
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2010

Mobile Undersea Routing Protocol
Michael J. Karell
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Karell, Michael J., "Mobile Undersea Routing Protocol" (2010). Master's Theses and Capstones. 606.
https://scholars.unh.edu/thesis/606

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/215516016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/606?utm_source=scholars.unh.edu%2Fthesis%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

Mobile Undersea Routing Protocol

BY

Michael J. Karell

B. A., Quinnipiac University (2005)

THESIS

Submitted to the University of New Hampshire
in partial fulfillment of

the requirements for the degree of

Master of Science

in

Computer Science

December 2010

UMI Number: 1489958

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 1489958
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest®

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ALL RIGHTS RESERVED

©2010

Michael J. Karell

This thesis has been examined and approved.

Thesis director, Radim Bartos

Associate Professor of Computer Science

Elizabeth Varki

Associate Professor of Computer Science

Michel Charpentier

Associate Professor of Computer Science

Steven G. Chappell

Autonomous Undersea Systems Institute

12. - 22> - IO

Date

m

Dedication

To Mom.

IV

Acknowledgments

A number of people have made this paper possible. In particular I wish to thank my advisor,
Radim Bartos, for providing much needed guidance and displaying inconceivable patience.
My family and friends for constantly asking me when I would finish my thesis. And lastly,
my mother for teaching me never to give up on any endeavor. Ever.

?

Table of Contents

Dedication 1V

Acknowledgments v

Abstract x

1 Introduction *¦

2 Underwater Networks 4

3 Dynamic Source Routing 8

4 Other Work in Ad Hoc Routing 16

5 Mobile Undersea Routing Protocol 20

6 Simulator 28

7 Simulation Results 35

8 Conclusion 44

Vl

List of Tables

7.1 Simulation results: 300 second pause time and 1500 meter transmission

range

VIl

List of Figures

2-1 Attenuation of acoustic waves in water 6

3-1 The Route Discovery process 10
3-2 Route Reply Storms 12
3-3 An example of DSR Route Maintenance 14
3-4 The unidirectional path problem 15

5-1 An example of route repair 23
5-2 Comparison between Route Discovery and Route Recovery responses

to error 25

5-3 Comparison between Route Recoveries at 1,2, and 3 hops from the
destination and the Required TTLs 26

6-1 Simulator class diagram 33
6-2 Event Queue Architecture example 34

7-1 Simulation results: time to recover from path failure for transmission

range 1500 meters 37
7-2 Simulation results: time to recover from path failure for transmission

range 2000 meters 38
7-3 Simulation results: time to recover from path failure for transmission

ranges 2500 meters 39
7-4 Simulation results: percentage of packets received for transmission

ranges 1500 meters 40

viii

ix

7-5 Simulation results: percentage of packets received for transmission

ranges 2000 meters 40
7-6 Simulation results: percentage of packets received for transmission

ranges 2500 meters 41
7-7 Simulation results: total number of packet transmission for transmis-

sion range 1500 meters 42
7-8 Simulation results: total number of packet transmission for transmis-

sion range 2000 meters 42
7-9 Simulation results: total number of packet transmission for transmis-

sion range 2500 meters 43

ABSTRACT

Mobile Undersea Routing Protocol

by
Michael J. Kareil

University of New Hampshire, December, 2010

The myriad barriers to underwater communication provide a new set of challenges for
network protocols. Routing protocols which operate in underwater ad hoc networks must
react quickly to changing conditions without significant increase in packet overhead or
congestion. Dynamic Source Routing Protocol provides a framework for accomplishing these
goals. In this paper we present the Mobile Undersea Routing Protocol, which implements
this framework and enhances upon it. It uses a limited propagating route request which we
call a Route Recovery to quickly and inexpensively recover from routing errors. A Java based
network simulator was constructed in order to test and compare the protocols. Statistics

were calculated based on packets delivered, total transmissions, and time to recover from a
route error as measurements of protocol effectiveness.

Chapter 1

Introduction

In most computer systems, communication takes place between stationary nodes with
propagation delays of only a few microseconds. New technologies have been made
available that allow for high bandwidth pipes even in consumer networks. The pro-
tocols that have been designed for these networks take advantage of the speed of
communication to make it reliable and robust as well. However, these technologies

become useless if they are placed in another medium, specifically water. The problem
at hand is finding an acceptable communication technology and a set of protocols
to facilitate the communication of Autonomous Undersea Vehicles (AUV). We have
considered the attributes of both the medium and the network we intend to create

in it, and decided on two goals for our protocol. The first is to decrease the time
taken to recover from an error. The second is to maintain a comparable end-to-end

packet delivery ratio and total transmissions used to deliver packets and for rout-
ing overhead. These goals are to be accomplished under varying degrees of network
stability which are introduced by a combination of the mobility of the network and
the effective range of acoustic communication. We have researched protocols used for
land-based mobile ad hoc networks and considered the inefficiencies inherent in each.

The protocol we have chosen to base our work on is Dynamic Source Routing (DSR).
Preliminary research into prior work has suggested this protocol would be most con-
ducive to our first goal. The Mobile Undersea Routing Protocol (MURP) has been
designed with the specific intent of reducing time to adapt to error and maintaining

1

2

acceptable levels of quality of service in terms of end-to-end delivery ratio and total
number of packet transmissions used for inter-node communication. The rest of the
document is organized as follows.

In Chapter 2 of this document we discuss the effects of the underwater medium on
communication and the resulting effect on the possible choices of routing protocols.
An analysis of the physical medium is presented, including propagation speeds and
attenuation of various forms of waves used in wireless communication. The capa-

bilities of AUVs, and how they affect communication, are also discussed in Chapter
2.

In Chapter 3 we discuss the Dynamic Source Routing Protocol as it was originally
proposed [12]. The main mechanisms used in DSR are outlined and examined. Route
Discovery and Maintenance, the processes by which DSR obtains and maintain source
routes between communicating nodes, are covered in detail. Interesting optimizations
within DSR that attempt to minimize routing overhead are discussed and critically
analyzed.

Chapter 4 outlines various papers that present ways to modify and improve Ad
Hoc On-Demand Routing using either Dynamic Source Routing or the Ad Hoc On-
Demand Distance Vector Routing Protocol (AODV). Each of these outlines is followed
by a critical analysis of the weaknesses of the protocol proposed in the corresponding
paper.

Chapter 5 describes the proposed protocol, which adapts the principles of DSR for
use in the underwater environment. The Mobile Undersea Routing Protocol (MURP)
utilizes a new mechanism called Route Recovery, which provides a fast and inexpen-

sive method to recover from routing errors due to topology change or intermittent

failure. Examples are provided to demonstrate the strengths of the Mobile Undersea
Routing Protocol in direct comparison to Dynamic Source Routing.

3

In Chapter 6 we describe the simulator program which was written for this project.
The use of object oriented methodologies is discussed and the ways in which they
improve the extensibility and ease of use of the program are demonstrated. An
emphasis is placed on the principles of polymorphism and inheritance. The program
is shown to use a Model View Controller architecture. Event based processing is

shown to be used through a simple Queuing architecture. The use of the Spring
framework and its dynamic initialization through XML configuration files and object
injection is also demonstrated. Design decisions are explained with regards to the
implementation of the OSI model for network communication.

