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ABSTRACT

NETWORK LEVEL PERFORMANCE OF DIFFERENTIATED SERVICES
(DIFFSERV) NETWORKS

by
Li Zhu

The Differentiated Services (DiffServ) architecture is a promising means of providing

Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop

Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding

(AF) and Best Effort (BE).

In this dissertation, the performance of DiffSery networks at the network level, such

as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire

network have been extensively investigated.

It has been shown in literature that the end-to-end delay of EF traffic can go to infinity

even in an over-provisioned network. In this dissertation, a simple scalable aggregate

scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not

only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity.

With respect to the Best Effort traffic, Random Exponential Marking (REM), an

existing AQM scheme is studied under a new continuous time model, and its local stable

condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR)

is proposed, and its local stability condition has been presented. Then, a new AQM

framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it

achieves similar or better performance than traditional AQM schemes.

With respect to the Assured Forwarding, a network-assist packet marking (NPM)

scheme has been proposed. It has been demonstrated that NPM can fairly distribute

bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in

both single and multiple bottleneck link networks.



HighSpeed TCP (HSTCP) provides reliable data transmission at very high speed

over Internet. At the same time, Optical Burst Switching (OBS) becomes a promising

technology to support the future Internet backbone. A simple model for a single HSTCP

connection over an OBS network is proposed to investigate the impact of OBS on the

throughput of a single HSTCP connection.
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CHAPTER 1

INTRODUCTION

The current Internet only supports Best Effort (BE) service, in which all users' traffics

are treated in the same way, regardless of their application types and special service

requirements. This service model worked well in the early years of the Internet since

the majority of the traffics were web browsing, FTP, and emails at that time. Today, with

new emerging applications, such as multimedia streaming and VoIP, there is a big demand

for a new service model that can provide different services to different applications based

on their quality of service (QoS) requirements, e.g., delay, delay jitter and packet dropping

rate.

Internet Engineering Task Force (IETF) has proposed two service models, namely

Integrated Services (IntServ) [1] and Differentiated Services (DiffServ) [2] to provide

QoS in the Internet. With call administration control and bandwidth reservation, IntServ

provides end-to-end QoS guarantees for different types of applications. However, lacking

scalability and flexibility brings tremendous technical difficulty to implement IntSery in the

Internet. DiffSery tries to provide QoS in a much coarser level, or namely in the aggregate

level instead of providing QoS to each session. In DiffServ, every packet is classified into a

small number of Per Hop Behavior (PHB) aggregates, such as Expedite Forwarding (EF),

Assured Forwarding (AF), and BE at network edges. Packets in the same aggregates are

treated in the same way in the core of the networks.

1.1 Integrated Services

The IntServ model is characterized by resource reservation and admission control. Before

each application session starts, a path is set up and a certain amount of resources

(bandwidth, buffer, etc.) are reserved along the path in advance; after the session finishes,

1
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the reserved resource is released. There are four building blocks in the IntSery model: call

admission control, bandwidth reservation, classifier, and packet scheduler [1].

1. Call Admission Control The call admission control unit is used to determine if a

new application session can be provided with its desired QoS without affecting the

QoS of the existing sessions. If there is not enough bandwidth to accept this new

session, it is either rejected or its QoS is downgraded.

2. Bandwidth Reservation — In order to guarantee QoS, a certain amount of resources

have to be reserved for each session. RSVP [3] is the signaling protocol to reserve

resources. When a new session arrives, the sender sends the receiver the Path

message, which specifies its QoS requirement. Upon receiving the Path message, the

receiver sends back the Resv message, which carries the resource reservation request

to the routers along the path from the sender to the receiver. Each router along the

path decides if the Resv request can be accepted. Once the request is accepted by all

the routers along the path, necessary resources are reserved. If some of the routers

cannot grant the resources requested, the session is either rejected or the network

provides a lower QoS.

3. Classifier — Before packets enter the network, they are classified into different

classes so that they receive different treatment at the packet scheduler. A class could

be a particular application session or multiple flows.

4. Packet Scheduler — There are several scheduling schemes that can be adopted by the

packet scheduler: priority queuing, round robin, Weighted Fair Queuing (WFQ), etc..

Generally speaking, each queue corresponds to one class. If some classes consist of

a single session each, a huge number of queues are to be maintained by each router,

and this is very difficult to implement.

In addition to the BE service, IntServ proposed two service classes: Guarantee Service [4]

and Controlled-Load Service [5]. Guarantee Service aims to provide hard delay bound
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and no packet loss for the conforming traffics, and it is intended for applications such

as real time audio and video delivery, which need strict delay guarantee. Each flow's

traffic is characterized in the form of a token bucket, a minimum policed unit (m) and

a maximum datagram size (M). At the network edge, Guarantee Service flow's traffic is

shaped according to its traffic parameters. The required amount of reserved bandwidth

and buffer are computed based on the fluid model to guarantee the application's QoS [6].

The Controlled-Load Service does not intend to provide strict QoS such as delay bound.

Instead, it provides service equivalent to that received by the BE traffic on a slightly loaded

network. Such type of service is suitable for adaptive real time applications.

Although IntServ is able to provide QoS to each flow, the lack of scalability and

flexibility prevents it from practical deployment. IntSery is a flow oriented service model,

in which routers have to maintain state information for each active flow and perform packet

checking and scheduling at the flow level. It is extremely difficult to implement IntSery

on the major ISP backbones, on which a large number of active flows exist and millions of

packets are processed every second. In order to overcome these disadvantages, IETF took

a fresh approach, DiffServ, which will be introduced in the next section.

1.2 Differentiated Services

The philosophy of DiffServ is two fold: first, keeping the network core as simple as possible

and pushing the complexity to the network edge; second, providing service differentiation

at the per aggregate level instead of per flow level. By doing so, DiffServ is more scalable,

manageable, and implementable.

DiffServ defines three Per-hop Behaviors (PHBs): Expedite Forwarding (EF),

Assured Forwarding (AF), and Best Effort (BE), and each PHB represents one service

level. At network edges, packets are classified into these classes and the corresponding

PHB is identified by Differentiated Service Code Point (DSCP) in the Type of Service
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(TOS) field in the IP headers. At the network core, each packet is processed only based on

the DSCP it carries.

DiffSery has great advantages over IntServ. First, there are only limited number of

service classes (PHBs), and the core routers only need to manage the aggregate flows.

Therefore, it becomes feasible to implement packet scheduling because small number of

queues are maintained. Second, packet classification and conditioning are performed only

at the network edges; this greatly reduces the processing overhead at core nodes and makes

DiffServ deployable at ISP backbones.

DiffServ also has some disadvantages. First, DiffServ provides coarse QoS granu-

larity at the aggregate level, and does not guarantee the QoS for individual flows in each

aggregate. Second, PHBs only have local meaning at each hop; it is unclear what kind of

end-to-end QoS can be provided.

1.2.1 Expedite Forwarding

The EF class is intended for delay and loss sensitive applications such as Voice over IP

(VoIP). One approach to implement EF is to use priority queueing by giving the highest

priority to the EF traffic. Another approach is to use WFQ by offering the EF class

a much larger weight as compared to other classes. The EF queue adopts the simplest

DropTail queue management scheme. In order to achieve low delay, the queuing delay at

EF queue has to be maintained at a certain low level. However, traffic burstiness can cause

high queuing delay, which is undesirable for applications served in the EF class. Three

approaches can be used to alleviate the effect of burstiness on queuing delay. First, ingress

nodes perform traffic shaping so that the traffic conforms to certain traffic envelope and

it becomes less bursty. Second, the queuing delay can be reduced by over-provisioning

bandwidth for the EF class. Third, networks perform admission control for the EF traffics.
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1.2.2 Assured Forwarding

The AF class is suitable for applications that requires more assured service than BE even

when network congestion happens, and video streaming is one of such applications. In the

AF model, customers and ISPs have Service Level Agreements (SLAs), which specify the

traffic profiles of customers. The traffics within the profiles are called "IN" traffics, and

those out of profile are called "OUT" traffics. Both "IN" and "OUT" packets are served in

First In First Out (FIFO) manner. Since there is no admission control for AF, the network

bandwidth can be either over-provisioned or under-provisioned. When excess bandwidth

is available, both "IN" and "OUT" packets are forwarded. When congestion happens, "IN"

packets are served with higher priority by dropping "OUT" packets with higher probability.

AF can be realized with random early detection (RED) with In and Out (RIO), which

is also called the two-color marking scheme. RIO adopts the two-level RED scheme, in

which there are two thresholds minth and max th. When the queue length is less than

minth, all packets are forwarded. When the queue length is between minth and maxth,

OUT packets are dropped with a certain probability and IN packets are forwarded without

dropping. When the queue length is larger than max th, IN packets are dropped based on

certain probabilities and all OUT packets are dropped. Three-color marking adopts the

similar approach to RIO, except that three-level RED is used and traffics are characterized

into three levels instead of two in RIO.

1.3 Congestion Control, TCP and Active Queue Management (AQM)

Internet has finite resources (bandwidth and buffer). When total user demands exceed

the available resources, congestion happens [8]. Network congestion can cause larger

queuing delay, less effective bandwidth utilization and even congestion collapse [7]. From

the network users' perspective, the received services will be severely downgraded and

unacceptable. Therefore, congestion control plays a very important role in keeping good

network performance and providing good quality services to users.
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There are two key components in congestion control: transmission protocols at end

users and active queue management at network routers. TCP is the most dominant transport

protocol adopted by end users. It was reported that about 95% of Internet traffics are

generated from TCP connections [9]. TCP decreases its tranmission rate when congestion

is detected, and increases it when spare bandwidth is available. DropTail is the simplest

and still the most dominant queue management scheme in Internet. In the DropTail scheme,

packets are dropped only when the buffer is overflowed. Upon sensing the packet dropping,

TCP decreases its transmission rate. Then, TCP increases its transmission rate slowly till

congestion happens again. However, DropTail has unavoidable disadvantages. First, many

of TCP connections may decrease and increase their transmission rates at the same time;

this phenomenon is called TCP synchronization, which can signficantly reduce bandwidth

utilization. Second, the queue length may oscillate between zero and the buffer size, and

this can cause undesired queuing delay and delay jitter. Third, not the last, the combination

of TCP and DropTail is a reactive congestion control, which is triggered only when severe

congestion happens.

Active Queue Management (AQM) aims to overcome the disadvantages of Drop-Tail.

In AQM, routers measure the congestion level on their links and signal the congestion

condition explicitly to users by probabilistically dropping or marking packets. Many AQM

schemes have been proposed, e.g., random early detection (RED) [13], random exponential

marking (REM) [14], PI controller [15], adaptive virtual queue (AVQ) [16], and state

feedback control (SFC) [18]. These AQM proposals differ in the ways they measure

congestion level and the dropping probability is computed. However, the goals of these

schemes are similar: providing high link utilization, eliminating TCP synchronization, and

stabilizing queue length.
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1.3.1 TCP

TCP is a congestion responsive protocol, which dynamically adapts its transmission rate

according to the congestion condition. Based on the way it detects congestion and how it

responds to it, TCP can be categorized into two types: packet dropping (marking) based

and queuing delay based. The first category includes Reno [19], New Reno [20], SACK

[21] and High-Speed-TCP (HSTCP) [22]. The second category includes Vegas [23] and

FAST [24].

Reno and NewReno are deployed by a majority of current Internet users. These

protocols adopt Additive Increase Multiplicative Decrease (AIMD) window adaptation, in

which the window size is increased by one every round trip time (RTT) if no packet is

dropped, and the window size is halved when congestion (indicated by packet dropping) is

detected. This AIMD scheme works well in low bandwidth and small delay networks, and

is not suitable for networks with high bandwidth and long delay. In high bandwidth and

long delay networks, AIMD drops the window size too much when congestion happens,

and it takes very long time to fully utilize bandwidth again since the window size is

increased only by one each RTT. In order to address this issue, HSTCP was proposed.

