float sensorX;
71 float sensorY;
72 bool m cancel; //flag to check if cancel has ever been pressed
73 bool m cvt lightfollow; //flag to check if light follow mode is

activated
74 bool m cvt formation; //flag to check if formation mode is activated
75

76 public:
77 CVoronoiTessellation (void);
78 ˜CVoronoiTessellation (void);
79 void updateCVT();
80 void setTmote(OscopeMsg* msg, int sensor, float x, float y);
81 void setRobot(MoteSensorMsg* msg);
82 void clearCVT();
83 void flushTmote();
84 TmoteMsg* getTmote(int sensor){return &tmote array[sensor];}
85 RobotMsg* getRobot(int actuator){return &robot array[actuator];}
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86 int isNotFull(void);
87 bool robotReceived(int actuator){return !robot array[actuator].mote==0;}
88 bool initialize();
89

90 bool cancel() {return m cancel;}
91 void setCVTLightFollow(bool flag) {m cvt lightfollow = flag;}
92 void setCVTFormation(bool flag) {m cvt formation = flag;}
93 bool isCVTLightFollow() {return m cvt lightfollow;}
94 bool isCVTFormation() {return m cvt formation;}
95

96 void setMin() {min = sqrt(pow(MASNET PGPS PLATFORM LENGTH X,2)+pow(
MASNET PGPS PLATFORM LENGTH Y,2));}

97 void setTime() {timeCount = 0;}
98 bool noMovement(); //returns true if there are no commands to any

active robots
99

100 float getLightX() {return xcen;} //returns x location of light
101 float getLightY() {return ycen;} //returns y location of light
102

103 /*Functions to calculate light estimation*/
104 void interpSinfo(Matrix sinfo, Matrix readings, Matrix* newSinfo, Matrix

* newReadings);
105 void lightLocation(Matrix sinfo, Matrix readings, float xmin, float xmax

, float ymin, float ymax, int dlev);
106 void lightLocationRec(Matrix sinfo, Matrix readings, float xmin, float

xmax, float ymin, float ymax, int step);
107 void lightmin(float x, float y, Matrix sinfo, Matrix lambda, float* res,

Matrix* A);
108 Matrix pseudoInverse(Matrix A);
109 Matrix multiply(Matrix A, float scalar);
110 float dot(Matrix A, Matrix M);
111 /*****************************************/
112

113 };

VoronoiTessellation.cpp

1 #include "StdAfx.h"
2 #include "VoronoiTessellation.h"
3 #include "RobotCommanderCore.h"
4 #include "MainFrm.h"
5 #include <math.h>
6

7 extern CRobotCommanderCore RcCore;
8

9

10 CVoronoiTessellation::CVoronoiTessellation(void)
11 : m cancel(false)
12 ,m cvt lightfollow(false)
13 ,m cvt formation(false)
14

15 {
16 memset(tmote array, 0, MASNET MAX TMOTES+1 * sizeof(TmoteMsg));//set

tmote array to 0
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17 memset(robot array, 0, MASNET PGPS MAX ROBOTS+1 * sizeof(RobotMsg));//
set robot array to 0

18 setMin();
19 setTime();
20 mini = 0;
21 apos.SetSize(MASNET PGPS NUM OF ROBOTS, 2);
22 sinfo.SetSize(MASNET MAX TMOTES, 2);
23 readings.SetSize(MASNET MAX TMOTES, 1);
24 robotIDs.assign(MASNET PGPS MAX ROBOTS,0); //initialized to zeros
25 xcen = 0, ycen = 0;
26 }
27

28 CVoronoiTessellation::˜CVoronoiTessellation (void)
29 {
30 }
31

32 void CVoronoiTessellation::updateCVT()
33 {
34 int numOfRobots = 0;
35 int i, t;
36 for(i=1; i<= MASNET PGPS NUM OF ROBOTS; i++){
37 if(robotReceived(i)){
38 apos(numOfRobots,0) = robot array[i].x;
39 apos(numOfRobots,1) = robot array[i].y;
40 robotIDs[numOfRobots] = robot array[i].mote;
41 numOfRobots++;
42 }
43 }
44 apos.SetSize(numOfRobots,apos.ColNo()); //resize apos matrix
45 robotIDs.resize(numOfRobots); //resize robotIDs vector
46

47 Matrix newSinfo, newReadings; //holds all virtual sensor position and
readings respectively

48 interpSinfo(sinfo, readings, &newSinfo, &newReadings);
49

50 int mini = 0;
51 int virtualSensorNum = (int)newReadings.RowNo();
52 vector<int> voronoiCell(virtualSensorNum,mini);
53

54 for(i=0; i < virtualSensorNum; i++){ //sensors
55 setMin();
56 for(t=0; t < numOfRobots; t++){ //actuators
57 float temp = (float)sqrt(pow(apos(t,0)−newSinfo(i,0),2)+pow(apos

(t,1)−newSinfo(i,1),2));
58 if(temp < min){
59 min=temp;
60 mini=t;
61 }
62 }
63 voronoiCell[i] = mini;
64 }
65 for(t=0; t < numOfRobots; t++){ //calculate mass centroid
66 float sumx = 0;
67 float sumy = 0;
68 float sums = 0;
69
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70 for(i=0; i < virtualSensorNum; i++){
71 if(voronoiCell[i] == t){ //only loops through the sensors in

the robots voronoi cell
72 sumx += (float)(newReadings(i,0)*newSinfo(i,0));
73 sumy += (float)(newReadings(i,0)*newSinfo(i,1));
74 sums += (float)newReadings(i,0);
75 }
76 }
77 if(sums != 0) //avoid division by zero
78 RcCore.setRobotDestByID(sumx/sums, sumy/sums, MASNET UNSET ANGLE

, robotIDs[t], true);
79 }
80

81 apos.SetSize(MASNET PGPS NUM OF ROBOTS, 2); //in case more robots are
introduced (elliminates matrix error)

82 robotIDs.resize(MASNET PGPS NUM OF ROBOTS);
83 }
84

85 void CVoronoiTessellation::setTmote (OscopeMsg* msg, int reading, float x,
float y)

86 {
87 int i = msg−>sourceMoteID − 20;
88 tmote array[i].sourceMoteID = i;
89 tmote array[i].lastSampleNumber = msg−>lastSampleNumber;
90 tmote array[i].channel = msg−>channel;
91 tmote array[i].PAR = reading;
92 tmote array[i].X POS = x;
93 tmote array[i].Y POS = y;
94

95 //set matricies
96 sinfo(i−1,0) = x;
97 sinfo(i−1,1) = y;
98 readings(i−1,0) = reading;
99 }

100

101 void CVoronoiTessellation::setRobot (MoteSensorMsg* msg)
102 {
103 int i = msg−>mote;
104 robot array[i].mote = i;
105 robot array[i].frontPhoto = msg−>frontPhoto;
106 robot array[i].backPhoto = msg−>backPhoto;
107 robot array[i].x = (msg−>x);
108 robot array[i].y = (msg−>y);
109 robot array[i].angle = (msg−>angle);
110 }
111

112 void CVoronoiTessellation::clearCVT(){
113 flushTmote();
114 memset(robot array, 0, MASNET PGPS MAX ROBOTS+1 * sizeof(RobotMsg));//

set robot array to 0
115 apos.Null();
116 xcen = 0;
117 ycen = 0;
118 }
119

120 void CVoronoiTessellation::flushTmote(){
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121 memset(tmote array, 0, MASNET MAX TMOTES+1 * sizeof(TmoteMsg));//set
tmote array to 0