Finally, in Chapter 7 we provide results from simulations which show the success
of MURP at attaining the goals put forth in earlier sections. We describe the network
simulator Java program which was designed and implemented for this task, as well as
the details of each experimental setup. We provide the measures used to determine

the performance of the protocols. We analyze the results to demonstrate in which
ways MURP succeeds in its goals.

Chapter 2

Underwater Networks

In this chapter we first examine the obstacles presented by the underwater medium
and how they disrupt communication technologies used in wireless networks. We
will explore the various wave forms used in wireless communication and how they
succeed or fail underwater. In doing so, we will show that acoustic waves are the
only form of communication that is viable in Ad Hoc Underwater Networks. We
will then examine how this affects the protocol set chosen to control the end-to-end

distribution of packets through the network. We will also discuss the capabilities of
the Autonomous Undersea Vehicles and how they affect the parameters used in the

development of a protocol.

Open air wireless networks generally operate using electromagnetic waves. These
technologies are traditionally used for consumer, commercial and municipal networks.
Since these networks exist in an unimpeded medium, there is comparatively minimal

signal loss and the speed of communication is near to the speed of light. Certain
networks are required to function in underwater environments, particularly for scien-
tific or military purposes. In this medium the attenuation, or loss of signal due to
absorption, is 45 times the square route of the frequency decibels per kilometer for
electromagnetic waves. The absorption of acoustic waves is by contrast several orders
of magnitudes lower as shown in Figure 2-1 [13]. However, the propagation delay of
acoustic waves in water is much higher in comparison. The speed of sound in water
is estimated to be approximately 1500 meters per second [10]. There is also variation

4

5

in sound speeds due to changes in temperature, salinity, and hydrostatic pressure.
The velocity of sound in water can be more accurately represented by the following
empirical formula [2]:

c = 1449.2 + 4.6G + 0.055T2 + 0.00029G3 + 355(1.34 + 0.010T) + O.OI62,

where c is velocity in meters per second, T is temperature in degrees Celsius, S is
salinity in parts per thousand, and ? is depth in meters, which represents hydrostatic
pressure. Velocity increases with temperature, salinity and depth. The variation in
velocity results in a high degree of unpredictability in the nework. Signal multi-path
caused by the waves bouncing off of thermoclines, objects, the ocean surface, or the
ocean floor result in further unpredictability in the round trip time of a packet. The

protocols associated with standard wireless technologies such as IEEE 802.11 are
not designed with these factors in mind and are therefore not suitable for use with
underwater acoustic modems.

The capabilities of the AUVs have a significant impact on the choices we have
made in the creation of communication protocols for them. One of the main at-
tributes to consider is the mobility of the vehicle. The speed at which the vehicle
moves determines how quickly the topology may change, which is directly related
to the frequency of errors in routing. It also has an influence on the rate at which
information about the networks links becomes stale, which affects the caching pol-

icy we choose. Were the vehicles to maintain near perfect formation in movement,
speed would be less relevant. However, tidal conditions and variations in system per-
formance forestall the feasibility of such a guarantee [6]. In addition, each AUV is
capable of being programmed to carry out an individual mission [7]. It is therefore
possible that a group of AUVs would move in independent patterns. In a wireless
network, the availability of power is another important consideration. Wireless sensor

6

SEA WATER

/ ^FRESHWATER
/

/

,4L
10

/.
100 1000

FREQUENCY (Hz>

10.000 100.000

Figure 2-1: Attenuation of acoustic waves in water.

7

networks tend to focus on reducing overall packet overhead as a means of reducing

power consumption [17] [16]. Since the propulsion system, rather than the Network
Interface Card and other systems, is the main source of power drain for an active

AUV, reduction in total packet overhead is not necessarily a key goal. [5]

Chapter 3

Dynamic Source Routing

Dynamic Source Routing (DSR) is a network layer protocol designed for use in ad-hoc
networks with mobile nodes and multiple hops between end-nodes. It has been tested
successfully on a network composed of laptop computers carried by automobiles in
a circular path between two stationary nodes. The mechanisms and descriptions of
the DSR protocol that we present and discuss in this chapter are based on the paper
by David Johnson, David Maltz, and Josh Broch [8] and the DSR RFC [9]. DSR
uses source routing, so packets are transmitted with the entire route record, not just
the source and destination. The decision of which path to use through the network

is made at the source node, rather than distributed through the network at each
node in between the source and destination. In a high latency mobile network, one

objective is to minimize power consumption and congestion. DSR is useful in this
regard because it attempts to reduce routing overhead by routing on-demand. In
an on-demand protocol, the routing table of any node will be empty upon startup
and until it attempts to send a packet. The table is filled as the node attempts to
communicate with other nodes in the network. There is no periodic route sensing to

fill the routing table or to remove stale routes from it. An entry is removed from the
routing table if and only if it is discovered to be invalid. The mechanisms for caching
and removing routes from the routing table are called Route Maintenance and Route
Discovery.

When a node attempts to send a packet to a node for which it does not have

8

9

a route, it initiates a Route Discovery. This is facilitated by a series of messages
between the source and destination and the intermediary nodes, which are called

Route Requests and Route Replies. The Route Discovery is initiated by broadcasting
a Route Request to all nearby nodes. Each successive node sends a new Route Request
until it reaches the destination node specified in the Route Discovery. At that point
the destination node sends a Route Reply, to which it appends the accumulated route

record. Each node receiving the Route Reply will add the route record to its routing
table. This procedure is demonstrated in Figure 3-1. The figure shows a node A
attempting to communicate with destination node G. Node A initiates the Route
Discovery by broadcasting a Route Request packet, which is received at neighboring
nodes B and C. Each of these receiving nodes appends themselves to the cumulative
route record and retransmits the packets. Route Requests broadcast from B and D
are received at C and E respectively. This process repeats and broadcast packets from
C and E are received at G and F. Since G is the destination of the Route Discovery,

it transmits a Route Reply back to the source node A upon receiving the request.
The links in this case are assumed to be bidirectional, so the Route Reply follows the

reverse path that the Route Request followed. In this case, F also forwards the Route
Request to G, but it is received after the broadcast from C, so that Route Request
is ignored as a duplicate.

Since each message involved in the Route Discovery is broadcast, a node may learn
and cache any number of routes to multiple destinations as a result of a single Route
Discovery. A Route Reply typically follows a route found in the routing table of the
destination node. However, if the routing table does not contain a route back to
the source, then a new Route Discovery is initiated with the source and destination
reversed. To prevent infinite recursion of Route Discoveries, the Route Reply is
appended to each Route Request. In cases in which networks have links that are

10

Discovery: A—-> G

0
?

? 0

A. B.

Response: A5B5QG

Packet: A3.C.G D.

B

0 B 0
E.

Figure 3-1: The Route Discovery process.

