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Abstract  Diagnosing bearing faults at the earliest stages is critical in avoiding 

future catastrophic failures.  Many techniques have been developed and applied 

in diagnosing bearings faults, however, these traditional diagnostic techniques 

are not always successful when the bearing fault occurs in gearboxes where the 

vibration response is complex; under such circumstances it may be necessary 

to separate the bearing signal from the complex signal. 

In this paper, an adaptive filter has been applied for the purpose of bearing 

signal separation. Four algorithms were compared to assess their effectiveness 

in diagnosing a bearing defect in a gearbox; Least Mean Square (LMS), Linear 

Prediction, Spectral Kurtosis (SK) and Fast Block LMS (FBLMS). These 

algorithms were applied to decompose the measured vibration signal into 

deterministic and random parts with the latter containing the bearing signal.  
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These techniques were applied to identify a bearing fault in a gearbox employed 

for an aircraft control system for which endurance tests were performed. The 

results show that the LMS algorithm is capable of detecting the bearing fault 

earlier in comparison to the other algorithms.  

1 Introduction 

Monitoring of machine vibration for early fault detection is widely applied [1 - 4]. 

The vibration signals from machines contain multiple sources which can  be 

corrupted by noise from the transmission path. The diagnosis of bearing faults 

in gearboxes is not without its challenges [5-7], therefore methods of enhancing 

the signal to noise ratio (SNR) are required [8, 9]. This is particularly the case in 

gearboxes where the gear mesh contribution to the overall vibration is of such 

significance as to mask bearing fault frequencies [10-12]. In practice, envelope 

analysis has been used to extract the bearing fault vibration signature in 

gearboxes [13] though in some cases envelope analysis has failed to reduce 

the gear mesh contribution to the total vibration signal. In such instances a 

narrow band-pass filter at high frequency has been applied to separate the high 

frequency component excited by bearing impacts [14].  

Early attempts utilize time domain averaging to separate the gear components 

from the measured vibration signal; in this case a delayed version of the signal 

is added to the vibration signal and this results in reinforcing some frequencies 

and cancelling others. However the signal to noise ratio (SNR) enhancement in 

this technique is not always sufficient to aid detection of bearing faults [15]. 

Time Synchronous Average (TSA) techniques are also applied to separate the 

bearing components from the gearboxes. With this technique the effect of the 

speed variation is removed by resampling the signal in the angular domain [8]. 
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The process of resampling the signal is difficult and not commonly applied if the 

purpose is to separate the bearing signal [16].  

Recently, signal separation techniques have been applied in the diagnosis of 

bearing faults within gearboxes. The separation is based on decomposing the 

signal into deterministic and random components. The deterministic part 

represents the gear component and the random part represents the bearings 

component of vibration. The bearing contribution to the signal is expected to be 

random due to slip effects [17]. 

More recently, the use of adaptive filters has been  applied to monitor bearings 

[18-20]. This concept is based on the Wold Theorem, in which the signal can be 

decomposed into deterministic and non-deterministic parts [21]. It has been 

applied to signal processing in telecommunication [22] and ECG signal 

processing [23]. The separation is based on the fact that the deterministic part 

has a longer correlation than the random part and therefore the autocorrelation 

is used to distinguish the deterministic part from the random part. However a 

reference signal is required to perform the separation. The application of this 

theory in condition monitoring was established by Chaturvedi et al [24] where 

the Adaptive Noise Cancellation (ANC) algorithm was applied to separate 

bearing vibrations corrupted by engine noise with the bearing vibration 

signature used as a reference signal for the separation process. However, for  

practical diagnostics, the reference signal is not always readily available. As an 

alternative a delayed version of the signal has been proposed as a reference 

signal and this method is known as self-adaptive noise cancellation (SANC) [25] 

which is based on delaying the signal until the noise correlation is diminished 

and only the deterministic part is correlated [26]. 
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Many recursive algorithms have been developed for application of the adaptive 

filter[20, 27]. Each algorithm offers its own features and therefore the algorithm 

to be employed should be selected carefully depending on the signal under 

consideration. Selection of the appropriate algorithm is determined by many 

factors including: convergence, computation cost, type of signal (stationary or 

non-stationary), and accuracy [28]. 