HSTCP is still an AIMD scheme, but it implements more conservative window dropping

and more aggressive window increasing scheme when bandwidth is high. As a result,

HSTCP can make much better use of bandwidth.

Packet dropping based TCP has some unavoidable disadvantages. First, dropping

window size multiplicatively decreases TCP transmission rate too drastically. As a result,

the link utilization may not be high and the queue size can oscillate greatly. Second, packet

dropping only provides one bit information about congestion: congestion either happens or

not [24]. If more information about congestion can be used, TCP has great opportunity

to achieve better performance. For instance, queuing delay is a multi-bit indicator of

congestion and it can quantitatively describe congestion. TCP Vegas and FAST are in the

category of queuing delay based TCP. TCP Vegas adapts its window size w(k) according
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where sgn(x) = 1 if x < 0, 0 if x = 0, and 1 if x > 0; and q(k) is the queuing delay. In

other words, TCP Vegas tries to maintain a packets queued in the network buffers. FAST

is a high speed version of Vegas and the window size is adapted according to [24]:

where d is the propagation delay and 7 is a predefined parameter. It has been shown that

FAST can stabilize the queue length very fast and utilize the bandwidth efficiently in high

speed and long delay networks [24].

1.3.2 AQM

The basic ideas behind AQM is to control the traffic rate and buffer occupancy by schemat-

ically dropping packets before buffer overflows. There are two indicators that can be used

to compute the dropping probability: queue length and aggregate traffic rate. Random

Early Detection (RED) [13] is a typical queue length based AQM. Adaptive Virtual Queue

(AVQ) [16] is a virtual queue based scheme. Random Exponential Marking (REM) [17],

Proportional-Integral PI control [15] and State Feedback Control (SFQ) [18] use both queue

length and aggregate traffic rate to compute the probability. The remainder of this section

will provide a brief introduction to these AQM algorithms.

In RED, upon the arrival of the k + 1th packet, the exponential averaged queue length

is updated as

where q is the instantaneous queue length and w is the averaging weight. When gave is less

than the threshold minth , no packets are dropped (or marked). When gave is between minth
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(1.4)

and max th (minth < minth), the probability is computed as:

When gave > max th , all packets are dropped (or marked).

Due to the probabilistic dropping in RED, the TCP synchronization is greatly

reduced. As a result, the link utilization is improved. RED can also make the queue

length oscillate within a smaller range than that of DropTail. However, RED also has

some disadvantages.

1. The average queue length in RED is proportional to the square of the number of TCP

flows traversing the link. As the number of TCP flows increases, the queuing delay

increases too. Stabilized-RED (SRED) [26] and Adaptive-RED (ABED) [25] were

proposed to make the average queue length less dependent on the number of flows

and maintain the average queue length within a smaller range than that of RED.

2. RED still has difficulty in stabilizing the queue length. As the round trip time and

link capacity increase, RED will eventually operate in the instability region. Using

control theory, Low et al. [28] demonstrated that inevitable instability is the result of

the scheme itself. Ranjan et al. [27] showed that RED can exhibit chaotic behavior

when the RED parameters fall into certain region. Hollot et al. [15] linearized the

RED-TCP system and provided the guideline to set RED parameters so that it is

locally stable when the number of TCP flows is large enough and the RTT is small

enough.

REM [17] is another attractive AQM scheme in terms of achieving high link

utilization, stable queue length and low packet loss. REM distinguishes itself from other

AQM schemes by introducing the concept of "price". The "price" is the measurement of

congestion at each link. Unlike RED, the "price" is decoupled from performance measures

such as loss, queue length, and delay. At each link, REM continuously updates the value
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of price and marks packets with exponential probability. At each link 1, the price pi(t) is

updated according to

where [z]+ max(0, z), WO is the total traffic arrival rate, and 7, ai, and /3i are

positive constants. REM can achieve stabler queue length than RED and sustain high link

utilization. The local stable condition of REM was first studied in [29]. Chapter 3 of this

dissertation will also provide further study of the stable condition for REM.

In AVQ [16], each router maintains a virtual queue with capacity C less than the real

link capacity C and the maximum length equal to that of the real queue [16]. Upon arrival

of a new packet, the virtual queue capacity and the virtual queue length VQ are updated

according to

where y is the total arrival rate and y is a positive number that is slightly less than one

(e.g., 0.98). At arrival of each packet, the packet is dropped if VQ > B, where B is the

maximum queue length of the real queue. It can be seen that AQV does not drop based

on computed probability. Instead, it drops packets when the virtual queue overflows. AVQ

controls the real queue length to zero at the cost of a smaller link utilization 7 < 1, which

is slightly less than one.

The PI controller [15] tries to maintain the queue length at a predefined level go , and

updates the dropping probability according to



11

where a and b (< a) are two positive numbers, T is the sampling time, and 6q(kT) =

q(kT)— q0 . It can be seen that the PI controller updates the dropping probability after every

T instead of doing so after arrival of every packet, and this greatly reduces the computation

complexity. It has been shown that the PI controller stabilizes the queue length much better

than RED and responds faster to traffics dynamics than RED.

1.4 Dissertation Organization

The remaining of this dissertation is organized as follows:

Chapter 2 presents the YSF aggregate packet scheduling scheme for EF PHB, derives

its end-to-end delay bound, and compares its performance with that of the FIFO scheme.

YSF eliminates the end-to-end delay divergence problem and provides a much smaller

end-to-end delay bound than that of the FIFO scheduling scheme. YSF does not need to

maintain per flow information and its scheduling complexity is independent of the number

of flows traversing the link. Therefore, YSF is efficient, effective and scalable, and is a very

promising candidate to schedule EF traffic.

Chapter 3 studies the local stability condition of REM. Local stability condition

of REM is presented in the multi-link and multi-source network with arbitrary uniform

feedback delay under the continuous time model. Various results provide valuable insight

into how to set REM parameters so that a locally stable network can be achieved.

Chapter 4 presents VQR, a new AQM scheme, and provides its local stability

condition in a network with a heterogeneous propagation delay for each TCP flow.

Chapter 5 presents the edge-based AQM (EAQM) scheme, and compares it with

the traditional AQM schemes. Conventional AQM needs to be deployed over the entire

network, and this requires tremendous upgrading to current Internet. EAQM is a pure

edge based approach, in which only the edge routers are changed. It is easier and more

economical to deploy EAQM than traditional AQM schemes. EAQM achieves similar

or better performance in terms of queue length stability and responsiveness to traffic
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dynamics. Moreover, EAQM can significantly reduce the throughput unfairness against

TCP connections with longer RTTs.

Chapter 6 presents the Network-assist Packet Marking (NPM) scheme to fairly

allocate bandwidth among TCP aggregates in the context of AF services. NPM can assure

fair bandwidth allocation in both single and multiple bottleneck networks, regardless of the

RTT, subscription rate, and the number flows of each aggregate.

Chapter 7 studies the throughput of High Speed TCP (TCP) in Optical Burst

Switching (OBS) networks.

Chapter 8 concludes this dissertation and presents future works.



CHAPTER 2

YOUNGEST SERVE FIRST (YSF) AGGREGATED PACKET SCHEDULING FOR

EF PHB

The EF PHB aims to guarantee bandwidth in both large and small time scale, but whether

it can guarantee end-to-end QoS still remains unclear. It was believed that the end-to-end

QoS in the network could be guaranteed if the link utilization is kept small enough (i.e., less

than 50%). Recent studies [10] [11] show that the worst-case end-to-end delay bound for

EF traffics through the network is proportional to 1 _ (H1_ 1)a if the FIFO scheme is applied,

where H is the number of hops along the longest path of all the flows in the network, and a,

the so called link utilization, is the ratio between the total amount of EF traffics on the link

and the capacity of the corresponding link. It is clear that the worst-case delay is bounded

only when a < .i... Thus, the provisioning power of traffic aggregation is significantly

weakened. The reason behind the difficulty of obtaining bounded end-to-end delay for an

arbitrary network topology is that in aggregated scheduling, packet delay not only depends

on the traffic behavior of the flows sharing the same queue, but also on the traffic patterns

in the whole network, even those occurred long time ago [10].

In this chapter, a new simple aggregated packet scheduling algorithm: Youngest

Serve First (YSF) is proposed for EF traffics. The main objective of YSF is to achieve a

better end-to-end delay bound for EF traffics than the FIFO aggregate scheduling scheme.

In YSF, EF traffics are shaped at the network edge. A label value is used to indicate

the packet state information and encode it in a certain field in each packet header. As

packets travel through the network, the encoded information is updated. All the packets

are scheduled based on the information carried in the header. This new approach not only

has low computational complexity, but it also needs very limited number of bits (log 2 H) to

13
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carry the label in the packet headers. Most importantly, it can provide bounded end-to-end

delay for any a < 1 and any H.

The remainder of this chapter is organized as follows. Section 2.1 presents the

introduction to the network model and terminology, and reviews the related background. In

Section 2.2, the YSF scheme is presented and its end-to-end delay bound is derived based

on Network Calculus Theory [12]. Finally, the summary is given in Section 2.3.

2.1 Network Model, Terminology, and Background

Assume that there are at least two classes of end-to-end flows [10] including the class of

EF traffics, which are served with a strict priority over other classes of traffics. In general,

EF services can be realized by the Guaranteed Rate (GR) scheme instead of being limited

to priority queuing [11]. The proposed YSF can be extended to the GR framework. All

network nodes are assumed to perform the same packet-scheduling algorithm based on the

limited information carried in the packet headers. Before entering the network, EF traffic

flow k is shaped at the network edge to conform to a token bucket with parameters (r k , 0k ),

which is the traffic arrival curve satisfying Ak (to , to + t) < rkt + 73k , where Ak (to , to + t) is

the total traffic from flow k released to the network during time interval [to , to + t]. Denote

F(I), as the set of flows traversing node I. It is assumed that for every F(I) and I, the

following conditions hold [10, 1 I]:

(2.1)

(2.2)

where a(< 1) is the link utilization factor, 0 is the constraint on the burstiness of all flows

through I, and C1 is the outgoing link capacity of I. According to [10], 0 is linearly

dependent on a, and so let [3 = 7-0a, where m is a constant. In this chapter, the fluid
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traffic model is adopted, but this work can be easily extended to the packet traffic model.

The effect of propagation delay is also assumed negligible. The following notations are

adopted: di represents the maximum delay (worst-case) experienced by packet p at the i th

node along its path from the source to the destination, and D i represents the maximum total

delay (worst-case) experienced by packet p from the first node to the i th node (inclusive)

along the path, i.e., Di = di.

For simplicity, A(t) is used to replace A (t o , to + t) as the total traffic arrival curve.

Denote S(t) as the traffic service curve, which, in this case, is (t) = C (t) . The amount of

packets stored at each node is at most B, which is given by

In Figure 2.1, B is the maximum amount of packets stored, which is 13C as mentioned

above. tB , the maximum queuing delay, is /3 in this case if the FIFO scheduling is adopted.

td is the maximum burst length or the longest time for the system to clear the queue, as

long as work conserving scheduling algorithms are adopted. t d can be obtained by solving

the following equation:
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Figure 2.1: Illustration of network calculus.

2.2 The Youngest Serve First (YSF) Algorithm

Assume the edge node is the first hop for all EF traffics. The YSF algorithm works as

follows: before entering the network, each packet is labeled with the number one, 1; at

each node, the packet with the smallest label value is served first, and packets with the

same label value are processed in the FIFO manner; the label on each packet is increased

by one right before they are transmitted. The label value of a packet indicates the time it

has spent in the network, or more precisely, the number of hops it has traversed through the

network. That is why it is called Youngest Serve First (YSF) 1

Naturally, the worst-case delay bound is experienced by packets with H hops from

their source to the destination; H, as defined earlier, is the number of hops along the longest

path of all the flows in the network. Consider a packet p. It can be seen that at different

nodes along the path, p experiences different delay bound. At the first hop, p has the highest

priority due to the smallest label value carried in its header. After p is transmitted from the

'Youngest Serve First is with respect to the hop count.
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first hop node, the label value is increased to two at the second hop node. Thus, p cannot

receive service as long as there are packets with label value one in that node. Intuitively,

the longer the packet stays in the network, the larger the maximum delay it will experience

at each node. In other words, d i < di , for 1 < i < j < H. In the rest of this chapter,

traffics are grouped based on their labels carried in packet headers.