11

guaranteed to be bi-directional, the destination node may reverse the accumulated
route record, cache it, and use it to send the Route Reply. Each intermediate node
may also cache a route to previous nodes in the route record. Nodes that overhear
the request but are unable to forward it may also cache a route back to the source.

An important issue to consider is that a single route request may result in numer-
ous simultaneous attempts to return a Route Reply. An example of this can be seen
in Figure 3-2. Node S requests a route for node D and nodes A, B, C and E all reply
with the routes contained in their route table, which are of varying length. The high

volume of Route Replies creates a high probability for congestion problems. In order
to prevent this, DSR requires each node to delay its route reply by a random period
of time represented by the following formula [8]:

d = H*(h-l + r),

where H is a small constant delay, which is recommended to be at least twice the

propagation delay of the wireless technology being used, h is the number of hops
in the route record which is appended to the route reply, and r is random number
between 0 and 1. In this manner, nodes which reply with longer routes to the target
node will send their reply later than those with shorter routes. Each node goes into

promiscuous receive mode while it waits for the delay to expire and if it receives a
route reply with the same source and destination, but fewer hops, it cancels its Route
Reply. While it is necessary to do something to prevent inter-symbol interference,
there is a disadvantage to this optimization. Information is lost when the nodes cancel
their Route Replies. The routes formed through these nodes, while longer, could still
be used in the event that the shorter route is broken. A possible solution is to delay

the Route Reply before sending it anyway. This would avoid the congestion while
still getting as much information about the network as possible.

12

...7 B
¦> Path to D

-? Route Reply

^_

A D

Figure 3-2: Route Reply Storms.

The group of mechanisms by which DSR ensures that the routing table remains
current is called Route Maintenance. The basic requirement of Route Maintenance

is that each node be responsible for ensuring that any packet it forwards reaches
the next hop. The failure of a node to acknowledge receipt of a packet causes the
previous node to return a Route Error to the source of the packet. As with Route
Replies, the Route Error generally follows a path to the source found in the routing
table, but may use a reversal of the current route record if bi-directional links are
ensured. There are three ways a node may acknowledge receipt of a packet. One
way is for the underlying MAC protocol to provide link-layer acknowledgement of
packets. The 802.11 wireless MAC protocol is an example of such a protocol. The
second way is for the transmitting node to receive acknowledgement when the next
hop broadcasts the packet in its attempt to forward it to the next node in the source
route. Lastly, should neither of these options be available, DSR may be configured to
require a network layer acknowledgement. This acknowledgement may be sent directly
to the previous hop only if bi-directional links are ensured. However, the presence
of bi-directional links would in most cases mean that either the previous hop would

overhear the packet being forwarded or that a MAC protocol requiring link-layer

13

acknowledgement is being used. In most cases it will therefore be necessary for any
DSR specific acknowledgement to follow a multi-hop path. More important to the
efficacy of the protocol is what to do in the case that a route failure is discovered. In
DSR, when a node receives a Route Error, it discards the entire associated route and
initiates a Route Discovery to attempt to find a new route to that destination. Figure
3-3 shows a simple example of a Route Error and the associated Route Discovery. In
the first picture from this example node A communicates with node F using a source
route through nodes B and C. It is assumed that nodes D and E were not present
when this source route was discovered and therefore are unknown to node A. In the

second image, node C has moved out of range of node B and a packet is dropped as a
result. As a result, node B transmits a Route Error packet back to the source node A,
which must remove the broken route from its route cache and initiate a rediscovery.

The Route Discovery packet is then broadcase in turn from nodes A1 B, D, and E
until it is received at node F. Node F then transmits a Route Response back to node

A, which caches the new route and resumes data packet transmission.
The storage and use of routes in the routing table can make DSR a very powerful

protocol. A node may cache the route records of overheard Route Replies, Route
Requests, or data packets in its routing table and use them later either to forward a
packet or return to another node requesting a route to a node on that route record.
However, should the link through which the node overheard the information be uni-
directional, the route would not function. In Figure 3-4, node Y might overhear a
Route Reply from node C with the route record C, D, and E. Since the link from
C to Y is unidirectional, any attempt by Y to use this route will be unsuccessful.

Therefore, a node using overheard information must ensure that the link by which it
received the information is bidirectional before caching or using it.

Dynamic Source Routing provides basic principles which are very useful for de-

14

Packet: A.B.CJF
î[Uî

Packet: ?,?, Error

T ?

?
0 ?

B.

Error: ?—>? Discovery: A—>F

B

?
T ?

?
0 ?

e D.

?
H

E. F.

0
Response: A,B,D,E,F

A

H.

Figure 3-3: An example of DSR Route Maintenance.

15

A B D

X Y

Figure 3-4: The unidirectional path problem.

signing a protocol for use in the underwater environment. The reactive nature of the
protocol makes it an ideal starting point given the high latency and unstable topology
inherent to an Autonomous Undersea Vehicle network. However, given these same

problems, the use of unbounded flooding as defined in Route Discovery is considered
to be undesirable. A localized route determination is preferred, particularly for use

in Route Maintenance to avoid a complete flooding of the network for each change
in topology resulting in route failure. Methodologies to limit flooding in the network
are explored in subsequent chapters of this thesis.

Chapter 4

Other Work in Ad Hoc Routing

There has been some attempt in other variations of the DSR protocol and other ad
hoc routing protocols to handle link failure and subsequent rediscovery in a more
intelligent way. The main goal is to lower the routing overhead associated with Route
Request and Route Reply messages used in the Route Discovery and Route Mainte-
nance processes. The works discussed in this section all build upon the framework of
either DSR or AODV, but some of the optimizations lead to questions about whether
the new protocols are suitable for underwater networks. In this chapter we will crit-
ically analyze the protocols proposed and discuss their efficacy and possible ways to
improve them.

Some papers attempt to divide the networks into partitions in order to create
a multilayered network. One such paper proposes the use of Way Point Routing
(WPR) [1], in which certain nodes are selected to function as Way Points, which
divide the network into segments. In theory any two protocols could be used for
intra-segment and inter-segment routing, but in this example inter-segment routing
is controlled by DSR, while intra-segment routing is handled by the Ad Hoc On-
Demand Distance Vector (AODV) routing protocol [H]. AODV is a distributed
routing protocol, meaning that each node contains a routing table with the next
address of the next hop needed to reach any destination. The use of both DSR and
AODV allows link failure to be handled locally by AODV and Way Point failure to

be handled globally by DSR without throwing out the entire route.