As noted earlier, in real applications background noise often masks the signal of 

interest and as a result the Kurtosis is unable to capture the peakness of the 

fault signal, giving usually low Kurtosis values. Therefore, in applications with 

strong background noise, the Kurtosis as a global indicator is not useful, though 

it gives better results when it is applied locally in different frequency bands [29].  

The Spectral Kurtosis (SK) was first introduced by Dwyer in [30] as a statistical 

tool which can locate non-Gaussian components in the frequency domain of a 

signal. This method is able to indicate the presence of transients in the signal 

and show their locations in the frequency domain.  It has demonstrated to be 

effective even in the presence of strong additive noise [29]. 

Four algorithms were compared to assess their effectiveness in diagnosing a 

bearing defect in a gearbox; Least Mean Square (LMS), Linear Prediction, 

Spectral Kurtosis (SK) and Fast Block LMS (FBLMS). These algorithms were 

applied to decompose the measured vibration signal into deterministic and 

random parts with the latter containing the bearing signal. In addition the result 

of the adaptive filter algorithms will be compared to the result of  linear 

prediction and spectral kurtosis. This investigation assesses the merits of these 

techniques in identifying a natural degraded bearing under conditions of 

relatively large background noise. The gearbox considered in this study is part 

of a transmission system of an aircraft control system which suffered premature 
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bearing failure at an early stage of testing; therefore, these algorithms will be 

applied to examine their ability to identify the failure at the onset of degradation. 

 

2 Theoretical background: 

2.1 Adaptive filter 

An adaptive filter is used to model the relationship between two signals in an 

iterative manner; the adaption refers to the method used to iterate the filter 

coefficient. The adaptive filter solution is not unique however the best solution is 

that which is  closest to the desirable response signal [31]. FIR filters are more 

commonly used as adaptive filters in comparison of IRR filters [32]. 

The adaptive filter concept is based on Wold theorem which proposes that the 

vibration signal can be decomposed into two parts, deterministic  𝑃(𝑛) and 

random 𝑟 (𝑛). This decomposition process can be represented by the following 

formula [27] : 

𝑥(𝑛) = 𝑃(𝑛) + 𝑟 (𝑛) (1) 

In the equation above the deterministic part can be predicted based on the 

history of the signal and the minimal prediction error, however the random part 

component  cannot be predicted. The process of separation begins by applying 

adaptive noise cancellation (ANC), the fundamentals of this method have been 

detailed, and the general layout of the ANC algorithm is shown in Figure 1 [27, 

33]. 
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Figure 1 ANC algorithm 

In application of the self-adaptive Least Mean Square (LMS) algorithm the 

reference signal in the application of ANC algorithm is replaced by a delayed 

version of the input signal. In this algorithm the signal is filtered using a wiener 

filter, the coefficients of which should be updated for each step, consequently 

feedback from the filter output is required to estimate the filter coefficients. This 

process is repeated for each filter step until the prediction error reaches the 

minimum value. The adaptive filter is a special case of FIR filter expressed by 

the following relation: 

𝑌𝑖 = ∑ ℎ𝑖 ∗ 𝑥(𝑡 − 𝑖)

𝑛−1

𝑖=0

  
(2) 

Where, ℎ𝑖 is the filter coefficient and 𝑥(𝑡 − 𝑖) is corresponding sample of time 

series signal, n denotes the number of samples in the input signal. 

 Equation (2) is similar to linear prediction, however the difference is the filter 

coefficient in this case is estimated recrusively based on Least Mean Error 

(LMS). The filter is based on an assumption of second-order stationary signal 

for both periodic and random signals, in other word the absolute time doesn’t 
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affect the signal function, this due to the fact that the autocorrelation is the most 

important property for filter calculation[34]. This assumption can be expressed 

by [35]: 

𝑓𝑥(𝑥𝑡1, 𝑥𝑡2) = 𝑓𝑥(𝑥𝑡1+𝜏, 𝑥𝑡2+𝜏) (3) 

2.2 Linear Prediction 

The estimation of a dynamic system output and its latest analysis is one of the 

most important problems in signal processing. Different techniques have been 

employed by several researchers in a wide range of applications[36] such as 

neurophysics, electrocardiography, geophysics and speech communication. 

