124 research outputs found

    TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?

    Get PDF
    Since the proposition of Quality of Service architectures by the IETF, the interaction between TCP and the QoS services has been intensively studied. This paper proposes to look forward to the results obtained in terms of TCP throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service and to present an overview of the different proposals to solve the problem. It has been demonstrated that the standardized IETF DiffServ conditioners such as the token bucket color marker and the time sliding window color maker were not good TCP traffic descriptors. Starting with this point, several propositions have been made and most of them presents new marking schemes in order to replace or improve the traditional token bucket color marker. The main problem is that TCP congestion control is not designed to work with the AF service. Indeed, both mechanisms are antagonists. TCP has the property to share in a fair manner the bottleneck bandwidth between flows while DiffServ network provides a level of service controllable and predictable. In this paper, we build a classification of all the propositions made during these last years and compare them. As a result, we will see that these conditioning schemes can be separated in three sets of action level and that the conditioning at the network edge level is the most accepted one. We conclude that the problem is still unsolved and that TCP, conditioned or not conditioned, remains inappropriate to the DiffServ/AF service

    GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow’s RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    An adaptive algorithm for Internet multimedia delivery in a DiffServ environment.

    Get PDF
    To meet the Quality of Service (QoS) requirements of multimedia applications and to reduce the network congestion, several service models and mechanisms have been proposed. Among these, Differentiated Service (DiffServ) architecture has been considered as a scalable and flexible QoS architecture for the Internet. DiffServ provides class-based QoS guarantees. Applications in different classes receive different QoS and are priced differently. If network congestion occurs, DiffServ may not be able to guarantee the QoS for the application. Thus, the QoS may not reflect the price paid for the service. A problem of considerable economic and research importance is how to achieve a good price and quality tradeoff even at times of congestion. This thesis presents an Adaptive Class Switching Algorithm (ACSA) which intends to provide good quality with good price for real-time multimedia applications in a DiffServ environment. The ACSA algorithm combines the techniques of Real-time Transport Protocol (RTP), DiffServ, and Adaptation together. It also takes both QoS and price into account to provide users a good QoS with a good price. The algorithm dynamically selects the most suitable class based on both the QoS feedback received and the highest user utility. The user utility is a function of quality, price, and the weight which reflects the relative sensitivity to quality and price. The class with the highest user utility is the class that provides the best quality and price tradeoff. The QoS feedback is conveyed by RTP\u27s Control Protocol (RTCP) Receiver Reports. The results of simulation demonstrate that ACSA can react fast to the current class state in the network and reflects the best QoS and price tradeoff. It always seeks to find a class which provides the highest user utility except when the Internet is congested and the required QoS in all classes can not be satisfied. If this happens, the real-time multimedia flow chooses Best-Effort class with no payment. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F46. Source: Masters Abstracts International, Volume: 44-01, page: 0389. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Network level performance of differentiated services (diffserv) networks

    Get PDF
    The Differentiated Services (DiffServ) architecture is a promising means of providing Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). In this dissertation, the performance of DiffServ networks at the network level, such as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire network have been extensively investigated. It has been shown in literature that the end-to-end delay of EF traffic can go to infinity even in an over-provisioned network. In this dissertation, a simple scalable aggregate scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity. With respect to the Best Effort traffic, Random Exponential Marking (REM), an existing AQM scheme is studied under a new continuous time model, and its local stable condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR) is proposed, and its local stability condition has been presented. Then, a new AQM framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it achieves similar or better performance than traditional AQM schemes. With respect to the Assured Forwarding, a network-assist packet marking (NPM) scheme has been proposed. It has been demonstrated that NPM can fairly distribute bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in both single and multiple bottleneck link networks

    Flow-based reservation marking in MPLS networks

    Get PDF
    2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Differentiated Predictive Fair Service for TCP Flows

    Full text link
    The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.National Science Foundation (CAREER ANI-0096045, MRI EIA-9871022
    corecore