16

17

Another protocol that partitions the network is the Ad Hoc On-Demand Distance
Vector Protocol with Load Balancing (LB-AODV) [14]. This protocol's intention is
to reduce overhead by restricting traffic to within groups and designating a group of
common nodes to route traffic between the groups. The number of groups is selected
so that the difference between the optimal number of mobile nodes (defined as the
number of nodes so that each node has 7 neighbors) and the number of mobile nodes

that can relay packets from each group is minimal. The number of groups is a tradeoff
between the network connectivity and the amount of routing control overhead. [14].
Both LB-AODV and WPR have several similar disadvantages. First, by restricting

the paths between nodes, they limit the adaptability of the network. There are fewer
available alternative paths in the case of a link disruption. There will also be more

congestion over the links between sections and a higher chance of packet loss due
to queue overflow. Second, neither paper presents an alternative for the possibility
that a section of the network is cut off from the nodes it is allowed to communicate

with. In such a case the sectional nature of the protocol would prevent the network

from adapting to the new topology and a node could be lost. Speed of recovery from
an error is an important consideration of the network and neither of these protocols
satisfactorily considers it.

The Congestion Adaptive Routing Protocol (CRP) [15] attempts to reduce routing
overhead due to errors and speed up error recovery by discovering and storing multiple

routes for a single source and destination. One route is chosen as the primary, while
the other routes are used as bypasses in the case of primary link failure. When a link
in the primary route fails, the message is sent back along that route until it reaches
a bypass that has a destination after the failed link. At that point, the bypass is
used as the primary route. If the message reaches the source node, a new primary
route must be found. An issue that is not considered in CRP is the way in which the

18

additional bypass routes are discovered. A single Route Discovery can return multiple
routes to the same destination, but some overhead is incurred since it must be assured
that multiple routes are found. CRP is also mainly designed to avoid and adapt to
congestion. It uses periodic congestion reports to inform the network of which links
are congested and route around them using the bypass routes. Since our goal is to
minimize the number of packets transmitted, this method of congestion adaptation
is not useful to us.

Another technique for enhancing Route Maintenance is Query Localization [4].
When a route fails, instead of flooding the network with Route Discoveries, the old
route is appended to each Route Discovery message and a counter and threshold value
is set to prevent the message from diverging too much from the old route. Every time
the Route Discovery reaches a node that is not on the old route, the counter is
incremented. When the counter reaches the threshold value, the Route Discovery is

dropped. The idea is that when a node moves it is unlikely that the topology will be
very different, so the new route should be somewhat similar to the old one.

The issue with Query Localization is that it makes assumptions about the topology
of the network. It will only work if the network is highly interconnected so that
possible paths between two nodes differ only by no more than the threshold. If
the threshold is too high, the benefits of localization will be minimal. The other
disadvantage of Query Localization is that it limits the amount of information gained
from the network from each Route Discovery. There is value in knowing routes to as

many nodes as possible. One of the strengths of DSR is that a lot of extra knowledge
is gained for every packet sent, which can be used for sending future packets.

The protocols outlined in the above sections represent a sample of the improve-
ments to ad hoc routing. While these protocols each have interesting ideas, they were
all designed for low-latency environments and their goals are therefore slightly dif-

19

ferent from ours. Because the propagation delay in acoustic networks is much larger
than other factors, the cost of a long packet is not significantly greater than the cost
of a short packet. Therefore, while routing protocols for radio frequency ad hoc net-
works tend to minimize overhead in terms of bits sent, the protocol we have designed
for acoustic networks minimizes overhead in terms of number of transmissions.

Chapter 5

Mobile Undersea Routing Protocol

The objective of this study is to discern an appropriate routing protocol for commu-
nication among fleets of autonomous vehicles in an underwater environment. DSR is
a simple protocol which lays the groundwork for the desired application, but it was
designed for low latency electromagnetic networks and must therefore be modified
to facilitate the high latency of underwater communication. Flooding employed by
Route Discovery and Route Maintenance is a major concern in an environment with
a high cost per packet in transmission time.

The proposed Mobile Undersea Routing Protocol (MURP) improves upon DSR's
Route Maintenance with the goal being quicker recovery from errors as well as fewer
total transmissions. The mechanism which we have developed for this purpose is

called Route Recovery. It replaces the use of full Route Discovery in Route Mainte-
nance and allows for more localized repair of broken routes.

The Route Recovery mechanism functions as follows. Instead of propagating
Route Errors back to the source and allowing rediscovery to occur there, the node cre-

ating the error attempts a single Route Request with a time to live (TTL) set based
on the number of remaining nodes on the original source route. The theory behind

initiating the route repair from the source of the error as opposed to the source of the
original route is based on the fact that in a wireless network the connectivity of the
nodes is dependent on physical locality. The next shortest path to the destination is
likely to pass through or near the error source since it is likely to be in between the

20

21

source and destination. The other reason to start the recovery at the error source is

that the transmissions used to return back to the original traffic source are costly in
the underwater environment. A TTL field in the route header is used to limit the

progagation of the recovery transmission to the local area around the error source. A
TTL is an integer valued field set in the packet's header which is initialized to a prede-
termined value and then decremented at every hop which forwards the packet. Once
the TTL reaches zero, the node receiving the packet ceases forwarding it and drops
the packet. TTLs are used in many networks to prevent an unbounded exponential
propagation of every packet. In this case, since packet transmission underwater is
expensive, we use TTL to decrease the overhead associated with Route Discovery.
However, a full Route Discovery is still used in the case where local Route Recovery
is not economical due to an error occuring at great distance from the destination.
It is also used to initialize a node's view of the network prior to transmitting data

packets.

An example of a Route Recovery is shown in Figure 5-1. This contrasts sharply to
using DSR's response to errors using Route Maintenance, as shown in Figure 3-3 and
discussed in the prior chapter. As in the prior example, in the first image node A has
a route to node F through nodes B and C and using this route to send data packets.
When node C moves out of communication range of node B1 the route is broken and

the packet is lost. However, unlike in the example from the previous chapter, instead
of sending a Route Error packet to node A, node B originates a Route Recovery
marking A as the original source and F as the destination. Nodes D and E receive
this transmission in turn and forward it on until it reaches the destination at node

F. Once F receives the Route Recovery, it sends the Route Response along the
accumulated source route, which includes the truncated original source route from A
to B and all nodes which the recovery passed through to reach its destination. At

22

this point node A can resume data packet transmissions to F using this new source
route.

The protocol is configured with a constant minimum TTL to ensure that the
request propagates even if very few nodes are left. A constant maximum TTL, above
which a Route Recovery is not initiated, is also used to ensure the recovery's scope
is not too broad. A recovery bit is set in the error header to notify the source that a

recovery was attempted. The source node will then delay its rediscovery attempt by
some time large enough to allow the recovery to propagate back first, if successful.
If a recovery was not initiated, the node will simply use a full Route Discovery. If
the recovery is successful, the destination node will initiate a Route Reply back to
the original source. The source should receive this reply prior to attempting the
rediscovery and, having recached the lost route, abort the rediscovery and simply
transmit a packet along the new route. The intent of this modification is to facilitate
quick recoveries in instances where the destination is close by, but allow the source to
use Route Discovery to rebuild the topology view with Route Discovery should this
fail, or should the failure happen far from the destination.