One of the most powerful estimation models is based on the assumption that 

the value of a signal x(n) at the time n can be obtained as a linear combination 

of past inputs and outputs of the system. Models which use the information from 

only the past system outputs are called all-pole or autoregressive models, and 

were first used by Yule [37] in an investigation of sunspot numbers. In Linear 

Prediction the objective is to predict or estimate the future output of a system 

based on the past output observations. The complete mathematical 

development and a compilation of the different Linear Prediction approaches 

have been presented by Makhoul [36].  

In vibration based diagnostics, Linear Prediction [38, 39] is a method that allows 

the separation of the deterministic or predictable part of a signal from the 

random background noise using the information provided by past observations. 

If we assume that the noise is totally random, applying this method we can 

ideally eliminate the background noise and thus improve the signal to noise 

ratio. It is based on the principle that the value of the deterministic part of a 

signal can be predicted as a weighted sum of a series of previous values: 
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Where x̂(n) is the predictable part of the nth sample of the signal x, p is the 

number of past samples considered and a(k) is the weights attached to each 

past observation. The weighting coefficients can be obtained at each step n, by 

a linear operation from the autocorrelation function Rτ of the time series x(n), 

which can be efficiently solved by the Levinson algorithm[40]: 
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 N is the number of past samples considered at each step, in this case 

only p past samples were considered for each prediction of for computational 

reasons, but all the available past samples at each time point were used in the 

calculation of the values Rτ. 

The results of the algorithm depend on the number of past observations (p) 

considered. Smaller values of p produce a poor prediction, giving a result of 

negligible improvement in the signal to noise ratio, while very high values of p 

affect negatively to the computational cost, over restrain the prediction and tend 

to reduce even the main components of the signal. For this particular 

investigation, several analyses were carried out using different numbers of past 
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samples, in order to establish the value p for each test case which optimizes the 

signal to noise ratio of the output signal.  

The linear prediction was applied to reduce the background noise on the signal 

rather than signal separation, therefore the vibration signal is considered 

stationary, and the slip effect of the bearings was neglected. 

2.3 LMS algorithm 

The objective of the LMS algorithm is to optimize filter parameters and minimize 

prediction error, the prediction error 𝜀𝑡 is estimated according by [33]: 

𝜀𝑡 = 𝑑𝑡 − ℎ𝑖 ∗ 𝑥(𝑡 − 𝑖) (7) 

where, 𝑑𝑡 denotes the desirable signal. The filter coefficient should be adjusted 

to minimize this error function. The error might be random in distribution and as 

such  the expectation of the square error signal is used. This leads to  the cost 

function presented in equation (8). This function should be minimised in order to 

find the optimum filter coefficients, this function defined by: 

𝐸(𝑀𝑆𝐸) = 𝐸(
1

2
 ∑(𝑑𝑡 −  ℎ𝑖 ∗ 𝑥(𝑡 − 𝑖))2) (8) 

To optimize the mean square error the cost function should be minimized. 

𝜕𝑀𝑆𝐸

𝜕ℎ
= 0 (9) 

The solution of this optimization problem leads to the estimation of the optimum 

coefficients, this solution known as wiener –Hopf filter equation [28]: 

ℎ𝑜𝑝𝑡 = [𝑅𝑥𝑥]−1 𝑅𝑑𝑥  (10) 
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Where, 𝑅𝑥𝑥 is the autocorrelation function of the input signal, and 𝑅𝑑𝑥 is cross-

correlation between input signal and desirable output. However in the case of 

gearbox signal there is no reference signal, instead a delayed version of the 

input signal is used, therefore the Weiner-Hopf equation is written as: 

ℎ𝑜𝑝𝑡 = [𝑅𝑥𝑥(𝑡 − ∆)]−1 𝑅𝑥𝑥  (11) 

Where, 𝑅𝑥𝑥(𝑡 − ∆) is autocorrelation of the delayed signal. 