122 sinfo.Null();
123 readings.Null();
124 }
125

126 int CVoronoiTessellation::isNotFull (void)
127 {
128 for(int i=1; i <= MASNET MAX TMOTES; i++){
129 if(tmote array[i].sourceMoteID == 0) return i; //if any tmote

msg has not been received
130 }
131 return 0;
132 }
133

134 bool CVoronoiTessellation::initialize()
135 {
136 CWaitCursor wait; //create an hourglass waiting cursor for sensor

array to initialize
137 m cancel = false;
138

139 //wait to gather sensor data
140 for(int i=1; i <= 500000000; i++){
141 if(!isNotFull()){
142 MessageBox(NULL,"Sensor array is ready.", "Message", MB OK);
143 return true;
144 }
145 }
146

147 //if it is not full after 5 seconds display an error message
148 int j = isNotFull();
149 CString id;
150 id.Format ( T("All 9 Tmotes must be on. The following \nTmote has not

yet been recieved\n\n ID: %d\n"),j+20);
151 int message = MessageBox(NULL, id, "Error", MB ICONSTOP |MB RETRYCANCEL);
152

153 switch (message){
154 case IDCANCEL: m cancel = true; return false; break;
155 case IDRETRY: initialize(); break;
156 }
157 return true;
158 }
159

160 /*The following functions are for light estimation*/
161 bool CVoronoiTessellation::noMovement(){ //retruns true if no robots have

a command
162 for(int t=1; t <= MASNET PGPS NUM OF ROBOTS; t++) //actuators
163 if(!RcCore.hasNoCmd(t)) return false;
164 return true;
165 }
166

167 void CVoronoiTessellation::interpSinfo(Matrix sinfo, Matrix readings, Matrix

* newSinfo, Matrix* newReadings){
168 int i,j;
169

170 if(m cvt lightfollow){ //if Light Follow mode is on
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171 int step1 = 1000; //stepsize to find location of light
172 lightLocationRec(sinfo, readings, 0, MASNET PGPS PLATFORM LENGTH X,

0, MASNET PGPS PLATFORM LENGTH Y, step1);
173 }else{ //if Formation mode is on
174 xcen = 1500;
175 ycen = 2000 − timeCount*500;
176 //ycen = 1200;
177 }
178

179 int step2 = 50; //stepsize to create virtual sensors
180 int M = (int)floor(MASNET PGPS PLATFORM LENGTH X/step2);
181 int N = (int)floor(MASNET PGPS PLATFORM LENGTH Y/step2);
182 Matrix pos((M−1)*(N−1), 2);
183 Matrix intensity((M−1)*(N−1), 1);
184

185 int k = 0;
186 for(i=0; i < (M−1); i++){
187 for(j=0; j < (N−1); j++){
188 pos(k,0) = (float)i*step2;
189 pos(k,1) = (float)j*step2;
190 if(m cvt lightfollow)
191 intensity(k,0) = (float)(1024*exp(−.00001*(pow((i*step2−xcen

),2)+pow((j*step2−ycen),2))));
192 else{
193 intensity(k,0) = (float)(1024*exp(−.00001*(pow((i*step2−xcen

),2)+pow((j*step2−ycen),2)))); //rendezvous
194 //intensity(k,0) = (float)(1024*exp(−.00001*pow(((i*step2−

xcen)*(i*step2−xcen)+(j*step2−ycen)*(j*step2−ycen)
−500*500),2))); //ellipse

195 //intensity(k,0) = (float)(1024*exp(−.00001*pow(((i*step2−
xcen)+(j*step2−ycen)),2))); //diagnal line

196 //intensity(k,0) = (float)(1024*exp(−.00001*pow((j*step2−
ycen),2))); //line along x−axis

197 //intensity(k,0) = (float)(1024*exp(−.00001*pow((−abs(xcen−i
*step2)+(j*step2−ycen)),2))); //v−shape

198 }
199 k++;
200 }
201 }
202 *newSinfo = pos;
203 *newReadings = intensity;
204 timeCount++;
205 }
206

207 void CVoronoiTessellation::lightLocation(Matrix sinfo, Matrix readings,
float xmin, float xmax, float ymin, float ymax, int step){

208 Matrix lambda = readings;
209 for(int i=0; i<lambda.RowNo(); i++)
210 lambda(i,0) = log(lambda(i,0));
211

212 float resmin = 0, res = 0, x, y;
213 Matrix Amin(lambda.RowNo(),2), A(lambda.RowNo(),2);
214

215 lightmin(0, 0, sinfo, lambda, &resmin, &Amin);
216

217 for(x=0; x < MASNET PGPS PLATFORM LENGTH X; x+=step){
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218 for(y=0; y < MASNET PGPS PLATFORM LENGTH Y; y+=step){
219 lightmin(x,y,sinfo,lambda,&res,&A);
220 if(res < resmin){
221 resmin = res;
222 xcen = x;
223 ycen = y;
224 Amin = A;
225 }
226 }
227 }
228 }
229

230 void CVoronoiTessellation::lightLocationRec(Matrix sinfo, Matrix readings,
float xmin, float xmax, float ymin, float ymax, int step){

231 Matrix lambda = readings;
232 for(int i=0; i<lambda.RowNo(); i++)
233 lambda(i,0) = log(lambda(i,0));
234

235 float resmin = 0, res = 0, x, y;
236 Matrix Amin(lambda.RowNo(),2), A(lambda.RowNo(),2);
237

238 lightmin(0, 0, sinfo, lambda, &resmin, &Amin);
239

240 for(x=xmin; x < xmax; x+=step){
241 for(y=ymin; y < ymax; y+=step){
242 lightmin(x,y,sinfo,lambda,&res,&A);
243 if(res < resmin){
244 resmin = res;
245 xcen = x;
246 ycen = y;
247 Amin = A;
248 }
249 }
250 }
251

252 //calculate smaller step size and window for recursion
253 int newStep = step/10;
254 xmin = xcen − 5*newStep;
255 xmax = xcen + 5*newStep;
256 ymin = ycen − 5*newStep;
257 ymax = ycen + 5*newStep;
258

259 if (newStep > 1) //call function again with a smaller step
260 lightLocationRec(sinfo, readings, xmin, xmax, ymin, ymax, newStep);
261 }
262

263 void CVoronoiTessellation::lightmin(float x, float y, Matrix sinfo, Matrix
lambda, float* res, Matrix* A){

264 int i;
265

266 Matrix temp(sinfo.RowNo(), 2);
267 for(i=0; i<sinfo.RowNo(); i++){
268 temp(i,0) = 1;
269 temp(i,1) = (float)(−0.5*log(pow((sinfo(i,0)−x),2) + pow((sinfo(i,1)

−y),2) + 1e−6));
270 }
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271

272 /*******************************************************************
273 The next two lines are two different ways to calculate the P matrix.
274 The second line calculates P about twice as fast, but may lose data
275 converting size t to int. This is a bug in the matrix.h template.
276 *******************************************************************/
277 Matrix P(temp * pseudoInverse(temp));
278 //Matrix P(temp * !(˜temp * temp) * ˜temp);
279

280 Matrix eye(P.RowNo(),P.RowNo()); //set identity matrix
281 eye.Null();
282 for(i=0; i< P.RowNo(); i++)
283 eye(i,i) = 1;
284

