
gTFRC, a TCP friendly QoS-aware Rate Control

for DiffServ Assured Service

Emmanuel Lochin1, Laurent Dairaine2, and Guillaume Jourjon1

1 National ICT Australia Ltd, Australia,
2 ENSICA - LAAS/CNRS, France,

{emmanuel.lochin, guillaume.jourjon}@nicta.com.au
laurent.dairaine@ensica.fr

Abstract. This study addresses the end-to-end congestion control sup-
port over the DiffServ Assured Forwarding (AF) class. The resulting
Assured Service (AS) provides a minimum level of throughput guaran-
tee. In this context, this article describes a new end-to-end mechanism
for continuous transfer based on TCP-Friendly Rate Control (TFRC).
The proposed approach modifies TFRC to take into account the QoS
negotiated. This mechanism, named gTFRC, is able to reach the min-
imum throughput guarantee whatever the flow’s RTT and target rate.
Simulation measurements and implementation over a real QoS testbed
demonstrate the efficiency of this mechanism either in over-provisioned
or exactly-provisioned network. In addition, we show that the gTFRC
mechanism can be used in the same DiffServ/AF class with TCP or
TFRC flows.

Key words: Transport, Congestion Control, DiffServ, Assured Forwarding.

1 Introduction

The increasing capabilities of high performance end systems and communication
networks have greatly accelerated the development of distributed computing.
Distributed applications were originally characterized by very basic communica-
tion requirements mainly related to full packet reliability and order. Today, mul-
timedia applications are more and more used and require strong delay and band-
width guarantees. The Assured Forwarding (AF) class of the IETF/DiffServ [1]
provides a guaranteed minimal throughput that these applications can take ad-
vantage of. The service offers is called Assured Service (AS) and built on top
of the AF Per Hop Behavior (PHB). The minimum assured throughput (also
called target rate) is given according to a negotiated profile with the user. This
service is particularly designed for elastic flows. These flows are generated by ap-
plications able to adapt their network usage to the available network resources
(also called adaptive applications). This means that the application is able to
increase the traffic to use the available network resource and can decrease it
when a congestion occurs.

Most of the today’s Internet applications are supposed to be adaptive and
use TCP [2] as a mean to transport their data. TCP offers a reliable and in
sequence end-to-end stream oriented data transfer service. Moreover, TCP im-
plements flow and congestion control mechanisms in order to avoid receivers’
buffers overflowing and network congestion. In terms of congestion control, TCP
performs at sender side on the application traffic as a bandwidth limiter accord-
ing to the underlying network conditions. Despite of a good TCP behaviour in
terms of network resource usage and bandwidth sharing, TCP is not appropriate
for many applications that integrate time and bandwidth constraints and do not
require full reliability.

A classical alternative to the use of TCP is the User Datagram Protocol. UDP
is a minimalist transport protocol which does not provide any packet reliability,
order and flow congestion control. As a result, UDP needs the application to im-
plement user level control in order to compete fairly with other TCP flows. The
Datagram Congestion Control Protocol (DCCP) is a recently standardized pro-
tocol offering a congestion controlled non reliable transport service [3]. DCCP is
suitable to applications currently using UDP. DCCP aims to provide a transport
service that combines both UDP efficiency and lightness with TCP congestion
control and network friendliness. To realize that, one of the congestion control
implemented into DCCP is the TCP-Friendly Rate Control. TFRC [4] is a con-
gestion control mechanism for unicast flows operating in a best-effort Internet
environment. Based on the TCP throughput equation [5], it is designed to be
reasonably fair when competing for bandwidth with TCP flow. It generates a
flow with a much lower throughput variation over time than TCP. As a result,
it is particularly suitable for multimedia applications such as video streaming or
telephony over the Internet.

In the particular case of the DiffServ/AF class, a minimal bandwidth is pro-
vided (called in-profile traffic part), with the possibility to reach higher band-
width (called out-profile traffic part) depending on the network congestion level.
As state previously, multimedia applications are natural candidates to use this
service class. Nevertheless, as for classical TCP flows over DiffServ/AF class,
TFRC does not use the full potential of the offered service and produces un-
expected results in terms of user requirements. As TFRC mechanism models
the TCP AIMD congestion control algorithm, its behaviour remains similar in
average to TCP over this class. The flow RTT drives the obtained long term
throughput, the guaranteed bandwidth being not efficiently used by the appli-
cation in case of long RTT.

In this paper, we focus on how TFRC mechanism behaves in the context
of a DiffServ/AF class. We show by simulation the good properties of classical
TFRC in terms of bandwidth smoothing and sharing when it is mixed with others
TFRC or TCP flows. Nevertheless, even if a throughput guarantee is provided to
the application by the underlying network, as for TCP, the throughput obtained
by TFRC mainly depends on RTT and loss probability. Then, the application
does not always get the negotiated guaranteed throughput. To cope with this
problem, we propose a simple TFRC adaptation, namely gTFRC, allowing the

application to reach its target rate whatever the RTT and the target rate value
of the application’s flow. Results from a large simulation campaign are presented
to highlight the improvements and to exhibit the efficiency of gTFRC in various
situations. The simulation study is complemented by an evaluation of TFRC
and gTFRC behaviour over a real DiffServ/AF testbed.