In practice the filter size is very large and the Weiner-Hopf equation difficult to 

solve, as such an approximated adaptive LMS algorithm is proposed [31], such 

that the coefficient are updated by: 

ℎ𝑡+1 = ℎ𝑡 + 2𝜇 𝑥(𝑡)𝜀 (12) 

In which, ℎ𝑡+1denote the updated filter coefficient, and 𝜇 denotes the step size 

of the filter, this parameter should be selected carefully, the larger the step size 

the  faster convergence, whilst on other hand a smaller step size leads to more 

accurate prediction, but the computation cost is  high. The range of step size 

selection can be expressed as [32]:  

0 < 𝜇 <
1

𝞴𝒎𝒂𝒙
 (13) 

Where,  𝞴𝒎𝒂𝒙 is the maximum value for eigenvalue for autocorrelation 𝑅𝑥𝑥. for 

step size greater than 
1

𝞴𝒎𝒂𝒙
 the convergence speed can be reduced.  
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In addition, the filter length should be selected carefully, the largest size filter 

decreases convergence speed and vice versa.  The general layout of this 

algorithm is shown in Figure 2: 

 

Figure 2 Adaptive filter with LMS algorithm 

 

2.4 Fast Block LMS algorithm: 

Applying of the standard LMS algorithm to adaptive filtering results in long 

processing time, this due to coefficients been updated sample by sample. This 

delay limits the use of the LMS algorithm for real time applications, therefore the  

Fast Block LMS (FBLMS) algorithm was proposed to reduce the process time 

[41]. 

This algorithm is based on the transforming the time signal to the frequency 

domain and the filter coefficient is updated after transformation. In this algorithm 
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the filter coefficient is updated for each segment, whereas the LMS algorithm 

updates the coefficients for each sample. the detail procedure of FBLMS is 

summarised in [42]. 

2.5 Spectral Kurtosis and envelope analysis 

Kurtosis is defined as the degree of peakness of a probability density function 

p(x) and mathematically it is defined as the normalized fourth moment of a 

probability density function [38]:  
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Where x is the signal of interest with average μ and standard deviation σ.  

The basic principle of this method is to calculate the Kurtosis at different 

frequency bands in order to identify non stationarities in the signal and 

determine where they are located in the frequency domain. Obviously the 

results obtained strongly depend on the width of the frequency bands Δf  [43]. 

The Kurtogram [38] is basically a representation of the calculated values of the 

SK as a function of f and Δf. However, the exploration of the whole plane (f, Δf) 

is a complicated computation task though Antoni [43] suggested a methodology 

for the fast computation of the SK. 

On identification of the frequency band in which the SK is maximized, this 

information can be used to design a filter which extracts the part of the signal 

with the highest level of impulsiveness. Antoni et al. [29] demonstrated how the 

optimum filter which maximizes the signal to noise ratio is a narrowband filter at 

the maximum value of SK. Therefore the optimal central frequency fc and 



 

13 

 

bandwidth Bf of the band-pass filter are found as the values of f and Δf which 

maximise the Kurtogram. The filtrated signal can be finally used to perform an 

envelope analysis, which is a widely used technique for identification of 

modulating frequencies related to bearing faults. In this investigation the SK 

computation and the subsequent signal filtration and envelope analysis were 

performed using the original Matlab code programmed by Jérôme Antoni. 