285 Matrix Pperp = ˜lambda * (eye−P) * lambda;
286 *res = (float)Pperp(0,0);
287 *A = temp;
288 }
289

290 Matrix CVoronoiTessellation::pseudoInverse(Matrix A){
291 int i, j;
292 int k=1;
293

294 int numRow = (int)A.RowNo();
295 int numCol = (int)A.ColNo();
296 int NRow, NCol;
297

298 Matrix Pinv(1,numCol), dk, ck, bk;
299 Matrix ak(numRow,1);
300

301 for(i=0; i<numRow; i++)
302 ak(i,0) = A(i,0);
303

304 if(!ak.IsNull())
305 Pinv = multiply(˜ak, (1/dot(ak,ak)));
306

307 while(k < numCol){
308 for(i=0; i<numRow; i++)
309 ak(i,0) = A(i,k);
310

311 dk = Pinv * ak;
312 Matrix T(numRow,k);
313 for(i=0; i<numRow; i++)
314 for(j=0; j<k; j++)
315 T(i,j) = A(i,j);
316

317 ck = ak − (T*dk);
318

319 if(!ck.IsNull())
320 bk = multiply(˜ck, (1/dot(ck,ck)));
321 else
322 bk = multiply(˜dk, (1/(1+dot(dk, dk)))) * Pinv;
323

324 Matrix N(Pinv − dk*bk);
325 NRow = (int)N.RowNo();
326 NCol = (int)N.ColNo();



96

327 Pinv.SetSize(NRow+1,NCol); //resize the rows of Pinv;
328

329 for(i=0; i<NRow; i++)
330 for(j=0; j<NCol; j++)
331 Pinv(i,j) = N(i,j);
332 for(j=0; j<NCol; j++)
333 Pinv(NRow,j) = bk(0,j);
334 k++;
335 }
336 return Pinv;
337 }
338

339 Matrix CVoronoiTessellation::multiply(Matrix A, float scalar){
340 for(int i=0; i<A.RowNo(); i++)
341 for(int j=0; j<A.ColNo(); j++)
342 A(i,j) = A(i,j)*scalar;
343 return A;
344 }
345

346 float CVoronoiTessellation::dot(Matrix A, Matrix M){
347 if(A.RowNo() != M.RowNo() | | A.ColNo() != M.ColNo()){
348 cout << "Bad dimensions in dot()" << endl;
349 exit(1);
350 }
351 float sum = 0;
352

353 for(int i=0; i<A.RowNo(); i++)
354 for(int j=0; j<A.ColNo(); j++)
355 sum += (float)(A(i,j) * M(i,j));
356 return sum;
357 }

A.3 ChildView.cpp

This code, from ChildView.cpp, plots the Tmote and estimated light positions in the

pGPS GUI image.

Displays estimated light position and Tmote markers
521 /*************************************************
522 Draw tmote MARKER (added by Shelley 07072008)
523 *************************************************/
524 if(Voronoi.isCVTLightFollow() && !Voronoi.cancel()){
525 if(!Voronoi.isNotFull()){
526 Voronoi.updateCVT(); //recalculate CVTs
527 Voronoi.flushTmote(); //clears tmote array for new calculation
528 }
529

530 int picX, picY;
531 RcCore.ptTransPlatform2Pic(Voronoi.getLightX(), Voronoi.getLightY(),

&picX, &picY);
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532 picX = (int) (((double) picX) * m scaleX);
533 picY = (int) (((double) picY) * m scaleY);
534 m drawingDc.SelectObject(&m LightLocationPen);
535 m drawingDc.Ellipse(picX−10, picY−10, picX+10, picY+10);//draw

circle at light position
536

537 TmoteMsg* tmote;
538 for(int i=1; i <= MASNET MAX TMOTES; i++){ //sensors
539 tmote = Voronoi.getTmote(i);
540 int picX, picY;
541 RcCore.ptTransPlatform2Pic(tmote−>X POS, tmote−>Y POS, &picX, &

picY);
542 picX = (int) (((double) picX) * m scaleX);
543 picY = (int) (((double) picY) * m scaleY);
544

545 m drawingDc.SelectObject(&m TmotePenDefault);
546 m drawingDc.Rectangle(picX−3, picY−3, picX+3, picY+3); //draw

square at tmote position
547 }
548 }else if(Voronoi.isCVTFormation() && Voronoi.noMovement()){
549 Voronoi.updateCVT(); //recalculate CVTs
550 }

A.4 MainFrm.cpp

This section contains code from MainFrm.cpp. This file holds the function handlers

for all messages and commands in the main frame of the RobotCommander GUI. The code

shown here include handlers for messages received over the radio and commands selected

from dropdown menus.

The beginning of AM MOTE SENSOR MSG saves robot data in an array
929 /****************************************************************
930 handler of AM messages
931 ****************************************************************/
932

933 afx msg LRESULT CMainFrame::OnAMReady(WPARAM, LPARAM){
934 TOS Msg tosmsg;
935 int length;
936 while(RcCore.getAM(&tosmsg, &length) == AMTRANS OK){
937 switch(tosmsg.type){
938 case AM MOTE SENSOR MSG:
939 {
940 MoteSensorMsg* msg =(MoteSensorMsg*) tosmsg.data;
941 Monitor.updateSensorData(msg−>mote, msg);
942 Voronoi.setRobot(msg); //puts robot data in array for CVTs

(added by Shelley 07012008)
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Tmote data handling
1047 case AM TMOTE MSG: // 10122007 added by Shelley for logging

TmoteMSG
1048 {
1049 OscopeMsg* msg =(OscopeMsg*) tosmsg.data;
1050

1051

1052 /* Format sensor data*/
1053 CString TmoteID str;
1054 CString lastSampleNumber str;
1055 CString TmoteSensor str;
1056 CString PAR str;
1057 CString X str;
1058 CString Y str;
1059 CString Robot;
1060

1061 TmoteID str.Format ( T("ID: %d\n"), msg
−>sourceMoteID);

1062 lastSampleNumber str.Format ( T("Last Sample: %d\n"), msg
−>lastSampleNumber);

1063 TmoteSensor str.Format ( T("Sensor: %d\n"), msg
−>channel );

1064

1065 int tmoteCount; //for loop counter
1066 float avg = 0; //initialise Tmote photo sensor reading
1067 float X POS;
1068 float Y POS;
1069

1070 if(msg−>channel == 0){
1071 for(tmoteCount=0; tmoteCount < OSCOPE BUFFER SIZE;

tmoteCount++){
1072 avg = avg + (int16 t) msg −> data[tmoteCount];
1073 }
1074 avg = avg/OSCOPE BUFFER SIZE; //caculates average for

all 10 photo signals
1075 //avg = 0 if channel #

is not 3
1076 }
1077

1078 switch(msg−>sourceMoteID) //assign x and y position data (
mm)

1079 {
1080 case 21: X POS = 590; Y POS = 2010; break;
1081 case 22: X POS = 590; Y POS = 1200; break;
1082 case 23: X POS = 590; Y POS = 350; break;
1083 case 24: X POS = 1800; Y POS = 2010; break;
1084 case 25: X POS = 1800; Y POS = 1200; break;
1085 case 26: X POS = 1800; Y POS = 350; break;
1086 case 27: X POS = 3020; Y POS = 2010; break;
1087 case 28: X POS = 3020; Y POS = 1200; break;
1088 case 29: X POS = 3020; Y POS = 350; break;
1089 default: X POS = 0; Y POS = 0; break;
1090 }
1091

1092 PAR str.Format ( T("Photo Data: %f\n"), avg
);
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1093 X str.Format ( T("PosX: %f\n"), X POS );
1094 Y str.Format ( T("PosY: %f\n\n"), Y POS