This article is structured as follow. The section 2 provides related work about
the DiffServ/AF and congestion control mechanisms. Section 3 gives the problem
statement and presents the gTFRC mechanism. Section 4 enumerates the hy-
pothesis and the simulation characteristics. Sections 5 and 6 evaluate gTFRC.
Section 7 details a real implementation of gTFRC. Finally section 8 gives a
perspective of this work and provides a conclusion.

2 Related work

In order to better understand the problem tackled in this paper, as TFRC models
the TCP congestion control, we first recall the previous studies about TCP over
DiffServ/AF. Then, we will present a related work part concerning TFRC.

2.1 TCP over DiffServ/AF class

Many studies related to the performance of TCP flow over assured service have
already been achieved. In [6], five factors have been studied (RTT, number of
flows, target rate, packet size, non responsive flows) and their impact has been
evaluated in providing a predictable service for TCP flows. In an over-provisioned
network, the target rate associated to the in-profile traffic is achieved regardless
of these five factors. However, these factors have a deep impact on the distri-
bution of the out-profile excess bandwidth. In their paper [7], Park and Choi
demonstrate the unfair allocation of out-profile TCP traffic and conclude that
the smaller target rate aggregate (resp. larger target rate) occupies more (resp.
less) bandwidth than its fair-share regardless to the subscription level. As the
TCP protocol uses the AIMD control congestion algorithm which fairly share
the bandwidth available, the only meaning to obtain a service differentiation
with TCP protocol is to use DiffServ traffic conditioners such token bucket color
marker (TCM) [8] or time sliding window color marker (TSWCM) [9]. The be-
haviour of these traffic conditioners have a great impact on the service level, in
terms of bandwidth, obtained by TCP flows. Several others conditioners have
been proposed to improve throughput insurance [10], [11], [12], [13], [14], [15],
[16]. In all these articles, it is clearly shown that the key of the TCP throughput
guarantee problem is the values 3-uple (loss probability, RTT, target rate) of a
TCP flow.

2.2 TFRC over DiffServ AF class

TFRC is an equation-based rate control mechanisms aiming at reproducing the
behaviour of TCP congestion control. The TCP equation presented in [17] and
used in TFRC is as follow (1):

X =
s

(RTT ·

√

p·2

3
+ RTO ·

√

p·27

8
· p · (1 + 32 · p2))

(1)

The use of an equation instead of the AIMD algorithm in order to esti-
mate the sending rate produces smoother throughput variations. Furthermore
the TFRC congestion control is based on a datagram based communication in-
stead of the stream based TCP connection.

To the best of our knowledge, there is a only few studies of TFRC behaviour
in a DiffServ network. In particular, the authors in [18] investigate AF-TFRC
performances and give a service provisioning mechanism allowing an Internet
Services Provider (ISP) to build a feasible DiffServ system. In this study, the
problem of high RTT difference between long and short transfer are not tackled.
Moreover, for experiments purposes (based on loss rate estimation) all simula-
tions are carried during 1000 seconds. This duration and the invariant network
condition allows a TFRC flow to converge easily to the target rate. As a result,
the flows achieve an average throughput near the target rate.

3 gTFRC: a QoS-aware rate control

In the context of the use of a DiffServ/AF class providing a known guaranteed
rate, the flow throughput breaks up into two parts:

1. a fixed part that corresponds to a minimum assured throughput. In the
event of congestion in the network, the packets of this part are marked like
inadequate to loss (colored green or marked in-profile);

2. an elastic part which corresponds to an opportunist flow of packets (colored
red or marked out-profile). No guarantee is brought to these packets. They
are conveyed by the network on the principle of ”best-effort” (BE) and are
dropped first if a congestion occurs.

We assume that the network is well-provisioned and that the whole in-profile
traffic does not exceed the resource allocated to the AF class. In case of excess
bandwidth in the network, the application can send more than its target rate,
so the network should mark its excess traffic out-profile. If the network becomes
congested, this out-profile traffic is predisposed to losses.

As highlighted in section 2, the only way to make use of this service dif-
ferentiation with TCP protocol is to set a DiffServ traffic conditioner. Even if
the knowledge of the guaranteed bandwidth could be provided to the transport
level, the AIMD principle integrated into TCP do not use the instantaneous
throughput as an input value for its congestion control. Only acknowledgements
and timeout analysis allow TCP to act on the rate control. On the contrary,
the TFRC mechanism makes use of the instantaneous throughput in conjunc-
tion with the flow RTT and loss event . These parameters are used in order to
compute the controlled rate. The resulted smooth rate control is particularly
adapted to streaming media applications that do not require absolute reliability.