 

3 Experimental Setup 

The gearbox considered is used as part of a transmission driveline on the 

actuation mechanism of secondary control surfaces in civil aircrafts. The test rig 

was designed to simulate the actual operation conditions during the life cycle of 

the aircraft control system which implies the gearbox would experience a range 

of speed and torque conditions. The test rig was driven by an electrical motor. A 

second motor, which acted as a generator, was employed to apply a range of 

loading conditions. These conditions included the simulation of takeoff and 

landing with different flap positions. A schematic of the testing is presented in 

figure 3 and  load conditions are summarized in table 2. An example of a load 

cycle is presented for type-3 load cycle in figure 5. The motor nominal speed 

was 710 RPM and the expected life of the bearing under this condition is 3000 

hours. The gearbox consists of two spur bevel gears as shown in figure 4, each 

gear with 17 teeth producing a gear ratio of 1:1. Two angular contact bearings 

are used to support each gear and the bearing geometric details are detailed in 

table 1.  

During an endurance test of the flight system, a bearing within the gearbox 

failed after 860 hours of testing which is approximately 30% of the expected 
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bearing life. Vibration measurements were taken from the gearbox at different 

stages of the test. In addition, torque and angular velocity were also measured. 

 

Figure 3: Test rig layout 

 

Figure 4: Gearbox layout and sensors location 
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Table 1: Bearing Geometry 

Bearing Geometry 

No. of rolling elements (n)  12 

Ball Diameter (Bd) 10.32 mm 

Contact Angle (Ö)  40° 

Pitch Diameter (Pd) 46 mm 

Input Shaft Speed (RPM)  710  

 

Vibration data was acquired using an accelerometer fixed on the outer case of 

the gearbox as shown in Figure 4. The operating frequency range of the 

accelerometers was 10-10000 Hz. A signal conditioner (Endevco 2775A) was 

employed and an NI DAQ system was used to acquire data at a sampling rate 

of 5 KHz. Data was acquired at different periods during the endurance test.   

Table 2:  Load cycles characteristics summary 

Cycle type 1 2 3 4 5 6 7 8 9 

Times applied 
during bearing 
life 

18296 22869 4574 462 462 2200 6600 4620 41580 

Duration (Sec) 131 131 131 350 42 71 268 52 52 

Torque max. 
(Nm) 

126.1 126.1 158.6 126.1 126.1 42.8 42.8 12.4 97.7 
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Figure 5: Example of a type 3 load cycle 

The endurance test ran continuously for 864 hours and over this period the rig 

was stopped at certain periods for bearing inspection after which the rig was 

reassembled and the test sequence resumed. Vibration data was recorded at 

720, 810 and 864 hours into the endurance test corresponding to 24%, 27% 

and 30% of bearing life respectively. Each vibration measurement had a 

duration of 210 seconds sampled at 5 KHz. The duration of the vibration data 

represented the complete load cycle. The data under maximum torque was 

selected for processing. The main rotational frequencies and bearing faults 

frequencies are summarized in Table 3. 
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Table 3: Bearing faults frequencies 

Parts Frequency Hz 

Shaft speed frequency (SS)  11.8  

Gear mesh frequency (GM)  201.2  

Inner race defect frequency (IRD)  83.2  

Outer race defect frequency (ORD)  58.8  

Cage defect frequency  4.9  

Ball spin frequency  25.6  

Rolling element defect frequency  
1.2  

 

4 Result and Observations 

4.1 Spectral Kurtosis : 

Analysis employing spectral kurtosis was undertaken on all data set, this 

yielded the frequency band and center frequency which were then used to 

undertake the envelope analysis.   

 The Kurtograms spectral plots and defaults of the center frequencies are 

shown  in Figure 6 and Table 4. These frequencies were employed for envelop 

analysis in this section and for enveloping the separated signal obtained from 

linear prediction, LMS and FBLMS algorithms.  
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First Observation Second Observation 

    
Third Observation 

 
Figure 6: Kurtograms of the different observations 
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Table 4: Maximum Kurtosis location 

Observation Fc(Hz) Δf(Hz) K max Frequency 
Band(Hz) 

1 2083.33 833.3 2.4 1666.7-2500 

2 2083.33 833.3 2.4 1666.7-2500 

3 2083.33 833.3 1.7 1666.7-2500 

 

Results from enveloped analysis using the  filter parameters detailed in Table 4 

is presented in Figure 7. This shows clearly that the signal is dominated by the 

gear mesh frequency but at this point (24% of bearing life) it does not provide 

any information of an incipient fault in the system. In the second observation ( 

27% of bearing life) a new peak at the frequency of 58.4Hz, indicating an 

incipient fault in the outer race of the bearing was evident. In addition, side-

bands around the gear mesh frequency: 190.2Hz and 214Hz were identified. 