Definition 2.1 Denote Fi (I) as the set of flows which assume their j th hop at node I.

In other words, p is the sum of rates of flows that assume their j th hop at node I, and cr

is the sum of burstiness of flows that assume their j th hop at node I.

Thus, Eq. 2.1 and 2.2 can be rewritten as:

Lemma 2.1 The maximum delay experienced by packet p at its first hop in the network is

d1 = (is also D i).

Proof: Suppose the first hop node is I. Since packet p has the smallest label value one, it

has the highest priority in the system. Any other packets with a larger label value will not

affect the service time of p. As a result, p experiences the worst-case delay when I is the

first hop for all the flows traversing it. In this case, all packets have the same label value or



18

priority. Thus, the scheduling algorithm is just FIFO. According to Eqs. 2.10 and 2.11, the

maximum overall traffic arrival curve at I is A(t) = (ICAO + /3G1 . According to Figure

2.1, based on Network Calculus Theory introduced before and the fluid traffic model used

throughout this section, the delay bound is /3. III

Lemma 2.2 The maximum delay experienced by packet p from its first hop node to the

second hop node (inclusive) along the path is bounded by D2 = /3 + 1'°a.

Proof: Suppose the second hop node for p is I. According to the analysis in Lemma 2.1,

only packets with label value of either one or two can affect the delay time of p at I. In

order to obtain the worst-case delay bound for flow j at I, assume that only packets with

label value one and two traverse node I. In other words, only packets experiencing their

either first or second hop at I are considered. Since packets labeled with two may have

already experienced delay D 1 , the traffic arrival curve for those flows is pi(t + D 1 ) + al

instead of p2it + 03 [10]. For flows with the first hop at I, the arrival traffic curve is still

p1lt + al. Therefore, the total arrival traffic curve at I is:

In order to get the maximum delay, the equalities in Eqs. 2.10 and 2.11 are used, which are

From Eqs. 2.13 and 2.14, Eq. 2.12 can be rewritten as
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where x = 4,_. It can be seen that the burst size of the overall traffic is changed from /3p

to xaCiD1 . According to the introduction in this section, when packet p arrives at node I,

the maximum buffer occupied at I is xaC 'D 1 + OCT . All the packets in the buffer before

p arrives will be served before p, since their priorities are not lower than p; packets that are

labeled with two and arrive after p will not affect its departure time, because they carry the

same labels as p and will be served in the FIFO order. However, those packets labeled with

one, of which the arrival rate is (1 — x)aCI , will affect the departure time of p even they

enter the queue after p. Thus, the effective total arrival traffic curve that can determine the

departure time of p is

After packet p takes its second hop and moves to the i th (> 2) node, there are possibly

more packets with smaller label values or higher priorities at that node. Intuitively, p could

experience longer delay at those nodes. Next, in Theorem 2.1, the delay bound as p moves

closer to its destination is derived.
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Theorem 2.1 The maximum delay experienced by packet p from its first hop node to the

kth hop node (inclusive) along the path is bounded by Dk = Dk-1 
0+apk-2 

1a ' for any

k > 3

Proof: Induction will be used to complete the proof. Define D o = 0. From Lemma 2.1

Next, it will show that the expression holds for k + 1. Let node I be the (k + 1) th hop

of packet p, and thus only packets with label not larger than k + 1 can affect the delay of

p at I. In other words, only packets assuming their j th(j < k + 1) hop at node I will be

considered. The overall arrival traffic curve can be written as
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The inequality in Eq. 2.24 is based on the fact that D i < Dk_i if i < k — 1. The

third term in the last equality stands for the maximum traffics queued in the system when

packet p joins the queue. The first term can be viewed as the traffics which assume the

(k + 1) th hop at node I, and arrive after p, and thus cannot affect p's departure time. The

second term represents the traffics with smaller label values, which also arrive after p, that

they can affect the departure time of p. Using the similar argument in the proof of Lemma

2.2, the effective arrival traffic curve can be rewritten as
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From the recursive relationship in Eq.2.30 with the initial conditions stated in Lemma 2.1

It can be shown from Eq.2.31 with further algebraic manipulation that DH

when a is very small, and DH	 (1 — a) 1112 when a ti 1. Based on the above analysis,

it can concluded that the link utilization, which is independent of H, can approach one,

and the end-to-end delay is also bounded at the same time. The end-to-end delay bound

for FIFO [10] is 1-a(HHi3-1), if the fluid traffic model is applied. Note that is denoted by

T in [10]. Figure 2.2 shows the performance comparison between YSF and FIFO with

H = 10 . The vertical axis is the number of time units (in terms of 7 -0). With a given link

utilization a, YSF performs much better than FIFO, especially when a is large.

It may seem very natural to adopt another scheme, namely Oldest Serve First (OSF),

in which the packets with the largest label value are served first instead of being served last

in YSF. Next, it will show that YSF performs better than OSF.

Lemma 2.3 In OSF, for any packet p with H hops to its destination, the worst-case delay

experienced till its (H — 1) th hop (inclusive) is DH-1 = (Hi

Proof: In order to derive the worst-case delay, assume that the node I is the eh (1 < k <

H — 1) hop node along p's path to its destination, and all packets from other flows assume

their Hui hop at I. According to OSF, packet p has the lowest priority and can only be

served when no other packets are in the corresponding node. Since other flows may all

experience the maximum delay DH_i, the total arrival traffic curve is
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On the other hand,

Hence,

(2.36)

(2.35)
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Figure 2.2: Performance comparison between FIFO and YSF (H =

10).

Then, dk, the delay bound of p experienced at the kth node can be obtained by solving the

following equation:

(2.37)
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From Lemma 2.3, it can be seen that DH_1 is bounded only when a < H. Since

a can approach one in YSF, YSF achieves higher link utilization. From Eq. 2.37, it can

also be seen that in OSF, when approaches one, the end-to-end delay bound goes to infinity.

However, in YSF, the end-to-end delay bound always remains finite as long as a < 1. Thus,

YSF also performs better than OSF in terms of the end-to-end delay bound.

2.3 Summary

In this chapter, a new aggregated traffic scheduling scheme, Youngest Serve First (YSF)

is proposed, and its end-to-end delay bound is derived. YSF has been proven to have the

following merits. First, the link utilization a in YSF can approach one, regardless of the

network topology and the value of H; second, the end-to-end delay bound in YSF is much

smaller than that in FIFO, and thus better end-to-end delay bound can be guaranteed. Even

with an additional required complexity, which is rather low, the above merits warrant YSF

preferable over FIFO. At each node, there are H different label values. Thus, at most H

queues are required, which correspond to different label values. Packets are placed into

different queues based on their label values and the backlogged queue with the smallest

label value is served first. Therefore, YSF is scalable because only H queues are needed,

no matter how many flows traverse each node. Note that only log2 H bits are required

to encode the label. Either the TTL field or the TOS field in the IP header can be used

to realize YSF, but this issue is beyond the scope of this chapter. Ideas from timestamp

based scheduling algorithm such as WFQ and WF 2 Q may be incorporated in designing

aggregated traffic scheduling schemes. However, YSF possesses the following merit not

shared by the timestamp-based approaches: all the nodes in the network need not be

synchronized in time, and timestamps need not be computed and updated.

YSF can be incorporated in Diffserv, which is the emerging service architecture for

the Internet. YSF can be an alternative to the FIFO scheme, which is currently employed in

EF traffic scheduling. EF is usually assumed to support delay-sensitive applications, e.g.,
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audio streaming. As addressed in [ 1 0, 1 1], the FIFO scheme can provide a strict end-to-end

delay bound only for a small link utilization and limited hop count. This shortcoming of

FIFO can severely limit the QoS provisioning required by many delay sensitive applications

using EF. Retaining the simplicity of aggregate scheduling, YSF provides strict and low

end-to-end delay bound for any hop count and link utilization (less than one).



CHAPTER 3

THE LOCAL STABLE CONDITION FOR RANDOM EXPONENTIAL

MARKING (REM)

TCP is one of the major transport protocols over the current Internet. TCP provides

end-to-end congestion control by dynamically adjusting the transmitting rate based on

the congestion feedback. In the network, packets are either dropped or marked when

congestion happens. Before RED (Random Early Detection) [13] was proposed, the

major congestion control scheme is DropTail, which suffers from synchronization of

senders and oscillation of buffer occupation. RED tries to overcome the shortcomings of

DropTail by dropping packets in a probabilistic manner before the buffer overflows. ECN

(Explicit Congestion Notification) [14] notifies users of congestion by marking packets

probabilistically instead of dropping them. The users react to the marked packets as if

packet loss is detected.

In order to achieve desired properties such as maintaining fairness among users and

stabilizing queue length in the network, packet marking or dropping schemes should be

designed very carefully. Adaptive Queue Management (AQM) schemes [16, 15, 17] have

been proposed to mark or drop packets intelligently. One of the major challenges faced

by AQM is how to achieve a stable system. Recent works [27, 28] have discussed the

dynamic behavior of TCP-AQM in the framework of a feedback control system. It has

been shown [27] that TCP-RED can exhibit chaotic behavior when RED parameters fall

into a certain region. It was also demonstrated in [28] that instability of TCP-RED is the

inevitable result of the scheme itself.

Random Exponential Marking (REM) [17] was a very attractive AQM scheme in

terms of achieving high link utilization, stable queue length and low packet loss. REM

distinguishes itself from other AQM schemes by introducing the concept of price. The

26
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price is the measurement of congestion at each link. Unlike RED, the price is decoupled

from performance measures such as loss, queue length or delay. At each link, REM

continuously updates the value of price (the update scheme is explained later in Section

3.2) and marks packets with exponential probability. Readers are referred to [17] for more

details.

Like other AQM algorithms, REM has to address the stability problem. Extensive

simulations have shown that REM exhibits highly stable behavior in a wide range of

network configurations. In [17], local stable condition was studied under the discrete time

model without considering feedback delay. In [29] and [30], global stability was proven for

zero feedback delay in continuous and discrete time model, respectively. In [31], for the

first time, local stability of REM with feedback delay was investigated. Nevertheless, [31]

used the discrete time model and only presented the analytical result of one- and two- step

uniform feedback delay.

The major contribution of this chapter is the derivation of the local stable conditions

of REM with any value of uniform feedback delay in a multi-link and multi-source network

by using the continuous time model.

The remainder of this chapter is organized as follows: Section 3.1 provides the

necessary background and problem formulation, Section 3.2 presents the results for REM

local stable conditions, and summary is presented in Section 3.3.

3.1 Background and Problem Formulation

Consider a network with L links, each with capacity C i( i = 1, 2, ...L). Assume there exist

S TCP sources, which share the L links. The routing policy is expressed by an S x L matrix

A with elements aid defined as:

(3.1)
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The following notations are adopted for the rest of this chapter:

The non-negative price for link i at time t. The corresponding vector form is

p(t) = (pi(t),p2(t), ...p L (t)).

The queue length for link i at time t. The corresponding vector form is

q(t) = (pi(t),p2(t), ...p L (t)).

: The rate of source j at time t(j = 1, 2, ..., S).

The rate of all sources crossing link i at time t.

The total price of all links used by source j at time t.