Nevertheless, the optimal rate estimated by TFRC still can be under the
target rate needed by the application and provided by the underlying DiffServ
network. TCP would react in a same manner by halving its congestion window.
As for TCP in the AF class, the TFRC flow is not aware that the loss is cor-
responding to an out-profile packet and that it should not decrease its emitted
throughput below the target rate. For TCP, the solution was to design a new
conditioner able to better mark the TCP flows that a simple token bucket or
propose to add a new QoS congestion window as in [19] or [20].

In contrast to TCP, the usage of the TCP equation makes the mechanism
able to directly use the actual TCP throughput in conjunction with the flow RTT
and loss event. In the present study, the gTFRC congestion control mechanism
is made aware of the target rate negotiated by the application with the DiffServ
network. Thanks to this knowledge, the application’s flow is sent in conformance
with the negotiated QoS while staying TCP-friendly in its out-profile traffic part.
This is achieved by computing the sending rate as the maximum between the
TFRC rate estimation and the target rate as given in (2).

G = max(g, X) (2)

Where: G is the transmit rate in bytes/s; g is the target rate in bytes/s and X
is the transmit rate in bytes/s computed by the TCP throughput algorithm. The
rest of the gTFRC mechanism follow entirely the TFRC specification specified
in [4].

gTFRC requires the knowledge of the underlying bandwidth guarantee the
DiffServ/AF network service provides to the session. We assume this informa-
tion is made available to the mechanism at socket creation time, directly by the
application. So, the target rate parameter can be set e.g., by the setsockopt()

function. Without loss of generality, this parameter is supposed to be known
by application after it has been previously negotiated in an end-to-end basis.
This can be accomplished through a proper signalization protocol that a Diff-
Serv architecture should provide [21]. The main concern of this approach deals
with security. Indeed, if we give the possibility to the application to instantiate
through a setsockopt() function the target rate negotiated, we can imagine
that a misbehaving person could abuse of this functionality by giving an higher
value to g. In this case, the misbehaving person sends an UDP-like traffic and in-
creases its out-profile traffic. The edge router still marks in-profile the packets in
respect with the negotiated profile and out-profile the excess part. As as result,
in case of congestion, the dropping precedence set in the core router drop this
excess traffic. The misbehaving person does not take advantage of the situation
as the number of losses of its own flow increases as well. The in-profile traffic
remains protected in the network and the out-profile traffic receives a kind of
flooding attack. As the out-profile traffic is a best-effort traffic, the use of gTFRC
does not violate the equilibrium of the DiffServ network.

4 Simulation study

gTFRC is evaluated over a DiffServ network using simulation. The ns-2 simulator
[22] and the Nortel DiffServ implementation [23] is used to achieve this study. We
drive simulation on the testbed illustrated in the figure 1 with the two following
scenarios:

1. the network is exactly-provisioned (when there is no excess bandwidth for
the out-profile traffic);

2. the network is over-provisioned (there is excess bandwidth).

A network is under-provisioned when the amount of in-profile traffic is higher
than the resource allocated to the AF class. This case could occur if the QoS
Service Provider or the Bandwidth Broker [24] of a DiffServ network send or
receive false information. In a DiffServ context, if the gTFRC source emits below
its target rate and if the gTFRC flow gets losses, it means that the in-profile
traffic is no guaranteed anymore by the network. In this case: how should react

gTFRC ?

Two approaches are possible, the first one is to pursue to emit at the guar-
antee g. This behaviour is legitimate since the service provider must ensure to
the client the service he paid for. The second one is to react to this congestion.
We can imagine to add a new threshold (θ) to gTFRC . This threshold can be
applied as following: if the emission rate X returned by the receiver is θ times
below the target rate g, the sender must emit to X . In the case where X < g/θ,
it means that a bunch of losses has occurred in the in-profile part and that the
congestion could be due to a wrong setting. We believe that this problem should
not be solved inside gTFRC itself and should remain under the responsibility of
the service provider. That is the reason why in this paper we do not consider
the case of under-provisioned network.

10 Mbits/s
5 ms

10 Mbits/s
5 ms

10 Mbits/s
5 ms

1 Mbits/s
10ms

10 Mbits/s
y ms

10 Mbits/s
x ms

Edge Router Core Router Edge Router

Fig. 1. The simulation topology.

An important known problem in a DiffServ network is the unfair bandwidth
sharing of the out-profile part. Indeed, the out-profile part is a best-effort part

and is not necessarily taken into account by the network to achieve the negotiated
target rate. In [7], the authors provide a way to solve this problem; they show
that if a network is exactly-provisioned, there is no bias in favour of a flow or
an aggregate that has a smaller target rate. Taking this as the starting point,
they infer that the unfairness problem can be solved by making the network
exactly-provisioned by simply adjusting the target rates of the token bucket
marker in order to get a proportional differentiation. This assertion is strongly
close to the RTT and the loss probability of the network. So, in a first part of
our experiments, we measure the behaviour of TFRC and gTFRC in order to
evaluate the gain brought by gTFRC in this network case. In a second part, we
made measurements with an over-provisioned network. It is important to note
that finding the best conditioning mechanism in order to improve throughput
insurance remains out of the scope of this study. This problem should be tackled
by the network provider. In our case, we propose an end-to-end approach to
conform the resulted user-level traffic performance with the QoS negotiated in
the network.