The side-bands were spaced at running speed. In third observation (30% of life 

) not only was bearing outer race frequency noted but a second harmonic was 

also observed, see Figure 7. 
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Figure 7: Envelop spectrum using parameters from SK 

4.2 Linear prediction Result 

Signal separation with linear prediction was undertaken on vibration data 

measured at 720 hrs into the endurance test. Following separation the 

frequency spectrum of the determinate part of vibration signature was 

undertaken. From the analysis, and observations of Figure 8, it was observed 
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that the background noise  reduced following Linear Prediction with a relative 

increase in SNR of 2.6%, however, no bearing defect frequencies were 

identified in the frequency spectrum but the dominance of the gear mesh 

frequency (201 Hz) was noted.  

 

Figure 8 First observation spectrum using original signal and linear prediction 

 

The second observation measured at 810 hrs, approximately  27% of bearing 

life, showed a frequency spectrum similar to that noted at 720 hrs (see Figure 

9), with the difference being that there is a reduction in the amplitude of the 

peaks and the background noise is slightly lower. No new fault frequencies 

were identified in the frequency spectrum following Linear Prediction, despite 

the fact that the SNR improved by 14% in the signal to noise ratio. 
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Figure 9: Spectrums at second observation using original signal and linear prediction 

 

Following analysis at 840 hours (30% of bearing life) observations showed that 

the amplitude of the various frequency components in the spectrum is relatively 

lower than noted earlier (see Figure 10). This is due to the fact that this 

measurement was taken during a loading cycle where the transmitted torque 

was lower (40 Nm) than in the previous measurements (126 Nm). Even under 

this low torque conditions and despite the reduction in amplitude, all previously 

noted peaks in the spectrum were evident, in addition to a clear peak at 58.8HZ, 

indicating the defect in the outer race of the bearing.  
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Figure 10:  Spectrums at third observation 

4.3 LMS and FBLMS result 

The Adaptive filter was applied to the measured bearing vibration signature at 

different stages of the endurance test, both LMS and FBLMS algorithms were 

applied to perform signal separation, the result of each algorithm will be 

compared later.  

In order to ensure the convergence of the algorithm, the Mean Square Error 

(MSE) was estimated, the adaptive filter with minimum and stable MSE 

represents the best solution for signal separation, the filter length is selected as 

2000 and step size of 0.00001 based on equation (13) and  minimum MSE as 

shown in convergence curve in figure 11. 
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Figure 11 Learning curve for LMS algorithm 

 After the bearing signal separation had been completed, envelop analysis was 

performed to identify any bearing defect frequencies. The envelop analysis was 

performed by applying a band-pass filter centered around 2083 HZ with a 

bandwidth of 833.33 HZ. These parameters were selected based on the result 

from  maximum Spectral Kurtosis as described in section 4.1. 

The spectrum of enveloped signal associated with 24% of bearing life is 

presented in Figure 12  for the LMS algorithm. Observations showed the gear 

mesh (201.1 Hz) was dominant ( see left plot in figure 12). The right plot in 

Figure 12 represents a narrower frequency range in the original spectrum 

showing the presence of BPFO, shaft speed and harmonics of shaft speed. 

Figure 13 shows the result obtained by enveloping the FBLMS algorithms, 

which doesn’t show the existence of any fault frequencies at this stage. 

 



 

25 

 

 

Figure 12 Enveloped signal spectrum with LMS algorithm at 24% of life 

 

 

Figure 13: Enveloped signal spectrum using a FBLMS algorithm at 24% 
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  The spectrum of the enveloped signal from the second data (27% of bearing 

life) using the LMS algorithm is shown in figure 14.  The presence of the outer 

race defect frequency was evident; in addition a second harmonic of the BPFO 

was noted (118 Hz). This result supports the observation obtained from the first 

data set ( see figure 12). Furthermore, the bearing inner race defect was also  

identified at 83.2 Hz as shown in figure 14 .  

