17 research outputs found

    Non-uniform sampling and reconstruction of multi-band signals and its application in wideband spectrum sensing of cognitive radio

    Full text link
    Sampling theories lie at the heart of signal processing devices and communication systems. To accommodate high operating rates while retaining low computational cost, efficient analog-to digital (ADC) converters must be developed. Many of limitations encountered in current converters are due to a traditional assumption that the sampling state needs to acquire the data at the Nyquist rate, corresponding to twice the signal bandwidth. In this thesis a method of sampling far below the Nyquist rate for sparse spectrum multiband signals is investigated. The method is called periodic non-uniform sampling, and it is useful in a variety of applications such as data converters, sensor array imaging and image compression. Firstly, a model for the sampling system in the frequency domain is prepared. It relates the Fourier transform of observed compressed samples with the unknown spectrum of the signal. Next, the reconstruction process based on the topic of compressed sensing is provided. We show that the sampling parameters play an important role on the average sample ratio and the quality of the reconstructed signal. The concept of condition number and its effect on the reconstructed signal in the presence of noise is introduced, and a feasible approach for choosing a sample pattern with a low condition number is given. We distinguish between the cases of known spectrum and unknown spectrum signals respectively. One of the model parameters is determined by the signal band locations that in case of unknown spectrum signals should be estimated from sampled data. Therefore, we applied both subspace methods and non-linear least square methods for estimation of this parameter. We also used the information theoretic criteria (Akaike and MDL) and the exponential fitting test techniques for model order selection in this case

    Compressive Sensing of Multiband Spectrum towards Real-World Wideband Applications.

    Get PDF
    PhD Theses.Spectrum scarcity is a major challenge in wireless communication systems with their rapid evolutions towards more capacity and bandwidth. The fact that the real-world spectrum, as a nite resource, is sparsely utilized in certain bands spurs the proposal of spectrum sharing. In wideband scenarios, accurate real-time spectrum sensing, as an enabler of spectrum sharing, can become ine cient as it naturally requires the sampling rate of the analog-to-digital conversion to exceed the Nyquist rate, which is resourcecostly and energy-consuming. Compressive sensing techniques have been applied in wideband spectrum sensing to achieve sub-Nyquist-rate sampling of frequency sparse signals to alleviate such burdens. A major challenge of compressive spectrum sensing (CSS) is the complexity of the sparse recovery algorithm. Greedy algorithms achieve sparse recovery with low complexity but the required prior knowledge of the signal sparsity. A practical spectrum sparsity estimation scheme is proposed. Furthermore, the dimension of the sparse recovery problem is proposed to be reduced, which further reduces the complexity and achieves signal denoising that promotes recovery delity. The robust detection of incumbent radio is also a fundamental problem of CSS. To address the energy detection problem in CSS, the spectrum statistics of the recovered signals are investigated and a practical threshold adaption scheme for energy detection is proposed. Moreover, it is of particular interest to seek the challenges and opportunities to implement real-world CSS for systems with large bandwidth. Initial research on the practical issues towards the real-world realization of wideband CSS system based on the multicoset sampler architecture is presented. In all, this thesis provides insights into two critical challenges - low-complexity sparse recovery and robust energy detection - in the general CSS context, while also looks into some particular issues towards the real-world CSS implementation based on the i multicoset sampler

    Reconstruction par acquisition compressée en imagerie ultrasonore médicale 3D et Doppler

