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Abstract

Spectrum scarcity is a major challenge in wireless communication systems with their

rapid evolutions towards more capacity and bandwidth. The fact that the real-world

spectrum, as a finite resource, is sparsely utilized in certain bands spurs the proposal

of spectrum sharing. In wideband scenarios, accurate real-time spectrum sensing, as an

enabler of spectrum sharing, can become inefficient as it naturally requires the sampling

rate of the analog-to-digital conversion to exceed the Nyquist rate, which is resource-

costly and energy-consuming. Compressive sensing techniques have been applied in

wideband spectrum sensing to achieve sub-Nyquist-rate sampling of frequency sparse

signals to alleviate such burdens.

A major challenge of compressive spectrum sensing (CSS) is the complexity of the sparse

recovery algorithm. Greedy algorithms achieve sparse recovery with low complexity but

the required prior knowledge of the signal sparsity. A practical spectrum sparsity esti-

mation scheme is proposed. Furthermore, the dimension of the sparse recovery problem

is proposed to be reduced, which further reduces the complexity and achieves signal

denoising that promotes recovery fidelity. The robust detection of incumbent radio is

also a fundamental problem of CSS. To address the energy detection problem in CSS,

the spectrum statistics of the recovered signals are investigated and a practical threshold

adaption scheme for energy detection is proposed. Moreover, it is of particular interest to

seek the challenges and opportunities to implement real-world CSS for systems with large

bandwidth. Initial research on the practical issues towards the real-world realization of

wideband CSS system based on the multicoset sampler architecture is presented.

In all, this thesis provides insights into two critical challenges - low-complexity sparse

recovery and robust energy detection - in the general CSS context, while also looks

into some particular issues towards the real-world CSS implementation based on the
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multicoset sampler.
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Chapter 1

Introduction

The rapid evolution of wireless communications has demanded an increasingly large data

rate and service coverage, and the spectrum scarcity has been increasingly appearing to

be a major challenge of wireless communication applications [1]. In recent years, there

has been particular interest in the techniques of spectrum sharing leading to the more

efficient utilization of the frequency resources which have become major commercial

assets of wireless service operators. Rapid technical advances towards the deployment

of dynamic spectrum access (DSA) have been seen through operation models such as

geolocation database and cognitive radio techniques [2, 3].

The initial trial steps of DSA systems are led by regulation bodies to tackle the crucial

threat of spectrum scarcity. A real-world test case for DSA in the UK is TV white-space

(TVWS) where the allocated spectrum of 470 − 790 MHz has been largely vacated by

the massive introduction of digital terrestrial TV (DTTV) [4–6]. The TVWS lying in

the lower end of the ultra-high frequency (UHF) band and featuring wide bandwidth

and sparse spectrum usage by primary TV broadcast is particularly suitable for the

implementation of DSA techniques [7], especially for secondary low-power machine-to-

machine (M2M) type communications. The Federal Communications Commission (FCC)

of the US has also initiated DSA in TVWS bands [8] as well as in the underutilized 3.5

1
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GHz band previously used exclusively by US federal services [9].

To enable the reliable awareness of the ambient spectrum usage required by DSA,

cognitive radio techniques are attractive options. Spectrum sensing is the essential and

proactive way in cognitive radio to acquire the ambient spectrum availability informa-

tion, which enables dynamic access demanded by unlicensed secondary users (SUs) to

the spectrum, while guaranteeing the quality of service of licensed primary users (PUs)

[10, 11]. The crucial requirement of DSA to reliably obtain all dynamics of the spectrum

activities, and to that end, real-time spectrum sensing techniques are highly desired.

Nyquist-rate sampling is an essential underlying requirement in conventional real-time

spectrum sensing, presenting high system complexity and cost, especially when the inter-

ested band is wide. Compressive sensing (CS) techniques have been recently proposed

as promising candidates in wideband spectrum sensing to achieve sub-Nyquist-rate sam-

pling, which effectively alleviates the hardware and power constraints of the conventional

Nyquist-rate processing [12–16].

With the recent commercialization of the fifth-generation (5G) communication sys-

tem, the spectrum designation not only refers to the sub-6 GHz band and some extensions

to 7125 MHz, known as frequency range 1 (FR1) [17], but also new spectrum allocations

FR2 in the millimeter-wave (mmWave) frequencies between 24.25 GHz and 52.6 GHz

[18]. Although the mmWave spectrum resources for civil cellular services are new and

large, in consideration of the coexistence of multiple operators and various types of appli-

cations, high spectrum utility and effective spectrum access management are necessary,

and spectrum sharing is considered as a promising model. Recent proposals are present

that cellular and machine-to-machine-type services at mmWave bands, with either unli-

censed and shared spectrum in definition (37.0− 37.6 GHz and 64− 71 GHz) [19, 20], or

with multiple operators potentially servicing overlapping small areas and co-existing with

other crucial wireless services such as Ka-band satellite communication links (27.5−29.5

GHz, 37 − 39 GHz, etc.) [20], could employ spectrum sensing techniques to realize the

DSA model or to ensure the quality of service [21]. Real-time spectrum sensing for such
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mmWave DSA applications, where the bandwidth can span multiple gigahertz, poses

critical challenges on the sampling rate in the conventional context of super-Nyquist

rate acquisition. Sub-Nyquist signal processing based on compressive sensing techniques

has hence emerged to attention and could be promising candidates for wideband spec-

trum sensing, which forms the fundamental interest of this thesis.

Implementing compressive spectrum sensing (CSS) has seen various practical and

technical challenges. As the core procedure of CSS, the robustness and computational

complexity of the sparse recovery process are the major concerns as the opportunistic

access of the spectrum requires rapid and reliable knowledge of the spectrum occupancy.

While greedy algorithms are preferred in light of achieving relatively low computational

complexity, they generally require prior knowledge of the spectrum sparsity as the input,

the acquisition of which poses another necessary yet intriguing problem. In this thesis,

a practical low-complexity CSS scheme featuring some greedy algorithms is proposed,

along with the solution of the sparsity estimation and insights of further techniques

to reduce the recovery complexity in Chapter 3. Moreover, the robust detection of

incumbent radio activities is also crucial in determining the spectrum availability. In

this thesis, the energy detection problem in CSS is investigated and a practical threshold

adaption scheme is proposed to ensure the robust performance of spectrum availability

detection in Chapter 4.

To apply CSS techniques to systems with larger bandwidth for mmWave applications,

where the instantaneous bandwidth reaches multiple hundred megahertz or even several

gigahertz, considerations have to be given to the system design as the corresponding

Nyquist rate is considerably higher. Some practical limitations of the implementation of

CSS, though being less of a problem for relatively narrow bandwidth systems, e.g. the

timing precision and spectrum leakage, have been brought to greater attention through

the attempts to implement CSS towards mmWave frequencies. This thesis provides

practical modeling of the multicoset sampler, then initially looks into several topics of

real-world issues in Chapter 5.
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1.1 Motivations and Contributions

The summary of the motivations and contributions of this Ph.D. research is given as

follows.

Greedy algorithms are of particular interest due to their low complexity but the

requirement of prior knowledge of the signal sparsity has been the limitation of their prac-

tical implementations. A practical spectrum sparsity estimation scheme and subspace-

aided dimension reduction approach for greedy algorithms have been presented to enable

low-complexity sparse recovery and improved detection performance of CSS.

The robust detection of incumbent radio is a fundamental problem of CSS toward its

application of DSA. It is discovered that the statistical model for Neyman-Pearson (NP)

energy detection is different in CSS from conventional Nyquist-rate spectrum sensing.

The channel energy statistical model of the spectrum has been investigated in the con-

text of NP energy detection in CSS, followed by a practical threshold adaption scheme

proposed to realize the robust detection performance.

It is of particular interest to seek the challenges and opportunities to implement real-

world CSS for mmWave systems with larger bandwidth which imposes larger processing

complexity and more stringent timing requirements. A few practical issues towards the

real-world realization of CSS system with multi-gigahertz bandwidth based on the multi-

coset sampler architecture is presented, along with implementation trials on a software-

defined-radio (SDR) platform.

1.2 Outline of the Thesis

The remaining chapter of the thesis is organized as the following, with an overview of

each chapter’s contents.
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1.2.1 Background

Chapter 2 covers an introduction to the literature review and background relating to the

work in this thesis. Reviews of cognitive radio, dynamic spectrum sharing, and wideband

spectrum sensing techniques are presented. Moreover, background of sampling theories,

compressive sensing theories and system architectures of CSS is introduced.

1.2.2 Low-Complexity Compressive Spectrum Sensing with Sparsity

Estimation

The complexity of the CS recovery algorithm and the detection performance against

noise are two of the main challenges of the implementation of CSS. Greedy algorithms

have been of particular interest in CSS due to low complexity. However, they require

prior knowledge of signal sparsity as input. Existing sparsity estimation schemes require

multiple exhaustive pilots of recovery implementations. A novel spectrum sparsity esti-

mation scheme is firstly proposed which directly estimates sub-Nyquist measurements.

With such sparsity input, the computational effort of greedy pursuit algorithms can

be saved and recovery performance improved, compared to an excessively large input

sparsity. Besides, the spectrum sparsity estimates also enable hard detection of chan-

nel occupancy where threshold adaption for energy detection is avoided. Moreover,

with the detected dimension of signal subspace, it is proposed to implement a multiple-

measurement-vector (MMV) model of CSS whose dimension can be reduced, and mean-

while, a large portion of the noise is removed. The proposed MMV model with noise

and dimension reduction further improves the detection performance and also keeps the

complexity low. Finally, the hard thresholding pursuit (HTP) algorithm is generalized

to recover joint-block-sparse MMV signals. In simulations, the detection performance

and complexity of the proposed CSS scheme show striking superiority against multiple

benchmarking schemes. The work in this chapter has been published as 2© and 10© in

the Publication List.
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1.2.3 Channel Energy Modeling and Threshold Adaption in Compres-

sive Spectrum Sensing

Most existing literature discusses Neyman-Pearson channel energy detection and thresh-

old adaption schemes to achieve optimal performance of detection in conventional non-

compressive spectrum sensing scenarios. However, in the CSS, it is found that the

channel energy statistics and optimal threshold not only depend on noise energy but

also compression ratio, the sparsity of spectrum, and the nature of recovery algorithms.