As shown in Figure 5-2, MURP's Route Recovery mechanism is designed to re-
duce flooding due to error recovery. In the first image of the diagram, a packet is
shown traveling from the source to the destination along the thicker arrows and be-
ing between the third hop and the destination. The Route Error transmission is sent
back to the source and a Route Discovery is initiated, which floods the entire network

with packets attempting to reform a route to the destination. A new route to the
destination is found, but at a high cost in both time and packet transmissions. In the

second image of the diagram, the same error condition occurs, but a Route Recovery
with TTL of 2 hops is used in place of the Route Error and full Route Discovery.
The Route Error is appended to the Route Recovery to ensure that the source ceases

23

Packet: A,B,C,F

B

Packet: A,B, Error
Î0t

T ?
?

0 ?

A. B.

Recovery: A—>¦ F

D.

T
B

D

Response: A,B,D,E,F

E.

Figure 5-1: An example of route repair.

24

to use the broken route to deliver data packets. The Route Recovery travels to the

destination, but is prevented from flooding the entire network with the use of the
TTL. It should also be noted that the recovery reaches the destination a full two

round trip times earlier in this case due to the Route Recovery being initiated at the
error source rather than the original source.

In the above example, one hop was remaining on the original source route and two

hops were required to route around the broken link. As shown in Figure 5-3, when
a network is assumed to be well conneted, the required TTL for a Route Recovery

to reach the destination is likely to be one more than the number of hops remaining
in the original route. Higher TTL values would be required for loosely connected
networks in which few alternate paths exist and each recovery must travel far from

the original path to reach its destination. For the experiments in this research, we
limit the recoveries to a small TTL with a factor of 1.5 times the number of hops

remaining on the original source route, with a minimum of 2 hops to handle the least
case and a maximum of 12 hops to further restrict the scope of the recoveries. This we
do under the assumption that localized repair is most valuable under minimal scope.
In cases in which the calculated TTL would cause the message to propagate to a large

portion of the network, we prefer a full discovery to obtain a complete refresh of the
topology information.

There are a number of possible measures for success of any routing protocol. From
among those we have chosen the three which we feel are most important given the
underwater environment. One measure is the total number of transmissions used

for packet delivery, including both data packets and packets used for routing mecha-
nisms. In some networks it is desirable to use the routing overhead alone as a data

point. However, due to the high cost of each packet transmission in the underwater
environment, we choose to use the total packet cost instead of this measure. Another

RD R[

~~J RD is
RE «*M>

D

RD^ RD' ^Ls4>
RD

Route Error and Re-Discovery

RF

iE/RR RE/RR €^X^RE/RR RE

D

%L/$-

Route Recovery TTL=2

ure 5-2: Comparison between Route Discovery and Route Recovery responses

26

E/RR

Errar 1 Hop From Destination
TTL=2 required

E/RR ^ #

Error 2 Hops From Destination
TT=3 required

Error 3 Hops From Destination
TTL=4 required (assuming no

reply with cached info)

Figure 5-3: Comparison between Route Recoveries at 1,2, and 3 hops from the des-
tination and the Required TTLs.

27

possible measure is the end-to-end delivery time. This would measure the difference
between the time the packet is transmitted and the time the packet is received at

the destination. We reject this measure as well, since the time taken to deliver each
packet for which no error occurs would have a strong influence on this number and
is unrelated to the capabilities of the of the routing protocol. The distance between
source and destination, which is likely to vary randomly due to the random nature of

topologies used, could also have an impact on this measure. We are more interested
in the period of time taken by the network to recover from an error. Therefore we
measure the recovery time, which is calculated as the difference between the time an
error occurs and the time the next packet for that traffic source is received at the

destination. This allows us to represent the responsiveness of the protocol to error

conditions without respect to the above mentioned variables. A common measure

of network performance is throughput. It is the number of successful message deliv-
eries per unit of time. Throughput is often measured in bits per second, but given
fixed packet length can be simplified to packets per second. For these experiments,
we choose to separate from the time variable and simply consider the percentage of
packets delivered over the course of the simulation. This is to show more accurately
the reliability of the protocol independently of the speed of delivery. It also prevents
the distance between source and destination from having a measurable effect on the

statistic. With these measures, we will show MURP to be an efficient and robust

protocol.

Chapter 6

Simulator

In order to facilitate the experiments required for this project, we created network
simulator program in the Java programming language. This program utilizes the
latest in enterprise Java technology, the Spring programming framework. Spring
provides a number of key components in its framework, the most useful of which is
the ability to initialize a program and define objects using XML. The object which
facilitates this is the FileSystemXmlApplicationContext. When provided with an
XML file, this object attempts to initialize all objects defined in the file and set
property values given in the object definition. This allows us to modify parameters
and, in particular, object types at runtime, without the use of a scripting language
such as TCL or a complex property file reading and interpreting process within the
Java code.

The second key component utilized in the simulator program is inheritance. While
this is one of the most basic Java principles, it is critical for the simplicity of the

program. We use a shared abstract super class to define all protocols. This class
defines how each implementation of a protocol should function, and following this
implementation ensures that the protocol will fit into the simulator code without
modification to the main simulator program. Any protocol implementation must

have a send method and a receive method. The simulator stores each protocol and

calls its send or receive method based on events that occur in other protocols or in

the simulator's initializing method. The simulator code has references to the specific

28

29

protocols used for the simulation. All protocols are stored as the abstract Protocol
object, or as in the case of the routing protocol, a more specialized abstract extension
of the Protocol class is used to tailor a set of protocols to a specific layer and allow

for more layer specific functionality.

The program uses a Model-View-Controller architecture which focuses primarily
on the controller portion. The view is simplified to a series of logging statements and
a print of statistical data at the program's completion. Statistical analysis can be
performed both within each protocol and by a separate protocol which watches for
events caused by other protocols. In this way statistics can be as simple or complex
as the implementor designs. The model is maintained in memory and consists of a set
of protocols, a set of agents which represent the topology, and packet objects which
are generated by the simulator and by each protocol. The relationships of the classes
in the model are outlined in the UML class diagram pictured in Figure 6-1. Each

packet corresponds to a set of event objects which represent the handling of that
packet by a specific protocol at a specific node agent. These events are stored in a
priority queue object which is sorted based on the time the event is set to occur. An
insertion sort algorithm is implemented as part of the queue and is maintained within
the queue implementation. The SimulatorController class runs a loop which pulls the
first event from the queue and processes it through the appropriate protocol and as
a result generates future events. The SimulatorController class contains references to
all protocols, the topology, and the EventQueue class. Each protocol also contains
a reference to the topology to allow it to make determinations about the location
of nodes and calculate their impact on events generated by that protocol. The time
associated with an event is determined by the protocol which generates it. In the
case of inter-node communication, an event is generated for every node in range of

communication. The group of nodes in range, and the arrival time at each node, is

30

determined based on the topology model. Any implementation of a topology model

must provide an implementation of the NodeAgent class and that implementation
must contain a method providing the location of a node at any given time, which is

used by the data link layer protocol to determine the time at which a receive event
occurs at that node.