    Get PDF
    This thesis is dedicated to the application of the novel compressed sensing theory to the acquisition and reconstruction of 3D US images and Doppler signals. In 3D US imaging, one of the major difficulties concerns the number of RF lines that has to be acquired to cover the complete volume. The acquisition of each line takes an incompressible time due to the finite velocity of the ultrasound wave. One possible solution for increasing the frame rate consists in reducing the acquisition time by skipping some RF lines. The reconstruction of the missing information in post processing is then a typical application of compressed sensing. Another excellent candidate for this theory is the Doppler duplex imaging that implies alternating two modes of emission, one for B-mode imaging and the other for flow estimation. Regarding 3D imaging, we propose a compressed sensing framework using learned overcomplete dictionaries. Such dictionaries allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images.We also focus on the measurement sensing setup and propose a line-wise sampling of entire RF lines which allows to decrease the amount of data and is feasible in a relatively simple setting of the 3D US equipment. The algorithm was validated on 3D simulated and experimental data. For the Doppler application, we proposed a CS based framework for randomly interleaving Doppler and US emissions. The proposed method reconstructs the Doppler signal using a block sparse Bayesian learning algorithm that exploits the correlation structure within a signal and has the ability of recovering partially sparse signals as long as they are correlated. This method is validated on simulated and experimental Doppler data.DL’objectif de cette thèse est le développement de techniques adaptées à l’application de la théorie de l’acquisition compressée en imagerie ultrasonore 3D et Doppler. En imagerie ultrasonore 3D une des principales difficultés concerne le temps d’acquisition très long lié au nombre de lignes RF à acquérir pour couvrir l’ensemble du volume. Afin d’augmenter la cadence d’imagerie une solution possible consiste à choisir aléatoirement des lignes RF qui ne seront pas acquises. La reconstruction des données manquantes est une application typique de l’acquisition compressée. Une autre application d’intérêt correspond aux acquisitions Doppler duplex où des stratégies d’entrelacement des acquisitions sont nécessaires et conduisent donc à une réduction de la quantité de données disponibles. Dans ce contexte, nous avons réalisé de nouveaux développements permettant l’application de l’acquisition compressée à ces deux modalités d’acquisition ultrasonore. Dans un premier temps, nous avons proposé d’utiliser des dictionnaires redondants construits à partir des signaux d’intérêt pour la reconstruction d’images 3D ultrasonores. Une attention particulière a aussi été apportée à la configuration du système d’acquisition et nous avons choisi de nous concentrer sur un échantillonnage des lignes RF entières, réalisable en pratique de façon relativement simple. Cette méthode est validée sur données 3D simulées et expérimentales. Dans un deuxième temps, nous proposons une méthode qui permet d’alterner de manière aléatoire les émissions Doppler et les émissions destinées à l’imagerie mode-B. La technique est basée sur une approche bayésienne qui exploite la corrélation et la parcimonie des blocs du signal. L’algorithme est validé sur des données Doppler simulées et expérimentales