The corresponding optimal threshold in energy detection is different from that in the

conventional non-compressive spectrum sensing as a result of the discrepancy between

the recovered signal and the original sparse signal. To investigate the channel energy

statistics of the recovered spectrum, the statistical model of channel energy for CSS is

postulated and propose a learning algorithm based on Mixture Model and Expectation-

Maximization techniques. Additionally, having verified the validity of the postulated

model, a practical threshold adaption scheme for CSS is proposed, aiming to keep con-

stant false alarm rates in channel energy detection. In simulations, it is shown that the

postulated channel energy statistical models with parameters learned by the proposed

learning algorithm fit well with empirical distributions under circumstances of various

channel models and recovery algorithms. Moreover, it is presented that the proposed

threshold adaption scheme keeps the false alarm rate near the predefined constant, which

in turn validates the postulated model. The work in this chapter has been published as

3© and 11© in the Publication List.

1.2.4 Towards Practical Multicoset Sampler for Compressive Spec-

trum Sensing at mmWave

Multicoset sampler has been widely discussed as a concept in the literature to acquire

compressed samples of wideband signals. However, few discussions are seen towards the

hardware realization of this architecture. Technical challenges include but are not limited

to the precise sampling timing control and clock distribution at Nyquist-rate resolution,

and the synchronization and parallel data acquisition from a large-scale analog-to-digital
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converter (ADC) array. While the latter one has become less significant thanks to the

recent technical advances of JESD204B interface standard for ADC arrays, the timing

control and distribution is still a crucial issue.

Firstly, the practical multicoset sampler model is established with considerations on

finite length of observation period and discrete samples on spectrum leakage and spar-

sity estimation. Then, some application-inspired issues of practical multicoset sampler

are investigated. Spectrum leakage as a result of the finite observation period affects

the sparsity properties of the sensed spectrum, and a specific windowing scheme is pro-

posed to mitigate the spectrum leakage impact on the sparse signal model. Moreover,

sparsity estimation is also proposed to be applied on the multicoset model to enable

low-complexity greedy algorithms for recovery. With the sparsity estimate, it is pre-

sented that the sparse recovery model of multicoset sampler can be further simplified

by dimension reduction via eigendecomposition methods. This part of work has been

published as 9© in the Publication List.

To validate the real-time processing performance required by the multicoset sampler,

a full receiver and signal processing testbed of the multicoset-sampler-based CSS system

has been developed based on the National Instrument mmWave SDR platform. The

processing routine is implemented on the combination of field-programmable gate array

(FPGA) target and host processor of the National Instruments mmWave soft-defined-

radio platform with an instantaneous bandwidth of 3GHz and the integration of full

receiver architecture at 28.5GHz. This part of the work has been published as 13© in the

Publication List.

To apply practical multicoset sampler towards mmWave bands with even larger band-

width of multi-gigahertz, the timing offsets of sampling timing should be controlled at

finer resolutions and becomes more prone to undesired skews. The impact of timing

skews of the multicoset sampler is analyzed, which is unavoidable and has to be taken

into account in real-world implementations. The error in compressed measurements

caused by timing skews is quantified for the cases of unknown and known skews respec-
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tively, which can be indicative of the sparse recovery and system-level performances in

the design of practical multicoset-sampler-based wideband spectrum sensing systems.

This part of the work has been published as 8© in the Publication List.

1.2.5 Conclusions and Future Work

This chapter presents the conclusion and visions for future work.
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Chapter 2

Literature Review and

Background

The chapter starts with the literature review of cognitive radio, spectrum, and the state-

of-the-art of conventional and sub-Nyquist wideband spectrum sensing techniques. Next,

with the focus on sub-Nyquist wideband spectrum sensing, the basics of sampling the-

ories and compressive sensing theories are covered, followed by the introductions of

compressive sensing algorithms and sub-Nyquist signal acquisition architectures.

2.1 Cognitive Radio and Spectrum Sharing

A cognitive radio (CR), by definition, is a radio that can be programmed and configured

dynamically to use the appropriate wireless channels in its vicinity to avoid user inter-

ference and congestion. Such a radio can distinguish available channels in the wireless

spectrum, then accordingly changes its transmission or reception parameters to allow

wireless communications to have more throughput in a given spectrum band at one loca-

tion. The primary idea of the ‘learning machines’ for adaptive radio communications

was brought up by Shannon. The concept of CR was firstly introduced by Mitola, who

proposed a goal towards which the personal wireless devices should evolve: a fully recon-

11
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figurable wireless transceiver that automatically adapts its communication parameters to

network and user demands [22, 23]. Recent advances in CR technologies have brought up

the concept of dynamic spectrum access (DSA), which allows secondary users (SUs) to

opportunistically access the spectrum that is sporadically used by primary users (PUs)

in both frequency and time [11, 24]. Such SUs often operate on an unlicensed base and

therefore it is required that the access made by SUs to the spectrum should not cause

significant interference to the licensed PUs whose quality of service is prioritized. For

that purpose, a SU in the sense of cognitive radio should have the ability to obtain the

knowledge of the holes, i.e. whitespace in the spectrum at certain times.

Spectrum resources are conventionally allocated by governmental regulators in a

rather fixed fashion and are not optimized for CRs. Commercial operations of wire-

less communication services, in the aspect of spectrum resources usage, can be largely

categorized into two: some are based on the monopoly of certain frequency bands at a

certain area, for example, radio and TV broadcast and wireless cellular network services

such as GSM and LTE; and some others are based on frequency bands allocated for

unlicensed use in the industrial scientific and medical (ISM) bands, for example, wireless

local area network (WLAN), personal area networks (PAN), and low-power wide-area

network (LPWAN) for Internet-of-Things (IoT) applications. Due to the ever-increasing

demand for faster data rate and service coverage, the finite resources of the spectrum

have become scarce assets and the problem of spectrum scarcity has become critical

over the past few years. Nevertheless, it has been reported [2, 4, 10] in several studies

that the seemingly overloaded spectrum for some wireless services that are not designed

for CR is actually significantly underutilized, in the sense that only a small number

of narrowband transmissions occupy across a wideband spectrum. On the other hand,

fixed and monopolized spectrum allocation prevents rarely used frequencies, for specific

services such as terrestrial TV and paging, from being utilized, even when any SU would

not cause significant interference to the primary service. The actual existence of such

frequency whitespace enables the potential application model of DSA, where the total



Chapter 2. Literature Review and Background 13

throughput of the wideband spectrum can be significantly improved [24, 25]. Therefore,

CR along with the paradigm of spectrum sharing has been considered as one of the

promising solutions to tackle the spectrum scarcity in future wireless networks towards

5G and beyond [10].

Facing the urgent need for accessing the shared spectrum to maximize the spectrum

utilization, regulation bodies and governments have taken steps to initiate the spectrum

sharing model in multiple appropriate bands. One of the first frequency bands that

have come to attention is the digital terrestrial TV (DTTV) bands, for the following two

reasons. One is that the allocated band is as wide as several hundreds of megahertz which

has been largely vacated by the transition from analog to digital TV signals, creating

a large portion of whitespace.[4, 26]. Moreover, the frequencies lie in the range of the

ultra-high-frequency (UHF) band which has desirable penetration capabilities in terms

of the propagation characteristics, especially suitable for long-range, wide-area, and low-

power wireless communications such as the rapidly-developing IoT networks [4, 26]. The

Federal Communications Commission (FCC) of the United States has enabled the TV

whitespace (TVWS) between 54−698 MHz since 2010 and the Office of Communications

(OfCom) of the United Kingdom has permitted 470−790 MHz since 2015 [5, 6]. Besides

regulatory policies, the standardization body IEEE has released two standards dedicated

for TVWS applications, namely 802.22 [27] and 802.11af (also known as Super Wi-Fi and

White-Fi) [28] for application scenarios of wireless regional area networks (WRAN) with

service radius up to 100 km and Wi-Fi services, respectively. Furthermore, in 2015, the

FCC adopted the spectrum sharing model for the band of 3550− 3700 MHz, established

for the Citizens Broadband Radio Service (CBRS)[29]. Instead of the primitive two-

tier model consisting of PUs and SUs, this application of spectrum sharing employs a

three-tiered access and authorization framework to accommodate the shared licensed

and unlicensed use of the spectrum [9].

Commercial operators also have proposed initiatives to employ a shared spectrum

operation model in cellular network services. One of the most attractive proposals is
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called LTE-Unlicensed (LTE-U), where the LTE base stations are allowed to operate

in or offload data transmissions to the unlicensed bands while still using the unmodi-

fied LTE physical and medium access control layer standards [30]. One major proposal

is for the ISM band of 5 GHz, where the LTE-U coexists with Wi-Fi services of the

IEEE 802.11a/n/ac/ax physical layer standard [31]. LTE-U is intended to facilitate cel-

lular carriers to boost data speeds within small cells and improve the level of network

convergence. The 3GPP standardization on LTE-U, namely Licensed Assisted Access

(LAA), mandates the LTE-U base station to detect free channels of the spectrum defined

in 802.11ac and employ a ’listen-before-talk’ (LBT) contention protocol [31]. However,

there has been considerable debate over the coexistence of LTE-U and Wi-Fi [32], espe-

cially in the United States where LBT is not mandated, that the deployment of LTE-U

would severely degrade the performance of Wi-Fi services, and the performance advan-

tage of LTE-U without LAA is limited [30]. With the evolution of cellular network

services towards the fifth-generation (5G), the 5G new radio (NR) unlicensed (NR-U)

exploiting the concept of LTE-U has been a study item since the standardization of NR

Rel-16 [33] to expand the spectrum utility and applicability of 5G NR. It is proposed in

the Rel-16 study that standalone NR-U for frequency range (FR) 1 (FR1) is designed to

coexist with Wi-Fi and LTE-U LAA employing LBT in the 5 GHz band. Moreover, the

anchored NR-U (also noted as carrier aggregation and dual connectivity NR-U) could

use licensed spectrum NR/LTE or shared spectrum services such as the 3.5 GHz CBRS

as an anchor while offloading to the 5 GHz unlicensed spectrum using LAA method [33].