);
1095

1096 Voronoi.setTmote(msg, avg, X POS, Y POS); //puts tmote
data in array for CVT

1097

1098 if(m bLogTmoteMsg && m fpLogTmoteMsg != NULL){ //write data
to tmote sensor log file

1099

1100 fwrite(TmoteID str,1,TmoteID str.GetLength(),
m fpLogTmoteMsg);

1101 fwrite(lastSampleNumber str,1,lastSampleNumber str.
GetLength(),m fpLogTmoteMsg);

1102 fwrite(TmoteSensor str,1,TmoteSensor str.GetLength(),
m fpLogTmoteMsg);

1103 fwrite(PAR str,1, PAR str.GetLength(),m fpLogTmoteMsg);
1104 fwrite(X str,1, X str.GetLength(),m fpLogTmoteMsg);
1105 fwrite(Y str,1, Y str.GetLength(),m fpLogTmoteMsg);
1106

1107 }//end Tmote Sensor log
1108

1109 // Communication Window Displays
1110 CString msg disp = "TMOTE to PC: Sensor Array Message";
1111 Comm Out.show comm(msg disp);
1112 Comm Out.show comm(TmoteID str);
1113 Comm Out.show comm(TmoteSensor str);
1114 Comm Out.show comm(PAR str);
1115 }
1116 break;

Tmote logging command functionality
1322 void CMainFrame::OnLoggingLogtmotemsg() // 10132007 added by Shelley for

logging TmoteMSG
1323 {
1324

1325 CMenu* pMenu = GetMenu();
1326 if(m bLogTmoteMsg){
1327 fclose(m fpLogTmoteMsg);
1328 m fpLogTmoteMsg = NULL;
1329 pMenu−>CheckMenuItem(ID LOGGING LOGTMOTEMSG,MF UNCHECKED |

MF BYCOMMAND);
1330 m bLogTmoteMsg = false;
1331 }else{
1332 CFileDialog fdialog(false,
1333 T(".tlg"),
1334 T("TmoteMsg"),
1335 OFN HIDEREADONLY | OFN OVERWRITEPROMPT,
1336 T("TmoteMsg Log File (*.tlg)|*.tlg"),
1337 this);
1338 CString fileName;
1339 if(fdialog.DoModal() == IDOK)
1340 fileName = fdialog.GetPathName ();
1341 else
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1342 return;
1343

1344 m fpLogTmoteMsg = fopen((char*)(LPCTSTR) fileName, "wb");
1345 if(m fpLogTmoteMsg==NULL){
1346 MessageBox( T("Can not open the file"));
1347 return;
1348 }
1349 pMenu−>CheckMenuItem(ID LOGGING LOGTMOTEMSG,MF CHECKED |

MF BYCOMMAND);
1350 m bLogTmoteMsg = true;
1351 }
1352 }

CVT phototaxis and formation control command functionality
1599 void CMainFrame::OnCvtLightfollow() //added by Shelley for CVT light follow

command
1600 {
1601 CMenu* pMenu = GetMenu();
1602 Voronoi.setCVTFormation(false);
1603

1604 if(m cvt lightfollow check){
1605 pMenu−>CheckMenuItem(ID CVT LIGHTFOLLOW, MF UNCHECKED | MF BYCOMMAND

);
1606

1607 for(int t=0; t < MASNET PGPS NUM OF ROBOTS; t++){ //stops all
robots

1608 RcCore.stopRobots(&t,1);
1609 }
1610 m cvt lightfollow check = false;
1611 Voronoi.setCVTLightFollow(false);
1612 }else{
1613 Voronoi.setCVTLightFollow( Voronoi.initialize() );
1614

1615 if(Voronoi.isCVTLightFollow() && !Voronoi.cancel()){
1616 pMenu−>CheckMenuItem(ID CVT LIGHTFOLLOW, MF CHECKED |

MF BYCOMMAND);
1617 m cvt lightfollow check = true;
1618 }else{
1619 pMenu−>CheckMenuItem(ID CVT LIGHTFOLLOW, MF UNCHECKED |

MF BYCOMMAND);
1620 m cvt lightfollow check = false;
1621 return;
1622 }
1623 }
1624 }
1625

1626 void CMainFrame::OnCvtFormation() //added by Shelley for CVT formation
control command

1627 {
1628 CMenu* pMenu = GetMenu();
1629 Voronoi.setCVTLightFollow(false);
1630

1631 if(m cvt formation check){
1632 Voronoi.setTime();
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1633 pMenu−>CheckMenuItem(ID CVT FORMATION, MF UNCHECKED | MF BYCOMMAND);
1634 for(int t=0; t < MASNET PGPS NUM OF ROBOTS; t++){ //stops all

robots
1635 RcCore.stopRobots(&t,1);
1636 }
1637 m cvt formation check = false;
1638 Voronoi.setCVTFormation(false);
1639 }else{
1640 Voronoi.setCVTFormation(true);
1641 pMenu−>CheckMenuItem(ID CVT FORMATION, MF CHECKED | MF BYCOMMAND);
1642 m cvt formation check = true;
1643 }
1644 }
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Appendix B

MASnet User’s Manual, Version 2.0 1

As with most experimental hardware, MASnet is complex, unproven and only lightly

documented which makes the learning curve very steep for new users. This appendix is to

aid those who will use the MASnet platform as illustrated in fig. B.1. For a quick start

guide to cover everything required to make the robots move; see sec. B.2.

B.1 MASnet Overview

The MASnet project at Utah State University combines a wireless sensor network with

a mobility platform. That is, a large number of robots can serve both as environmental

sensors and actuators. The objective of MASnet is to develop systems that can collect

information and respond to spatially distributed diffusion processes such as a chemical

plume dispersement [44]. Each robot has limited sensing, computation, and communication

abilities, but they can coordinate with each other to study challenging tasks like formation

keeping, environment monitoring, consensus algorithms, and swarm intelligence.

The MASnet system is comprised of two main components and their associated tasks,

as listed below:

� Base-Station: Image processing, serial to programming board communication, pGPS

information broadcasting, and command issuing.

� Robots: Inter-robot and robot to base-station communication, data collecting, mo-

bility, PWM signal generation, and encoder counting.
1The original version of this user’s manual can be found in the Appendix of William Bourgeous’ thesis [1].



103

Fig. B.1: MASnet mobile robot experimental platform.

B.1.1 Base-Station

The base-station is designed to provide absolute position information to each robot and

issue command and control communication. An overhead CCD camera is hung about 72

inches above the platform. The function of the camera is to capture an image from which

each robot’s global position and orientation can be extracted. Image processing and all

functionality is performed by a C++ MFC application written explicitly for this purpose

called RobotCommander; see fig. B.2.

RobotCommander localizes each robot on the platform by a marker on top of the robot.

The marker features a rectangular frame and a special symbol pattern inside the frame. The

RobotCommander first detects the frame and then tries to match the inside pattern with

its pattern repository. The id, position, and orientation of each marker are recorded.

This localization subsystem is based on a modified ARToolKit [31]. The HSB color

model is adopted for the color segmentation so the effect of illumination is reduced and any

specified color can be used for markers.

The implementation of this system uses DirectX technology from Microsoft Corp.