The EventQueue class is an extension of the PriorityQueue Java class which im-
plements a comparator to sort its contents based on the time parameter in each Event
object. An example of the ways in which events are handled in the queue is outlined
in Figure 6-2. In the example, two traffic events, labeled Traffic 1 and Traffic 2, are
generated with times 0 and 20 respectively. Traffic event 1 is evaluated first and
results in the creation of send event labeled Send IA and assigned time 0. Since that

event preempts the second traffic event, it is executed first and two receive events
are generated based on it. The first is labeled Receive IA and given time of 10 and
the second is labeled IB and assigned a time of 30. The difference is assumed to be

based on a difference in propagation delay between the nodes the events represent.

Therefore, it is shown in the diagram that Receive IA will evaluate before Traffic 2,
and Receive IB will evaluate afterwards. When Receive IA is processed, it generates

another send event called Send IB. Since we assume that the time to process and

transmit is neglegible in this case, the time assigned to the send event is 10 also.
The sequence will continue like this until all events have been processed. In this
case we consider only generic send and receive event types, rather than the link layer
and route layer send and receive events separately, in order to simplify the diagram.
Related send and receive events occuring within the same node will always occur in

the order of the layers processing due to the natural order of insert provided by the
queue for events with equivalent time values. Each event remains in memory until
processed and removed from the queue, at which point it becomes eligible for garbage

31

collection and will be deleted. The absence of database persistence facilitates quicker

processing through reduced I/O time. However, this also results in significant mem-
ory usage for each simulation. Simulations for this research used between 1 and 2
gigabytes of memory on average.

The controller handles all interaction between the protocols. Each event contains

a type identifier which corresponds to a specific protocol layer and direction of trans-
mission. The controller uses this field to determine what protocol to use and which

method to call. To facilitate the above mentioned statistical analysis, a set of event

types are also provided which reference methods in the Statistics class to collect data.
Each protocol must generate the requisite events for the next layer in the stack as well
as any desired statistic events. For example, the protocol must generate an applica-
tion layer receive event when a packet arrives at its destination and data link send
events each time it needs to forward a packet. For the purposes of this project, we

have simplified the protocol stack to combine data and link layers and eliminated the
transport layer, assuming it to use the simple Universal Datagram Protocol. These
protocols could be easily implemented by adding references and corresponding events
to the controller and modifying the existing protocols to create the appropriate events.

Each protocol implementation should also be complemented by a header class. To
avoid interoperability issues, a protocol should only use information from its corre-
sponding header. Cross-layer communication is not currently supported, but will be
implemented in future work.

Upon initialization the simulator generates one packet automatically, as well as
the corresponding application layer send event, for each traffic agent. The application
layer protocol then executes that event, generates the route layer send event for that
packet, and creates the application layer send event for the subsequent packet. In
our experiments we use a Constant Bit Rate application protocol, such that the

32

next application send event is set to the current time with an added configurable
delay. The event queue's sorted insert ensures that these and all subsequent events
are processed in the correct order. The simulator program runs on a loop to easily
average the results of multiple experiments for each chosen configuration. It generates
a new topology and traffic model for each iteration and tabulates the results in the
statistics object. Averages and standard deviations of each statistic item are output
after all iterations have completed.

In order to run simulations using this program, the user needs a set of jar files

containing simulator source code and other required libraries, a shell script to start
the simulator, a configuration file for logging, and a spring configuration file which
will define the parameters for the simulation. The required jar files are spring.jar,
log4j.jar, commons-logging.jar and the provided simulator source code, which we
named murp.jar after this project. A log4j. properties file must also be included to
define the behavior of the logging utility and direct its output. We recommend send-

ing logging output to a file and reserving the standard output for the end of simu-
lation results. The shell script must set the location of each of these things to the
class path and then run a Java command to start the simulator. This command
must specify a maximum heap size (we use 4096 mb) or else the simulator may run
out of memory on larger topologies. The main class to start the simulator is in
com.murp. simulator. controller.SimulatorController. This class takes the path of the
spring config file and the log4j property file as arguments. The log file will print every
event in order as it processes, which is mainly useful for debugging protocols. The
parameters of the simulation will print to the standard output prior to each run, and
statistical results will print after each run for the topology in question. Averaged
results for all runs will be printed at the end of the simulation. We recommend redi-

recting standard output to a separate file for each simulation run. When using one of

33

EventQueue
extends PriorityQueue

nodeAgent
1

Event
va u es

trafficAgent

Simulatorcontroller
NodeAgent

Topology

TTi^
topology

TrafficAgent

? t

Figure 6-1: Simulator class diagram.

the included random topology generators, such as the Random Waypoint Model, the
topology must be configured with the xmlDirectory property. This property defines
the location to which a copy of generated XML for each topology is saved and will
allow the viewing of the topology that is generated for debugging purposes. Cur-

rently, if the simulator is configured for multiple runs, only the last XML file will be
saved since the naming convention is based on the size and type of topology. In the
future an incremental value will be used to save all topologies for each execution of

the simulator program.

Key

Traffic Traffic t: time
Dashed Box: Executing Event

Solid Box: Queued Event

Traffic Generated

TrafficTraffic

Execute Traffic 1 - Generate
Related Send Event

Send
1A
t=0

Traffic

Execute Send 1A- Generate
Receive Events

Recv
1A

t=10

Traffic

Execute Recv 1 A - Generate
Send Event

Figure 6-2: Event Queue Architecture example.

Chapter 7

Simulation Results

In order to test the proposed routing protocol, we use the above described Java ap-
plication based network simulator to run repeated tests under a variety of conditions.
The application's use of the Spring framework for object injection allows run-time
configuration changes, which are used to incrementally change the conditions of the
simulation. We have explored the use of the NS-2 simulator, but it does not contain a
native underwater physical layer and extensions which provide that functionality are
not well supported. The physical layer of our simulator uses a constant propagation
speed of 1500 meters per second [10] and a simple exponential loss model as a function
of the distance between the nodes. The link layer is simple and is combined with the

physical layer. We do not explore media access control in this research. The transport
layer is implicitly defined to be UDP. The application layer is CBR which is defined
to produce a packet at specified intervals for each traffic agent in the simulation.

The topology model used for simulations in this project is the Random Waypoint

Mobility Model [3] . This is the simplest model which provides the moment of sta-
bility between movements and makes sense in an underwater environment. Other
models, such as the Random Walk Mobility Model, its probabilistic version, and the
Random Direction Mobility Model only allow continuous movement and lack the tem-

porary stability desired for these experiments. The City Section Mobility Model is
disregarded for the obvious conflict of environment, and the Gauss-Markov Mobility
Model is ignored because it utilizes extremely complicated mathematical formulae.