Work item including LTE-U for millimeter-wave (mmWave) FR2 bands is expected to

present in NR Rel-17 [34], and technical discussions have seen to address the distinc-

tive spectrum sharing paradigm due to the highly-directional beam-based transmissions

and spatial spectrum reuse in the physical layer, along with the possible coexistence

with the unlicensed spectrum service Wireless Gigabit (WiGig) in 60 GHz, i.e. IEEE

802.11ad/ay [35, 36]. Dynamic spectrum sharing has been made available to enable the

coexistence of LTE and 5G NR by sharing the carriers in the existing LTE frequencies

and such standardization is only limited to FR1. Although absent in current 3GPP
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standardization, proposals of shared spectrum models have also been actively considered

and evaluated with the opening of mmWave bands to maximize the spectrum utilities

by regulation bodies[19, 21]. The FCC has set rules for the licensed and shared use of

37− 37.6 GHz for DSA among different commercial users and federal users [20]. More-

over, a total of 14 GHz bandwidth spectrum has also been proposed to be available by

the FCC for unlicensed access [37, 38]. The rules also require schemes to be promoted

to protect coexisting and spectrum-sharing operations of satellite communication links

and other federal services [38]. In particular, the highly directional fixed-satellite service

transmissions could also cause the 5G mmWave service coverage outage, and it is critical

to identify these satellite services and mitigate the interference not only to the satellite

service but also to ensure 5G service quality possibly by null beamforming of the 5G

base station and user equipment, whose feasibility is studied in [39, 40].

One of the most crucial capabilities of CR, in the context of shared spectrum and

DSA, is to gain access to the spectrum whitespace where the opportunistic transmissions

should occur. From the technical and regulatory point of view, there are two main ways

of determining the spectrum whitespace.

• Spectrum sensing. Spectrum sensing refers to the proactive activity in the DSA

system to capture its ambient spectrum activities. It requires the sensor to have the

receiver equipment to continuously measure ambient signal levels across frequency

and time. For instance, an SU may be allowed to transmit in a certain channel

where the spectrum sensing result reports no incumbent activity in that channel,

and the SU may be required to terminate transmission where the spectrum sensing

reveals PU activities in that channel. Multiple sensors located at different sites

may collaborate to form more reliable determinations of spectrum availability for

a given time and location [41–43].

• Geo-location database. This method refers to a centralized solution that requires

the user to report its operating location and query the spectrum availability from

the database. The geolocation database solution has been practically adopted for
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the reasons that the SUs are not required to deploy spectrum sensing hardware

and that a centralized solution is beneficial for regulatory purposes [26, 44]. The

database should be maintained by the database operators certified by the regula-

tory body and can be established by various models. The OfCom TV whitespace

model requires the PUs to register their activity status, frequency usage, location,

and transmission power to the database, and the database employs a predefined

propagation model based on geographical information to determine whether the

requested frequency at a certain location is immediately accessible or not, as well as

the maximum allowed equivalent isometry radiated power (EIRP) of the intended

SU’s transmission [5, 6]. It is noted that the accuracy of the propagation model

largely depends on the geographical environment which can be highly dynamic

and complex especially in densely built areas, hence a simplistic and static geo-

graphical model can not be relied on for accurate propagation modeling. Given

that, to reliably protect public TV services of PUs, the geolocation database has

to give very conservative spectrum availability to SUs, and the total throughput

of the entire wideband spectrum is far from optimized [45]. Moreover, this model

does not require SUs to register their activities to the database, and consequently,

interference among multiple SUs accessing the same spectrum hole is likely when

they operate in close proximity. The FCC’s CBRS model consults spectrum sens-

ing facilities to establish the geolocation database [29]. Specifically, the database,

termed as spectrum access system (SAS), may incorporate information from a sen-

sor network that detects transmissions from Department of Defense radar systems

and transmits that information to the SAS [9]. Coexisting fixed satellite services

are specially protected by registering the ground station locations with the cen-

tralized database.
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2.2 State-of-the-Art of Wideband Spectrum Sensing

Accurate information of spectrum availability relies on proactive spectrum sensing as

the core procedure of DSA. Whether or not the SU performs the spectrum sensing itself

or relies on the database that fuses results from spectrum sensing infrastructures, spec-

trum sensing allows the SU to reliably detect the spectrum holes and opportunistically

utilize these frequency resources [23]. Consider the spectrum where multiple but spo-

radic frequency slices are occupied, and the spectrum of interest should be modeled as

a multiband signal spanning wideband frequency ranges. In terms of radio propaga-

tion, ‘wideband’ means the total bandwidth to sense exceeds the coherent bandwidth of

each transmission, as opposed to narrowband’ which implies the coherence bandwidth

of transmission is wider than the whole bandwidth of interest [46].

2.2.1 Conventional Techniques

Wideband spectrum sensing systems can be achieved by conventional radio receiver archi-

tectures which can be generally classified into non-real-time and real-time techniques.

A widely adopted approach for non-real-time wideband spectrum sensing is sequen-

tial scanning, which incorporates a tunable narrow bandpass filter (BPF) at its radio-

frequency (RF) front-end to cover all frequency bands sequentially to detect the exis-

tence of incumbent transmissions [47–49]. The tuning range and bandwidth of each BPF

selection should be predefined. In Fig. 2.1, the architecture of the sequentially scanning

approach is presented, and the corresponding sensing pattern in frequency and time is

given in the lower part in Fig. 2.2. It can be seen that this architecture only requires

Figure 2.1: Architecture of the sequential scanning scheme of wideband spectrum sensing.
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one analog-to-digital converter (ADC) to sample at a rate over the Nyquist rate of each

narrow band. However, due to the small real-time bandwidth and the sequential fash-

ion of spectrum scan, the sequential scanning architecture can potentially miss highly

dynamic and short lived signals, for example, fast frequency-hopping signals. This can

be referred to as the ‘blind spots’ of sensing in the time-frequency pattern in Fig. 2.2.

Consequently the spectrum sensing accuracy mainly depends on the real-time bandwidth

of the receiver chain and how fast the real-time band switches. For the application of

wideband spectrum sensing and DSA, shortcomings of long scanning time and the resul-

tant missed detection opportunities are fundamental limitations. The scanning speed

for such sequential scanning scheme is a critical parameter - the higher of the speed, the

shorter duration of the spectrum blind spot. It is reported that the leading spectrum

Figure 2.2: Pictorial scanning pattern illustration of wideband real-time spectrum sens-
ing (upper) and sequential scanning (lower). Both schemes provide sensing bandwidth
of
[
−B

2 (Hz), B2 (Hz)
]

and spectral resolution B/N (Hz). The sequential scanning has
the instantaneous bandwidth of 1/5 of the whole sensing bandwidth, and the sampling
rate of 1/5 of the real-time sampling rate Ts. Those grey portions are the ‘blind spots’
of the radio activities.
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Table 2-A: Summary of RFeye hardware and IEEE 802.22 (FCC TV Whitespace) key
specification employing sequential scanning schemes.

Hardware/ Instantaneous Full Scanning
Scheme Bandwidth Bandwidth Speed

RFeye 20-6 [51] 20 MHz 10 MHz to 6 GHz 55.6 ms/GHz
RFeye 100-18 [50] 100 MHz 9 kHz to 18 GHz 2.6 ms/GHz
802.22 fast sensing [52] 8 MHz typical 54 MHz to 862 MHz 16.7 ms/GHz
802.22 fine sensing [52] 8 MHz typical 54 MHz to 862 MHz 416.7 ms/GHz

sensor series from RFeye has the scanning rate ranging from 18 GHz per second [50] to

390 GHz per second [51], equivalent to about 55.6 ms per GHz and 2.6 ms per GHz.

IEEE 802.22 specification for TV whitespace dictates the sensing time should be less

than 1ms per channel in the fast sensing mode and 25ms in the fine sensing mode to

ensure quality of service specifications [52], which translate to 16.7 ms per GHz and

416.7 ms per GHz respectively considering a typical channel bandwidth of 6 MHz.

Real-time wideband spectrum sensing removes the inherent problem of missed sens-

ing opportunities but requires more complex hardware architecture or critical hardware

performance [53, 54]. One conventional real-time wideband spectrum sensing technique

is referred to as the multiband joint detection [43], where a single high-speed ADC is

required to sample over the Nyquist rate. The architecture of multiband joint detection

is illustrated in Fig. 2.3 and its sensing pattern can correspond to the upper subfig-

ure in Fig. 2.2. After the serial-to-parallel conversion, the time-domain samples are

transformed to spectrum domain by a fast Fourier transform block, and the channel

Figure 2.3: Architecture of the multiband joint detection scheme of wideband spectrum
sensing.
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occupancy can be simultaneously determined for each narrowband by grouping the fre-

quency bins corresponding to each channel and performing energy detection through

binary hypothesis test. The high-speed sampling rate of the ADC is the critical limit-

ing factor, as the total bandwidth of the spectrum in applications may span multiple

hundreds of megahertz or even multiple gigahertz. Another conventional solution is the

filterbank algorithm, as shown in the schematic Fig. 2.4, where it uses multiple ADCs

each sampling at a low rate as the sequentially scanning solution but needs multiple

dedicated receiver chains, each of which tuned at the central frequency corresponding

to each narrow band. Compared with the sequential scanning solution, this filterbank

architecture achieves full real-time bandwidth and hence mitigates the problem of long

scanning time and blind spots of sensing. However, the expense is the requirement

for a great number of RF front-end components and ADCs, significantly increasing the

implementation costs and reduce the practicality of realization.

2.2.2 Sub-Nyquist Techniques

In many sensing applications nowadays, including digital imaging, radar, channel esti-

mation, and spectrum sensing, the ever-increasing demand for the scale and accuracy of

the sensed data requires the Nyquist rate so high that the excessive number of samples

makes compression a necessity prior to storage or transmission. On the other hand,

increasing the sampling rate is rather costly, either due to the sensor itself being expen-

Figure 2.4: Architecture of the filterbank scheme of wideband spectrum sensing.
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sive or the measurement process being costly, causing significant degradation in other

aspects, for example, energy efficiency [55].