Therefore, the image processing can work in multi-threading and pipeline fashion. The pro-

cess includes lens distortion compensation, marker detection, and screen rendering, while
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Fig. B.2: RobotCommander GUI screen capture.

the performance can be as high as 150 ms per frame. The transformation between the image

coordinates and the world coordinates is found through an extrinsic camera calibration. The

average errors of position and orientation are about 1.7 cm and 1.2, respectively. The result

of the localization is broadcast to all robots. The complete structure of RobotCommander

is illustrated in fig. B.3

B.1.2 MASnet Robots

The robots are two-wheel, servo driven, differentially steered robots developed by

CSOIS specifically for MASnet; see fig. B.4(a). The robots are designed to be simple and

low-cost. Two modified Futaba S2954 servo motors are used to drive each robot. Four first

generation MicaZ robots use Futaba S2954 servo motors. The remaining six second genera-

tion MicaZ robots use GWS S03N 2BB servo motors. The robots have two high resolution

commercial optical encoders, called WheelWatcher [19], with a resolution of 128 counts per

revolution. The robots have a Plexiglasr fixture on top to mount an identification maker.

The robots use a commercially available MicaZ mote, from Crossbow [17], for all
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Fig. B.3: RobotCommander software diagram.

functions including computation, sensing, and communication; see fig. B.4(b). From this,

the robots are also referred to as MASmotes [16]. The main CPU is an ATmega 128L(8

MHz) with 128KB programmable flash memory, 4KB EEPROM, and 512KB flash memory

for measurements. It also has reconfigurable PWM outputs, eight 10-bit ADC channels,

and multiple data interfaces including I2C, SPI and UART. Communications are handled

through a 2.4 GHz, IEEE 802.15.4/ZigBee compliant RF transceiver IC, CC2420. The com-

munication rate can be as high as 250 kbps. The robot operating system is TinyOS which

was developed by UC Berkeley parallel to mote hardware technology. TinyOS is an event-

driven operating system, which supports non-preemptive multi-tasking and is programmed

in nesC; see fig. B.5. External sensors currently include IR object detection sensors for

collision avoidance and light sensors to track a diffusion process.

B.2 Quick Start

Quick start steps include:

1. Setup and start RobotCommander:

(a) Start the base-station computer, the username is csois, obtain the current pass-

word from an administrator.
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(a) (b)

Fig. B.4: MASnet robots (a) and MicaZ wireless sensor network mote from Crossbow (b).

Fig. B.5: TinyOS program structure.
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(b) Place the base-station mote, programmed with TOSBase, on the programming

board located beside the base-station computer. Take care to properly seat

the white 52-pin connector. A MicaZ mote that is not completely connected

can cause damage to the mote and programming board as well as cause system

malfunctions. Make sure the mote is switched off or has no batteries to avoid

further damage to the mote. A green LED on the programming board will turn

on when the mote is completely connected to the programming board.

(c) Launch RobotCommander from either the taskbar or the shortcut on the desktop.

(d) From the main menu, select System→Setup→Dectection tab. Verify that a

non-zero number is present in the Broadcast text box. If a zero is present, no

pGPS messages will be broadcast and the robot will not know its global position.

A pGPS broadcast of every 250 ms is typical. Close the Setup box. If any value

in the Setup window is changed, stop RobotCommander and restart it so that

the changes will take effect.

(e) Select System→Start from the main menu to start the program. An image from

the pGPS camera should now be visible. If an error message appears instead of

the image, restart the computer. Occasionally, the base-station computer does

not recognize the pGPS camera signal till it is restarted.

2. Command a robot to move:

(a) Program a MicaZ mote with the desired application. See sec. B.4 for instructions

on mote programming.

(b) Select the MASmote robot corresponding to the MicaZ number and connect the

mote to the sensor board. Turn on the mote at the front of the robot, then the

motor board at the rear of the robot. If done in the reverse order, the encoders

will give a bogus reading. The large rectangular red and green LEDs on the back

of the robots should now be on.
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(c) Identify the robot number on the front scoop and find the corresponding marker;

numbers are hand written in the top left corner of each marker. Make sure the

the robot number, mote number, and marker number all correspond to keep the

MASnet platform organized. Place the robot with its marker on the platform at

least 0.25 meters away from the edge.

(d) The marker should be identified by RobotCommander and a red circle with a

line indicating orientation is drawn on the image at the location of the robot.

The robot number is also printed in the red circle. If the robot is not recognized,

see sec. B.3.1 to adjust the camera settings.

Note. Currently, only markers 1, 3, 6, and 8 can be recognized by RobotCommander.

Go to System→Make Pattern to add more markers to the RobotCommander registry.

(e) Select the robot by left clicking it on the RobotCommander screen. The red

identifying circle should now turn blue. Right click any place you would like the

robot to move. A green line should extend from the robot to the desired position

and the robot will begin to move using its PI controller to arrive at the selected

target point. If the robot does not move, see sec. B.6 to pinpoint the problem.

B.3 RobotCommander

B.3.1 Functions and Features

The RobotCommander is written in C++ using MFCs to build the multi-window

application. The core application is constantly processing images from the pGPS camera

while all other functionalities are event driven. A standard windows type menu system is

used to navigate and use RobotCommander’s added functions and features. This section

provides an explanation of each option available in RobotCommander’s main menu.
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� System includes all parameters and commands that change the RobotCommander

system.

– Start starts the RobotCommander program.

– Stop stops the RobotCommander program.

– Setup sets parameters before starting RobotCommander. See sec. B.3.2 for a

detailed explanation of the Setup process.

– Find 4 Corners allows RobotCommander to find the four corners of the plat-

form for camera calibration. See sec. B.3.3 for camera calibration steps.

– Make Pattern adds new marker patterns for RobotCommander to identify.

Follow the Make Pattern steps to add more robots to the platform.

– Eval Error evaluates the camera distortion error. This should not be done

on the platform, but in a simulated environment described in PungYu Chen’s

thesis [2]. This function was only used for the initial setup of the MASnet

platform.

– Save Image saves a Bitmap file of the current pGPS image.

� View displays data in the current window or other windows available in RobotCom-

mander.

– Control Panel provides detailed data about the state of each robot in operation

and can be used to issue commands.

– Show Labeled creates a child window that shows the image after it has been

filtered according to the parameters set in the Major Tweak window. This is

useful when tuning the camera filter because it allows the user to see what the

computer sees.

– Display Comm displays incoming or outgoing messages in a child window.

– L-Matrix Editor changes the communication topology for consensus experi-

ments. This window has not been fully developed; see the source code for details.
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– Show pGPS Data displays pGPS in a child window.

– Compare Position Data compares the position data derived by RobotCom-

mander on the left and the position data sent from a robot back to the base-

station. This was primarily used to fix encoder problems.

– Robot Destination decides whether All, None, or only Selected robots will

show their destination. All is typically selected.

– Clear Fog Map clears a fog map used for the TinyOS Tech Exchange demo.

This option is obsolete, but can be reinstated with some source code manipula-

tion.

� Camera changes image and detection performance for the pGPS camera.

– Camera Adjust 1 and 2 controls driver settings on the actual camera.

– Major Tweak opens a window that is only activated by pressing the alt key.

Parameters of the image filter can be adjusted in this window; see fig. B.6. The

hue, saturation, and brightness parameters can be used to select a limited range

of colors, red in our case. These parameters are rarely changed but the exposure

time must be adjusted frequently throughout the day as the ambient light levels

change. This is by far the most important adjustment on the MASnet vision

system. Use the Show Labeled window to see how adjustments affect the

filtered image.

Note. For better robot detection, keep the Major Tweak settings the same as fig. B.6,

except for the exposure time.