    Compressive Sensing and Its Applications in Automotive Radar Systems

    Get PDF
    Die Entwicklung in Richtung zu autonomem Fahren verspricht, künftig einen sicheren Verkehr ohne tödliche Unfälle zu ermöglichen, indem menschliche Fahrer vollständig ersetzt werden. Dadurch entfällt der Faktor des menschlichen Fehlers, der aus Müdigkeit, Unachtsamkeit oder Alkoholeinfluss resultiert. Um jedoch eine breite Akzeptanz für autonome Fahrzeuge zu erreichen und es somit eines Tages vollständig umzusetzen, sind noch eine Vielzahl von Herausforderungen zu lösen. Da in einem autonomen Fahrzeug kein menschlicher Fahrer mehr in Notfällen eingreifen kann, müssen sich autonome Fahrzeuge auf leistungsfähige und robuste Sensorsysteme verlassen können, um in kritischen Situationen auch unter widrigen Bedingungen angemessen reagieren zu können. Daher ist die Entwicklung von Sensorsystemen erforderlich, die für Funktionalitäten jenseits der aktuellen advanced driver assistance systems eingesetzt werden können. Dies resultiert in neuen Anforderungen, die erfüllt werden müssen, um sichere und zuverlässige autonome Fahrzeuge zu realisieren, die weder Fahrzeuginsassen noch Passanten gefährden. Radarsysteme gehören zu den Schlüsselkomponenten unter der Vielzahl der verfügbaren Sensorsysteme, da sie im Gegensatz zu visuellen Sensoren von widrigen Wetter- und Umgebungsbedingungen kaum beeinträchtigt werden. Darüber hinaus liefern Radarsysteme zusätzliche Umgebungsinformationen wie Abstand, Winkel und relative Geschwindigkeit zwischen Sensor und reflektierenden Zielen. Die vorliegende Dissertation deckt im Wesentlichen zwei Hauptaspekte der Forschung und Entwicklung auf dem Gebiet der Radarsysteme im Automobilbereich ab. Ein Aspekt ist die Steigerung der Effizienz und Robustheit der Signalerfassung und -verarbeitung für die Radarperzeption. Der andere Aspekt ist die Beschleunigung der Validierung und Verifizierung von automated cyber-physical systems, die parallel zum Automatisierungsgrad auch eine höhere Komplexität aufweisen. Nach der Analyse zahlreicher möglicher Compressive Sensing Methoden, die im Bereich Fahrzeugradarsysteme angewendet werden können, wird ein rauschmoduliertes gepulstes Radarsystem vorgestellt, das kommerzielle Fahrzeugradarsysteme in seiner Robustheit gegenüber Rauschen übertrifft. Die Nachteile anderer gepulster Radarsysteme hinsichtlich des Signalerfassungsaufwands und der Laufzeit werden durch die Verwendung eines Compressive Sensing-Signalerfassungs- und Rekonstruktionsverfahrens in Kombination mit einer Rauschmodulation deutlich verringert. Mit Compressive Sensing konnte der Aufwand für die Signalerfassung um 70% reduziert werden, während gleichzeitig die Robustheit der Radarwahrnehmung auch für signal-to-noise-ratio-Pegel nahe oder unter Null erreicht wird. Mit einem validierten Radarsensormodell wurde das Rauschradarsystem emuliert und mit einem kommerziellen Fahrzeugradarsystem verglichen. Datengetriebene Wettermodelle wurden entwickelt und während der Simulation angewendet, um die Radarleistung unter widrigen Bedingungen zu bewerten. Während eine Besprühung mit Wasser die Radomdämpfung um 10 dB erhöht und Spritzwasser sogar um 20 dB, ergibt sich die eigentliche Begrenzung aus der Rauschzahl und Empfindlichkeit des Empfängers. Es konnte bewiesen werden, dass das vorgeschlagene Compressive Sensing Rauschradarsystem mit einer zusätzlichen Signaldämpfung von bis zu 60 dB umgehen kann und damit eine hohe Robustheit in ungünstigen Umwelt- und Wetterbedingungen aufweist. Neben der Robustheit wird auch die Interferenz berücksichtigt. Zum einen wird die erhöhte Störfestigkeit des Störradarsystems nachgewiesen. Auf der anderen Seite werden die Auswirkungen auf bestehende Fahrzeugradarsysteme bewertet und Strategien zur Minderung der Auswirkungen vorgestellt. Die Struktur der Arbeit ist folgende. Nach der Einführung der Grundlagen und Methoden für Fahrzeugradarsysteme werden die Theorie und Metriken hinter Compressive Sensing gezeigt. Darüber hinaus werden weitere Aspekte wie Umgebungsbedingungen, unterschiedliche Radararchitekturen und Interferenz erläutert. Der Stand der Technik gibt einen Überblick über Compressive Sensing-Ansätze und Implementierungen mit einem Fokus auf Radar. Darüber hinaus werden Aspekte von Fahrzeug- und Rauschradarsystemen behandelt. Der Hauptteil beginnt mit der Vorstellung verschiedener Ansätze zur Nutzung von Compressive Sensing für Fahrzeugradarsysteme, die in der Lage sind, die Erfassung und Wahrnehmung von Radarsignalen zu verbessern oder zu erweitern. Anschließend wird der Fokus auf ein Rauschradarsystem gelegt, das mit Compressive Sensing eine effiziente Signalerfassung und -rekonstruktion ermöglicht. Es wurde mit verschiedenen Compressive Sensing-Metriken analysiert und in einer Proof-of-Concept-Simulation bewertet. Mit einer Emulation des Rauschradarsystems wurde das Potential der Compressive Sensing Signalerfassung und -verarbeitung in einem realistischeren