There have long been quests for sub-Nyquist signal acquisition and reconstruction to

alleviate the ever-increasing bandwidth of the signals that the communication and elec-

tronic systems deal with. As early proposals focus on non-uniform sampling patterns

and interpolation reconstruction with prior knowledge of the signals spectrum support,

the possibilities of spectrum-blind sub-Nyquist sampling and signal reconstruction were

not brought to extensive attention of the researchers until the birth of the CS theory,

pioneered by Candes, Tao [56], and Donoho [57] from the 1990s. There are high possi-

bilities that the signals of interest are not arbitrary [55]. Instead, in many cases signals

dealt with are ‘compressible’ in the context of CS - in other words, they can be presented

by a set of sparse or nearly sparse non-zero elements, either by itself or under some lin-

ear transformation. CS exploits this sparse feature of signals as the precondition, which

can achieve a sampling rate significantly lower than the Nyquist rate. The details of

compressive sensing models are introduced in Section 2.4.1. Extensive work on compres-

sive sensing theories has revealed a series of performance guarantees of exact or robust

recovery from compressed (sub-Nyquist-rate) signals, which depends on collectively the

sparsity level of the unknown signal, the sampling structure, and the dimension of the

unknown sparse signal and the compressed measurements. In spectrum sensing appli-

cations employing compressive sensing, attempts have been seen to adaptively adjust

the number of collected compressed measurements to approach the maximum possible

compression to ensure reliable recovery of sensing results [58–60]. More detailed review

of such performance guarantees are present in Section 2.4.2 and 2.4.3.

It is noted that for conventional real-time wideband spectrum sensing techniques, the

Nyquist rate dictates the total sampling rate necessary to represent the wideband signal,

whether a single high-rate ADC or parallel low-rate ADCs are used. To alleviate the

critical requirement for the sampling rate and hardware complexity of real-time wideband

spectrum sensing, the recent theory of compressive sensing has drawn great attention to
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achieve real-time signal reconstruction using sub-Nyquist sampling [13, 61].

Employing compressive sensing techniques in wideband spectrum sensing applications

to alleviate high sampling rate has been seen in literature in recent years [15, 42, 61–65].

Compressive sensing is enabled in spectrum sensing based on the assumption that the

signal to be sensed has sparse representations related to its frequency domain, most com-

monly in the original spectrum [13, 15, 16, 53, 61, 63, 65], or alternatively the average

power spectrum [62, 66, 67] or the cyclic power spectrum [68, 69]. To enhance detection

performance of the spectrum sensing by exploiting the spatial diversity of radio prop-

agation, compressive spectrum sensing (CSS) in the cooperative scenario has also been

proposed and studied in both centralized [13–16] and decentralized [64, 70] sensor net-

works. Cooperative spectrum sensing strategies may congregate measurements in their

compressive sensing models from individual sensing nodes, forming a low-rank matrix

completion [13, 15] or joint 1-norm sparse recovery problem [16] to obtain consensus

sensing results from multiple sensing measurements.

The difference between architectures of real-time conventional non-compressive spec-

trum sensing and mainly lies in the introduction of the sub-Nyquist sampler hardware and

the CS recovery algorithm, in substitution of the combination of a wideband Nyquist-

rate ADC and a Fourier transform block. Specifically, the wideband CSS system is

implemented by the following steps,

• sub-Nyquist-rate measurement acquisition;

• reliable signal reconstruction via sub-Nyquist-rate measurements;

• detection of incumbent radios from the recovered frequency-domain signal.

Sub-Nyquist Sampling Architecture The sub-Nyquist sampling hardware in a CSS

system converts the analog signal of interest into discrete-time sub-Nyquist-rate com-

pressed samples, and the sampling pattern of it determines the sampling matrix of the

CS model and hence the performance of the sparse recovery. There is a considerable
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amount of work from the design, modeling to the practical sub-Nyquist samplers for

wideband sparse signals. However, all of the practical sub-Nyquist samplers for wide-

band signals have inherent shortcomings in terms of realization complexities, constraints

on the CS mathematical model, and hardware constraints. An analog-to-information

converter, also referred to as a random demodulator, has been proposed in [71, 72] as

the earliest practical solution of data acquisition in CSS. It employs a front-end mixer to

make the input signal scrambled by a pseudorandom sequence, followed by an integrator

and a sampling device to dump the discrete-time measurements, which can be shown

to form a single-measurement-vector (SMV) CS model with a block-diagonal sensing

matrix [71, 73]. The main drawback of the random demodulator is that it often needs

a large signal length in the SMV model to provide sufficient spectral resolution, and

as a result, the random demodulator is commonly proposed for sensing multitone sig-

nals [65, 73]. Real-world implementations of the random demodulator are present in

the literature, and most wideband realizations are low-level designs of integrated cir-

cuits on semiconductors [74–76], instead of using off-the-shelf components due to the

novel structure of the random demodulator, especially the requirements for the mixer-

and-integrator (filter) device, referred to as random demodulator pre-integrator (RDPI)

[74, 76, 77]. Practical topics of the design and the performance evaluation of the random

demodulator have been extensively studied by Becker and Baraniuk in [77, 78]. The

multicoset sampler, however, employs the conventional architecture of non-uniform sam-

pling [79] and uses parallel low-rate ADCs with distinctive signal delays to construct a

multiple-measurement-vector (MMV) model of CS with a structured sampling matrix

dependent on these time delays. Such an architecture has been brought to attention to

sub-Nyquist sampling and drawn particular interests due to its simple hardware struc-

ture and suitability for low-complexity joint sparse recovery algorithms for its MMV

model [16, 61, 66]. However, the major disadvantage of the multicoset sampler is that

the low-rate ADCs need to have a large front-end bandwidth no less than the signal’s

Nyquist frequency [65]. More recently, Mishali et. al. [65] proposed the architecture

of the modulated wideband converter (MWC), which somewhat combines the parallel
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low-rate ADCs from the multicoset sampler and the front-end mixer configuration from

the random demodulator. It effectively removes the problems with both abovementioned

architectures - it has an MMV model of CS and only requires a low front-end bandwidth

equal to each ADC’s sub-Nyquist sampling rate [65, 80]. Moreover, the sampling matrix

of the MWC model of CS can potentially be fully random, determined by the scrambling

sequence of all branches, implying superior sparse recovery performance. The shortcom-

ing of MWC lies in technical aspects such as the relatively high system complexity and

synchronization of Nyquist-rate scrambling sequences. A 6 GHz real-world demo of the

MWC system has been established, and the particular technical challenges, such as the

design of synchronized multi-gigahertz scrambling sequences and high-throughput data

acquisition solutions, are illustrated in which shed light in future implementation efforts

of practical CSS architectures [81, 82]. More detailed introductions of the architecture

and modeling of the three sub-Nyquist sampling strategies are presented in Section 2.5.

Moreover, it is of particular interest to understand the implications of the sub-Nyquist

sampling on the radio receiver’s performance, i.e. the distortions of the received (or

recovered) signals due to imperfections in the sampling process. Recent studies [83, 84]

has shown that with the presence of additive noise, one can still largely expect the ’3 dB

per octave sampling frequency’ gain in the signal’s signal-to-noise ratio (SNR), which

implies a negative SNR gain in the context of sub-Nyquist sampling. Also, it reveals that

the ’6 dB per bit’ quantization SNR improvement for conventional samplers still largely

applies to a sub-Nyquist sampler, but potentially further improvements with signals of

high crest factor due to the nature of compressive sampling patterns [83]. A review of

noise performance on the sub-Nyquist samplers is detailed in Section 2.5.4.

Recovery Algorithms The recovery of the unknown sparse signal relating to the sec-

ond step above is a major problem in CSS systems. Tractable solutions to such a sparse

recovery problem can be found by the relaxation of the original 0-norm to a v-norm

objective (0 < v ≤ 1), where non-convex (0 < v < 1) and convex optimization (v = 1)

algorithms can be applied [55]. Especially, the 1-norm relaxation has drawn more atten-
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tion in terms of both the research of its performance and application due to the convexity

of the objective. The algorithms for it are available in various convex optimization tool-

boxes, such as SPGL1 [85] and FPC [86]. Non-convex optimization (0 < v < 1) has

also been studied [87], with efforts seen in CSS applications to reduce the complexity

of the optimization routines [53, 88, 89]. Detailed introduction to v-norm (0 < v ≤ 1)

optimization algorithms is given in Section 2.4.4.1 and 2.4.4.2. Greedy algorithms, as

effective strategies to pursue a sparse solution, have inferior performance in terms of sta-

ble and exact recovery of general sparse signals compared with optimization methods.

However, their main advantage is the simplicity of formulation and computational com-

plexity, which is particularly crucial in spectrum sensing applications where fast sensing

speed is highly desired. Technically, the greedy algorithms for sparse recovery are not

optimization algorithms since they are not driven by an overall objective. Instead, they

build a solution – or the support of the solution – part by part, yet in many cases, the

solution can be guaranteed the sparsest solution [55]. In contrast to early work in CSS

which mainly proposed the use of optimization techniques [13–15, 63], recent develop-

ments in CSS tend to pay more attention to greedy algorithms for its lower complexity

to tackle the challenge of the real-time implementation of CSS [16, 65, 80]. A detailed

review of greedy algorithms is present in Section 2.4.4.3. However, an inherent problem

of greedy algorithms is that the sparsity level of the unknown signal should be a priori

known, and hence a sparsity estimation scheme is necessary [58, 59, 90]. A more recent

sparse recovery algorithm called sparse Bayesian learning (SBL) [91] has also been seen

in the CSS literature [92, 93], where it reportedly has less recovery errors than v-norm

optimization counterparts (1 < v ≤ 1) but still forms a non-convex problem and has

relatively high computational complexity [94]. Introduction to the algorithm routines

for SBL is presented in Section 2.4.4.4. In CSS applications, the use of readily known

data, such as the information from geo-location database infrastructures, to assist the

sparse recovery algorithm have been proposed [14, 88, 95]. Specifically, such assisting

data can provide initial points for some iterative sparse recovery routines, in order to

reduce the computational complexity, as well as to effectively reduce the convergence
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error in the recovered signal for non-convex optimization algorithms [88, 95].