– Enable Undistortion turns on the undistortion feature which removes barrel

distortion from the image.

� pGPS



111

Fig. B.6: Major Tweak window used to adjust vision parameters.
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– Detect Now searches for robot markers in the field of view once.

– Broadcast Now immediately broadcasts pGPS information for all robots iden-

tified.

� Commands

– STOP ALL stops motion and resets some states of the robot. The button is

considered the emergency stop of the system and is frequently used in experi-

ments.

– Record Paths turns on the Record Paths function to track robot paths. A

small dot is placed at the center of the robot at each time step. To clear the

screen click on record paths again.

– Rendezvous broadcasts a Rendezvous packet once. Originally it was used to

trigger the simultaneous start of the rendezvous experiment but has since been

used to trigger the start of several different experiments, depending on the robot

code.

– RandomWalk broadcasts a RandomWalk packet once for robots to randomly

traverse the platform. Only robots programmed with a random walk command

can respond, which exclusively includes applications written by Florian Zwetti.

Note. To see what commands or message types are included in each robot application,

check under MASNET MSG TYPE in the masnet Messages.h file.

– Phototaxis broadcasts command packets for robots to perform behavioral dy-

namic phototaxis. Only robots programmed with a random walk command can

respond, which exclusively includes applications written by Florian Zwetti.

– Consensus should broadcast a Consensus command for the robots to perform

formation control. However, there is currently no code written for any robot to

respond to this command.
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– CVT begins a CVT Light Follow or CVT Formation command to perform

phototaxis or formation control using centroidal Voronoi tessellations.

� Formation Group encompasses tools used for formation maneuvers developed dur-

ing early MASnet projects.

� Calibration tests the performance of the robot controller by a Turn Around or Go

Straight command. These commands are only included in certain applications.

� Logging gathers and save information during experiments.

– Log pGPS records the pGPS information of all visible robots at each interval

in a text file.

– Log SensorMsg records all sensor messages sent from the robots to the base-

station. This file can then be read by one of the MATLAB scripts in the MASnet

Log Plotter folder located in C:\MASNET.

– Log CollectMsg records all “collect messages” sent from the robots to the

base-station. This option is obsolete.

– Log DebugMsg records all debug messages sent from the robots to the base-

station.

– Log TmoteMsg records all Tmote messages sent from the robots to the base-

station. This file can then be read by one of the MATLAB scripts in the MASnet

Log Plotter folder located in C:\MASNET.

B.3.2 Setup

In the RobotCommander Setup menu there are five tabs:

� Camera - Default camera resolution is 1280x1024 the result of changing this is un-

known. The default capture rate is 15 frames per second. This parameter may be

increased or decreased. However, this is a desired rate and is limited by the processor.
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� Calibration - The Distortion Parameters should not be altered. The Camera

Matrix block contains the intrinsic parameters of the cameras. The default matrix

is


713.484 0 691.651

0 712.373 496.98

0 0 1

 .

� Detection - The detection rate should be greater than or equal to the camera’s

capture rate. In the Broadcast text box, a zero means no pGPS will be sent where

a -1 will cause the pGPS messages to be sent as frequently as they are updated.

A specific time interval for the pGPS broadcast can be entered in milliseconds. If

extended format is checked, pGPS information for only two robots can be packed

into one transmission. If compact format is checked, one transmission can contain

pGPS information for up to four robots. If pGPS information for all robots does not

fit in one transmission, RobotCommander will make multiple transmissions at each

update. RobotCommander can support up to 10 robots.

� Platform - The platform size is the actual dimensions of the blue rectangle painted

on the screen and is entered by the user to perform camera calibration; see sec. B.3.3.

All other parameters in this tab are calculated by the camera calibration routine.

� Formation - This tab is used to control formation control parameters used for early

MASnet projects.

� Test Markers - This tab was used to configure camera calibration experiments.

B.3.3 Calibration

This section describes how to calibrate the cameras extrinsic parameters assuring an

accurate coordinate transform from the camera’s image to real world coordinates. This

calibration should be executed monthly or anytime the camera is moved.



115

1. Define the boundaries of the platform:

(a) Start RobotCommander.

(b) Place a corner marker in each corner of the desired platform size. All four corner

markers have an “L” symbol, a balsa wood block, and an orange base. Markers

are usually placed at the extremities of the platform but may be placed to form

any size rectangular area. Smaller work areas are more accurate that larger work

areas.

(c) Select System→Setup→Platform tab. Enter the x and y platform dimensions

in millimeters measuring from the corner markers placement. Click OK.

2. Calibrate the camera within the platform boundaries:

(a) Select System→Find 4 Corners from the menu. RobotCommander will search

for the corner markers in a predefined order. If all markers are not found, adjust

the camera settings in Major Tweak or reduce the size of the calibration area.

Note. It is difficult for all robot markers to be detected at one time. It would be easier

to hold detected robot markers till all four have been found. To do this, the detectRobots

function under the CPictureAnalyzer class, found in file PictureAnalyzer.cpp, must be

altered.

(b) Once all four corners are found and a red rectangle is drawn on the screen

connecting the corners, double click anywhere in the screen. A verification box

will appear, select Yes; see fig. B.7. The calibration is now complete.

(c) The calibration can be verified by moving the mouse to a position on the platform

and comparing the calculated mouse coordinates in the bottom left corner of

RobotCommander to actual measurements.
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Fig. B.7: Camera calibration.

B.4 MicaZ Programming

The robots are programmed in the nesC 1.1 language which was developed for the

TinyOS operating system. Since the summer of 2007 the old TinyOS software platform

has been updated to the MoteWorks software platform on the base-station computer. De-

tails of MoteWorks and a free download is available at the Crossbow website [17]. Because

MoteWorks requires an updated version of Cygwin to operate, all old applications must

be updated to the MoteWorks platform to work. All MoteWorks program files for MAS-

net are stored on the base-station hard drive at C:\Crossbow\cygwin\opt\MoteWorks\

apps\general and all old TinyOS files are located at C:\ProgramFiles\UCB\cygwin\opt\

tinyos-1.x\apps. There should be shortcuts on the desktop for both folders (MoteView

apps and TinyOS apps). As these are community files, please do not make changes to

these folders or files. When you decide to make program changes, copy a known good pro-

gram, rename it with your name first and then edit it. Programmers Notepad 2 is typically

used to edit and program the motes. Vim is also available for editing and any other text

editor can be used. Documentation of the nesC language can be found innesC 1.2 Language

Reference Manual [28].
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The following is a list of programs from the MoteWorks platform included on the

base-station computer [59].

Cygwin - A Linux-like environment for Windows. This can be used to compile and pro-

gram motes.

Programmers Notepad - An Integrated Development Environment for code editing,

compiling, programming, and debugging motes.

XSniffer - A Network Monitoring Tool that displays incoming packets in a user-friendly

GUI. This program is useful to test if the gateway mote is receiving wireless packets.

MoteConfig - A GUI environment for Mote Programming and Over The Air Program-

ming. MoteConfig can only program integrated applications and cannot program new

robot application.

MoteView - A GUI environment for viewing mesh networks. MoteView is an upgrade

from SergeView and is similar to Moteiv’s Trawler application.

For more information on these applications beyond this user’s manual, see MoteWorks

Getting Started Guide, XServe Users Manual, and XMesh Users Manual [59–61].

There are two different ways to program a MicaZ mote with new robot applications

included in the MoteWorks package. The programmer can either use Cygwin or Program-

mers Notepad. Programmers Notepad is typically used because the user can edit, compile,

and program a mote easily. The following sections describe how to program in both cases.