Result from processing the data at 27% using FBLMS algorithms showed the 

presence of both BPFI and BPFO frequencies at 58.85 and 83.2 HZ 

respectively, see figure 15. In addition, side-bands around gear mesh spaced by 

shaft frequency and shaft harmonics were identified by both algorithms as 

shown in figure 14 and figure 15. 

 

Figure 14: Enveloped signal spectrum with LMS algorithm at 27% of life 
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Figure 15: Enveloped signal spectrum with FBLMS algorithm at 27% of life 

For data set collected at 30% of bearing life, the frequency spectrum obtained 

from the LMS algorithms showed BPFO, BPFI, and Ball Spin (BS) frequencies, 

see figure 16. In addition the second harmonic of the BPFI frequency (165 Hz) 

was evident. The frequency spectrum obtained from the FBLMS algorithms 

showed BPFI and BPFO frequencies as shown in figure 17. In both algorithms,  

the amplitude of BPFO decreased by 14% from the previous data set; this is 

attributed to an increase of bearing clearances due to defects which result in a 

decrease of bearing vibration. In addition, this data was recorded during a 

loading cycle where the transmitted torque (50 Nm) was lower than in the  

previous measurements (126 Nm) . Figure 16 and figure 17 show Sidebands 

around fundamental gear mesh spaced by shaft frequency and shaft harmonics 

were now more pronounced  in the spectrum for the data set associated with 

30% bearing life, this is indicative of misalignment. This misalignment can affect 

the gear mesh and further accelerate bearing degradation, consequently the 

test was stopped at this stage and a visual inspection was performed to assess 

the damage. 
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Figure 16:  Enveloped signal at 30% of life using LMS algorithm 

  

 

Figure 17: Enveloped signal spectrum at 30% of life using FBLMS algorithm 

At all three life stages the gearbox was disassembled for visual inspection, 

evidence of scratches in the bearing outer race at an early stage of 24 % was 

observed, see figure 18. At the end of the test the bearing ball and outer race 

were damaged as shown in figure 19.  
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Figure 18 bearing failure progress at 24% and 30% of life time 

 

Figure 19 Inner race damaged at the end of the test 

 

24% 

30% 



 

30 

 

5 Discussion 

The techniques used in this paper are typically used for applications where 

strong background noise masks the defect signature of interest within the 

measured  vibration signature. Of all the techniques presented, the LMS 

algorithm succeeded in detecting the bearing outer race fault earliest at 24% of 

bearing life. FBLMS and SK techniques detected the bearing outer race fault at 

27% of bearing life. In addition, the LMS algorithm was the only technique  that 

successfully  identified both the outer race and ball spin faults. The Linear 

Prediction algorithm detected the fault at 30% of bearing life, though Linear 

Prediction showed its capability in reducing the background noise and 

facilitating the identification of the different components in the signal spectrum. 

Comparing the LMS and FBLMS algorithms showed that LMS is able to detect 

the bearing fault earlier than FBLMS. However, the computational cost for LMS 

is high and therefore FBLMS is more suitable for online diagnostics where an 

immediate response is required. On the other hand, LMS can be used for offline 

diagnostics. However, with today’s computer technology the delay time can be 

reduced significantly to a few minutes. In some applications such as wind and 

tidal turbines, vibration data is acquired once every hour depending on certain 

conditions. This makes the LMS algorithm the best candidate for diagnosing 

bearing faults in gearboxes. 
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6 Conclusion: 

The problem of bearing fault diagnosis in gearboxes has been investigated; 

Linear Prediction, Spectral Kurtosis, LMS and FBLMS algorithms were applied 

to separate the bearing signal. The LMS technique demonstrated the ability to 

identify the defect earlier than all other methods. This method is thus a very 

powerful tool for early fault detection in bearings, particularly for those 

applications where strong background noise from other sources in the machine 

masks the characteristics fault components in the frequency domain. 
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