Incumbent Radio Detection The classic and most commonly adopted approach

in the literature of determining the spectrum availability is Neyman-Pearson energy

detection [96–98]. Specific models can be derived for different channel models, such as

line-of-sight, Rayleigh or Rician channel [99, 100]. Due to the difficulty of obtaining

prior information of the incumbent signal, a common practical approach to determine

the threshold is by the constant-false-alarm-rate (CFAR) criterion, where the thresh-

old only corresponds to the null hypothesis relating to the noise. The energy threshold

can be determined by inversely finding the integral bound once the target false alarm

rate is given. Some proposals have been noted to employ a special CS model of the

cross-correlations of the stationary time-domain signal and recover the sparse power

spectrum directly [62, 66, 67]. However, the stationarity assumption of the incumbent

signal may not be always satisfied, especially when the active signal tends to be short-

lived. Another classic detection technique of wideband spectrum sensing is cyclic feature

detection [101–104]. It employs the cyclostationarity of the incumbent signal transmis-

sion and reveals the two-dimensional cyclic power spectrum. Based on the different

cyclostationary features in the cyclic spectrum, signal activities and their modulation

types can also be recognized. Another advantage over energy detection is that the cyclic

feature detection has more robustness against noise as the cyclic features of incumbent

signals are generally cyclostationary but the noise (generally assumed stationary) has

no cyclostationarity [68, 101]. To realize direct cyclic power spectrum reconstruction

from compressed samples, it is proposed to design some specialized CS models on the

cross-correlations of the time-domain signal, and the coefficients of the cyclic spectrum

can be recovered as the unknown sparse signal in the CS model [68, 69]. Although such

cyclic power spectrum recovery strategies may additionally employ the sparsity of cyclic

frequency domain to further reduce the sampling rate [69], one major concern of the

CS-based cyclic feature detection is the high computational complexity of recovering the

two-dimensional spectrum. Another inherent shortcoming is that it generally requires
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a long observation window in the signal acquisition to produce good estimations of the

cyclic power spectrum, which is in contrast to the fast sensing requirement of spectrum

sensing applications.

2.3 Sampling Theories

Here, the classic lowpass and bandpass sampling theories are presented. Moreover, a

recently derived lower-bound of sampling rate for spectrum-blind bandpass signals has

been noted, which can serve as a sufficient condition on the sampling rate for sub-Nyquist

wideband spectrum sensing.

2.3.1 Lowpass Sampling

The lowpass sampling theorem, also known as the Nyquist-Shannon sampling theorem,

has been long perceived as the fundamental theory in signal discretization and discrete-

time signal processing [105]. Consider a complex-valued continuous-time signal, which

a continuous function of time t, s(t) ∈ C, ∀t ∈ R, whose frequency presentation is given

by Fourier transform and is assumed to exist as such

sX(f) :=

∫ +∞

−∞
s(t) exp(−j2πft)dt, (2.1)

where the function X(f) of f ∈ R is piecewise continuous. For bandlimited signals s(t) ∈

MB where the set is formally expressed byMB := {s(t)|X(f) = 0, f /∈ [−B/2 (Hz), B/2 (Hz)]},

a uniform sampling sequence at the rate of fs generating the discrete series {s[n] =

s(n/fs), n ∈ R} can perfectly recover s(t) if

fs ≥ B := fNYQ (2.2)
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where fNYQ is namely the Nyquist rate. Specifically, the continuous-time signal s(t) can

be reconstructed by the following interpolation expression,

s(t) =

∞∑
n=−∞

s[n] sinc (fst− n/fs) , (2.3)

known as the Whittaker-Shannon formula [105]. It is noted that the interpolation func-

tion is the impulse response of an ideal brick-wall lowpass filter for the passband of

f ∈ [−B/2 (Hz), B/2 (Hz)].

2.3.2 Bandpass Sampling

Moreover, the lowpass sampling theorem has been generalized to the bandpass form by

Landau in 1960s, for any wideband signal bandlimited within f ∈ [−B/2 (Hz), B/2 (Hz)]

with known occupied passbands forming a set T ⊆ [−B/2 (Hz), B/2 (Hz)], formally

expressed by the set MT = {s(t)|X(f) = 0, f /∈ T }. Landau [106] has proved that, for

an average sampling rate fs, there exists a sampling pattern which can form a stable

sequence of discrete signals which leads to perfect reconstruction of s(t), if

fs ≥ λ(T ) := fLAN, (2.4)

where λ(T ) denotes the Lebesgue measure of the set T , in other words, the sum of actual

occupied bandwidth of each passband of the signal s(t); and fLAN denotes the Landau’s

rate [61].

Compared with the lowpass sampling theorem, Landau’s sampling theorem implies

the minimum average sampling rate can be largely saved if the actual spectrum occu-

pancy is sparse. It should be noted that Landau’s sampling theorem requires the actual

spectrum support T to be a priori known so that it is possible to have a proper sampling

pattern with a rate above Landau’s rate to be designed. The Landau’s rate, however,

does not reveal how to construct the sampling pattern or dictate the uniqueness of the

sampling pattern. Research efforts of practical solutions towards Landau’s rate have
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Figure 2.5: Illustrations of the ‘spectrum-folding’ strategy of achieving Landau’s rate.
(a)(a)(a) the spectrum of a single pass-band (complex) signal where the spectral support is[

4B
9 (Hz), B2 (Hz)

]
; (b)(b)(b) the resulting spectrum of the discrete-time version of the signal

in (a) using fs = B
18 (Hz) with the anti-aliasing band pass filter for reconstruction; (c)(c)(c)

the spectrum of a (real) signal where the pass band is f ∈
[

4B
9 (Hz), B2 (Hz)

]
with its

conjugate symmetric band in the negative frequencies; (d)(d)(d) the resulting spectrum of
the discrete version of the signal in (c) using fs = B

9 (Hz) with the anti-aliasing band
pass filters for reconstruction;(e)(e)(e) the spectrum of (real) signal where the pass bands
are f ∈

[
4B
9 (Hz), B2 (Hz)

]
∪
[
B
18 (Hz), B9 (Hz)

]
with its conjugate symmetric bands in

the negative frequencies; (f)(f)(f) the resulting spectrum of sampling the signal in (e) using
fs = 2B

9 (Hz) with the anti-aliasing band pass filters for reconstruction.
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often been dedicated to a specific class of multiband signals and certain types of practi-

cal uniform or non-uniform sampling schemes [79, 107–109].

One commonly used strategy of achieving Laudau’s rate for bandpass signals can

be summarized by designing an sampling rate fs = B/N0 (Hz) (N0 > 1, N0 ∈ Z) to

fold the pass band components in the frequency domain to other frequencies with-

out causing the aliasing of the pass band components themselves [110]. For instance

one can consider a very simple case where the signal occupies a single band, f ∈[
−B

2 + N2
N1

B
2 (Hz),−B

2 + N2+1
N1

B
2 (Hz)

]
, for someN1, N2 ∈ N satisfying 0 < N2 ≤ 2N1−1.

An example for this setting is shown in Fig. 2.5 (a), where N1 = 9 and N2 = 17.

One can choose a sampling rate of fs = fLAN = B
2N1

= B
18 (Hz) to under-sample the

continuous-time signal without aliasing the pass band components. The under-sampled

signal is shown in the frequency domain in Fig. 2.5 (b). Next, it is straightforward

from the Whittaker-Shannon theorem to prove that continuous-time pass band signal

s(t) can be interpolated by {s[n] = s(n/fs)} using the corresponding impulse response

of an ideal brick-wall bandpass filter, as outlined in Fig. 2.5 (b), for the pass band of

f ∈
[
−B

2 + N2
N1

B
2 (Hz),−B

2 + N2+1
N1

B
2 (Hz)

]
, specifically

s(t) =

∞∑
n=−∞

s[n] ·
exp(j2π(−B/2 + N2B

2N1
)t)− exp(j2π(−B/2 + (N2+1)B

2N1
)t)

j2πt
, (2.5)

where N1 = 9 and N2 = 17. It should be noted that the example in Fig. 2.5 (a) and

(b) are based on complex time-domain signal s(t), inline with previous discussions of

low-pass sampling theorem. In practice, the same strategy can be used for real-valued

signals, where the spectrum is conjugate symmetric. Two more examples are illustrated

for real-valued signals, in Fig. 2.5 (c) and (e), for one and two pairs of conjugate

symmetric pass bands respectively. One can see the Landau’s rate for both cases as

fLAN = B
N1

= B
9 (Hz) and fLAN = 2B

N1
= 2B

9 (Hz) respectively, and using the sampling

rate fs = fLAN can make the under-sampled signals fold in frequency domain as shown

in Fig. 2.5 (d) and (f) respectively. Finally, the original signals can be reconstructed by
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a similar process as (2.5), but using two and four ideal bandpass filters, as outlined in

Fig. 2.5 (d) and (f) respectively.

A more general signal reconstruction system achieving Landau’s rate can be achieved

by a type of practical non-uniform sampling pattern referred to as multicoset sampling

[79]. In [79], it is proven that for a signal with a known support of multiple equally

spaced bands, that is, for a given number of division 2N1 of [−B/2 (Hz), B/2 (Hz)], any

signal belonging to the set T = ∪n2∈N2

[
−B

2 + n2
N1

B
2 (Hz),−B

2 + n2+1
N1

B
2 (Hz)

]
, where

N2 is a subset of {n2|n2 ∈ N s.t. 0 < n2 ≤ 2N1 − 1}, can be perfectly reconstructed

using samples from a multicoset sampler with an average sampling rate no less than

the Landau’s rate of fLAN = B|N2|
2N1

(Hz). With the knowledge of set N2, i.e. the actual

spectrum occupancy, the requirements for the specific non-uniform sampling pattern in

the context of multicoset sampling and the corresponding interpolation formula can be

determined in order to exactly reconstruct the continuous-time signal s(t).

2.3.3 Spectrum-Blind Sampling

In the background of wideband spectrum sensing, one would wish to reconstruct the

original multiband signal s(t) without the knowledge of the spectrum occupancy, termed

as spectrum-blind constraints, which is more stringent than the known-spectrum con-

dition in the Landau’s sampling theorem. That said, one would wonder if a similar

lower-bound of sampling rate for exact reconstruction exists in this general case of inter-

est. The result has been recently formalized in [61] as a generalization of Landau’s

sampling theorem. The specific term of spectrum-blind is defined as such that the infor-

mation about the band locations is not used while acquiring the samples and neither

can it be used in the reconstruction process. It is stated that for any signal in the set

MK = {s(t)|λ(T ) ≤ K
B , 0 < K < 1 and X(f) = 0,∀f /∈ [−B/2 (Hz), B/2 (Hz)]} with T

being set of the occupied frequencies, there exists a sampling pattern with an average

sampling rate of fs (Hz) that the sampling pattern can form a stable sequence of discrete
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signal which leads to perfect reconstruction of s(t), if

fs ≥ max (2K/B (Hz), B (Hz)) = max (2fLAN, fNYQ) . (2.6)

This theorem implies that in order to perfectly reconstruct any bandlimited multiband

signals, theoretically, one has to pay the expense of sampling at least at twice the Lan-

dau’s rate or the Nyquist rate, due to the lack of knowledge of the locations of the signal’s

spectrum occupancy.