In all simulations:

– packet size is fixed to 1500 bytes;
– TCP version used is NewReno;
– we use a two color token bucket marker with a bucket size of 104 bytes in

the edge router and the RIO1 queue in the core;
– the queues size are 50 packets and RIO parameters are:

(minout, maxout, pout, minin, maxin, pin) = (10, 20, 0.1, 20, 40, 0.02)
– the bottleneck between the core and the egress router is 1000Kbit/s;
– measurements are carried during 300sec.

In addition, we evaluate the throughput at the server side and report in the
figures the instantaneous measured throughput.

5 Microscopic behaviour of TCP, TFRC and gTFRC into

a DiffServ network

We perform experiments with many different RTTs and target rates configura-
tion and give in this part representative measurements of the gTFRC efficiency.
Other experiments are available in [25]. We present, in the next sections, exper-
iments achieved in an exactly-provisioned network and in an over-provisioned
network. As mentioned before, it means in the first case that all the traffic in-
profile is allocated and in the second case, it means there is excess bandwidth in
the network.

5.1 Experiments in an exactly-provisioned network

We measure the performance obtained by TFRC and gTFRC in the two scenar-
ios. In figures 2, two flows are emitted on the testbed. The first one has a non

1 RED in-profile out-profile

favourable conditions since it has the highest target rate to reach and a high
RTT (RTT = 640ms, TR = 800Kbit/s). The second flow has the lowest target
rate (200Kbit/s) and a low RTT (40ms). In a multi-domain DiffServ network,
flows can cross one or several DiffServ domains and obtain low or high RTT.
This fact motivates the large RTTs difference in our measurements.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=800Kbits/s
TFRC RTT=40ms TR=200Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=800Kbits/s
gTFRC RTT=40ms TR=200Kbits/s

(b) gTFRC only

Fig. 2. Exactly-provisioned network

The results are presented respectively in figure 2 (a) for TFRC and in figure
2 (b) for gTFRC . We clearly see that gTFRC makes the traffic reach the target

rate much faster than TFRC. The reason is obvious since at the first rate decrease
evaluation of the algorithm, gTFRC evaluates a rate equal to the target rate. In
figure 2 (a), we can see that this case of decreasing occurs for TFRC at t = 11sec
and that gTFRC does not calculate a rate lower than the negotiated target rate
in figure 2 (b). Figure 2 (b) shows that the flow with the lower target rate and
the lower RTT is constrained to reach its own target rate of 200Kbit/s.

Table 1 presents the packets statistics gathered during the simulation from
figures 2. ldrops gives the number of packets dropped due to link overflow
and edrops the number of packets dropped by RED queue for in or out-profile
packets. As gTFRC increases the number of in-profile packets in the network,
the number of ldrops out-profile packets increases too. Indeed, the dropping
mechanism used on the core routers is the well-known RIO queue [26]. In order
to decide whether to discard out-profile, respectively in-profile packets, RIO
uses the average size of the total queue formed by in-profile and out-profile,
respectively in-profile packets. Figure 3 illustrates this behaviour. For instance,
the out-profile occupation rate is computed with q minout and q maxout and the
dropping probability represented by p maxout. As the in-profile traffic increases,
the out-profile loss probability increases too.

queue sizeq min−in q max−inq min−out q max−out q

p max_in

1

p

p max_out

p out

p in

Fig. 3. Dropping probabilities of in-profile packets and out-profile packets in the
RIO algorithm

However, gTFRC gives an average throughput for each flow near their target
rate since the number of out-profile flow strongly decreases. As a result, it occurs
less out-profile packets losses in the network and a better occupation of the in-
profile traffic. These two measurements allow to conclude that gTFRC is DiffServ
compliant and allow to get a throughput guarantee in the standard DiffServ AF
class in case of exactly-provisioned network. Moreover, a simple token bucket

color marker is able to characterize gTFRC flows due to the non bursty nature
of TFRC traffic2.