35

36

Table 7.1: Simulation results: 300 second pause time and 1500 meter transmission

range

Protocol DSR MURPl MURP2

Fraction Received 0.619 0.621 0.555

Recovery Time (s) 156.964 144.658 150.8622

Transmissions 143492.06 154050.88 127289.66

The Random Waypoint Mobility Model makes use of a series of randomly generated
positions, and a universally defined pause time to define the movement of nodes in
the network. The pause time is the amount of time at which a node pauses at each
waypoint before moving towards the next one. Pause time is used as a measure of
the volatility of the network. In general, the number of errors found in a network has
an inverse relationship with the pause time defined for that network. A network with

pause time of 0 contains continuously moving nodes. The array of positions, pause
time, and the node velocity are used to calculate position at any given time. When the
link layer protocol attempts to determine if a packet would be received at a particular
node, it calculates the position of the node at the time the packet is transmitted to
determine if it is in range of the transmitting node. The transmission delay is then
calculated based on the above cited propagation speed and the distance between the
two nodes. The delay is then added to the time of transmission to determine the
receipt time. This calculation is repeated for each node which is determined to be in
range. This version of the model ignores the change in position of the receiving node
after the transmission of the packet in order to simply the formula used. An exact
formula would require calculation of the intersection of a line and a three dimensional

37

MURP1 —*-
MURP2 —*to

150?3

(D
(?

CD
100

CD

50o
CD

CU

0
O 200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-1: Simulation results: time to recover from path failure for transmission
range 1500 meters.

cone which would represent the node and the omnidirectional packet transmission
respectively.

We have implemented versions of both the standard DSR protocol as described in
the DSR RFC [9] and the MURP protocol described in this thesis. Other protocols
described in our research will be implemented as part of future work. The success
of the MURP protocol is measured in direct comparison to results achieved by the
DSR implementation. The DSR implementation was created first and then used as a
basis for the MURP implementation. In this way we mirror the design process in the
implementation. This ensures that as few as possible additional variables are present
in the implementations, which may skew results.

Table 7.1 displays simulation results for each protocol implementation under spe-
cific conditions. The chosen settings of 300 seconds for pause time and 1500 meters
for wireless transmission range represent a significant impact of mobility. For these
results, MURP improves upon recovery time, while maintaining approximately equiv-

38

200

U)

-g 150
o
o
?
U)

? 100
Q)
>
O
O
?

OC

DSR
MURP1
MURP2

0 200 400 600 800 1000 1200 1400 1600
Pause time (seconds)

Figure 7-2: Simulation results: time to recover from path failure for transmission
range 2000 meters.

aient packet delivery at a cost in overhead of about 11000 packet transmissions.
We have included several graphs to show how each measure is affected by the

degree of mobility in the topology as measured by pause time. Each graph shows
one of the three chosen measures in relationship to pause time for each protocol at

a given allowed range of communication. A comparison of each line in the graph
to another line at a given pause time value shows the performance of one protocol

respective to the other for the measure represented by that graph. All simulations
were run with random 5 by 5 topologies with 10 independent traffic agents moving in
1000 meter square cells at 2 meters per second for 500,000 seconds. The pause time
is the delay in seconds a node waits before moving from each waypoint. Each data
point represents the average result from 50 independent runs of the simulator. Each
run of the simulation tested 1000 packets sent from each traffic agent at 50 second
intervals for a total of 10,000 packets. The Random Waypoint Model topology is

generated at the start of each run and produces waypoints for up to 500,000 seconds,

39

(?
"s
e
O
?

(?

(U
E

¦4—·

(D
>
O
?
(D
0£

O 200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-3: Simulation results: time to recover from path failure for transmission
ranges 2500 meters.

which is well above the amount of time required for simulation. It is first notable

that both protocols struggle to deliver packets with a 1500 meter transmission range.
These experiments were intended to stress the network to see how the protocols would
react. Also bear in mind that DSR was not intended to be responsible for end-to-end

delivery and nor is MURP. The application or transport layer would be responsible
for ensuring lost packets are retransmitted. The results for packet delivery shown
in Figures 7-4, 7-5 and 7-6 are only intended to show the general reliability of the
protocol under given conditions.

Each of the graphs shown in this chapter contains three lines. A line in each
is drawn to represent the simulation results for DSR, the final implementation of
MURP, which is labeled MURPl, and a second implementation of MURP, which
is labeled MURP2. This second implementation was created with the intention of

reducing the routing overhead by forcing the source node to send a time delayed Route
Discovery upon receiving a Route Recovery with an attached Route Error for which

£-\J\J

150

—\ ?

DSR -
MURP1 -
MURP2 -

100

40

CD
>

'cd
o
cd

CD
o
co
Q.

CD

co

cd
o

(D
Q.

100

80

60

40

20

DSR
MURP1
MURP2

0 200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-4: Simulation results: percentage of packets received for transmission ranges
1500 meters.

100

¦s
CD
>

'cd
CJ
CD

CD
J¿
O
CO
Q.

CD
O)
CO
+j
C
f
O
L_
CD

CL

60

40

20

^SR.
MURP1
MURP2

200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-5: Simulation results: percentage of packets received for transmission ranges
2000 meters.

41

100

"D
CD
>

'(U
O
cd

<?
_*:
o
co
Q.

CD
O)
CO
C
03O
i_
CD

CL

yuepj
MURP2

O 200 400 600 800 1000 1200 1400 1600
Pause time (seconds)

Figure 7-6: Simulation results: percentage of packets received for transmission ranges
2500 meters.

it is the intended destination. The Route Discovery occurs regardless of this change

once a new packet transmission is attempted by the application protocol, but it was
theorized that the forced Route Discovery would ensure better route correction and
reduce either the total route overhead or the reliability of the protocol. However, the

results for MURP2 show that, while it achieves a reduction in total overhead and still
makes moderate gains in recovery speed under some conditions, a significant sacrifice
in reliability is made.

The results displayed in Figures 7-1, 7-2 and 7-3 show that MURP has a con-
sistent advantage over DSR in terms of recovery time, although the gap closes with
increased pause time and for higher transmission ranges. This improvement is made
at the sacrifice of approximately 2% of packet deliveries and an increase in number of
transmissions, though each of these gaps is also reduced with increasing pause time
and transmission range.

42

200000

£ 150000
e
(O
C
(O

0)
.Q
E
C

o

100000

50000

-? 1 1 1 1 1 G
DSR -

MURP1 -
MURP2 -

0 200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-7: Simulation results: total number of packet transmission for transmission
range 1500 meters.

200000

S 150000
If)
C
(O

(D

3
C

TO
-1—*

O

100000

50000

DSR
MURP1
MURP2

200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-8: Simulation results: total number of packet transmission for transmission
range 2000 meters.

43

CO
C
o
CO
CO

CO
C
CO

200000

150000

S 100000
CD

.O.
e

O

50000

DSR
MURP1
MURP2

200 400 600 800 1000 1200 1400 1600

Pause time (seconds)

Figure 7-9: Simulation results: total number of packet transmission for transmission
range 2500 meters.

Chapter 8

Conclusion

The original purpose of this study was to create a routing protocol which could meet
the communication needs of an ad hoc network of autonomous undersea vehicles.

These vehicles by definition operate in an environment which provides numerous
obstacles to communication. Therefore the routing protocol designed for use with

these vehicles has to be reactive and adaptable to frequent topology changes. Dynamic

Source Routing is the most suitable starting point for such a study, as it is designed
in a simple manner to avoid the unnecessary overhead which is associated with many
other RF wireless routing protocols. We have designed the Mobile Undersea Routing
Protocol which uses DSR as a framework and adds the Route Recovery mechanism

to facilitate quicker and less expensive responses to errors.