2.3.4 Remark

It is worth remarking that all three sampling theorems mentioned in this section are

sufficient conditions. In other words, their converse proposition is not true - it is not

valid to say, taking the inverse of the lowpass sampling theorem for example, that a signal

s(t) ∈ MB cannot be perfectly reconstructed using a uniform sampling rate less than

fNYQ = B (Hz). It is easy to find a variety of signals, for example s(t) ∈ MT ⊂ MB,

that can be perfectly reconstructed using a uniform rate of fLAN = B/2N1 (Hz) < fNYQ,

as detailed in Section 2.3.2. The same sense applies to minimum rates in the bandpass

and spectrum-blind sampling theories.

Moreover, these theorems are all established using the conventional paradigm of sig-

nal reconstruction, that is by the linear combinations of basis functions (i.e. interpolation

functions) in certain functional spaces. The recent research topic of compressive sensing

(CS) turns to another paradigm of signal reconstruction and instead proposes to apply

optimization techniques on the sub-Nyquist-rate samples. Comments on the sufficient

sub-Nyquist sampling rate leading to exact or stable reconstruction are given in a com-

pletely different context, seen in Section 2.4.2. It is particularly interesting to see the

coincidence of the minimum rate of the spectrum-blind sampling in the setting of CS

with Theorem 2.4.5 and 2.4.6 in Section 2.3.3.
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Figure 2.6: CS mathematical model. (a)(a)(a) Compressive sampling of a compressible signal;
(b)(b)(b) Compressive sampling with the sparsifying matrix and the sparse signal.

2.4 Compressive Sensing

2.4.1 Mathematical Model

The sub-Nyquist sampling model in the context of CS is presented by a linear system,

writing

yyyM×1 = ΦΦΦM×NxxxN×1 + bbbM×1 = ΦΦΦΨΨΨ−1
N×NsssN×1 + bbb, (2.7)

where yyy is a vector with sub-Nyquist-rate measurements; ΦΦΦ is the sampling matrix

modeling the sampling behaviors of the practical sampling hardware; xxx is the original

Nyquist-rate presentation of the signal to be sensed; ΨΨΨ is the sparsifying matrix which

represents the linear transformation towards the sparse presentation sss, and bbb is additive

noise. The product AAA := ΦΦΦΨΨΨ−1 is referred to as the sensing matrix. Note it is required

that M < N to ensure the measurement vector yyy is compressed compared to the original

signal xxx, thus achieving a sub-Nyquist sampling rate. With the illustration of Fig. 2.6

(a), one can intuitively think each element of the compressed measurement vector being



Chapter 2. Literature Review and Background 34

the inner product between the corresponding row of the sampling matrix and the original

signal, where the measurement element may contain a weighed portion of all the elements

in the original signal. In Fig. 2.6 (b), the original signal sss is transformed into a sparse

signal xxx. The sensing matrix, AAA = ΦΦΦΨΨΨ−1, can be viewed to sample the sparse signal xxx in

the analogous fashion that ΦΦΦ samples sss. Such sampling procedure may be interpreted by

a ’democratic’ process, where each element of xxx, being zero or not, having its significance

to be ‘coded’ in the elements in the measurement vector yyy [111].

Consider a noiseless case bbb = 000, the linear system (2.7) are under-determined, mean-

ing the arbitrary interested signal xxx or sss can not be uniquely determined by measure-

ments yyy and sensing matrix AAA = ΦΦΦΨΨΨ−1. However, with the prior assumption that

sss = [s1, s2, · · · , sN ]T is sparse, defined by the support of sss, i.e. supp(sss) := {n|sn 6=

0,∀n ∈ N and 1 ≤ n ≤ N} = k << N , the signal sss is proposed to be found by seeking

the sparsest solution under this linear system,

ssso = arg min
sss
||sss||0 s.t. yyy = AAAsss, (2.8)

where ||sss||0 := |supp(sss)| denotes the signal’s sparsity and it is demonstrated in Sec-

tion 2.4.2 that the uniqueness of the sparsest solution can be guaranteed under some

conditions on the sparse signal sss and the sensing matrix AAA.

However, due to the non-continuous zero-norm objective function of (2.8), ssso cannot

be found by numerical optimization methods but by combinatorial optimization which

is NP-hard [112]. A computationally tractable substitute of problem (2.8) is proposed

by using a convex objective ||sss||1 that mostly approximates ||sss||0, referred to as convex

relaxation, such that

ssso = arg min
s
||sss||1 s.t. yyy = AAAsss, (2.9)

where one-norm is defined by ||sss||1 := |s1|+|s1|+· · ·+|sN |. It is a fundamental problem in

CS that when ssso = sss by convex relaxation and optimization, can be uniquely determined

by solving the problem (2.9), given various conditions on parameters M , N , k, and the
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sensing matrix AAA. Existing answers to this question are referred to as ‘exact recovery’

and to be reviewed in Section 2.4.2.

For CS to be useful in real-world sensing applications, it must deal with somehow

imperfect measurements. A general optimization model considers the presence of addi-

tive noise and an inequality constraint, which writes

ssso = arg min
s
||sss||1 s.t. ||yyy −AAAsss||22 ≤ ε, (2.10)

where a constant ε accounts for the tolerance related to the variance of noise. Another

formulation puts the quadratic data fidelity term into the objective and treats the 1-norm

as the constraint, forming a constrained least-square problem

ssso = arg min
s
||yyy −AAAsss||22 s.t. ||sss||1 ≤ ξ, (2.11)

for which some classic techniques for general quadratic convex optimization could apply,

such as least-absolute shrinkage and selection operator (LASSO) algorithms. Here, ξ is

the constant controlling the l1 constraint. Alternatively, instead of a constraint, it is

common to replace the constraint by a penalty term in the objective, making the opti-

mization unconstrained and more convenient finding a best solution. The unconstrained

version for (2.10) or (2.11) writes

ssso = arg min
s
||sss||1 +

1

2λ
||yyy −AAAsss||22, (2.12)

where λ ≥ 0 accounts for the weighing of the noise penalization term. The value of λ

should be made large if more noise is allowed in the original signal, and one can consider

λ → ∞ as the noiseless recovery model approximating (2.9). For some appropriate

selections of ε, ξ and λ, the solutions of (2.10), (2.11), and (2.12) coincide, and all three

forms are often deemed equivalent in this sense. However, the values of the parameter

that make the solution coincide for these ‘equivalent’ problems could not generally be

determined a priori.
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Figure 2.7: Schematic illustration of the RIP with sparsity 1 of AAA2×3.

For (2.10), (2.11), and (2.12), the recovery cannot be exact due to the perturbation

of the noise, and the conditions of ‘robust’ recovery satisfying bounded distance between

ssso and sss is of interest. Further discussions are presented in Section 2.4.2.

2.4.2 Theoretical Guarantees of Performance

There are various theories revealing when the one-norm optimization is capable of finding

the most sparse solution among all possible versions of sss satisfying (2.7) with or without

noise impairments, in other terms, guarantee an exact or stable CS recovery, respectively.

These properties are based on various mathematical tools, have different strengths, and

they together imply that a large number of sensing matrices, including random matrices

and structured random matrices, are applicable for CS and have recovery guarantees. In

this section, a few of the most coom theories on the sensing matrices and sparse recovery

performance are reviewed.

2.4.2.1 Restricted Isometry Property

Restricted isometry property (RIP) [113] is introduced as the standard tool for evaluating

sensing matrices. Specifically, a sensing matrix AAA is defined to have RIP with isometry

constant δk, if 0 ≤ δk < 1 is the smallest number to satisfy

(1− δk)||sss||22 ≤ ||AsAsAs||22 ≤ (1 + δk)||sss||22 (2.13)
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with all k-sparse vectors sss. The expression (2.13) describes the approximate power-

preserving (l2-norm) property of the linear transform AAA for arbitrary k-sparse vectors.

A schematic illustration is shown in Fig. 2.7, where AAA2×3 that transforms vectors from

R3 to R2. The RIP of AAA with the constant δ1 in this case can be thought as that all

1-sparse vectors of an arbitrary 2-norm length in R3 would have their Euclidean length

approximately the same in R2 after the linear transform AAA, where the length scaling is

restricted by
√

1− δ1 and
√

1 + δ1.

If δ2k <
√

2 − 1 [113], the recovery has been proved to be exact using (2.9), which

gives the following necessary condition. Furthermore, such bounds for δ2k also serve as

a necessary condition for the stable sparse recovery problem (2.10). Similar conditions

have been developed from the original RIP constant δ2k <
√

2−1 ≈ 0.4142 [113] to more

recent bounds such as δ2k = 0.4652 [114] and δ2k = 0.4931 [115], and the theorem with

the latest bound is presented as follows.

Theorem 2.4.1. Consider model (2.10). If AAA has RIP (with δ2k < 0.4931), then the

solution ssso satisfies the following with relaxation ε set to ||bbb||2

||sss− ssso||1 ≤ C1

√
k||bbb||2 + C2σ[k](sss). (2.14)

and

||sss− ssso||2 ≤ C3||bbb||2 + C4σ[k](sss)/
√
k, (2.15)

where C1, C2, C3, C4 are universal constants only relating to δ2k. The k-sparse approx-

imation error σ[k](sss) is defined as ||sss− sss[k]||2 where sss[k] is the vector obtained by setting

all but the k largest (in magnitude) entries of sss to zero. [115]

The results claim that as long as the sensing matrix AAA obeys the RIP, the l1 recovery

converges and is stable against both the measurement noise - bbb - and the signal noise

given in terms of the best k-term approximation error. When no noise appears, the above

guarantee simply degenerates to the guarantee of stable recovery, i.e. ssso = sss. Although
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in Theorem 2.4.1 the bounds are given explicitly, the main limitation of RIP guarantees

is that the isometry constants cannot be computed in polynomial time for an arbitrary

deterministic matrix [107].