For the sake of brevity, the variable t in the above notations may be omitted in

subsequent discussions. From the above notations,

According to [29], TCP source j adjusts its sending rate by maximizing Ui (xj ) —

pix j ; here, Ui (xj ) is the utility function of source j and is strictly concave increasing. The

utility function of TCP Reno [28] is

In both versions of TCP, source j can be modeled to adjust its transmission rate in a

smoothed manner of the following adjustment [17, 32, 33]
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where [U.;•] -1 is the inverse function of the derivative of utility function Ui (it exists since

Ui is strictly concave increasing). As in [17], assume the forward delay is zero and the

backward delay is di . To simplify the analysis, only the case of homogeneous delay is

considered, implying that di = d for all j. Thus, Eq. 3.6 is reduced to

The continuous time model [29] is adopted to describe the dynamics of REM:

where [z]+ max(0, z), and are positive constants. Eq. 3.7, 3.8 and 3.9 can be interpreted

as a gradient projection algorithm used for solving an optimization problem. There is

tradeoff between the selection of large a and small a : a small a leads to a high link

utilization at the cost of a large transient queue length; on the other hand, a large a allows

a small transient queue length and a low link utilization. y corresponds to the step size of

the gradient algorithm. Readers are referred to [17] for detailed discussion on -y and a. It

is difficult to analyze the above system due to the non-linear term [.]±.

3.2 Cost Model and Performance Evaluation

Eq. 3.8 and 3.9 define a nonlinear dynamic system. Assume rank(A) = L. Let (p*, q*)

be the equilibrium of the original system. It can be shown [17] that x; 	 [U3/.] -1 (y;) =

[U:i ] -1 (EiL  1 aiip:), r: = Ci and q: = 0 at the bottleneck link. In order to simplify the

analysis, a linearized version of the original system is developed. With the above properties
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of the equilibrium, Eq. 3.8 and 3.9 can be rewritten as:

Here, only the linear terms in the above equations are kept. If the similar procedure in [17]

is followed, the first order Taylor expansion around (p*, q*) can be used to further simplify

the system. [U3 ] -1 (y j ) can be expressed as:



and the following new variables:

Using Eq. 3.16-3.20, Eq. 3.10 and 3.11 can be rewritten into the following matrix forms:

Taking the Laplace-transforms of Eqs. 3.21 and 3.22,

31

Substituting Eq. 3.23 into Eq. 3.24,

or equivalently
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In order to have a non-trivial solution of p(s), it is required that

which is called the characteristic equation. Since A is an L x S matrix with rank L, and

K is an S x S diagonal matrix, AKA T is an L x L positive definite matrix. Therefore, it

can be concluded that 0 < A 1 < A2 < ... < AL, where Ai, A2,..., AL are the eigenvalues of

AKAT . Let A = diag(A 1 , A2, ..., AL). Eq. 3.27 is equivalent to Theorem 7 in [34], i.e.,

In order to have a stable system, all of the L roots of Eq. 3.29 should be on the left-half

plane. Next, stable conditions for the above system will be derived.

Theorem 3.1 If the feedback delay d is zero, the system is always stable.

Proof: If d is zero, from Eq. 3.29,

It can be seen that s is always on the left-half plane regardless of the value of 7.

Proof: For a fixed value of k, let dk be the smallest number such that the root for Eq.

3.29 stays to the right on the imaginary axis. According to Theorem 3.1, when d is zero, the
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roots of Eq. 3.29 are all on the left-half plane. Therefore, if d < min dk , then all the roots

of Eq. 3.29 are on the left-half plane. The similar procedure of the proof of THEOREM 2

in [35] can be used to determine dk . Let the root of Eq. 3.29 be s k = j9k ; here, j is the unit

of the imaginary number instead of the index used before. Since the roots on the imaginary

axis are complementary, only 6k > 0 is considered. Hence, Eq. 3.29 becomes:

There are two conditions on the magnitude and angle, respectively:

The condition on the magnitude in Eq. 3.33 leads to

From Eq. 3.34,

Taking n = 0 in Eq. 3.36,

It can be verified that dk is an increasing function of Ak. Therefore,
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Finally,

3.3 Discussions

According to Theorem 3.2, the system is stable if d < D. This condition can be rewritten

as

where

Figure 3.1 shows the local stable regions for REM based on Eq. 3.40. The horizontal axis is

'TA/a; the vertical axis is ad. If the system falls into the region below the curve, it is locally

stable. Otherwise, it is not stable. It can be seen that the local stability of REM depends on

four parameters: 'y, a, d and A. ry and a are parameters set by the REM algorithm; A and

d are parameters determined by the network topology and the routing policy, which may

not be controlled by the REM algorithm. In other words, although some pairs of -y and a

lead to local stability under some network conditions, they can cause instability under other

network conditions. Therefore, the value of 7 and a should be set very carefully.

3.4 Summary

In this chapter the continuous time model is used to investigate the local stable conditions

for REM in the multi-link and multi-source network, in which all sources have the same

feedback delay. The study shows that the local stability of REM depends on both the

algorithm parameter settings and network conditions. Several aspects still require further

investigation. First, the approach in this work is based on the linearization of a non-linear

system like other research on AQM. Nevertheless, Reference [27] has demonstrated the



Figure 3.1: The local stable region for the parameters of REM.

important role of the non-linearity in AQM. Therefore, exploration of the non-linearity

effect is very critical to the full understanding of the performance of REM and other AQM

schemes. Second, the approach assumes the homogeneity of the feedback delay. In the real

world, different users can experience different propagation delay and queuing delay. As a

result, the feedback delay can exhibit significant heterogeneity. The investigation of this

effect will be reported in the future research.
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CHAPTER 4

VQR: VIRTUAL QUEUE AND RATE BASED AQM SCHEME

Active Queue Management (AQM) has been a very active research area in recent years.

Many AQM mechanisms have been proposed, e.g., random early detection (RED) [13],

random exponential marking (REM) [17], PI controller [15], adaptive virtual queue (AVQ)

[16], and state feedback control (SFC) [18]. AQM schemes control the traffic rate and

buffer occupancy by schematically dropping packets. If Explicit Congestion Control (ECN)

is enabled, packets are marked instead of being dropped. Without loss of generality, ECN is

assumed to be enabled in this chapter. End TCP users adapt their transmission rates based

on the marking feedback from AQM.

RED is a queue length based AQM that marks packets with probability proportional

to the current average queue length. AVQ is a typical rate based scheme. REM, PI, and

SFC use the queue length and the aggregate flow rate to compute the marking probability.

The TCP/AQM system has been modeled as a close loop control system. One of

the major concerns about such a system is its stability property. References [16, 15, 18]

studied the local stability conditions for the network with PI, AVQ, and SFC, respectively.

These works only considered a network of a single bottleneck link with homogeneous

round trip times, and neglected the backward propagation delays. Reference [36] took

the heterogeneous round trip time and backward propagation delay into consideration, and

provided the local stability condition for RED in a network with a single bottleneck link.

In this chapter, a virtual queue and rate based AQM scheme (referred to as VQR)

is proposed. VQR uses the virtual queue size and the aggregate flow rate to compute the

marking probability. The local stability condition of the VQR scheme is provided for a

network with an arbitrary topology rather than a single bottleneck link, with heterogeneous
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rather than homogeneous round trip times, and with the consideration of rather than

negligence of the backward propagation delays.

The remainder of this chapter is organized as follows. Section II presents the

framework of the TCP/AQM dynamic model. Section III presents the proposed VQR

scheme and the corresponding local stability condition. Section IV presents the conclusions.

4.1 TCP/AQM Dynamics

The work in [36] is adopted to present the TCP/AQM dynamic model. Consider a network

with L links, each with capacity C1 ( 1 = 1, 2, ...L). Assume there exist S TCP sources,

which share the L links. The routing policy is expressed by an L x S matrix R with

elements RZ, defined as:

Each link 1 marks packets with probability p (t) at time t. Each TCP source i is associated

with a round trip time Ti (t) :

where di is the round trip propagation delay for the source i and bi(t) is the queue length of

link 1 at time t. The round trip time delay Ti (t) can also be expressed as

where rifi (t) is the forward delay from source i to link 1 and r bi (t) is the backward delay

from link 1 back to the source i. The transmitting rate of the source is modeled as



38

where w i (t) is the window size of source i. The aggregate transmission rate at link 1 is

With the assumption that p i (t) is small, the end-to-end marking probability q i (t) for source

i can be obtained by summing up the marking probability at each link traversed by i

The fluid TCP model studied in [15] and [36] is adopted:

The first term on the right side of Eq. 4.7 describes the additive window increment, and

the second term stands for the multiplicative window decrement. The sending rate of TCP

evolves according to

The dynamics of the queue length I) / (t) at link 1 can be expressed as

round trip time for source i. It can be shown from Eq. 4.7 that

4.7 and 4.8 around the equilibrium state with the first order approximation,



4.2 The VQR Scheme

VQR maintains a virtual queue ./3/ (t), which is updated at each packet arrival according to

where -y is a positive number less than but close to 1 (e.g., 0.95). The marking probability

is updated by

where Bi ,„f is a reference virtual queue length, and g and a are positive numbers. If

pi (t) < 0, it is set to zero; if pi (t) > 1, it is set to one.

At the equilibrium state, A (t) = 0. Thus, the aggregate rate yt is -yCi, which is

slightly smaller than the link capacity C1 . Although this could lead to slight link under-

utilization, there are some benefits of doing so. First, the queuing delay is zero at the

equilibrium state. Second, since only small perturbation around the equilibrium state is

considered, it can reasonably be assumed that yi (t) is always less than the link capacity. As

a result, the queue length bi (t) is always zero, the round trip time Ti(t) is reduced to di , and

(t) is always zero under such an assumption. Thus, the second term on the right side of

Eq. 4.12 is negligible. Together with Eq. 4.11, Eq. 4.12 can be rewritten as

Linearizing Eq. 4.14 and 4.15 around the equilibrium state,
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If the similar procedure in [36] is followed, Eq. 4.13, 4.16, 4.17 and 4.18 can be expressed

Eqs. 4.19, 4.20 and 4.21 form a close loop control system with the return ratio

According to [36,37], the above control system is stable if the eigenvalues of L(jw) (w > 0)

do not encircle —1 in the complex plane. Define

Using the relationship
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and following the similar argument in [37], the eigenvalues of L(jw) are the same as those

of:

Denote E as the set of eigenvalues of Z(jco). According to [37],

where co(mi , i = 1, 2, ..., S) denotes the convex hull of the set points {mi, m2, 	 ms},

and the spectral radius of (jw) satisfies [37]:

where M is the maximum number of links a TCP source traverses in the network.

Denote

(4.30)

If Ai (jw) = 1, 2...M) do not encircle —1 in the complex plane, E does not either [37].

Therefore, the system is stable. Next, a sufficient condition to guarantee the stability of

such a system will be presented.
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Using Eq. 4.10, it can be shown that the two conditions in Theorem 4.1 are equivalent to

In other words, Ai (jc.o) only crosses the real axis on the right side of point —1, and thus

never encircle —1 in the complex plane. Therefore, the system is stable. ■
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4.3 Summary

In this chapter, VQR, a new AQM scheme based on the virtual queue length and the

aggregate flow rate is proposed. VQR can achieve high link utilization and near zero

queuing delay. It also presents and proves the local stability condition for a TCP/VQR

based network with an arbitrary topology, heterogeneous round trip times, and backward

propagation delays.



CHAPTER 5

EDGE BASED ACTIVE QUEUE MANAGEMENT (EAQM)

5.1 Introduction

Active Queue Management (AQM) has been a very active research area in recent years.

Many AQM mechanisms have been proposed, e.g., random early detection (RED) [13],

random exponential marking (REM) [17], PI controller [15], adaptive virtual queue (AVQ)

[16], state feedback control (SFC) [18], and virtual queue and rate-based scheme (VQR)

[45]. The main goals of these schemes are to reduce and stabilize queuing delay, avoid

global synchronization, and achieve high link utilization. RED is a standard queue length

based AQM that drops packets with probability proportional to the current average queue

length. AVQ is a typical rate based scheme. REM, PI, and SFC use the queue length and

the aggregate flow rate to compute the dropping probability. VQR uses both the virtual

queue length and aggregate flow rate to determine the dropping probability.