Szenario demonstriert. Die Entwicklung und Validierung des zugrunde liegenden Sensormodells wird ebenso dokumentiert wie die Entwicklung der datengetriebenen Wettermodelle. Nach der Betrachtung von Interferenz und der Koexistenz des Rauschradars mit kommerziellen Radarsystemen schließt ein letztes Kapitel mit Schlussfolgerungen und einem Ausblick die Arbeit ab.Developments towards autonomous driving promise to lead to safer traffic, where fatal accidents can be avoided after making human drivers obsolete and hence removing the factor of human error. However, to ensure the acceptance of automated driving and make it a reality one day, still a huge amount of challenges need to be solved. With having no human supervisors, automated vehicles have to rely on capable and robust sensor systems to ensure adequate reactions in critical situations, even during adverse conditions. Therefore, the development of sensor systems is required that can be applied for functionalities beyond current advanced driver assistance systems. New requirements need to be met in order to realize safe and reliable automated vehicles that do not harm passersby. Radar systems belong to the key components among the variety of sensor systems. Other than visual sensors, radar is less vulnerable towards adverse weather and environment conditions. In addition, radar provides complementary environment information such as target distance, angular position or relative velocity, too. The thesis ad hand covers basically two main aspects of research and development in the field of automotive radar systems. One aspect is to increase efficiency and robustness in signal acquisition and processing for radar perception. The other aspect is to accelerate validation and verification of automated cyber-physical systems that feature more complexity along with the level of automation. After analyzing a variety of possible Compressive Sensing methods for automotive radar systems, a noise modulated pulsed radar system is suggested in the thesis at hand, which outperforms commercial automotive radar systems in its robustness towards noise. Compared to other pulsed radar systems, their drawbacks regarding signal acquisition effort and computation run time are resolved by using noise modulation for implementing a Compressive Sensing signal acquisition and reconstruction method. Using Compressive Sensing, the effort in signal acquisition was reduced by 70%, while obtaining a radar perception robustness even for signal-to-noise-ratio levels close to or below zero. With a validated radar sensor model the noise radar was emulated and compared to a commercial automotive radar system. Data-driven weather models were developed and applied during simulation to evaluate radar performance in adverse conditions. While water sprinkles increase radome attenuation by 10 dB and splash water even by 20 dB, the actual limitation comes from noise figure and sensitivity of the receiver. The additional signal attenuation that can be handled by the proposed compressive sensing noise radar system proved to be even up to 60 dB, which ensures a high robustness of the receiver during adverse weather and environment conditions. Besides robustness, interference is also considered. On the one hand the increased robustness towards interference of the noise radar system is demonstrated. On the other hand, the impact on existing automotive radar systems is evaluated and strategies to mitigate the impact are presented. The structure of the thesis is the following. After introducing basic principles and methods for automotive radar systems, the theory and metrics of Compressive Sensing is presented. Furthermore some particular aspects are highlighted such as environmental conditions, different radar architectures and interference. The state of the art provides an overview on Compressive Sensing approaches and implementations with focus on radar. In addition, it covers automotive radar and noise radar related aspects. The main part starts with presenting different approaches on making use of Compressive Sensing for automotive radar systems, that are capable of either improving or extending radar signal acquisition and perception. Afterwards the focus is put on a noise radar system that uses Compressive Sensing for an efficient signal acquisition and reconstruction. It was analyzed using different Compressive Sensing metrics and evaluated in a proof-of-concept simulation. With an emulation of the noise radar system the feasibility of the Compressive Sensing signal acquisition and processing was demonstrated in a more realistic scenario. The development and validation of the underlying sensor model is documented as well as the development of the data-driven weather models. After considering interference and co-existence with commercial radar systems, a final chapter with conclusions and an outlook completes the work

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений
    corecore