Code Point Total packets ldrops edrops
in-profile 83.5% 0.01% 0.02%
out-profile 16.5% 23.1% 49.0%

(a) Packets statistics with TFRC in figure 2 (a)

Code Point Total packets ldrops edrops
in-profile 94.1% 0.01% 0.08%
out-profile 5.9% 53.8% 0.9%

(b) Packets statistics with gTFRC in figure 2 (b)

Table 1. Corresponding packets statistics associated to figure 2

As the DiffServ/AF class has been designed to carry elastic flows and in
particular TCP flows, we propose to compare gTFRC and TCP flows mixed
together. TFRC has been built in order to be TCP-friendly. A flow is considered
TCP-friendly or TCP-compatible when its long-term throughput does not exceed
the throughput of a conformant TCP connection under the same conditions [28].
In case of a DiffServ network, this behaviour can change due to the network
conditioning. Indeed, the aim of a DiffServ network is to perform a differentiation
between flows and not to share in a fair manner the bandwidth. As gTFRC is
a specific mechanism for DiffServ network, it is clearly not TCP-friendly in its
in-profile. This TCP-friendly objective is not relevant in this profile as the user
has paid for a fixed bandwidth guarantee. Nevertheless, the mechanism should
remain TCP-friendly in its out-profile part, as several flow compete for this
profile. We verify this point by keeping the same network scenario than in the
previous part but we compare TFRC and gTFRC with a TCP flow. Results are
presented in figure 4.

If we look at the previous experiments results reported figure 2, we can see
that TCP and TFRC behaviours are similar and their long-terms throughput
have the same order of magnitude. Indeed, both flows obtain respectively an
average throughput equal to 354Kbit/s for TFRC in figure 2 (a) and 387Kbit/s
for TCP in figure 4 (a). Table 2 presents the packets statistics obtained during
the simulation in figure 4. These statistics are similar to these related on table
1. The oscillations of both figures 4 are due to the aggressive nature of TCP. In
figure 4 (b), since TCP has the best condition to release it (lower target rate
and lower RTT), the aggressive TCP behaviour tries to outperform its target
rate and as a result, generates a high number of out-profile packets.

2 On the contrary the token bucket is considered as a bad TCP traffic descriptor [6]
[27]

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=800Kbits/s
TCP RTT=40ms TR=200Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=800Kbits/s
TCP RTT=40ms TR=200Kbits/s

(b) gTFRC versus TCP

Fig. 4. Exactly-provisioned network

Finally, to conclude this comparison, we remind the already-known results
obtained by two TCP flows in a DiffServ network in figure 5.

This figure illustrates that TCP does not reach its target rate even if the
network is exactly-provisioned in case of high RTT difference. In figure 5 (a)
the flow which requests a target rate of 800Kbit/s obtains a throughput around
200Kbit/s. In [29] and [30], analytical studies show that it is not always possible
to achieve service differentiation with a TCP token bucket conditioning in certain
conditions. This example illustrates the case where the target rate parameter of
the token bucket has no real impact on the negotiated target rate as highlighted

Code Point Total packets ldrops edrops
in-profile 87.1% 0.03% 0.01%
out-profile 12.9% 3.0% 5.0%

(a) Packets statistics for scenario in figure 4 (a)

Code Point Total packets ldrops edrops
in-profile 94.6% 0.03% 0.04%
out-profile 5.4% 56.3% 1.0%

(b) Packets statistics for scenario in figure 4 (b)

Table 2. Packets statistics for figure 4

in these studies. If we compare with figure 4, these results allow to verify that
the use of gTFRC and TFRC flows in the same DiffServ class is not prejudicial
for the TCP flows.

5.2 Experiments in an over-provisioned network

This section deals with scenario corresponding to an over-provisioned network.
We present measurements where the network let 20% of unallocated bandwidth.
We investigate the case of various RTTs and different targets rate.

These experiments achieve systematic comparisons between two target rates
of 600Kbit/s and 200Kbit/s and two RTTs of 640ms and 40ms. In figure 6, one
flow is in the worst condition to reach its target rate. It has both the highest RTT
and target rate. In figure 6 (a), the flow with the lowest RTT and target rate
(200Kbit/s and 40ms) outperforms its target rate and the other flow (600Kbit/s
and 640ms) never reach its target rate. So, as demonstrated in [29] and [30] for
TCP flows, it seems that in certain conditions, the token bucket marker is not a
good traffic descriptor for the TFRC flows too. On the other hand, figure 6 (b)
shows that gTFRC enforces the requested target rate to be attained and that
the gTFRC flow is able to reach it.

Table 3 gives packets statistics for this experiment and shows that gTFRC
increases the number of in-profile packets in the network.

The next experiment aims at studying the mixing of a TCP flow with a TFRC
or a gTFRC flow in an over-provisioned network. Figure 7 shows that the TCP
flow is not disturbed by the gTFRC flow and remains the most aggressive in
regard of its target rate. On both figures 7, TCP reaches a throughput about
two times higher than its target rate.