However, AQM schemes have not been widely deployed in current Internet. One

of the reasons is that all these AQM schemes need to be implemented at all routers (or at

least bottleneck routers), and this demands significant upgrading to routers in the current

networks. Another reason is that the performance of these AQM schemes have not been

fully investigated and understood, and it is not clear which scheme performs the best.

Therefore, it is still risky to deploy them in the entire network.

In this chapter, the framework of Edge-based AQM (EAQM) is proposed. EAQM

is only deployed at the network edge and the Drop-Tail core routers are kept unchanged.

Compared with traditional AQM schemes, it is able to provide comparable or even better

performance; thus, it is more practical and economic. It is well known that TCP's

throughput is inversely proportional to the round trip time (RTT); considerable unfairness
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occurs to TCP connections with longer RTTs. As one of the key features, EAQM alleviates

this type of unfairness, while current available AQM schemes fail to do so.

The remainder of this chapter is organized as follows. Section II presents the

framework of EAQM. Section III presents the simulation results. Section IV presents the

conclusions.

5.2 System Environment

In this chapter, the term "aggregate" is used to refer to all the TCP connections, which

enter the network at the same ingress node and leave the network at the same egress node.

Note that any edge node can be the ingress or egress node for multiple aggregates at the

same time, and each aggregate can be identified with one pair of ingress and egress nodes

uniquely. Each pair of ingress and egress nodes in each aggregate exchange information

about the aggregate membership and network congestion condition by sending feedback

packets to each other. At ingress nodes, packets are classified into aggregates. Based

on the received congestion information, ingress nodes compute dropping probabilities for

the corresponding aggregates, and drop packets based on the computed probabilities. The

rest of this section will explain the feedback protocol between ingress and egress nodes,

operations at ingress and egress routers, and how the dropping probabilities are computed.

A feedback protocol between ingress and egress nodes similar to [46] is adopted in

this chapter. There are two types of feedback packets: forward packets, which are sent

from ingress nodes to egress nodes, and backward packets, which are sent from egress

nodes to ingress nodes. Both types of packets contain the timestamp field and aggregate

information field. The timestamp field serves to calculate the RTTs between the two edge

nodes, and the one-way queuing delay from the ingress node to the egress node. Based on

the variation of RTTs, ingress nodes calculate dropping probabilities. Each ingress node

fills in the aggregate information field with necessary information about the TCP flows that

enter the network through itself. This allows the egress nodes to know at which ingress node
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each TCP flow enters the network. Similarly, the aggregate information field in backward

packets enables ingress nodes to know at which egress node each TCP flow leaves the

network. Based on the information in backward packets, ingress nodes are able to know

to which aggregate each TCP flow belongs, and this allows ingress nodes to classify TCP

flows into the correct aggregates.

In order to calculate RTTs and one-way queuing delays, ingress nodes continue

to send out forward packets after a certain time interval T . In this chapter, T for each

aggregate is set to 100ms. The timestamp field in the forward packets is always available,

but the aggregate information field is optional. The aggregate information field is needed

only when a new flow enters the network through an ingress node, or one existing flow

becomes inactive. When an egress node receives one forward packet, it immediately sends

a backward packet back to the corresponding ingress node. The backward packet contains

the original timestamp of the forward packet, and the time the corresponding forward

packet was received. Again, the aggregate information field of the backward packet is

not always required, and it is filled in only when the egress node detects new flows or

an existing flow becomes inactive. Fig. 5.1 shows the architecture of an ingress node in

EAQM.

Figure 5.1: Architecture of an Ingress Node in EAQM.
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Upon arrival of a backward packet, each ingress node uses its timestamp field to

compute the RTT and one-way queuing delay for the corresponding aggregate. Then, the

averaged RTT is updated:

where WRTT is the smoothing factor. One method to compute the one-way queuing delay q

is to use BaseRTT to track the minimum RTT, and compute q as q = RTT — BaseRTT.

This approach is implemented in current TCP Vegas, but the performance degrades signifi-

cantly when there is congestion in the reverse path from the egress node to the ingress node.

This disadvantage was pointed out and the remedy was proposed in [47]. In this chapter,

the same approach in [47] is adopted to compute the one-way queuing delay, and interested

readers are referred to [47] for more details.

In EAQM, one simple approach to compute the dropping probability p is:

where gave is the average one-way queuing delay. There is similarity between this approachis

and RED. RED uses a linear function of the queue length at each router, and Eq. 5.2

indicates that p is proportional to the average one-way queuing delay q. The throughput of

TCP can be expressed as:

where d is the round trip time, and RTO is the retransmission timeout, which is set to 4d

in this chapter. When the dropping probability p is very small, Eq. 5.3 is reduced:
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It can be seen that there is considerable unfairness against TCP flows with longer round

trip time from both Eqs. 5.3 and 5.4. The following dropping probability is proposed:

where 0 is a constant. The dropping probability p can be computed by solving Eq. 5.5.

Since no explicit expression of p from Eq. 5.5 is available, p has to be numerically

determined, and it leads to considerable computing overhead at each ingress node. Thus,

the following approximation is adopted by replacing with min (1, 3j8 ) and neglecting

the p2 term in Eq. 5.5:

Eq. 5.6 can be reduced to a cubic equation of p, and p is set to be the unique positive root

of Eq. 5.6. When p is very small, 5.6 can be simplified to

Substituting it into Eq. 5.4:

It is reasonable to assume that the propagation delay between TCP senders and the ingress

node, and that between the egress node and TCP receivers are much smaller than the round

trip time (RTTave) between the two edge nodes. Therefore, RTTave/d"e r,:,' 1, and Eq. 5.8 can

be rewritten as:

(5.9)

(5.7)

(5.8)

Thus, the throughput unfairness against TCP flows with longer round trip time is

eliminated. Simulations will be used to demonstrate this improvement in the next section.
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In the next section, the performance of EAQM will be studied and compared with

RED by simulations. It will be shown that EAQM can provide similar or even better

performance as compared to RED in terms of queue length stability, responsiveness to

traffic dynamics, and TCP throughput fairness. There are other possible ways in EAQM to

compute the dropping probability other than using Eq. 5.6, e.g., using both queuing delay

q and its changing rate q. The focus of this chapter is to introduce the EAQM framework,

which can potentially be adopted in enhancing current Internet, and will prompt more

relevant research activities.

5.3 Simulations

A simple network shown in Fig. 5.2 is adopted in this section for simulations. The link from

node N1 to N2 is the only bottleneck. There are two TCP aggregates, and each consists of

30 long-live TCP flows: the first aggregate is from S 1 to R 1 , and the second aggregate is

from S2 to R2. El, E2 are ingress nodes, and E3 and E4 are egress nodes. The TCP packet

size is 500 bytes, and the buffer size at N 1 is 800 packets. All simulations are 200 seconds

long, and the throughputs are computed based on the last 100 seconds of the simulations.

The end of this chapter contains the guideline to set the parameters in EAQM to

ensure stability. The parameters setting for EAQM are: ,i3 = 0.015, W RTT = 0.01 and

T = 0.lsec. The guideline in [15] is followed to set the parameters of RED to ensure it is

stable: minth = 50 packets, maxth = 500 packets, Amax = 0.1, and the weight w for queue

averaging is 10 -6 . All links except the bottleneck link are Drop-Tails. In all simulations,

RED is used at the bottleneck link from N1 to N2 first; then EAQM is enabled at ingress

and egress nodes (E 1 ... E4 ,) and the bottleneck link from N1 to N2 is set back to simple

Drop-Tail.

The first set of simulations compare the performance between RED and EAQM with

respect to queue length stability. The evolution of the queue length at the bottleneck N1
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Figure 5.2: Simple Network Topology.

is plotted in Fig. 5.3. It can be seen that the instantaneous queue length under EAQM

oscillates less and is more stable.

In the second set of simulations, the responsiveness of EAQM to traffic dynamics is

investigated. The propagation delay between E2 and N1 and that between N2 and E4 are

changed to 30ms. At time zero, 30 TCP connections start in the first aggregate, and no

traffics are in the second aggregate. At the 100 th second, 30 TCP connections start in the

second aggregate. The evolution of the queue length is plotted in Fig 5.4. It is very clear

that the instantaneous queue length under RED fluctuates significantly between the 100 th

and 140 th seconds, while EAQM is much less vulnerable to the traffic dynamics.

The third set of simulations are used to demonstrate that EAQM is immune to the

throughput bias against TCP flows with longer round trip times. The propagation delay

between E1 and N1 is kept identical to that between N2 and E3, and their values are changed

from 10ms to 60ms. The fairness indices are calculated for both RED and EAQM. The

fairness index F is defined as:

(5.10)
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Figure 5.3: Queue Dynamics Comparison Between EAQM and

RED.

where r1 and r2 are the throughput of aggregate one and two, respectively. The closer the

index to one, the fairer among all TCP flows. The results are shown in Fig. 5.5. It can be

seen that EAQM greatly reduces the unfairness.

Simulations based on the network with two bottleneck links shown in Fig.5.6 are also

conducted. Each of S1, S2, and S3 represents 30 TCP senders, and R1, R2, and R3 are the

corresponding TCP receivers. The link between N1 and N2 and the link between N 1 and

N2 are the bottlenecks. RED is used at bottlenecks first; then EAQM is enabled at ingress

and egress nodes (E1 , ..., E5 ,) and the bottleneck links are set back to simple Drop-Tail. All

the RED and EAQM parameters are the same as before. The propagation delay between

E1 and N1 is kept identical to that between N2 and E3, and their values are changed from

10ms to 60ms. The fairness indices for both RED and EAQM schemes are calculated. The

fairness index F is defined as:



52

Figure 5.4: Queue Responsiveness Comparison Between EAQM

and RED.

where r1, r2 and r3 are the throughput of aggregate one, two and three, respectively. The

results are shown in Figure 5.7.

Again, it is clear that the fairness index of EAQM is higher than that of RED. It can

be seen that the fairness index of EAQM in Fig. 5.7 is around 0.7 instead of 1.0 as in Fig.

5.5. This is NOT because that EAQM does not eliminate the throughput unfairness against

TCP with longer RTTs. It is because that the aggregate one (from S 1 to N1 ) traverses two

bottleneck links and each of the remainder two aggregates only traverses one bottleneck

link. Thus, aggregate one experiences more queuing delay, and as a result, larger dropping

probability than that of aggregate two and three. Owing to the symmetry, it can be known

that the average queue lengths at each bottleneck are equal, and denote the value as 0 ave •

From Eq.5.9, the throughput of aggregate one is

(5.12)



53

Figure 5.5: Fairness Index Comparison in Single Bottleneck

Network.

and the throughput of aggregate one or two is

(5.13)

The fairness index for EAQM is

(5.14)

and this is very close to the result shown in Fig. 5.7.

Similar situation occurs if RED is adopted. Due to the symmetry, the equilibrium

dropping probabilities at each bottleneck link are the same, and are denoted as Pa„. Thus,

the dropping probability for aggregate one is 2P
- ave, and Pave for aggregate two and three.

From Eq. 5.4,

(5.15)



Figure 5.6: Multiple Bottlenecks Network.

Here, di, d2 (= d3 < di ) and d 3 are the RTTs for aggregate one, two and three, respectively.

The fairness index is

Similarly, it can be shown that the factor ±- also exists under other traditional AQM

schemes.

5.4 Summary

In this chapter, a new framework of AQM, namely, EAQM, is proposed. EAQM is only

required to be deployed at the edge of the network. It has been shown that EAQM can

achieve similar or better performance as compared to the typical AQM scheme RED.

EAQM is a more practical and economic approach to improve current Internet.

