1,958 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    Modeling Human-Robot Interaction in Three Dimensions

    Get PDF
    This dissertation answers the question: Can a small autonomous UAV change a person's movements by emulating animal behaviors? Human-robot interaction (HRI) has generally been limited to engagements with ground robots at human height or shorter, essentially working on the same two dimensional plane, but this ignores potential interactions where the robot may be above the human such as small un- manned aerial vehicles (sUAVs) for crowd control and evacuation or for underwater or space vehicles acting as assistants for divers or astronauts. The dissertation combines two approaches {behavioral robotics and HRI {to create a model of \Comfortable Distance" containing the information about human-human and human-ground robot interactions and extends it to three dimensions. Behavioral robotics guides the ex- amination and transfer of relevant behaviors from animals, most notably mammals, birds, and ying insects, into a computational model that can be programmed in simulation and on a sUAV. The validated model of proxemics in three dimensions makes a fundamental contribution to human-robot interaction. The results also have significant benefit to the public safety community, leading to more effective evacuation and crowd control, and possibly saving lives. Three findings from this experiment were important in regards to sUAVs for evacuation: i) expressions focusing on the person, rather than the area, are good for decreasing time (by 7.5 seconds, p <.0001) and preference (by 17.4 %, p <.0001), ii) personal defense behaviors are best for decreasing time of interaction (by about 4 seconds, p <.004), while site defense behaviors are best for increasing distance of interaction (by about .5 m, p <.003), and iii) Hediger's animal zones may be more applicable than Hall's human social zones when considering interactions with animal behaviors in sUAVs

    Integration of agent-based modelling of social-spatial processes in architectural parametric design

    Get PDF
    A representation framework for modelling the social-spatial processes of inhabitation is proposed to extend the scope of parametric architectural design process. We introduce an agent-based modelling framework with a computational model of social-spatial dynamics at its core. Architectural parametric design is performed as a process of modelling the temporal characteristics of spatial changes required for members of a social group to reach social spatial comfort. We have developed a prototype agent-based modelling system using the Rhino-Grasshopper platform. The system employs a human behaviour model adapted from the PECS (Physical, Emotional, Cognitive, Social) reference model first proposed by Schmidt and Urban. The agent-based model and its application was evaluated by comparative modelling of two real Vietnamese dwellings: a traditional vernacular house in Hue and a contemporary house in Ho Chi Minh City. The evaluation shows that the system returns differentiated temporal characteristics of spatial modifications of the two dwellings as expected

    Understanding Social-Force Model in Psychological Principles of Collective Behavior

    Full text link
    To well understand crowd behavior, microscopic models have been developed in recent decades, in which an individual's behavioral/psychological status can be modeled and simulated. A well-known model is the social-force model innovated by physical scientists (Helbing and Molnar, 1995; Helbing, Farkas and Vicsek, 2000; Helbing et al., 2002). This model has been widely accepted and mainly used in simulation of crowd evacuation in the past decade. A problem, however, is that the testing results of the model were not explained in consistency with the psychological findings, resulting in misunderstanding of the model by psychologists. This paper will bridge the gap between psychological studies and physical explanation about this model. We reinterpret this physics-based model from a psychological perspective, clarifying that the model is consistent with psychological theories on stress, including time-related stress and interpersonal stress. Based on the conception of stress, we renew the model at both micro-and-macro level, referring to multi-agent simulation in a microscopic sense and fluid-based analysis in a macroscopic sense. The cognition and behavior of individual agents are critically modeled as response to environmental stimuli. Existing simulation results such as faster-is-slower effect will be reinterpreted by Yerkes-Dodson law, and herding and grouping effect are further discussed by integrating attraction into the social force. In brief the social-force model exhibits a bridge between the physics laws and psychological principles regarding crowd motion, and this paper will renew and reinterpret the model on the foundation of psychological studies.Comment: 22 pages, 12 figur

    New approaches to evacuation modelling for fire safety engineering applications

    Get PDF
    This paper presents the findings of the workshop “New approaches to evacuation modelling”, which took place on the 11th of June 2017 in Lund (Sweden) within the Symposium of the International Association for Fire Safety Science (IAFSS). The workshop gathered international experts in the field of fire evacuation modelling from 19 different countries and was designed to build a dialogue between the fire evacuation modelling world and experts in areas outside of fire safety engineering. The contribution to fire evacuation modelling of five topics within research disciplines outside fire safety engineering (FSE) have been discussed during the workshop, namely 1) Psychology/Human Factors, 2) Sociology, 3) Applied Mathematics, 4) Transportation, 5) Dynamic Simulation and Biomechanics. The benefits of exchanging information between these two groups are highlighted here in light of the topic areas discussed and the feedback received by the evacuation modelling community during the workshop. This included the feasibility of development/application of modelling methods based on fields other than FSE as well as a discussion on their implementation strengths and limitations. Each subject area is here briefly presented and its links to fire evacuation modelling are discussed. The feedback received during the workshop is discussed through a set of insights which might be useful for the future developments of evacuation models for fire safety engineering