2.4.2.2 Mutual Coherence and RIPless

As the isometry constant in the RIP guarantee is not trivial to calculate, to tackle the

problem of RIP property and to provide the error bounds for stable recovery and the

condition of exact recovery with minimum restrictions on sss and AAA, RIPless guarantees

based on the definition of mutual coherence have been proposed for any fixed sss without

the need for evaluating RIP [116]. The coherence of a matrix AAAM×N = [aaa1 aaa2 · · · aaaN ] ∈

CM×N is defined as the maximum coherence between columns [117]:

µ(AAA) = max
i 6=j

|aaaHi aaaj |
||aaai||2||aaaj ||2

, 1 ≤ i, j ≤ N, (2.16)

The quantity µ(AAA) measures the smallest angle between any two columns of AAA can be.

If there are two columns aaai = caaaj for some scalar c, one can say that two columns are

coherent and µ(AAA) reaches its maximum of 1. On the other hand, it is shown µ(AAA) is

lower-bounded by

µ(AAA) ≥

√
N −M
M(N − 1)

in the case of CS where M < N [118]. Generally, a matrix with low coherence is desirable

in CS system, as with low coherence, it guarantees that each column aaai samples elements

in signal si to measure the original signal sss nearly linear-independently and element-wise

uniform in power so that the measurements carry nearly the same and maximum ‘amount

of information’ of the sensed signal. The following theorems are seen in literature to give

guarantees of exact or stable recovery via (2.9) or (2.10).

Theorem 2.4.2. For a given matrix AAAM×N = ΦΦΦΨΨΨ−1 where ΦΦΦ is presented by the product

of a row selection operator PPPM×N which uniformly at random selects M rows out of N

and a square sampling basis Φ̃ΦΦN×N (ΦΦΦ = PPPΦ̃ΦΦ), and the linear system yyy = AAAsss where sss is
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arbitrary signal with at most k non-zeros entries. If

M ≥ C · µ2(Φ̃ΦΦΨΨΨ−1) · kN logN (2.17)

for some constant C independent of k and N , the solution to 1-norm optimization (2.9)

is exact, i.e. ssso = sss, with overwhelming probability [117].

Even if the value of the constant C cannot be determined hence the minimum M

required is not explicitly available, Theorem 2.4.2 gives the order of the required number

of measurements O(µ2(Φ̃ΦΦΨΨΨ−1) ·kN logN) and it implies that for a given dimension of the

sparse recovery problem, i.e. N and k, the mutual coherence of the product of the sam-

pling and sparsifying basis, i.e. µ(Φ̃ΦΦΨΨΨ−1) becomes a direct indicator for compressibility

in the context of CS.

The noisy case has been also considered by Candes and Plan, and a theorem of stable

recovery related to mutual coherence is provided:

Theorem 2.4.3. Consider a sensing matrix AAAM×N , (M < N) and the system yyy =

AAAsss + bbb. sss is a signal having k non-zero entries whose locations are drawn uniformly at

random and values are with amplitudes |si| > (6 +
√

2)σ
√

2 log(M) and random signs.

bbb denotes Gaussian noise with covariance of σ2. If

µ(AAA) < C/ logM, (2.18)

and

k <
CM

||AAA||22 logM
, (2.19)

for some constant C independent of k and N , the solution to (2.10) is stable with over-

whelming probability [119].

Then a more general RIPless guarantee of stable recovery is provided as follows.

Theorem 2.4.4. Let sss be an arbitrary fixed vector. Pick an arbitrary scalar β > 0.
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Then with the probability of at least 1 − 6/N − 6 exp(−β), the solution to (2.12) with

λ = 10
√

logNσ obeys

||sss− ssso||2 ≤ min
1≤κ≤k

C(1 + α)

[
σ[κ](sss)√

κ
+ σ

√
κ logN

M

]
(2.20)

and

||sss− ssso||1 ≤ min
1≤κ≤k

C(1 + α)

[
σ[κ](sss) + σκ

√
logN

M

]
(2.21)

where the covariance of bbb is σ, provided that M ≥ C(1 +β)µ(AAA)k logN . C is a constant

and α is upperbounded by log3/2N [116].

Mutual coherence of a given matrix can be easily computed with polynomial complex-

ity of N [107], with its value being the maximum amplitude of the off-diagonal entries of

the Gram matrix AAAHAAA, after each of AAA’s columns is normalized by its 2-norm. Therefore

it is more attractive for conveniently and quantitatively evaluating the quality of the

sensing matrix. However, one major drawback of both RIPless coherence-based and RIP

guarantees lies in the unknown constant, specifically C1, C2, C3 and C4 in Theorem 2.4.1

and the C in Theorem 2.4.2 and 2.4.3, which is significant in practically revealing the

required number of measurements. However, they collectively tell the direction to find a

matrix with better coherence to improve the compressibility and recovery performance.

2.4.3 Remarks on Sensing Matrices

It is reported that some random matrices, for example, the Gaussian matrix, and the

Bernoulli matrix, satisfy the RIP by a large margin with at least high probability [120],

and can also achieve nearly the lowest possible mutual coherence and hence provide the

almost minimum required number of compressed measurements. Besides, these random

matrices are universal in the sense that they are incoherent with all kinds of deterministic

sparsifying matrices, leading to low mutual coherence of the sensing matrix AAA = ΦΨΦΨΦΨ−1.

For instance, with each entry in the sampling matrix ΦΦΦ are independent and identically

distributed Gaussian random values, the entries of sensing matrix AAA also conform to
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i.i.d. Gaussian distribution, regardless of the choice of ΨΨΨ. It is stated [121] that if

M ≥ O(k log (N/k)) (2.22)

the sensing matrix AAA satisfies RIP (with δ2k <
√

2 − 1) with a probability of failure

decreasing to 0 exponentially fast with increasing M .

Despite the satisfactory performance in CS, these matrices with full random entries

have major concerns in practical applications as it requires huge memory buffering for

generating and storing these random entries and high complexity in the process of sam-

pling due to their completely unstructured nature. Also, it should be pointed out that

the structure of the sensing matrix is practically dictated by the hardware implementa-

tion of the sub-Nyquist sampler. With a particular practical sampler design, a structured

sensing matrix should be considered, which are detailed with sub-Nyquist sampler archi-

tectures in Section 2.5. Similarly, it is also stated that for some structured random

matrices, which are easier to implement or naturally exist in applications, for example

randomly selected rows of a Fourier matrix, namely a partial Fourier matrix, also satisfy

the RIP with failing probability decreasing to 0 exponentially fast with increasing M ,

with the best-known requirements on M being typically [122]

M ≥ O(k · polynomial(log (N/k))). (2.23)

Apart from the above-mentioned recovery theories of CS, it is worth noting in particular

that there exists a sufficient condition on the explicit relation between the sparsity and

the required number of measurements to ensure the uniqueness of the sparse solution.

Theorem 2.4.5. Given an arbitrary k-sparse signal sss and compressed measurements yyy

satisfying (2.7), the solution to (2.9) is uniquely ssso = sss if

k ≤ spark(AAA)

2
, (2.24)
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where

spark(AAA) := arg min
ddd 6=000
‖ddd‖0 s.t. AdAdAd = 000

denotes the Kruskal rank of AAA.[123]

The proof is straightforward through the definition of the Kruskal rank. This theo-

rem, compared with those based on RIP and RIPless, has a much simpler form and the

relationship between sparsity and the sensing matrix is explicit without some constant

ambiguous in value. It implies that it is safe to design a sensing matrix with its Kruskal

rank equal to or greater than twice the sparsity of the original signal to ensure a unique

sparse solution. Although the theorem above, as a sufficient condition, gives rather

conservative constraints on the minimum required number of measurements and maxi-

mum allowed sparsity, it is widely adopted in the discussion and practice of CS-based

sub-Nyquist sampling system [61, 65, 80, 124].

It is then of interest to evaluate the Kruskal rank of the ‘fat’ sensing matrix AAAM×N

where M < N , and find a AAA with full Kruskal rank, i.e. spark(AAA) = M , namely

a universal sampling pattern [109]. However, this is not a trivial task compared to

its rank and mutual coherence, since calculating a Kruskal rank of a matrix requires

a combinatorial search over all possible subsets of columns from AAA, thus leading to

exponential complexity with N [107]. Some useful conclusions on finding the universal

sampling pattern AAA have been built for the particular structured case where AAA = ΦΨΦΨΦΨ−1,

ΦΦΦ is a row selector and ΨΨΨ is an orthogonal basis: a prime number N dictates every

pattern universal [125], and a ΨΨΨ drawing rows at uniformly random leads to universal AAA

with high probability [126].

It is intriguing to see that the mutual coherence can be linked to the Kruskal rank

via the following inequality [127]

spark(AAA) ≥ 1 +
1

µ(AAA)
. (2.25)
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It has been proved [107] that by applying a more stringent constraint on the sparsity k

using (2.25), a theorem parallel in the form of Theorem 2.4.5 also holds, and moreover,

it can be extended to ensure exact reconstruction by 1-norm minimization.

Theorem 2.4.6. Given an arbitrary k-sparse signal sss and compressed measurements yyy

satisfying (2.7), if

k ≤ 1

2
·
(

1 +
1

µ(AAA)

)
, (2.26)

the solution to (2.9) is uniquely ssso = sss, which is also the unique solution to (2.8).

This theorem maintains the simplicity in form as in Theorem 2.4.5, and more strik-

ingly, contains only mutual coherence which is trivial to compute and preserves the

uniqueness of solution for convex relaxation.

2.4.4 Recovery Algorithms

One crucial problem in the context of CS is the recovery of the sparse unknown signal

from an underdetermined linear system which is possibly impaired by additive noise.

Specifically, the task is to obtain a signal ssso, which equals to or approximates (within a

certain distance) the original sparse signal sss that satisfies the noiseless or noisy CS model.

Several typical categories of recovery algorithms have been proposed in the literature and

are reviewed in the following.