5.5 Guideline to Set EAQM Parameters

The similar procedures in [48] can be used to set EAQM parameters. Considering N

TCP connections with propagation delay d in a single bottleneck network. The linearized

54
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Figure 5.7: Fairness Index Comparison in Multiple Bottlenecks

Network.

dynamic model in Laplacian domain is illustrated in Fig. 5.8. Readers are referred

to [15,48] for more details on this model.

Figure 5.8: Linearized Control TCP/AQM Feedback System.

In Fig. 5.8, P (s) is expressed as

where



Here, Pt„(s) and P- queue(S) represent the dynamics of TCP and queue, respectively. Note

that there is an additional term --, in Eq. 5.18 as compared to that in [48], and this is because

q in this chapter is the queuing delay instead of the queue length used in [48]. From Eq.

after each of which the ingress nodes send out forward packets to probe one-way queuing

delay for each aggregate. Combining Eqs. 5.18 and 5.21, the frequency response for the

open loop transfer function is

Rave < R+. According to the result of Proposition 2 in [48], the above feedback system is

also stable if either RTTave < 15R+ or N >

In all simulations in this chapter, N < 60, and RTTave < 0.6sec are used. Let

N- = 60 and R+ = 0.04sec. Based on the above analysis, the linearized EAQM system is

stable. The Nyquist plot of L(jw) for N < 60, and RTTave < 0.6sec is also shown in Fig.

5.9.



Figure 5.9: Nyquist plot of L(jw), N = 60, RTTave = 0.6sec.

57



CHAPTER 6

FAIR BANDWIDTH ALLOCATION IN ASSURED FORWARDING

6.1 Introduction

The Differentiated Services (DiffServ) architecture is a promising means to provide QoS

in the Internet. DiffSery provides service differentiation at the service class level instead of

per flow level. In DiffServ, three service classes have been defined: Expedited Forwarding

(EF), Assured Forwarding (AF), and Best Effort (EB). User traffics are classified into

different service classes at the edge of the DiffSery network and receive corresponding

services in the core of the network based on their service classes. Owing to its scalability

and flexibility, DiffServ has drawn significant attention.

There are three key components in AF: Service Level Agreements (SLAs) between

users and ISPs, packet markers at the network edges, and queue management in the core of

the network. SLAs specify users' traffic profiles, which can be described by Commitment

Information Rates (CIRs) and Peak Information Rates (PIRs). At network edges, packet

markers are used to mark packets according to their conformance to their traffic profiles.

Packets that conform to the SLAs are marked as "IN", and those do not as "OUT". In the

core of the network, "IN" packets are given higher service priority than "OUT" packets.

This type of service differentiation can be achieved by using RIO (RED with In/Out) [49],

which drops "IN" packets with a probability lower than that of "OUT" packets.

Two packet marking models have been proposed for AF services: per-flow based

and per-aggregate based. In the per-flow based model [50, 51, 52, 53], each individual

flow has its own traffic profile and is marked by a dedicated packet marker at the network

edges. In the per-aggregate based model [52, 54, 55, 56, 57], flows in the same aggregate

are characterized with one traffic profile and marked by one marker. In this chapter, the
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aggregate-based marking approach is adopted because SLAs between customers and ISPs

are usually made at the aggregate level rather than the per-flow level.

In the context of AF services, a widely adopted fairness criterion of bandwidth

allocation is that bandwidth should be allocated to aggregates (or flows if per-flow model

is used) in proportion to their subscription rates (CIRs) [50, 51, 53, 52, 54, 55, 56, 57]. It

has been shown that AF bandwidth is unfairly distributed in favor of traffics with smaller

subscription rates [52]. Works in [59, 58, 56, 57] have shown that TCP round trip times

(RTTs), subscription rates, and the number of flows in the aggregates can significantly

affect the fairness.

Several schemes have been proposed to improve the fairness of AF bandwidth

allocation. Authors in [50] proposed Adaptive Packet Marking (APM), which can achieve

very good fairness for TCP traffics. However, APM needs to change the TCP scheme

itself. Proposals in [51, 53] aimed to reduce the unfairness caused by the heterogeneity

of RTTs and subscription rates. These two schemes are based on certain TCP throughput

models, and they may not work well if end users adopt different protocols. Active Rate

Management (ARM) was proposed in [55] to achieve fair bandwidth allocation among TCP

aggregates. However, ARM has difficulty to guarantee fairness in both under-subscription

and over-subscription cases. Authors in [54, 56] extended the idea of "TCP trunking" [60]

to provide fair bandwidth allocation among aggregates. However, these studies have some

shortcomings: first, they do not provide theoretical analysis to guarantee the fairness;

second, they only perform simulations, in which each aggregate has the same target rate,

and how these schemes work in a more general case remains unclear. An adaptive marking

scheme was proposed in [57] to allocate bandwidth to aggregates in proportion to their

target rates. Although simulations on a multiple bottleneck link network was provided in

this work, it showed its effectiveness for only a specific case, and it may still have difficulty

to assure fairness in a more general case.
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Although these remedies can improve fairness from different aspects at different

degrees, they have some common drawbacks. First, they do not provide fairness criteria

for networks with multiple bottleneck links, since the fairness criterion that each aggregate

receives bandwidth proportional to its target rate is only suitable to networks with single

bottleneck link. Second, they did not provide solid theoretical analysis to show that the

fairness can be guaranteed, especially in multiple bottleneck link networks.

In this chapter, the existing fairness criterion is extended to networks with multiple

bottleneck links. Based on the extended fairness criterion, a novel adaptive packet marking

scheme, Network-assist Packet Marking (NPM) is proposed. Both theoretical and exper-

imental studies are used to show that NPM can achieve fair bandwidth allocation in both

single and multiple bottleneck link networks, regardless of the RTT, subscription rate, and

the number of flows of each aggregate.

The remainder of this chapter is organized as follows. Section II presents the

necessary background. Section III presents the main ideas of NPM. Section IV presents

the simulation results, followed by conclusions in Section V.

6.2 Background

Assume there are N TCP aggregates competing bandwidth in the network. Denote 110,j,

R 1 ,j and Ri as the subscription rate, fair share rate, and the received rate of the i th

(j = 1, 2, ..., N) aggregate, respectively. The packets in each aggregate are marked by

one marker at the network edges. There are two types of packet makers: Time Sliding

Window (TSW) marker characterized by target rate Rtj , and Token Bucket (TB) marker

characterized by target rate Rt j and bucket depth Bi . At the early stage of study on AF

services, the target rate of the markers is set to the subscription rate of each aggregate,

i.e., Rtj = Roj . However, studies have shown that this approach leads to unfairness, and

many remedies have been proposed [50,51,54,55,59,58]. The basic idea behind these new
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approaches is to dynamically change the target rate Rtj (and Bi if TB is used) so that the

fairness is improved.

Based on the fairness criterion introduced in Section I, the fair share rate of aggregate

j in a single bottleneck network should be proportional to its subscription rate:

(6.1)

where C is the bottleneck link bandwidth. If the received rate of each aggregate equals to

its fair share, i.e., Ri = the fairness is achieved. In order to quantitatively describe

the bandwidth allocation fairness, the following two definitions are introduced:

Definition 6.1 The fairness ratio F of flow j is defined as the ratio between its received

rate and its fair share rate:

(6.2)

Definition 6.2 The fairness index F of the bandwidth allocation in the entire network is

defined as:

Note that F < 1. The closer F is to one, the fairer it is.

In this chapter, RIO [49] is adopted in the core routers. In RIO, p in, and po„t , the

dropping probability for "IN" and 'OUT" packets, are computed based on the average

queue length q. Fig. 6.1 shows how pin and pout are computed. Interested readers are

referred to [49] for more details.

6.3 Network-assist Packet Marking (NPM)

Before presenting NPM, the fairness criterion for single bottleneck networks should be

extended to multiple bottleneck networks. The new fairness adopted in this chapter is

weighted max-min fairness, in which the weight is the subscription rate R 0 j for aggregate



Figure 6.1: RIO Settings for AF Service.

j. It can be shown that weighted max-min fairness is reduced to (6.1) in the single

bottleneck case. Therefore, weighted max-min fairness is a natural extension of the fairness

described in Eq. 6.1.

In NPM, two steps are used to achieve this new fairness: first, the weighted max-

min fair share rate for each aggregate is computed; second, after the fair share rate for

each aggregate has been computed, each ingress edge node applies an adaptive marking

algorithm to regulate each aggregate at the network edge so that its received rate equals to

its fair share rate. The details of these two steps will be shown in the remaining of this

section.

6.3.1 Computation of Fair Share Rate in NPM

Weighted max-min fairness is a straightforward extension of max-min fairness, and many

algorithms used to compute max-min fair share rates can be modified to compute weighted

max-min fair share rates. There are two types of algorithms to compute max-min fair share

rates: global synchronized algorithm and distributed asynchronous algorithm. The global

synchronized algorithm [61] requires global knowledge of the network, and it is impractical

to be implemented in the current network. In the distributed asynchronous algorithm, the
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fair share rates can be computed without global information. This type of algorithm is

adopted in this chapter.

There have been extensive studies on the distributed asynchronous algorithm in the

context of ATM networks [62]. In this chapter, the idea in [63] is borrowed to compute

the fair share rates. In [63], each node keeps the information of the crossing flows, and

computes the fair share rate for each of them in a distributed manner. In the context of

the AF service with aggregate marking model, only the fair share rate of each aggregate

needs to be computed. Thus, each node only needs to keep the information of the crossing

"aggregates" instead of the flows. The number of aggregates is much less than the number

of flows, and keeping per aggregate information at the core nodes becomes affordable.

Therefore, it is reasonable and practical to borrow the idea in [63] at the aggregate level.

Next, the method in NPM to compute the fair share rates will be presented.

In order to compute fair share rates, the ingress edge nodes and the egress edge

nodes need to communicate by periodically sending special control packets to each other.

There are two types of feedback packets: forward packets, which are sent from ingress

nodes to egress nodes, and backward packets, which are sent from egress nodes to ingress

nodes. The control packet contains four fields: aggregate ID field, aggregate weight field,

stamped rate field, and underloading field. Based on the ID field in each control packet,

core nodes are able to identify all the crossing aggregates. The aggregate weight field is

set to the subscription rate R0 ,3 for the jth aggregate, and this value is used as the weight

to compute the weighted max-min fair share rate for aggregate j. The stamped rate field

and the underloading field are used to compute the fair share rates. When the ingress edge

node sends out a new forward packet, the value of the underloading field is set to zero. The

purposes and usage of these two fields will be clearer later on in this section.

Each node keeps the "advertised rate" pi for aggregate j that crosses it, and pj

represents the available bandwidth for aggregate j. Upon receiving a control packet

for aggregate j, the node compares the "stamped rate" in the stamp rate field with the
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"advertised rate". If the "advertised rate" is lower than the "stamped rate", the stamp rate

field is changed to the "advertised rate" and the underloading field is set to one. Otherwise,

the control packet is unchanged. When the egress edge node receives the control packet, it

sends it back as a backward packet to the corresponding ingress edge node. After receiving

this backward packet, if the value of the underloading field is one, the ingress edge node

sets the "stamped rate" in the next outgoing control packet to the "stamped rate" of the

received feedback packet. Otherwise, the "stamped rate" in the next outgoing forward

packet is set to infinity.

Each node has a list of the crossing aggregates, and keeps track of their latest

seen stamped rates, which are called "recorded rates". It also keeps another two lists:

unrestricted list U and the restricted list R. U includes aggregates whose recorded rates are

higher than their "advertised rates", and the remaining aggregates are in the set R. Assume

that j E U. Upon the reception of a new control packet from j, the "advertised rate" for j

is recomputed as:

where CR is the sum of all the recorded rates of the aggregates in the restricted list R, and

C is the link capacity. Note that Eq. 6.4 is different from the procedure adopted in [63],

since what is needed to compute is the weighted max-min fair rate instead of the max-min

fair rate.