We created a Java based network simulator which implements each of these proto-

cols and provides a medium in which to test these and other protocols using variable
topology and traffic settings. The simulator makes use of object oriented method-
ology and the Spring framework to allow for easy runtime adjustment of settings
and replacement of protocols. We ran numerous tests and compiled data from the
results using statistical analysis tools which are built into the simulator architecture.
Additionally, a random waypoint mobility model and an underwater physical layer
with random packet lost were implemented in order to test the protocols under error
prone conditions. We judge the capability of each protocol based on time to recover
from an error, number of packets used in communication and percent of data packets

44

45

which reached their destination. Each protocol is tested with varying degrees of inter-

connectivity, based on wireless communication range, and topology volatility, which
is determined by pause time between mobile node movement. The data shows that
MURP reacts more quickly to routing errors than DSR, particularly given a highly
volatile topology. Because of the high latency of the underwater environment, and the
independent nature of the AUVs, gaps in network availability are extremely costly.
While a small percentage of reduced reliability and increased total packet transmis-
sions was required to reach this goal, the drawbacks are outweighed by the benefits,
particularly in rapidly changing topologies.

In future study, we plan to fine tune MURP to reduce packet loss while still
maintaining the recovery time and efficiency of transmissions. We will create a more
intricate method for determining the time to live used for each Route Recovery. We
also plan to run more extensive testing using simulations with larger topologies and
more traffic sources, such as 100-200 node topologies and topologies in which all nodes
communicate with all other nodes. In doing so, we hope to develop configurations
which allow MURP to be effective in any of these settings.

There are a number of features that we will implement in the simulator that were

left out due to being unnecessary for this project, but which will be useful in other
types of studies. One such feature is a graphical user interface and visualizer. We will
implement the ability to easily reconfigure the protocols and topologies in a front end,
run the simulation, and view the resulting network and activity as an Adobe Flash
video. Java libraries are available for creating Flash video dynamically in code. The

program will iteratively draw shapes for each node and packet at a chosen interval
of time to provide the necessary granularity to portray an acceptable image of the
motion of the nodes and the packets. The visualization program will be built as
an additional protocol layer for which events can be generated by any user protocol

46

in a similar manner to which the Statistics class works. A transport layer and link

layer will be added and implementations created for 802.11 as well as TCP and UDP
protocols. In order to facilitate Media Access Control (MAC) layer research, a more
correct implementation of the underwater physical layer will be created with more
robust error models using the attenuation formula mentioned in Chapter 2. It will
also correct for the problem of the intersection of the packet and the moving node for
which we use a simplified formula in this project. More complicated traffic models
will also be implemented, such as an exponential traffic distribution to demonstrate
networks with more varying concentrations of traffic and congestion. These will also
be useful in enabling the use of the simulator for MAC layer protocol testing. Since
the simulator program makes user of object oriented principles extending it to enable
the above functionality will involve minimal changes to the core simulator code.

Finally, we plan to implement more routing protocols, such as AODV, Waypoint
Routing, and other protocols historically used for mobile wireless networks and under-
water networks. Given the analysis of these protocols provided in Chapter 4, it would
be interesting to understand the performance of these protocols in our simulated en-
vironment, It would also provide further verification to the simulator's functionality,
as the performance of some of these protocols underwater is well documented. Most
importantly, simulation results for these protocols will provide further comparisons
by which to judge the effectiveness of MURP.

Bibliography

[1] R. Bai and M. Singhal. DOA: DSR over AODV routing for mobile ad hoc
networks. IEEE Transactions on Mobile Computing, 5:1403-1416, Oct 2006.

[2] L. M. Brekhovskikh and Y. P. Lysanov. Fundamentals of Ocean Acoustics.
Springer, 3rd edition, Aug 2005.

[3] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communication and Mobile Computing: Special Issue

on Mobile Ad Hoc Networking Research Trends and Applications, 2(5):483-502,
2002.

[4] R. Castañeda, S. R. Das, and M. K. Marina. Query localization techniques for
on-demand routing protocols in ad hoc networks. Wireless Networks, 8:137-151,
2002.

[5] D. M. Crimmins, C. T. Patty, M. A. Beliard, J. Baker, J. C. Jalbert, R. J.
Komerska, S. G. Chappell, and D. R. Blidberg. Long-endurance test results of
the solar-powered AUV system. In MTS/IEEE Oceans 2006, Boston, MA, Sept.
2006.

[6] J. C. Jalbert. Multiple AUV communications test report - Lake George, NY;
October 17 - 22, 2004. Technical Report 0411-01, Autonomous Undersea Systems
Institute, Nov. 2004.

[7] J. C. Jalbert, J. Baker, J. Duchesney, P. Pietryka, W. Dalton, D. R. Blidberg,
S. G. Chappell, R. Nitzel, and K. Holappa. Solar-powered autonomous underwa-

47

48

ter vehicle development. In Thirteenth International Symposium on Unmanned
Untethered Submersible Technology (UUST'03), Durham, NH, Aug. 2003.

[8] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic source routing
protocol for multi-hop ad hoc networks. Ad Hoc Networking, pages 139-172,
2001.

[9] D. B. Johnson, D. A. Maltz, and Y.-C. Hua. The dynamic source routing protocol
for mobile ad hoc networks (DSR). RFC 4728 (Standard), 2007.

[10] D. E. Lucani, M. Médard, and M. Stojanovic. Underwater acoustic networks:
Channel models and network coding based lower bound to transmission power for
multicast. IEEE Journal on Selected Areas in Communications, 26:1708-1719,

Dec 2008.

[11] C. E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector Routing.
MILCOM'97 panel on Ad Hoc Networks, Nov. 1997.

[12] J. G. Proakis, E. M. Sozer, J. A. Rice, and M. Stojanovic. Shallow water acoustic
networks. IEEE Communications Magazine, 39:114-119, Nov 2001.

[13] A. H. Quazi and W. L. Konrad. Underwater acoustic communications. IEEE
Communications Magazine, 20:24-30, Mar. 1982.

[14] J.-H. Song, V. W. Wong, and V. C. Leung. Efficient on-demand routing for
mobile ad hoc wireless access networks. IEEE Journal on Selected Areas in

Communications, 22:1374-1383, Sep 2004.

[15] D. A. Tran. Congestive adaptive routing in mobile ad hoc networks. IEEE
Transactions on Parallel and Distributed Systems, 17:1294-1305, Nov 2006.

49

[16] L. Wang and Y. Xiao. A survey of energy-efficient scheduling mechanisms in
sensor networks. Mob. Netw. Appi, 11 (5): 723-740, 2006.

[17] W. Ye, Heidemann, J., and D. Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on
Networking, 12(3) :493 - 506, june 2004.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2010

	Mobile Undersea Routing Protocol
	Michael J. Karell
	Recommended Citation

	ProQuest Dissertations

