4,144 research outputs found

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Service-oriented wireless sensor networks and an energy-aware mesh routing algorithm

    Full text link
    Service-oriented wireless sensor networks (WSNs) are being paid more and more attention because service computing can hide complexity of WSNs and enables simple and transparent access to individual sensor nodes. Existing WSNs mainly use IEEE 802.15.4 as their communication specification, however, this protocol suite cannot support IP-based routing and service-oriented access because it only specifies a set of physical- and MAC-layer protocols. For inosculating WSNs with IP networks, IEEE proposed a 6LoWPAN (IPv6 over LoW Power wireless Area Networks) as the adaptation layer between IP and MAC layers. However, it is still a challenging task how to discover and manage sensor resources, guarantee the security of WSNs and route messages over resource-restricted sensor nodes. This paper is set to address such three key issues. Firstly, we propose a service-oriented WSN architectural model based on 6LoWPAN and design a lightweight service middleware SOWAM (service-oriented WSN architecture middleware), where each sensor node provides a collection of services and is managed by our SOWAM. Secondly, we develop a security mechanism for the authentication and secure connection among users and sensor nodes. Finally, we propose an energyaware mesh routing protocol (EAMR) for message transmission in a WSN with multiple mobile sinks, aiming at prolonging the lifetime of WSNs as long as possible. In our EAMR, sensor nodes with the residual energy lower than a threshold do not forward messages for other nodes until the threshold is leveled down. As a result, the energy consumption is evened over sensor nodes significantly. The experimental results demonstrate the feasibility of our service-oriented approach and lightweight middleware SOWAM, as well as the effectiveness of our routing algorithm EAMR.<br /

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Overlay networks for smart grids

    Get PDF

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration

    Smart Environments and Cross Layer Design

    Get PDF

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Mobile Undersea Routing Protocol

    Get PDF
    The myriad barriers to underwater communication provide a new set of challenges for network protocols. Routing protocols which operate in underwater ad hoc networks must react quickly to changing conditions without significant increase in packet overhead or congestion. Dynamic Source Routing Protocol provides a framework for accomplishing these goals. In this paper we present the Mobile Undersea Routing Protocol, which implements this framework and enhances upon it. It uses a limited propagating route request which we call a Route Recovery to quickly and inexpensively recover from routing errors. A Java based network simulator was constructed in order to test and compare the protocols. Statistics were calculated based on packets delivered, total transmissions, and time to recover from a route error as measurements of protocol effectiveness
    • …
    corecore