    Development of a Dynamical Egress Behavioural Model under Building Fire Emergency

    Full text link
    Building fire accidents, as a continuing menace to the society, not only incur enormous property damage but also pose significant threats to human lives. More recently, driven by the rapid population growth, an increasing number of large-capacity buildings are being built to meet the growing residence demands in many major cities globally, such as Sydney, Hong Kong, London, etc. These modern buildings usually have complex architectural layouts, high-density occupancy settings, which are often filled with a variety of flammable materials and items (i.e., electrical devices, flammable cladding panels etc.). For such reasons, in case of fire accidents, occupants of these buildings are likely to suffer from an extended evacuation time. Moreover, in some extreme cases, occupants may have to escape through a smoke-filled environment. Thus, having well-planned evacuation strategies and fire safety systems in place is critical for upholding life safety. Over the last few decades, due to the rapid development in computing power and modelling techniques, various numerical simulation models have been developed and applied to investigate the building evacuation dynamics under fire emergencies. Most of these numerical models can provide a series of estimations regarding building evacuation performance, such as predicting building evacuation time, visualising evacuation dynamics, identifying high-density areas within the building etc. Nevertheless, the behavioural variations of evacuees are usually overlooked in a significant proportion of such simulations. Noticeably, evacuees frequently adjust their egress behaviours based on their internal psychological state (i.e., the variation of stress) and external stimulus from their surrounding environments (i.e., dynamical fire effluents, such as high-temperature smoke). Evidence suggests that evacuees are likely to shift from a low-stress state to a high-stress state and increase their moving speed when escaping from a high-temperature and smoke-filled environment. Besides, competitive behaviours can even be triggered under certain extremely stressful conditions, which can cause clogging at exits or even stampede accidents. Without considering such behavioural aspects of evacuees, the predicted evacuation performance might be misinterpreted based on unreliable results; thereby, misleading building fire safety designs and emergency precautions. Therefore, to achieve a more realistic simulation of building fire evacuation processes, this research aims to advance in modelling of human dynamical behaviour responses of each evacuee and integrating it into building fire evacuation analysis. A dynamical egress behaviour-based evacuation model that considering the evacuee’s competitive/cooperative egress movements and their psychological stress variation is developed. Furthermore, a fire hazard-integrated evacuation simulation framework is established by coupling with the fire dynamics simulator (i.e., FDS). By means of tracking dynamical interactions between evacuees and the evolutionary fire dynamics within the building space, evacuees’ local fire risks and stress levels under the impacts of locally encountered fire hazards (i.e., radiation, temperature, toxic gas, and visibility) can be effectively quantified. In this study, the developed simulation tool can provide a further in-depth building fire safety assessment. Thus, it contributes to performance-based fire safety engineering in designs and real applications, including reducing budgets and risks of participating in evacuation drills, supporting emergency evacuation strategy planning, mitigating fire risks by identifying risk-prone areas associated with building fire circumstances (e.g., putting preventative measures in place beforehand to intervene or mitigate safety risks, such as mass panic, stampede, stress evoked behaviours)

    Emergency Evacuation Software Model For Simulation Of Physical Changes

    Get PDF
    Public space such as schools, cinemas, shopping malls, etc. must have an emergency evacuation system in place. Such places are also required to follow certain regulations and protocols for emergency evacuation to assure the safety of their occupants inside from any unpredictable incident. For nearly two decades, companies/organizations are using simulation models/software for evacuation planning. Researchers are working on these software models to improve the efficiency using latest algorithms. This thesis focuses on creating a base software model of evacuation systems for 3D indoor environments to simulate physical changes such as retractable chairs, movable walls etc., to evaluate their effectiveness before committing to those changes. This research tries to address various flaws and shortcomings of previous software. We are using tools like Unity 3D and Autodesk Maya to simulate suggested changes. It provides planners as well as researchers a new perspective to work on new recommended physical changes to design public venues

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    • 

    corecore