Finally, in order to highlight the rapid convergence to the target rate of the
gTFRC flows, another experiment is achieved in an exactly-provisioned network
with ten flows. Each flow has an equal target rate of 100Kbit/s and a RTT
ranging from 140ms to 1040ms. Figure 8 presents the obtained results. Figure
8 (b) show that all flows reach the target rate before t = 10 seconds.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TCP RTT=640ms TR=800Kbits/s
TCP RTT=40ms TR=200Kbits/s

(a) TCP only

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TCP RTT=40ms TR=800Kbits/s
TCP RTT=640ms TR=200Kbits/s

(b) TCP only

Fig. 5. Exactly-provisioned network with TCP

6 Macroscopic behaviour of TCP, TFRC and gTFRC

into a DiffServ network

This section investigates the gain perceived by a user when using gTFRC flows
in DiffServ/AF class. We look at the average throughput value obtained after a
transfer of 100sec in function of the network load. First, in order to highlight the
gTFRC robustness, we compare the throughput obtained by TCP, TFRC and
gTFRC in a network with an increasing out-profile traffic. In this experiment, a
single flow is emitted with a target rate corresponding to 60% of the bottleneck.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=600Kbits/s
TFRC RTT=40ms TR=200Kbits/s

(a) TFRC only

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=600Kbits/s
gTFRC RTT=40ms TR=200Kbits/s

(b) gTFRC only

Fig. 6. Over-provisioned network

In the same time, a UDP/CBR flow loads the network by emitting a traffic
completely marked out-profile ranging from 0% to 80%. In figure 9, when the
network load is equal to 100%, it means that the UDP/CBR source emits 40%
of constant out-profile traffic. Each flow has an RTT equal to 200ms. Figure 9
gives the results obtained for either a TCP or TFRC or gTFRC flow against
this UDP/CBR flow. This figure clearly shows the non-sensitivity of the gTFRC
protocol to the increasing out-profile traffic load.

In order to supplement the experiment presented in figure 9, figure 10 presents
a similar scenario where the UDP/CBR flow is replaced by a TCP aggregate

Code Point Total packets ldrops edrops
in-profile 74.6% 0% 0%
out-profile 25.4% 0.5% 3.7%

(a) Packets statistics for scenario in figure 6 (a)

Code Point Total packets ldrops edrops
in-profile 76.9% 0% 0%
out-profile 23.1% 0.6% 4.2%

(b) Packets statistics for scenario in figure 6 (b)

Table 3. Packets statistics for 6

ranging from 1 to 20 microflows with an RTT = 80ms. The increase of the
aggregate size loads the network and decreases the throughput of the single flow
which still have an RTT = 200ms. However, the gTFRC curve illustrates that
this mechanism is non-sensitive to the increase of the aggregate size.

7 Implementation and integration of gTFRC in a

multi-domain QoS Network

Many research works have been carried out on Quality of Service mechanisms
for packet switching networks over the past ten years. The results of these efforts
have still not been transformed into a large multi-domain network providing QoS
guarantees [31].

The EuQoS project3 is an integrated project under the European Union’s
Framework Program 6 which aims at deploying a flexible and secure QoS assur-
ance system over a pan-European testbed environment. The EuQoS System inte-
grates many applications requiring QoS guarantees such as Voice over IP, Video
on Demand or Medical applications over multi-domain heterogeneous environ-
ment such as WiFi, UMTS, xDSL or Ethernet technologies. Then, the EuQoS
system integrates various architectural components such as signaling protocols,
traffic engineering mechanisms, QoS routing, admission control to resource reser-
vation scheme and of course multimedia application and transport protocols.

For this purpose, the EuQoS System integrates various architectural compo-
nents such as signaling protocols, traffic engineering mechanisms, QoS routing,
admission control to resource reservation scheme and tackles also the issue of
QoS aware transport protocols. In this context, network configuration (i.e. re-
source allocation and reservation) is done according to the user’s SLA4 and
applications requirements. This configuration is performed following a complex
signaling process5 which leads to the production of a QoS session descriptor.

3 http://www.euqos.org/
4 Service Level Agreement
5 The details of this signaling process is out of scope of the present study.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

TFRC RTT=640ms TR=600Kbits/s
TCP RTT=40ms TR=200Kbits/s

(a) TFRC versus TCP

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

K
bi

t/s

Time (sec)

gTFRC RTT=640ms TR=600Kbits/s
TCP RTT=40ms TR=200Kbits/s

(b) gTFRC versus TCP

Fig. 7. Over-provisioned network with TCP

In the context of this project, both TFRC and gTFRC mechanism have
been implemented as prototype in a Java transport framework. This TFRC
mechanism has been enhanced, as described in the following, in order to take
into account the QoS delivered by the underlying network.

Before deploying and measuring this protocol on the EuQoS network, a val-
idation campaign has been achieved on both simulation for reference and with
our implementation over a real network. We use the same topology given in fig-
ure 1. The real network testbed is composed by end-stations on GNU/Linux,
and the edge and core routers run FreeBSD with ALTQ [32] to implement the

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

TFRC RTT=140ms TR=100Kbits/s
TFRC RTT=240ms TR=100Kbits/s
TFRC RTT=340ms TR=100Kbits/s
TFRC RTT=440ms TR=100Kbits/s
TFRC RTT=540ms TR=100Kbits/s
TFRC RTT=640ms TR=100Kbits/s
TFRC RTT=740ms TR=100Kbits/s
TFRC RTT=840ms TR=100Kbits/s
TFRC RTT=940ms TR=100Kbits/s

