713 research outputs found

    Use of spectral kurtosis for improving signal to noise ratio of acoustic emission signal from defective bearings

    Get PDF
    The use of Acoustic Emission (AE) to monitor the condition of roller bearings in rotating machinery is growing in popularity. This investigation is centred on the application of Spectral Kurtosis (SK) as a denoising tool able to enhance the bearing fault features from an AE signal. This methodology was applied to AE signals acquired from an experimental investigation where different size defects were seeded on a roller bearing. The results suggest that the signal to noise ratio can be significantly improved using SK

    A robust fault detection method of rolling bearings using modulation signal bispectrum analysis

    Get PDF
    Envelope analysis is a widely used method for bearing fault detection. To obtain high detection accuracy, it is critical to select an optimal narrowband for envelope demodulation. Fast Kurtogram is an effective method for optimal narrowband selection. However, fast Kurtogram is not sufficiently robust because it is very sensitive to random noise and large aperiodic impulses which normally exist in practical application. To achieve the purpose of denoising and frequency band optimization, this paper proposes a new fault detector based on modulation signal bispectrum analysis (MSB) for bearing fault detection. As MSB results highlight the modulation effects by suppressing stationary random noise and discrete aperiodic impulses, the detector developed using high magnitudes of MSB can provide optimal frequency bands for fault detection straightforward. Performance evaluation results using both simulated data and experimental data show that the proposed method produces more effective and robust detection results for different types of bearing faults, compared with optimal envelope analysis using fast Kurtogram

    An adaptive envelope analysis in a wireless sensor network for bearing fault diagnosis using fast kurtogram algorithm

    Get PDF
    This paper proposes a scheme to improve the performance of applying envelope analysis in a wireless sensor network for bearing fault diagnosis. The fast kurtogram is realized on the host computer for determining an optimum band-pass filter for the envelope analysis that is implemented on the wireless sensor node to extract the low frequency fault information. Therefore, the vibration signal can be monitored over the bandwidth limited wireless sensor network with both intelligence and real-time performance. Test results have proved that the diagnostic information for different bearing faults can be successfully extracted using the optimum band-pass filter

    Novel spectral kurtosis technology for adaptive vibration condition monitoring of multi-stage gearboxes

    Get PDF
    In this paper, the novel wavelet spectral kurtosis (WSK) technique is applied for the early diagnosis of gear tooth faults. Two variants of the wavelet spectral kurtosis technique, called variable resolution WSK and constant resolution WSK, are considered for the diagnosis of pitting gear faults. The gear residual signal, obtained by filtering the gear mesh frequencies, is used as the input to the SK algorithm. The advantages of using the wavelet-based SK techniques when compared to classical Fourier transform (FT)-based SK is confirmed by estimating the toothwise Fisher's criterion of diagnostic features. The final diagnosis decision is made by a three-stage decision-making technique based on the weighted majority rule. The probability of the correct diagnosis is estimated for each SK technique for comparison. An experimental study is presented in detail to test the performance of the wavelet spectral kurtosis techniques and the decision-making technique

    Identification of cyclic components in presence of non-Gaussian noise – application to crusher bearings damage detection

    Get PDF
    In this paper an issue of local damage detection in a rolling element bearing is discussed. The bearing operates in a hummer crusher, thus the vibration signal acquired on the housing contains a lot of impacts that originate in various sources. In the case of local damage detection it is crucial to find a set of cyclic impulses in the signal. These impulses are informative, in spite of impulses related to the crushing process, which are non-informative. In order to find the damage signature we provide feasibility study on a tool based on cyclostationary approach, namely cyclic spectral coherence. This comprehensive analysis includes study on four different signals from bearings in various condition and operating with or without load applied. This analysis is preceded by motivating preliminary analysis where we examine a few widely-used methods for local damage detection

    A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox

    Get PDF
    Whilst vibration analysis of planetary gearbox faults is relatively well established, the application of Acoustic Emission (AE) to this field is still in its infancy. For planetary-type gearboxes it is more challenging to diagnose bearing faults due to the dynamically changing transmission paths which contribute to masking the vibration signature of interest. The present study is aimed to reduce the effect of background noise whilst extracting the fault feature from AE and vibration signatures. This has been achieved through developing of internal AE sensor for helicopter transmission system. In addition, series of signal processing procedure has been developed to improved detection of incipient damage. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were applied to AE and vibration data acquired from a simplified planetary gearbox test rig with a seeded bearing defect. The results show that AE identified the defect earlier than vibration analysis irrespective of the tortuous transmission pat

    Trends in condition monitoring of pitch bearings

    Get PDF
    The value of wind power generation for energy sustainability in the future is undeniable. Since operation and maintenance activities take a sizeable portion of the cost associated with offshore wind turbines operation, strategies are needed to decrease this cost. One strategy, condition monitoring (CM) of wind turbines, allows the extension of useful life for several parts, which has generated great interest in the industry. One critical part are the pitch bearings, by virtue of the time and logistics involved in their maintenance tasks. As the complex working conditions of pitch bearings entail the need for diverse and innovative monitoring techniques, the classical bearing analysis techniques are notsuitable. This paper provides a literature review of several condition monitoring techniques, organized as follows: first, arranged according to the nature of the signal such as vibration, acoustic emission and others; second, arranged by relevant authors in compliance with signal nature. While little research has been found, an outline is significant for further contributions to the literature.Postprint (published version
    • 

    corecore