B.4.1 Cygwin

To program a MicaZ with Cygwin:

1. Make sure the mote is switched off and RobotCommander is closed. Having the mote

on while programming can damage the mote, programming board, and the computer.

Also, programming while RobotCommander is running will cause the program to

freeze.
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2. Place the mote on the programming board making sure it is completely connected.

A MicaZ mote that is not completely connected can also cause damage to the mote

and programming board as well as cause system malfunctions. A green LED on

the programming board will turn on when the mote is completely connected to the

programming board.

3. If you would like to program an old application not yet in the MoteView apps

directory, copy and paste the files from the TinyOS apps directory to the MoteView

apps directory. Delete the current makefiles and copy and paste the makefiles from

VoronoiPYMicaZ. If your application is already in the MoteView apps directory,

skip to the next step.

4. Before programming a mote with a robot application, open the config.h file for the

desired application in a text editor. Change the ROBOT NUMBER on line 26 to the

robot you are programming. Each robot has its own parameters which is included in

config.h.

5. Start the Cygwin environment from the desktop. This is a Linux environment so all

commands are entered as text. Table B.1 shows some useful commands in Cygwin.

6. Use cd to change the path to C:\Crossbow\cygwin\opt\MoteWorks\apps\general\

[DesiredApplication].

7. Type make micaz install.1 to compile and load the program into the mote’s mem-

ory. The number at the end of the install command indicates the robot number and

should be changed appropriately. See fig. B.8 for an illustration of Steps 5 through 7.

Note. It is important to know other basic commands for compiling and installing pro-

grams for MicaZ motes. Here is a short list.

make micaz install compiles and installs the program into the mote.
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Table B.1: Some useful Cygwin commands (from MoteWorks Getting Started Guide).

Fig. B.8: Robot programming in the Cygwin environment.
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make micaz only compiles the program. This command is useful to check for syntax

errors while writing new code.

make micaz reinstall only installs the program onto the mote. This command can

speed up the process of installing the same code on several motes, but it will not

work if the program has never been compiled before.

B.4.2 Programmers Notepad

To program a MicaZ with Programmers Notepad:

1. Open Programmers Notepad on the desktop. This will be used to edit and install

your programs to MicaZ motes.

2. Select a file from your desired application in the Projects window on the left. The

file will appear on the right; see fig. B.9.

3. Follow Steps 1 through 4 from the previous section using Programmers Notepad as

the text editor.

4. Make sure the curser is on a file that is part of your desired application. From the

main menu, select Tools→shell (or type F6).

5. In the command shell, follow Step 7 from the previous section to install the program

to the mote.

If errors are found in the program code they will be displayed. If the program loads

but fails during the verification process, it is most likely a bad connection between the mote

and the programming board. To repair this, secure the connection and load the program

again.

Finally, the gateway mote is designated with the number 11. If RobotCommander is

closed before stopping the gateway mote, it may need to be reprogrammed with TOSBase.

To reinstall the gateway mote, type make micaz reinstall.11.
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Fig. B.9: Robot programming in Programmers Notepad.



122

For more documentation on MicaZ robot testing, refer to the Developer’s Manual

for MASmotes, by Zhongmin Wang, and other documents in the MicaZ Robot Document

folder.

B.5 Tmote Programming

Currently, Tmotes are used solely for the CVT phototaxis experiment as the light

sensor array programmed with the application SenseLight. Tmotes are programmed in the

nesC 1.2 language. However, because Tmotes require a different instance of Cygwin, the

TinyOS package for Tmotes cannot exsist on the same computer as the MoteView package

for MicaZs. For the MASnet platform, the TinyOS for Tmotes is installed on the computer

beside the base-station desk. The username is CSIOS. Obtain the current password from

an administrator.

All TinyOS program files for Tmotes are in C:\cygwin\opt\moteiv\apps. There

should be a shortcut on the desktop called tinyOS apps. Please do not make changes

to these folders or files. When you decide to make program changes, copy a known good

program, rename it with your name first and then edit it. Vim is typically used to edit the

programs, but other text editor can be used.

To program a Tmote for MicaZ cross-communication:

1. Connect a Tmote to the computer. This computer has a USB extension for conve-

nience.

2. Start the Cygwin environment from the desktop.

3. Change the path to C:\cygwin\opt\moteiv\apps\[DesiredApplication].

4. Type make telosb install.21 to compile and load the program into the mote’s

memory. The number at the end of the install command should correspond to the

number on the mote. The mote DOES NOT need to be off during this process.
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B.6 Troubleshooting

There are many things that can go wrong on the MASnet platform. This section helps

pinpoint the problem when robots are not moving as they should.

Possible code error

First, check to see if it is not an error in the code by giving a position command

in RobotCommander. If the robots move to that spot, there is a problem with the code.

Remember, nesC runs concurrently and if two motor commands are given at once, the robot

will not move.

MicaZ lock-up or connection problem

If your robot still will not move as it should after the first step, check the mote connected

to the robot. Occasionally, the mote may be bumped out of place when colliding with other

robots or running between Plexiglasr sheets. If the mote is not fully connected, it can cause

odd robot behavior. The problem could also be caused by the MicaZ processor locking-up.

The red LED on the MicaZ should toggle every time message is received and the green LED

should toggle every time a message is sent. If these lights are not blinking, the processor

has locked-up. Simply, turn of the motors and mote, then turn them back on again to stop

the lock-up.

Low battery voltage

If this is not a problem, replace the four AA batteries under the robot. The brightness

of the red LED on the back of the robot is a good indicator of how much voltage is applied

by those four batteries. If it is too dim, the batteries should be replaced. The two AA

batteries on the mote do not need to be replaced as often since two 1.5 V batteries should

last up to one year. However, the green LED on the back of the robot indicates how much

voltage these two batteries supply. If it is too dim, the mote batteries should be replaced.

Because the batteries on the bottom of the robot should be changed often, it is im-

portant to keep charged and uncharged batteries separate while always keeping a charger
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working. An organized system will keep the MASnet platform running efficiently. A box of

separated charged and uncharged batteries is on the bookcase between the MASnet base-

station desk, and the MASnet bench. A charger, along with a multi-meter to check battery

voltage, should be on the MASnet bench.

Limited mote range

Finally, if the problem remains, the MicaZ may have limited range. If not handled

properly, a voltage spike may occur during mote programming. This spike can limit the

range of the mote. Fortunately, motes with limited ranges can repair themselves, but may

take some weeks before they are restored to full range. These motes are called sick motes. Do

not use these motes, with the exception of testing their range, till they are fully functional.

If motes have short ranges the green LED on the MicaZ should toggle while the red

LED is static. In other words, the mote should send messages, but not receive them at

longer ranges. Bring the robot next to the gateway mote while in operation. If the red LED

begins to toggle at very close range, then the mote is sick and cannot be used.

To test the range of more motes, program transmitting motes with CountSend and

program receiving motes with CountReceive. The application CountSend uses a binary

counter, where the first three bits are displayed by the LEDs, and transmits the number

through the radio. The application CountReceive receives that number and displays the

first three bits on its LEDs. Basically, motes programmed with CountReceive should mimic

the mote programmed with CountSend. Once the receiver stops mimicking the sender, both

motes have exceeded their transceiver range.

B.7 Adding New Functionality to the Platform

If a new task has to be introduced to generate a new behavior for the MASmotes,

modifications are most likely required on both the C++ RobotCommander program that

runs the base-station and the nesC program that runs the robots.
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B.7.1 Adding a New Message to the Robot nesC Program

Since telling the robot to perform a specific task consists of sending a message from

the base-station mote to the moving mote on the platform, an interface for transferring the

message has to be created. This can be done by defining an instance of the ReceiveMsg

interface as [Task]Msg in file robotMainM.nc, where [Task] denotes the name of the task.

The newly created interface has to be connected in the configuration file of the applica-

tion, which is robotMain.nc. Here, the interface is used by the module robotMainM, which

must be connected to the ReceiveMsg interface of the communication module. Since this

is a parameterized interface, appending data has to be included in brackets.

Now, program the robot behavior as a task in the definition file for the associated

incoming message which is done in the file incoming msg.nc. Tasks, which normally has

no parameters to return, are defined. Timers can also be called, which can activate events

when fired.

A new event of receiving a message should be defined to later perform the specific

task. This has to be done, since the command from RobotCommander should activate this

certain behavior, which is done by passing a message through the base-station mote to the

motes on the platform. The event is of type TOS MsgPtr.

An event is activated, when the interface [Task]Msg receives a message. The task is

put into the task queue and the event closed again. When creating an event, attention

should be paid to the fact that the event should be as short as possible. It should only pass

the Task into the task queue and then close again.

Next, update the MASnet message list to identify the message for the new behavior in

the file masnet Messages.h. The message identification list has to be extended by adding

the message with a specific number x under the MASNET MSG TYPE. Then a new variable

type has to be created with the typedef syntax.

B.7.2 Adding a New Command to RobotCommander

After modifying the robot behavior, RobotCommander must also be modified to be able

to activate the new behavior. In order to make sure that the current version of RobotCom-
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mander is not affected during modification, it is recommended to create a new folder and to

copy all files in the existing RobotCommander directory to the newly created one. Currently,

the latest instance of RobotCommander is called Shelley RobotCommanderLightInterp.

Start Microsoft Visual Studio.Net and open the newly copied project file RobotCom-

mander.vcproj. Click the solution explorer icon, which will display a treelike folder

structure of the project with source, header and resource files. Now, click on the resource

view structure and then the Menu folder; finally, select IDR MAINFRAME. A new com-

mand can be implemented by opening the main frame display and choosing the Commands

menu, then typing in a command name; see fig. B.10. After successfully assigning a name

to the new task, the right mouse button has to be used on the new menu item to choose

the option Add Event Handler; see fig. B.11. In the Event Handler window a function

handler name is assigned automatically. This name normally does not have to be changed.

The same holds for the Message type, which is assigned to COMMAND. After choosing the

CMainFrame class in the class list, the actual code of the event can be inserted by clicking

on the button Add and Edit.

After closing the event handler with Add and Edit, the file MainFrm.cpp is auto-

matically opened and the code of the function can to be added to the CMainFrame class.

Therefore, the following lines are created automatically and the code can easily be inserted

inside. After finishing the function, a look at the top of MainFrm.cpp shows that an ac-

cording ON COMMAND instruction was added automatically to the message map. If the class

definition of CMainFrame is opened by double-clicking on MainFrm.h, it can be seen that

the new function was also added at the end of the public section of the class.

Since the new function in the CMainFrame class probably calls another function to

broadcast the message for the new task, this new broadcast function must also be declared

and defined in the CRobotCommanderCore class. This is done by modifying RobotCom-

manderCore.h. The broadcast function has to be defined by opening RobotCommander-

Core.cpp and adding the required elements.

After successfully modifying all involved files, the whole project can be compiled by
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Fig. B.10: Adding a new menu icon in RobotCommander.rc of the RobotCommander
project.

Fig. B.11: Adding an event for the newly created task in the Event Handler.



128

clicking Build RobotCommander in the Build menu. If no errors are detected during

compilation, the file RobotCommander.exe is created in the directory C:\MASNET\bin. Now

the new RobotCommander GUI can be opened by double-clicking the .exe file and the

proper implementation of the behavior can be tested by choosing the new command in the

command menu.
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Appendix C

RobotCommander File Reference

With over 60 files that make up RobotCommander, adding code and functionality may

seem an impossible task. This section provides a description of each file to help programmers

tackle RobotCommander. Items without a file extension indicate a .h and .cpp file with the

item name.

C.1 General Files

Table C.1: RobotCommander general file and class reference.
File Name Class Description
ChildView CChildView controls the pGPS image on the GUI

Comm Display CComm Display displays all platform communication in a

dialog box

Compare Data Display CCompare Data Display compares pGPS and encoder position data

for robots in a dialog box

LabeledImageWnd CLabeledImageWnd this class is obsolete and is not used in

RobotCommander

LeaderFollowingDlg CLeaderFollowingDlg displays a dialog of Leader-Follower

parameters after the Follow Leader

command has been selected

LMatrix Display CLMatrix Display displays a dialog of a communication

topology matrix for consensus experiments.

This class is not yet fully functional

MainFrm CMainFrm handles all commands in RobotCommander

MajorTweakDlg CMajorTweakDlg controls the Major Tweak window for

adjusting the camera filter

Position Display CPosition Display saves position data in the class

RobotCommander CRobotCommanderApp

CAboutDlg

creates the the main RobotCommander

program and the executable file

RobotMonitor CRobotMonitor controls the Control Panel window

stdafx N/A includes standard system include files

VoronoiTessellation CVoronoiTessellation calculates centroidal Voronoi tessellations

and light position estimation
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C.2 Core Files

Below is a list of Core files and their descriptions. It is important to note that changes

to any Core files will change the Core files to all instances of RobotCommander. Once any

Core file is changed, older instances of RobotCommander will not work.

Table C.2: RobotCommander Core file and class reference.
File Name Class Description
AM.h N/A defines the TinyOS message structure (do

NOT change)

AMTransceiver CMessageQueue

CAMTransceiver

reads and handels messages from the

gateway mote

ar.h N/A includes the ARToolKit (do NOTchange)

CameraController CCameraController controls the pGPS camera

GroupManager CGroupManager calculates and performs formation

commands under the Formation Group

menu

lucamapi.h N/A includes inherant pGPS camera parameters

(do NOT change)

masnet def.h N/A defines constants for the MASnet platform

masnet Messages.h N/A defines all incomming and outgoing wireless

messages

PictureAnalyzer CPictureAnalyzer converts from image to real world

coordinates and vice-versa

RobotCommanderCore CRobotCommanderCore handles all outgoing messages

RobotCommandList CRobotCommandList handles the list of commands for robots

RobotMask CRobotMask counts number of selected robots
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C.3 PropertyPages Files

Below is a list of PropertyPages files and their descriptions. Note, here, that changes

to any PropertyPages files will change the PropertyPages files to all instances of Robot-

Commander and the computer registry.

Table C.3: RobotCommander PropertyPages file and class reference.
File Name Class Description
CalibrationPropertyPage CCalibrationPropertyPage saves and loads calibrates camera distortion

properties in the registry

CameraPropertyPage CCameraPropertyPage saves and loads camera properties in the

registry

DetectionPropertyPage CDetectionPropertyPage saves and loads robot detection properties in

the registry

FormationPropertyPage CFormationPropertyPage saves and loads old robot formation

command properties in the registry

PlatformPropertyPage CFormationPropertyPage saves and loads physical platform properties

in the registry

TestMarkersPropertyPage CTestMarkersPropertyPage saves and loads the camera distortion

evaluation error in the registry
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