11 research outputs found

    A dual adaptive watermarking scheme in contourlet domain for DICOM images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, medical imaging equipments produce digital form of medical images. In a modern health care environment, new systems such as PACS (picture archiving and communication systems), use the digital form of medical image too. The digital form of medical images has lots of advantages over its analog form such as ease in storage and transmission. Medical images in digital form must be stored in a secured environment to preserve patient privacy. It is also important to detect modifications on the image. These objectives are obtained by watermarking in medical image.</p> <p>Methods</p> <p>In this paper, we present a dual and oblivious (blind) watermarking scheme in the contourlet domain. Because of importance of ROI (region of interest) in interpretation by medical doctors rather than RONI (region of non-interest), we propose an adaptive dual watermarking scheme with different embedding strength in ROI and RONI. We embed watermark bits in singular value vectors of the embedded blocks within lowpass subband in contourlet domain.</p> <p>Results</p> <p>The values of PSNR (peak signal-to-noise ratio) and SSIM (structural similarity measure) index of ROI for proposed DICOM (digital imaging and communications in medicine) images in this paper are respectively larger than 64 and 0.997. These values confirm that our algorithm has good transparency. Because of different embedding strength, BER (bit error rate) values of signature watermark are less than BER values of caption watermark. Our results show that watermarked images in contourlet domain have greater robustness against attacks than wavelet domain. In addition, the qualitative analysis of our method shows it has good invisibility.</p> <p>Conclusions</p> <p>The proposed contourlet-based watermarking algorithm in this paper uses an automatically selection for ROI and embeds the watermark in the singular values of contourlet subbands that makes the algorithm more efficient, and robust against noise attacks than other transform domains. The embedded watermark bits can be extracted without the original image, the proposed method has high PSNR and SSIM, and the watermarked image has high transparency and can still conform to the DICOM format.</p

    Forensic Technique for Detection of Image Forgery

    Full text link
    Todays digital image plays an important role in all areas such as baking, communication, business etc. Due to the availability of manipulation software it is very easy to manipulate the original image. The contents in an original image can be copy-paste to hide some information or to create tampering. The new area introduces to detect the forgery is an image forensic. In this paper proposes the new image forensic technique to detect the presence of forgery in the compressed images and in other format images. The proposed method is based on the no subsampled contoured transform (NSCT). The proposed method is made up of three parts as preprocessing, nsct transform and forgery detection. The proposed forensic method is flexible, multiscale, multidirectional, and image decomposition is shift invariant that can be efficiently implemented via the à trous algorithm. The proposed a design framework based on the mapping approach. This method allows for a fast implementation based on a lifting or ladder structure. The proposed method ensures that the frame elements are regular, symmetric, and the frame is close to a tight one. The NSCT compares with and dct method in this paper

    Study on high Performance and Effective Watermarking Scheme using Hybrid Transform (DCT-DWT)

    Get PDF
    Nowadays healthcare infrastructure depends on Hospital Information Systems (HIS), Radiology Information Systems (RIS),Picture archiving and Communication Systems (PACS) as these provide new ways to store, access and distribute medical data . It eliminates the security risk. Conversely, these developments have introduced new risks for unsuitable deployment of medical information flowing in open networks, provided the effortlessness with which digital content can be manipulated. It is renowned that the integrity and confidentiality of medical data is a serious topic for ethical and legal reasons. Medical images need to be kept intact in any condition and prior to any operation as well need to be checked for integrity and verification. Watermarking is a budding technology that is capable of assisting this aim. In recent times, frequency domain watermarking algorithms have gained immense importance due to their widespread use. Subsequently, the watermark embedding and extraction are performed in frequency domain using the presented scheme. The proposed watermarking scheme, the watermark extraction compared with the original image for calculating SSIM.The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results

    Contourlet Domain Image Modeling and its Applications in Watermarking and Denoising

    Get PDF
    Statistical image modeling in sparse domain has recently attracted a great deal of research interest. Contourlet transform as a two-dimensional transform with multiscale and multi-directional properties is known to effectively capture the smooth contours and geometrical structures in images. The objective of this thesis is to study the statistical properties of the contourlet coefficients of images and develop statistically-based image denoising and watermarking schemes. Through an experimental investigation, it is first established that the distributions of the contourlet subband coefficients of natural images are significantly non-Gaussian with heavy-tails and they can be best described by the heavy-tailed statistical distributions, such as the alpha-stable family of distributions. It is shown that the univariate members of this family are capable of accurately fitting the marginal distributions of the empirical data and that the bivariate members can accurately characterize the inter-scale dependencies of the contourlet coefficients of an image. Based on the modeling results, a new method in image denoising in the contourlet domain is proposed. The Bayesian maximum a posteriori and minimum mean absolute error estimators are developed to determine the noise-free contourlet coefficients of grayscale and color images. Extensive experiments are conducted using a wide variety of images from a number of databases to evaluate the performance of the proposed image denoising scheme and to compare it with that of other existing schemes. It is shown that the proposed denoising scheme based on the alpha-stable distributions outperforms these other methods in terms of the peak signal-to-noise ratio and mean structural similarity index, as well as in terms of visual quality of the denoised images. The alpha-stable model is also used in developing new multiplicative watermark schemes for grayscale and color images. Closed-form expressions are derived for the log-likelihood-based multiplicative watermark detection algorithm for grayscale images using the univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative multichannel watermark detector is also designed for color images using the multivariate Cauchy distribution. Simulation results demonstrate not only the effectiveness of the proposed image watermarking schemes in terms of the invisibility of the watermark, but also the superiority of the watermark detectors in providing detection rates higher than that of the state-of-the-art schemes even for the watermarked images undergone various kinds of attacks

    A Spatial Domain Image Steganography Technique Based on Plane Bit Substitution Method

    Get PDF
    Steganography is the art and science of hiding information by embedding data into cover media. In this paper we propose a new method of information hiding in digital image in spatial domain. In this method we use Plane Bit Substitution Method (PBSM) technique in which message bits are embedded into the pixel value(s) of an image. We first, proposed a Steganography transformation machine (STM) for solving Binary operation for manipulation of original image with help to least significant bit (LSB) operator based matching. Second, we use pixel encryption and decryption techniques under theoretical and experimental evolution. Our experimental, techniques are sufficient to discriminate analysis of stego and cover image as each pixel based PBSM, and operand with LSB

    Evolution Prediction of the Aortic Diameter Based on the Thrombus Signal from MR Images on Small Abdominal Aortic Aneurysms

    Get PDF
    The paper is about studying the and Tl from MR Images examination for the existence thrombus in patient with Small Abdominal Aortic Aneurysms in order to know whether thrombus signal has action with the evolution of aortic

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore