13,814 research outputs found

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma.

    Get PDF
    Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor

    Machine learning and computational methods to identify molecular and clinical markers for complex diseases – case studies in cancer and obesity

    Get PDF
    In biomedical research, applied machine learning and bioinformatics are the essential disciplines heavily involved in translating data-driven findings into medical practice. This task is especially accomplished by developing computational tools and algorithms assisting in detection and clarification of underlying causes of the diseases. The continuous advancements in high-throughput technologies coupled with the recently promoted data sharing policies have contributed to presence of a massive wealth of data with remarkable potential to improve human health care. In concordance with this massive boost in data production, innovative data analysis tools and methods are required to meet the growing demand. The data analyzed by bioinformaticians and computational biology experts can be broadly divided into molecular and conventional clinical data categories. The aim of this thesis was to develop novel statistical and machine learning tools and to incorporate the existing state-of-the-art methods to analyze bio-clinical data with medical applications. The findings of the studies demonstrate the impact of computational approaches in clinical decision making by improving patients risk stratification and prediction of disease outcomes. This thesis is comprised of five studies explaining method development for 1) genomic data, 2) conventional clinical data and 3) integration of genomic and clinical data. With genomic data, the main focus is detection of differentially expressed genes as the most common task in transcriptome profiling projects. In addition to reviewing available differential expression tools, a data-adaptive statistical method called Reproducibility Optimized Test Statistic (ROTS) is proposed for detecting differential expression in RNA-sequencing studies. In order to prove the efficacy of ROTS in real biomedical applications, the method is used to identify prognostic markers in clear cell renal cell carcinoma (ccRCC). In addition to previously known markers, novel genes with potential prognostic and therapeutic role in ccRCC are detected. For conventional clinical data, ensemble based predictive models are developed to provide clinical decision support in treatment of patients with metastatic castration resistant prostate cancer (mCRPC). The proposed predictive models cover treatment and survival stratification tasks for both trial-based and realworld patient cohorts. Finally, genomic and conventional clinical data are integrated to demonstrate the importance of inclusion of genomic data in predictive ability of clinical models. Again, utilizing ensemble-based learners, a novel model is proposed to predict adulthood obesity using both genetic and social-environmental factors. Overall, the ultimate objective of this work is to demonstrate the importance of clinical bioinformatics and machine learning for bio-clinical marker discovery in complex disease with high heterogeneity. In case of cancer, the interpretability of clinical models strongly depends on predictive markers with high reproducibility supported by validation data. The discovery of these markers would increase chance of early detection and improve prognosis assessment and treatment choice

    An acoustic view of ocean mixing

    Get PDF
    Knowledge of the parameter K (turbulent diffusivity/"mixing intensity") is a key to understand transport processes of matter and energy in the ocean. Especially the almost vertical component of K across the ocean stratification (diapycnal diffusivity) is vital for research on biogeochemical cycles or greenhouse gas budgets. Recent boost in precision of water velocity data that can be obtained from vessel-mounted acoustic instruments (vmADCP) allows identifying ocean regions of elevated diapycnal diffusivity during research cruises - in high horizontal resolution and without extra ship time needed. This contribution relates acoustic data from two cruises in the Tropical North East Atlantic Oxygen Minimum Zone to simultaneous field observations of diapycnal diffusivity: pointwise measurements by a microstructure profiler as well as one integrative value from a large scale Tracer Release Experiment

    Intelligent techniques using molecular data analysis in leukaemia: an opportunity for personalized medicine support system

    Get PDF
    The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient’s genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.Haneen Banjar, David Adelson, Fred Brown, and Naeem Chaudhr

    Fractal Characteristics of May-Grünwald-Giemsa Stained Chromatin Are Independent Prognostic Factors for Survival in Multiple Myeloma

    Get PDF
    The use of computerized image analysis for the study of nuclear texture features has provided important prognostic information for several neoplasias. Recently fractal characteristics of the chromatin structure in routinely stained smears have shown to be independent prognostic factors in acute leukemia. In the present study we investigated the influence of the fractal dimension (FD) of chromatin on survival of patients with multiple myeloma.We analyzed 67 newly diagnosed patients from our Institution treated in the Brazilian Multiple Myeloma Study Group. Diagnostic work-up consisted of peripheral blood counts, bone marrow cytology, bone radiograms, serum biochemistry and cytogenetics. The International Staging System (ISS) was used. In every patient, at least 40 digital nuclear images from diagnostic May-Grünwald-Giemsa stained bone marrow smears were acquired and transformed into pseudo-3D images. FD was determined by the Minkowski-Bouligand method extended to three dimensions. Goodness-of-fit of FD was estimated by the R(2) values in the log-log plots. The influence of diagnostic features on overall survival was analyzed in Cox regressions. Patients that underwent autologous bone marrow transplantation were censored at the day of transplantation.Median age was 56 years. According to ISS, 14% of the patients were stage I, 39% were stage II and 47% were stage III. Additional features of a bad prognosis were observed in 46% of the cases. When stratifying for ISS, both FD and its goodness-of-fit were significant prognostic factors in univariate analyses. Patients with higher FD values or lower goodness-of-fit showed a worse outcome. In the multivariate Cox-regression, FD, R(2), and ISS stage entered the final model, which showed to be stable in a bootstrap resampling study.Fractal characteristics of the chromatin texture in routine cytological preparations revealed relevant prognostic information in patients with multiple myeloma

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine
    corecore