One thing worthy of mentioning is how frequently each ingress edge node sends out

forward packets. In this chapter, each ingress edge node sends out a forward packet every

round trip time (RTT) for each aggregate that is marked at this node. The authors in [63]

have shown that the upper bound of the convergence time of the above algorithm is 4ND,

where D is the upper bound of all RTTs and N is the number of iterations for the global

synchronized algorithm to converge. In fact, the convergence time is significantly smaller
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than the upper bound. Therefore, after a limited time, the network can finish computing the

fair rates.

6.3.2 Adaptive Marking in NPM

In this chapter, the Time Sliding Window (TSW) type of marker is adopted. At the

beginning, the marker's target rate R e j is initialized to the subscription rate R0 ,3 . Each

ingress node uses a variable Rfj to track the stamped rate in the backward packet. Upon

the arrival of a new backward control packet, if the stamped rate in this packet is different

from Rifj , is updated to the new value, and the target rate (Rtj ) of the marker is also

updated to the new R

It is known that RfJ will converge to the fair rate R1,i within 4ND. Therefore, Rtj

will be stabilized at the fair share rate Rf ,j. This marking scheme is called the Simple

Network-assist Packet Marking (S-NPM). When all Re ,i is stabilized, all the bottleneck

links in the network are exactly provisioned. In other words, the bandwidth of each

bottleneck link is equal to the sum of the target rates of all aggregates crossing it. In

this case, the received rate of aggregate j is [57]

where pin is the dropping probability of "IN" packets, Ni is the number of TCP flows in

aggregate j, and T is the round trip time of aggregate j. It can be reasonably assumed that

Pin is very small. If Rf,jTj/Arj 1,

implying that the received rate for each aggregate is approximately equal to its fair share

rate. Thus, S-NPM can guarantee fair bandwidth allocation under the above assumption.
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However, RfiTi /Ni >> 1 is not always true, e.g., Ni = 20, Ti = 0.05sec, Rfj =

625 packets/sec = 5Mbps (assume 1000 bytes per packet), RfiTi /N3 = 1.55 k 1.

Therefore, S-NPM sometimes may not guarantee fairness. In order to overcome the

disadvantage of S-NPM, Enhanced Network Packet Marking (E-NPM) is proposed.

In E-NPM, each egress edge node monitors the received rate Ri of the aggregate and

feeds it back to the corresponding ingress node by attaching it to the backward packet. At

the arrival of the backward packet, each ingress edge node checks the stamped rate. If it is

different from the old value of R ifj , the target rate (Rt ,i ) of the marker is updated according

to Eq. 6.5. Otherwise, Rtj is updated as:

Here, 6 and /3 are two positive numbers, which are very close to zero. Since kf,i converges

to R1,i very quickly, Eq. 6.8 will finally become:

Corollary 6.1 When the E-NPM scheme is stabilized, the fairness index of the bandwidth

allocation in the entire network is

Proof: From Eq. 6.9, it is known that when E-NPM is stabilized, the target rate Rt,i

for the marker is also stabilized. Thus, the fair ratio of aggregate j satisfies:

(6.11)
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Based on the definition of fairness index

This completes the proof ■

Proposition 6.1 indicates that the fairness index under E-NPM scheme is very close

to one, i.e., E-NPM can fairly distribute bandwidth among aggregates. In the next section,

simulations will demonstrate E-NPM's capability to provide fair bandwidth allocation.

6.4 Simulations

In this section, simulation results in both single and multiple bottleneck link networks are

presented. RIO [49] is adopted in the core routers to provide service differentiation between

"IN" and "OUT" packets. The parameters for RIO are set as follows: (Ctn, q o„imr , pmncr) =

(50, 150, 0.1) and (qimnin , gimnax pimnax) (150, 500, 0.02). Both a and in E-NPM are set

to 0.01.

6.4.1 Single Bottleneck Link Network

This set of simulations study the performance of the proposals in a network with one

bottleneck link, which is shown in Fig. 6.2. The link from core router C 1 to core router

C2 is the only bottleneck, and E 1 — E4 are the edge routers. There are two TCP aggregates,

each of which consists of 20 long-lived TCP flows by default. The first aggregate is from

S1 to R 1 , and the second aggregate is from S2 to R2. The TCP packet size is 1000 bytes.

First, performance of S-NPM, E-NPM, and the original TSW are compared. The

subscription rate R0, 1 of aggregate 1 is fixed to 10Mbps, and the subscription rate R0,2 of

aggregate 2 varies between 1Mbps and 30Mbps. The fairness indices (computed based on
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Figure 6.2: Single Bottleneck Link Network.

Eqs. 6.2 and 6.3) under these schemes are shown in Fig. 6.3. It is clear that both S-NPM and

E-NPM have better performance than the original TSW. When R0 , 2 is between 1Mbps and

5Mbps, the fairness index of S-NPM is significantly smaller than one, demonstrating that

S-NPM sometimes has difficulty to guarantee fairness. The reason is that the assumption

Rf,jTj /Ni >> 1 and Eq. 6.7 do not always hold. On the other hand, the fairness index of E-

NPM is always very close to one, demonstrating that E-NPM can guarantee fair bandwidth

allocation all the time. In the remaining of this chapter, the focus is on the simulation study

on the performance of E-NPM.

Next, effect of RTT of TCP aggregates on the performance of E-NPM is studied, and

results are shown in Fig. 6.4 and Fig. 6.5. The propagation delay between E 1 and C1 is fixed

to 50ms, and the propagation delay between E2 and C1 is varied between 10ms and 150ms.

There are two cases: under-subscription and over-subscription. In the under-subscription

case, the subscription rates for aggregate one and two are fixed to (5Mbps , 10Mbps).

According to the fairness criterion, the fair rates are (6.667 Mbps,13.333Mbps), which

are shown by two solid horizontal lines in Fig. 6.4. In the over-subscription case, the

subscription rates for aggregate one and two are fixed to (40Mbps , 10Mbps), and the corre-

sponding fair rates are (16Mbps, 4Mbps), which are also shown by two solid horizontal



Figure 6.3: Comparison of Fairness for S-NPM, E-NPM and TSW.

lines in Fig. 6.5. From Fig. 6.4 and Fig. 6.5, it can be seen that in both cases, the received

rates for two aggregates are very close to their fair share rates, and this demonstrates that

RTT has very little impact on the performance of E-NPM.

How the number of TCP flows in the aggregate can affect the performance of E-NPM

is also investigated. Two cases are considered: under-subscription and over-subscription.

There are 20 TCP flows in aggregate 1, and the number of TCP flows in aggregate 2 varies

between 20 and 80. The subscription rates for aggregates 1 and 2 are the same as those in

the simulations for Fig. 6.4 and Fig. 6.5. Fig. 6.6 and Fig. 6.7 show the results. Again, it

can be seen that E-NPM can achieve fair rate allocation regardless of the number of TCP

flows in the aggregate.

6.4.2 Multiple Bottleneck Link Network

This simulation studies the performance of E-NPM in the multiple bottleneck link network,

which is shown in Fig. 6.8. C 1 — C3 are core routers, and E1 — E5 are the edge routers.
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Figure 6.4: The Impact of RTT on E-NPM (under-subscription).
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Figure 6.5: The Impact of RTT on E-NPM (under-subscription).



Figure 6.6: The Impact of Number of TCP Flows on E-NPM (under-

subscription).
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Figure 6.7: The Impact of Number of TCP Flows on E-NPM (over-

subscription).
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The link between C 1 and C2 and the link between C2 and C3 are the bottlenecks. There

are three TCP aggregates, each of which consists of 20 TCP flows. These aggregates start

at (Si , S2, S3) and end at (R1, R2, R3), respectively. The subscription rates for aggregate 2

and 3 are fixed to 5Mbps and 10Mbps, respectively. The subscription rate of aggregate 1

(R0 , 1) varies between 1Mbps and 30Mbps.

Figure 6.8: Multiple Bottleneck Link Network.

According to the extension of the fairness criterion in the multiple bottleneck link

network, the fairness criterion in this simulation is the weighted max-min fairness, in which

the weight for aggregate j is its subscription rate R0,j. Fig. 6.9 shows the simulation results.

It can be seen that E-NPM achieves good fairness performance in the network with multiple

bottleneck links.

6.5 Summary

In this chapter, a new packet marking scheme called NPM (S-NPM and E-NPM) is

introduced. NPM can be used for AF services in the DiffServ networks. NPM is based

on per aggregate marking, and it only introduces a slight computation overhead in the

core routers. The fairness criterion of bandwidth allocation is extended from the single

bottleneck case to that of the multiple bottleneck case. From both theoretical analysis

and experimental studies, it has been shown that both S-NPM and E-NPM significantly
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Figure 6.9: E-NPM Performance in Multiple Bottleneck Link

Network.

outperform the original TSW packet marking scheme. Moreover, E-NPM can assure fair

bandwidth allocation in both single and multiple bottleneck networks, and its performance

is not affected by the subscription rate, round trip time, and number of flows in each

aggregate.



CHAPTER 7

HIGHSPEED TCP IN OPTICAL BURST SWITCHING NETWORKS

There has been an increasing demand for reliable data transmission at high speed (1 Gbps

or even 10 Gbps) from many applications in nuclear physics, telemedicine, etc. TCP is

the most dominant transport layer protocol for data transmission in the present Internet.

However, the current standard TCP cannot perform efficiently in the high-speed and long

delay network environment. This inefficiency arises from its window adaptation approach

in the congestion avoidance phase: TCP increases its window size by one every round trip

time (RTT) if no packet is lost, and decreases its window size by half in response to a loss

event. For example, in order to achieve 10 Gbps throughput for a standard TCP connection

with 1500 bytes packets and 100 ms RTT, it requires an average window size of 83,333 and

no packet loss in more than one hour [38]. In other words, it needs at most one loss event

every 5 x 109 packets, which is beyond the bit error rate for the current network [38].

HighSpeed TCP (HSTCP) [38], FAST TCP (FAST) [24] and other new versions of

TCP have been proposed to attain high throughput in the high bandwidth and long delay

environment. HSTCP modifies the standard TCP with a more aggressive window increase

and more conservative window decrease approach. HSTCP is the focus of this chapter,

and a brief introduction to HSTCP will be presented later in this chapter. FAST adapts its

window size based on the packet delay, and the study of FAST is beyond the scope of this

work.

Optical Burst Switching (OBS) [39] provides a feasible paradigm for Internet over

wavelength- division multiplexing (WDM) integration. Owing to its flexibility in achieving

high utilization of optical bandwidth and its capability to support transparent data trans-

mission, OBS is a promising technology to support future Internet backbone.
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The performance of TCP over OBS has drawn attention of the research community.

In [40], the throughput of TCP Reno over OBS is obtained. In [41], the effect of false

Time Out (FTO) of TCP over OBS was investigated, and a new Burst TCP (BTCP) was

proposed to detect FTO and react properly so that the throughput of BTCP was improved

significantly over the standard TCP. All these works only considered two extreme cases, in

which either all the TCP packets in one window are in the same optical burst or no packets

are in the same optical burst. However, TCP with high transmission rate (such as HSTCP)

does not fall into these two extremes. On the contrary, packets in one window usually

spread over multiple optical bursts, and one optical burst can also contain multiple packets

from one TCP connection. This chapter focuses on this scenario and derive the throughput

upper bound of HSTCP over OBS.

The remainder of this chapter is organized as follows. Section I presents the brief

introduction to HSTCP and OBS. Section II presents the analysis on the throughput of

HSTCP over OBS, and provides an upper bound. Section III presents the conclusions.

7.1 Backgroud

The basic concept behind HSTCP is to use the following scheme to update the window size
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Here, High_Decrease, W, w1, High_Window and High_P are predefined parameters.