TFRC RTT=1040ms TR=100Kbits/s

(a) TFRC only

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

K
bi

t/s

Time (sec)

gTFRC RTT=140ms TR=100Kbits/s
gTFRC RTT=240ms TR=100Kbits/s
gTFRC RTT=340ms TR=100Kbits/s
gTFRC RTT=440ms TR=100Kbits/s
gTFRC RTT=540ms TR=100Kbits/s
gTFRC RTT=640ms TR=100Kbits/s
gTFRC RTT=740ms TR=100Kbits/s
gTFRC RTT=840ms TR=100Kbits/s
gTFRC RTT=940ms TR=100Kbits/s

gTFRC RTT=1040ms TR=100Kbits/s

(b) gTFRC only

Fig. 8. Ten TFRC or gTFRC flows with various RTTs in an exactly-provisioned
network

token bucket marker and the RIO queue. Simulations parameters are similar to
the ns-2 one given in 4 with a packet size fixed to 1000 bytes; the router queue
size is 50 packets and measurements are carried during 180sec. For both experi-
ments, we compute the average throughput at the server and at the receiver side.
Figure 11 presents the results obtained with a similar scenario to this previously
presented figure 2. As an example of result, the following figure illustrates the
quasi-perfect correspondence between TFRC in simulated and executed mode.
The complete results of this conformance testing are available in [33] and these

 40

 50

 60

 70

 80

 90

 100

 60 70 80 90 100 110 120 130 140

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (

%
)

Network load (%)

gTFRC
TFRC

TCP
Target Rate

Fig. 9. UDP/CBR flow against TCP or TFRC or gTFRC with an RTT=200ms

 45

 50

 55

 60

 65

 70

 75

 80

 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (

%
)

tcp flows

Target Rate
gTFRC

TFRC
TCP

Fig. 10. TCP aggregate versus either TCP or TFRC or gTFRC flow RTT=80ms

results show a very conformant behaviour of both TFRC and gTFRC compared
to their reference.

8 Conclusions and further work

In this article we proposed a simple and efficient adaptation of TFRC conges-
tion control for DiffServ network. gTFRC allows to reach a minimum guarantee
throughput whatever the RTT or the target rate of a flow. It requires only the
target rate negotiated by the application in order to become QoS aware. We

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
b/

s)

Time

TFRC TR=800Kbit/s RTT=300ms
TFRC TR=200Kbit/s RTT=10ms

(a) TFRC versus TFRC

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
b/

s)

Time

gTFRC TR=800Kbit/s RTT=300ms
gTFRC TR=200Kbit/s RTT=10ms

(b) gTFRC versus gTFRC

Fig. 11. Exactly-provisioned network

have demonstrated through many experiments its efficiency and that it can used
in a standard AF/DiffServ class.

Future works are particularly devoted to the integration of gTFRC into the
Enhanced Transport Protocol (ETP) [34], a configurable protocol offering a par-
tially ordered, partially reliable, congestion controlled and timed controlled end-
to-end communication service suited for message-oriented multimedia flows in
the context of QoS network. ETP with gTFRC will be evaluated over the pan-
European EuQoS network. Secondly, we are currently studying the possibility
to add gTFRC as an extension into the CCID#3 of the DCCP protocol[35].

References

1. Heinanen, J., Baker, F., Weiss, W., Wroclawski, J.: Assured forwarding PHB
group. Request For Comments 2597, IETF (1999)

2. Postel, J.: Transmission control protocol: Darpa internet program protocol speci-
fication. Request For Comments 793, IETF (1981)

3. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol
(DCCP). Request For Comments 4340, IETF (2006)

4. Handley, M., Floyd, S., Pahdye, J., Widmer, J.: TCP-Friendly Rate Control
(TFRC): Protocol Specification. Request For Comments 3448, IETF (2003)

5. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: A sim-
ple model and its empirical validation. In: Proc. of ACM SIGCOMM, Vancouver,
CA (1998) 303–314

6. Seddigh, N., Nandy, B., Pieda, P.: Bandwidth Assurance Issues for TCP Flows in a
Differentiated Services Network. In: Proc. of IEEE GLOBECOM, Rio De Janeiro,
Brazil (1999) 6

7. Park, E.C., Choi, C.H.: Proportional Bandwidth Allocation in DiffServ Networks.
In: Proc. of IEEE INFOCOM, Hong Kong (2004)

8. Heinanen, J., Guerin, R.: A Single Rate Three Color Marker. Request For Com-
ments 2697, IETF (1999)

9. Fang, W., Seddigh, N., AL.: A Time Sliding Window Three Colour Marker. Re-
quest For Comments 2859, IETF (2000)

10. El-Gendy, M., Shin, K.: Assured Forwarding Fairness Using Equation-Based Packet
Marking and Packet Separation. Computer Networks 41(4) (2002) 435–450