From Eq. 7.1, it can be seen that HSTCP still adopts Additive Increase Multiplicative

Decrease (AIMD) window updating scheme as the traditional TCP does, except that a(w)

and b(w), the increase and decease parameters are not constant any more. Note that a(w)

and b(w) are increasing and decreasing functions of the window size w, respectively. In

other words, HSTCP uses a faster window increase and slower window decrease scheme

as the window size increases. W is set to 38 by default, corresponding to the throughput

of 4.5Mbps for the standard TCP with 100ms round trip time and 1500 bytes packet size.

From the expression of a(w) and b(w), it can be seen that when the window size is not

larger than W, HSTCP reduces to the standard TCP. This ensures that HSTCP is fair to the

standard TCP when the link capacity is small. Readers are referred to [38] for the reasons

to use the above approach and the recommended values for these predefined parameters.

There are two parts in an optical IP over OBS network: local electronic IP networks

and OBS backbone network. Edge nodes (ENs) reside between the electronic and optical

world, and perform electronic-optical and optical-electronic conversions. At ingress ENs,

each burst is assembled with multiple packets. In this chapter, it is assumed that the burst

assembly time Tb is constant. After burstification and other necessary procedures, the burst

is transparently transmitted in the optical backbone. Owing to the contention among the

bursts inside the OBS network, bursts can be lost before they reach their destined egress

ENs. At egress ENs, each burst is dissembled and the IP packets in the burst are forwarded

to local electronic networks.

7.2 Model and Analysis

Consider a simplified network model shown in Figure 7.1. Assume the link between the

TCP sender and ingress EN is C, the burst loss ratio inside the OBS network is p, the burst

assembly time is Tb, and the round trip time of the TCP connection is RTT. Here, RTT

includes the end-to-end propagation delay, buffering delay at the local IP network, and all
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the optical processing delays. It is reasonable to assume that RTT >> Tb. Intuitively, two

factors can limit the throughput of the TCP connection: the values of C and p. If p is small,

TCP throughput is constrained by the link capacity C. If p is large enough, TCP has to

drop its window size very often, and it cannot make use of the link capacity C efficiently.

It will be shown later in this chapter that the burst assembly time Tb also plays an important

role in determining the throughput of TCP.

Figure 7.1: Simple Network Topology with HSTCP over OBS.

TCP tends to send packets back-to-back in a train due to its "ack-clocking" property

(here the term burst is not used to avoid confusion with the burst in the OBS network). A

common packet transmission pattern of a TCP connection is shown in Figure 7.2, in which

the time is divided into RTT slots and each RTT slot contains one packet train.

Figure 7.2: Illustration of Packet Pattern Without Pacing.

The length of each packet train increases as the window size increases. When the link

capacity C is fully utilized, each RTT time slot will be entirely covered by one TCP packet

train. When the window size is w, the length of one packet train in every RTT time slot is

L(w) = E, and the packets sent in one RTT appear in [L(w)/Tbl optical bursts, where [.1
is the ceiling operator. Thus, the probability that TCP packets get lost due to the optical

burst loss in one RTT is:
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TCP can also transmit packets not in a back-to-back fashion if Pacing [42] is adopted.

Pacing tries to evenly spread packets in one window to one RTT slot. Figure 7.3 shows a

typical packet pattern of Pacing. It can be seen that packets in one RTT will appear in more

optical bursts in the Pacing scheme. Therefore, the TCP packet drop probability increases,

the TCP window size drops more frequently, and the throughput is expected to become

lower in the Pacing scheme. If Pacing is adopted, the number of optical bursts that contains

the packets in one RTT is:

Figure 7.3: Illustration of Packet Pattern with Pacing.

Therefore, the probability that TCP packets get lost due to the optical burst loss in

one RTT is:

Note that Eq. 7.6 is very different from Eq. 7.4, which is the case when TCP Pacing is not

implemented. The performance comparison will be presented later in this section. Since

the focus is on the best throughput HSTCP can achieve, the time to retransmit lost packets

is neglected, and the schemes to detect false Time Out [41] are assumed to be implemented.

Here, q(w) is expressed in Eq. 7.4.
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The proof of Theorem 7.1 is given at the end of this chapter. For the throughput upper

bound of HSTCP Pacing, the similar result can be found:

Here, q(w) is expressed in Eq. 7.6.

The proof of Corollary 7.1 is very similar to that of Theorem 1, and it is thus omitted.

Figure 7.4 shows the throughput of HSTCP without Pacing for different values of

optical burst loss ratio p and the burst assembly time Tb with the help of Theorem 7.1.

Here, the link capacity C is set to 10 Gbps, the packet size to 1500 bytes, RTT to 100ms,

and the HSTCP throughput without optical burst loss to one. Note that the optical burst

loss ratio p and burst assembly time Tb have great impact on the throughput of HSTCP.

With the same value of the burst loss ratio, the smaller the assembly time Tb is, the lower

the throughput of HSTCP is.

Fig. 7.5 shows the performance comparison among TCP (without Pacing), HSTCP

Pacing, and HSTCP over the OBS network. For TCP, a(w) = 1 and b(w) = 0.5 according

to the default values for the standard TCP. The link capacity C is 10 Gbps, the burst

assembly time Tb is 1 ms, RTT is 100ms, and the HSTCP throughput without optical burst

loss is set to one. It can be seen that although the optical burst loss can greatly reduce

the throughput of HSTCP, HSTCP has much higher throughput than TCP. This is because

HSTCP increases its window size more aggressively and decreases it more conservatively.

One important feature shown in the figure is the throughput of HSTCP Pacing. Though

HSTCP Pacing adopts the same aggressive window increasing and conservative window

decreasing schemes as HSTCP does, its throughput is significantly smaller than that of

HSTCP. It is because the Pacing scheme tends to spread TCP packets evenly, thus leading

to much higher packet dropping probability. Furthermore, the throughout of HSTCP can
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Figure 7.4: Throughput Performance of HSTCP.

be considerably smaller than that of TCP when the optical burst loss ratio is relative large;

when the optical burst loss ratio increases, the throughput of HSTCP Pacing will catch up

and finally exceed that of TCP. This demonstrates that it should be very cautious in adopting

the Pacing scheme if the backbone network is OBS based.

7.3 Summary

In this chapter, a simple model for a single HSTCP connection over an OBS network is

presented. Based on this model, the impact of OBS on the throughput of a single HSTCP

connection is investigated. The analysis shows that the high burst loss ratio and the small

burst assembly time can significantly reduce the throughput of the HSTCP connection. The

results in this chapter indicate that improper design of the OBS core network may limit the

throughput of HSTCP.
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Figure 7.5: Throughput Comparison among TCP, HSTCP, and

HSTCP Pacing.

7.4 Proof of Theorem 7.1

The deterministic model similar to [43] is adopted. In the deterministic model, the window

size evolves like the saw tooth shape, which is illustrated in Figure 7.6. When the HSTCP

window size reaches its maximum w*, an optical burst loss happens, and the window

size drops to (1 — b(w*))w*. Then, the window keeps increasing to w*, and the optical

burst loss happens again, which leads to another window dropping. This process repeats

continuously.

The average throughput of HSTCP can be expressed as:

(7.8)

Between to and t 1 , the window size evolves according to

(7.9)



Figure 7.6: HSTCP Window Evolution in Deterministic Model.

Based on the fact that a(w) is an increasing function of w, it is known that d±: is an

increasing function of time t from Eq. 7.9. Thus, w(t) is a convex function of time t

between to and t 1 [44]. Using the property of convex function,

Substituting Eq. 7.10 into Eq. 7.8,
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where M is an positive integer. It is known from Eq. 7.4 that when the window size is w,

the probability that TCP packets get lost due to the optical burst loss in one RTT is q(w).

If q(w) = q, which means it is independent of w,

However, q(w) is not a constant as w increases from (1 — b(w*))w* to w*. Based on the

fact that q(w) is an increasing function of w,

From Eq. 7.13 and 7.14,

Combining Eq. 7.16 and 7.18,

Equations 7.17 and 7.19 set the range of the (w*, M) pair, which is the shaded area

indicated in Figure 7.7. It can be verified that q(.1 . ) and 
q((1-b(w*))w*)

 are both decreasing



w'0', the upper bound of w* is achieved at point A, and it satisfies

4/1

Figure 7.7: Throughput Comparison among TCP, HSTCP, and

HSTCP Pacing.

From the property of b(w), it is known that (1 b(w2 *) ) w* is an increasing function

of w*. Thus, from Eq. 7.11 and 7.20, the upper bound of the throughput of HSTCP can be

expressed as:

(7.21)



CHAPTER 8

SUMMARY AND FUTURE WORK

This chapter concludes this dissertation by summarizing the finished works and discussing

the possible directions for the future work.

8.1 Summary

Chapter 2 first identifies the end-to-end delay divergence problem faced by EF PHB.

Then, it presents the Youngest Serve First (YSF) aggregate scheduling scheme for the

EF class and the corresponding end-to-end delay bound of this scheme. YSF provides

a much smaller end-to-end delay bound than that of FIFO and solves the end-to-end delay

divergence problem faced by FIFO. YSF does not need to maintain per flow information

and its scheduling complexity is independent of the number of flows traversing the link.

Therefore, YSF is efficient, effective and scalable, and it is a very promising candidate for

scheduling the EF traffic.

Chapter 3 first introduces the necessary background on REM and the TCP model.

Then, the local stability condition for REM is presented in the multi-link and multi-source

network with an arbitrary uniform feedback delay under the continuous time model. These

results provide valuable insight into how to set REM parameters so that a locally stable

network can be obtained

Chapter 4 proposes the Virtual Queue and Rate (VQR) based AQM scheme and

studies the local stability property for a network with arbitrary topology and delays. VQR

is targeted to enhance the currently deployed TCP protocols, and does not require changes

made to end users in order to maintain network local stability.

Chapter 5 first identifies the drawbacks of traditional AQM schemes. Then, the edge

based AQM (EAQM) is proposed. Compared with conventional AQM schemes, which
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need to be deployed over the entire network, EAQM is a pure edge based approach, in

which only the edge routers are upgraded. It is easier and more economical to deploy

EAQM than the traditional AQM schemes. Although EAQM is simpler than the conven-

tional AQM schemes, EAQM achieves similar or better performance in terms of queue

length stability and responsiveness to traffic dynamics. Moreover, EAQM can significantly

reduce the throughput unfairness against TCP connections with longer RTTs.

Chapter 6 investigates the fair bandwidth allocation problem in the context of the AF

service. It first extends the fairness criteria from single bottleneck link AF networks to those

with an arbitrary number of bottleneck links. Then, a new network-assist packet marker

(NPM) is proposed to realize the extended fairness criteria and is proven to guarantee the

new fairness criteria via theoretical analysis and extensive experiments.

Chapter 7 presents a simple model for a single HSTCP connection over an OBS

network. The analysis shows that the high burst loss ratio and the small burst assembly

time can significantly reduce the throughput of the HSTCP connection. The results in this

chapter indicate that improper design of the OBS core network may limit the throughput of

HSTCP.

8.2 Future Work

There are several important directions in which future research can be pursued:

1. QoS in wireless networks — Providing QoS in the wireless networks requires

different approaches from those in the traditional wired network because the link

capacity, queuing delay and packet loss are much more difficult to control in the

wireless networks. One interesting and challenging topic is to provide service differ-

entiation and to optimize the network performance in both pure wireless networks

and the hybrid networks. The approach is a cross layer design, which takes multiple

factors into consideration, i.e., power control, flow and congestion control, packet

scheduling, user mobility and routing.
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2. Overlay network — One of the main purposes of overlay networks is to provide

end-to-end QoS on top of the best effort Internet infrastructure. How to extend the

work in this dissertation to overlay network is a new research opportunity. Since

each overlay network aims to provide QoS in a smaller dimension than the DiffServ

networks, there will be freedom to design algorithms to realize service differentiation

based on the particular requirement of each application with less complexity and

scalability constraints.
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