11. Feroz, A., Rao, A., Kalyanaraman, S.: A TCP-Friendly Traffic Marker for IP
Differentiated Services. In: Proc. of IEEE/IFIP International Workshop on Quality
of Service - IWQoS. (2000)

12. Habib, A., Bhargava, B., Fahmy, S.: A Round Trip Time and Time-out Aware
Traffic Conditioner for Differentiated Services Networks. In: Proc. of the IEEE
International Conference on Communications - ICC, New-York, USA (2002)

13. Kumar, K., Ananda, A., Jacob, L.: A Memory based Approach for a TCP-Friendly
Traffic Conditioner in DiffServ Networks. In: Proc. of the IEEE International
Conference on Network Protocols - ICNP, Riverside, California, USA (2001)

14. Lochin, E., Anelli, P., Fdida, S.: AIMD Penalty Shaper to Enforce Assured Service
for TCP Flows. In: Proc. of the International Conference on Networking - ICN,
La Reunion, France (2005)

15. Lochin, E., Anelli, P., Fdida, S.: Penalty shaper to enforce assured service for TCP
flows. In: IFIP Networking, Waterloo, Canada (2005)

16. Nandy, B., P.Pieda, Ethridge, J.: Intelligent Traffic Conditioners for Assured For-
warding based Differentiated Services Networks. In: IFIP High Performance Net-
working, Paris, France (2000)

17. Widmer, J.: Equation-Based Congestion Control. Diploma thesis, University of
Mannheim, Germany (2000)

18. Kim, Y.G., Kuo, C.C.J.: TCP-Friendly Assured Forwarding (AF) Video Service
in DiffServ Networks. In: IEEE International Symposium on Circuits and Systems
(ISCAS), Bangkok, Thailand (2003)

19. Feng, W., Kandlur, D., Saha, D., Shin, K.S.: Adaptive Packet Marking for Pro-
viding Differentiated Services in the Internet. In: Proc. of the IEEE International
Conference on Network Protocols - ICNP. (1998)

20. Singh, M., Pradhan, P., Francis, P.: MPAT: Aggregate TCP Congestion Manage-
ment as a Building Block for Internet QoS. In: Proc. of the IEEE International
Conference on Network Protocols - ICNP, Berlin, Germany (2004)

21. Hancock, R., Karagiannis, G., Loughney, J., den Bosch, S.V.: Next steps in sig-
naling (nsis): Framework. Request For Comments 4080, IETF (2005)

22. http://www.isi.edu/nsnam/ns/.
23. Pieda, P., Ethridge, J., Baines, M., Shallwani, F.: A network simulator differenti-

ated services implementation. Technical report, Open IP, Nortel Networks (2000)
24. Nichols, K., Jacobson, V., Zhang, L.: A two-bit differentiated services architecture

for the internet. Request For Comments 2638, IETF (1999)
25. Lochin, E., Dairaine, L., Jourjon, G.: gTFRC: a QoS-aware congestion control al-

gorithm. In: Proc. of the International Conference on Networking - ICN, Mauritius
(2006)

26. Clark, D., Fang, W.: Explicit allocation of best effort packet delivery service.
IEEE/ACM Transactions on Networking 6(4) (1998) 362–373

27. Goyal, M., Durresi, A., Jain, R., Liu, C.: Effect of number of drop precedences in
assured forwarding. In: Proc. of IEEE GLOBECOM. (1999) 188–193

28. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the
Internet. IEEE/ACM Transactions on Networking 7(4) (1999) 458–472

29. Sahu, S., Nain, P., Diot, C., Firoiu, V., Towsley, D.F.: On achievable service
differentiation with token bucket marking for TCP. In: Measurement and Modeling
of Computer Systems. (2000) 23–33

30. Malouch, N., Liu, Z.: Performance analysis of TCP with RIO routers. In: Proc. of
IEEE GLOBECOM, Taipei, Taiwan (2002) 9

31. Cicconetti, C., Garcia-Osma, M., Masip, X., Sa Silva, J., Santoro, G., Stea, G.,
Taraskiuk, H.: Simulation model for end-to-end QoS across heterogeneous net-
works. In: 3rd International Workshop on Internet Performance, Simulation, Mon-
itoring and Measurement (IPS-MoMe 2005), Warsaw (2005)

32. Cho, K.: Managing traffic with ALTQ. Proceedings of USENIX Annual Technical
Conference: FREENIX Track (1999) 121–128

33. Jourjon, G., Lochin, E., Dairaine, L., Senac, P., Moors, T., Seneviratne, A.: Imple-
mentation and performance analysis of a QoS-aware TFRC mechanism. In: Proc.
of IEEE ICON, Singapore (2006)

34. Exposito, E.: Specification and implementation of a QoS oriented Transport pro-
tocol for multimedia applications. Phd thesis, LAAS-CNRS/ENSICA (2003)

35. Floyd, S., Kohler, E., Padhye, J.: Profile for DCCP Congestion Control ID 3:
TRFC Congestion Control. Request For Comments 4342, IETF (2006)