2.4.4.1 1-norm Minimization

The classic approaches to find the sparse solution in CS are to directly solve the 1-norm

minimization problems in Section 2.4.1. These approaches apply convex optimization

techniques which have been also adopted in wide areas of application. There is no error

on the convergence of these convex approaches as a result of there being only one local

minimum, however, it may suffer from construction error due to the approximation to

the l0-norm in the objective. Performance bounds in CS are widely discussed based on

1-norm minimization problems as shown in Section 2.4.2, stating the conditions under

which the 1-norm minimization are the exact or stable recovery of the original signal, i.e.
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no construction error. The specific optimization techniques to various forms of 1-norm

minimization objective are outlined as follows.

The unconstrained problem (2.12) Compared with all other forms of 1-norm min-

imization problems in Section 2.4.1, the optimization problem (2.12) is convex and an

unconstrained problem hence it is straightforward to solve. Looking at the objective of

(2.12), one can see it is the sum of a non-differentiable convex function g(sss) := ||sss||1

and differentiable convex r(sss) := 1
2λ ||AsAsAs − yyy||

2
2. For convenience, the problem (2.12) is

rewritten as

arg min
sss
g(sss) + r(sss). (2.27)

The general idea for optimising of an unconstrained convex problem is to find the value of

the variable to be optimised for which the differential equals zero or the sub-differential

contains zero, for differentiable and non-differentiable objective respectively [128]. In the

case of (2.27), specifically, such sss is desired

000 ∈ ∂(g + r)(sss), (2.28)

where ∂(···) denotes the sub-differential and 000 ∈ ∂(·)(·) denotes 000 is a member of the sub-

differential set. Note that for differentiable function, the sub-differential is single-valued.

From (2.28), the sub-differential operator can be split as such

000 ∈ ∂(g(sss) + r(sss)) ⇐⇒ 000 ∈ ∂(g(sss)) + ∂(r(sss))

⇐⇒ 000 ∈ (sss+ τ∂(g(sss)))− (sss− τ∂(r(sss)))

⇐⇒ (I − τ∂r)sss ∈ (I + τ∂f)sss

⇐⇒ sss = (I + τ∂f)−1(I − τ∂r)sss,

(2.29)

where τ > 0 is an arbitrary constant. From the last line in (2.29), such sss satisfying this

equation is called a fixed point, which could be found by the intuitive iterative algorithm

sss(i+1) ← (I + τ∂f)−1(I − τ∂r)sss(i). (2.30)
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The superscript ·(i+1) and ·(i) denote two consecutive numbers of iteration thereafter.

This particular form of fixed point iteration is named forward-backward operator split-

ting, where (I+ τ∂f)−1 and (I− τ∂r) are called forward and backward operator respec-

tively. Denote intermediate variable ttt(i) := (I − τ∂r)sss(i). Specifically, for the for-

ward operator on the variable of ttt(i), one then has sss(i+1) = (I + τ∂f)−1ttt(i) and ttt(i) ∈

(I + τ∂f)sss(i+1), which translates to

000 ∈ sss(i+1) + τ∂g(sss(i+1)) + ttt(i) ⇐⇒ 000 ∈ ∂
(
τg(sss(i+1)) +

1

2
||sss(i+1) − ttt(i)||22

)
, (2.31)

which leads to the conclusion that sss(i+1) is the minimizer of the constructed function

τg(sss(i+1)) + 1
2 ||sss

(i+1) − ttt(i)||22, writing

sss(i+1) = arg min
sss
τg(sss) +

1

2
||sss− ttt(i)||22. (2.32)

Consider the specification g(sss) = ||sss||1, and the problem (2.32) has a closed-form solution

sss(i+1) = shrink(ttt(i), τ−1), (2.33)

where the shrinkage operation (also known as soft-thresholding) [129] on the element of

ttt(i) =
[
t
(i)
1 , t

(i)
2 , · · · , t(i)N

]
is defined as

shrink(t(i)n , τ
−1) :=



∣∣∣t(i)n ∣∣∣− τ−1, t
(i)
n > τ−1,

0, −τ−1 ≤ t(i)n ≤ τ−1,∣∣∣t(i)n ∣∣∣+ τ−1, t
(i)
n < −τ−1,

for 1 ≤ n ≤ N , and for the vector

shrink(ttt(i), τ−1) :=
[
shrink(t

(i)
1 , τ−1), shrink(t

(i)
2 , τ−1), · · · , shrink(t

(i)
N , τ

−1)
]
.
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Moreover, for the specific case r(sss) = 1
2λ ||AsAsAs − yyy||

2
2, the solution to the backward step

ttt(i) := (I − τ∂r)sss(i) is directly found by the closed-form derivative

ttt(i) = sss(i) − λ−1AAAH(AAAsss(i) − yyy). (2.34)

Combining steps (2.33) and (2.34), one arrives at the fixed point iteration algorithm for

the problem (2.12)

sss(i+1) = shrink(sss(i) − λ−1AAAH(AAAsss(i) − yyy), τ−1), (2.35)

where τ > 0 introduced in (2.35) has the meaning of the step size of iterations.

The convergence properties of the routine (2.35) have been studied in [130], where

the global convergence result from an arbitrary initial point under mild conditions is

proved and the convergence rate is linear with τ · λ. As the step size τ is usually a

small positive value to ensure convergence, the solver (2.35) can be very slow with small

λ. Practical fixed point solvers with various continuation strategies have appeared in

literature, and most notably being the fixed-point continuation (FPC) algorithm [130],

where, to accelerate the convergence rate, starting from a large λ, a decreasing series of

λ can be used over the iterations until it finally reaches the target λ.

In some literature, the fixed-point algorithm (2.35) is also referred to as a prox-linear

algorithm [131], as the exactly same routine can be derived from the prox-linear tech-

niques, which is another useful tool for solving convex problems with non-differentiable

objectives. The idea of the prox-linear algorithm generally calls for the linearization (the

first term of Taylor expansion) of the data fidelity term and an additional proximal term.

For the problem (2.27), the prox-linear iteration writes

sss(i+1) ← arg min
sss
g(sss) + r(sss(i)) +

(
∇r(sss(i))

)H (
sss− sss(i)

)
+
τ

2
||sss− sss(i)||22

= arg min
bbb
g(sss) +

τ

2
||sss−

(
sss(i) − τ−1∇r(sss(i))

)
||22.

(2.36)
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After the insertion of r(sss) = 1
2λ ||AsAsAs−yyy||

2
2 and g(sss) = ||sss||1 back to (2.36), it immediately

yields (2.35).

The constrained problem (2.9) One would argue that a very small λ, i.e. a very

large penalization term could be used for solving (2.12) in order to approximate the

noiseless recovery problem (2.9). However, the convergence of fixed-linear algorithm can

be very slow with small λ in practice. It is also noted that even with a very large λ the

solution to (2.12) and (2.9) are never consistent. Besides, some points in the sequence

towards the optimization (2.9), though not solving (2.12) nor (2.9) in the noisy scenario,

have ‘better quality’ in terms of sparsity and data fitness than the solutions of (2.9) [55].

Therefore, it is of great interest to solve (2.9).

The problem (2.9) is a typical convex optimization problem with equality constraint.

A generic tool to convert this constrained optimization problem to an equivalent uncon-

strained problem is by finding the Lagrange dual through its Lagrangian function.

Hereby the derivation of the algorithm solving (2.9) is briefly illustrated. From (2.9),

one can write the Lagrangian as following

L(sss, ttt) = ||sss||1 + tttH(AsAsAs− yyy), (2.37)

where tttM×1 denotes the Lagrange multiplier. The Karush-Kuhn-Tucker condition for

(2.37), which is the necessary condition the optimal of the argument ssso and the Lagrange

multiplier ttto, writes

∇sssL(ssso, ttto) = 000

AsAsAso − yyy = 000.

(2.38)

However, since the Lagrange itself is non-differentiable, the optimal is not directly avail-

able from the first equation in (2.38).

An alternative approach to solve constraint optimization problems is the quadratic
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penalty method [132, 133], which proposes to add penalization term proportional to the

violation of the constraint. The quadratic penalty function writes

Q(sss, µ) = ||sss||1 +
µ

2
||AsAsAs− yyy||22. (2.39)

It is noted that (2.39) is exactly the objective of the unconstrained l1 problem (2.12),

where the constants follow µ := λ−1. The quadratic penalty method proposes to use an

iterative routine. A series of increasing penalty constants 0 < µ1 < · · · < µi < µi+1 < · · ·

are used in these iterations and at the ith iteration it approximately solves

sss(i+1) ≈ arg min
sss
Q(sss, µi) = arg min

sss
||sss||1 +

µi
2
||AsAsAs− yyy||22, (2.40)

where the approximation indicates that sss(i+1) should be found by some of the iteration

steps towards the convex objective in (2.40), till ||∇sssQ(sss, µi)|| < δk is met. The steps for

solving (2.40) can be the fixed-point iterations as detailed in Section 2.4.4.1, Paragraph

‘The Unconstrained Problem (2.12)’.

The idea of taking µi → +∞ can lead to an optimal that asymptotically converges

to satisfy the KKT conditions (2.38). However, the indefinitely large value of µi is prone

to resulting in an ill-conditioned Hessian ∇2
ssssssQ(sss, µi), making the iterative steps less

effective and prone to numerical errors [132, 133]. Moreover, in practice it could be

another problem that how to choose a properly large µi.

To mitigate the problem of ill-conditioning and choosing a large µi, the augmented

Lagrange method is used, which is closely related to the original form of quadratic penalty

method [132, 134]. In analogy to the quadratic penalty function, the augmented Lagrange

function preserves the quadratic penalization term and also includes the Lagrange mul-

tiplier, which writes

LA(sss, ttt, µ) := Q(sss, µi) + tttH(AsAsAs− yyy) = ||sss||1 + tttH(AsAsAs− yyy) +
µ

2
||AsAsAs− yyy||22. (2.41)
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By iteratively optimizing (2.41) approximately, specifically,

sss(i) ≈ arg min
sss
LA(sss, ttt(i), µi), (2.42)

the argument at the ith iteration satisfies

∇sssLA(sss(i), ttt(i), µi) = ∇sss(||sss(i)||1) +AAAH
[
µi(AsAsAs

(i) − yyy)− ttt(i)
]
≈ 0. (2.43)

In order to make the KKT satisfies approximately, recall the first formula in (2.38),

which is related to (2.43), and one immediately has

ttto ≈ ttt(i) − µi(AsAsAs(i) − yyy)

AsAsAs(i) − yyy ≈ µ−1
i (ttt(i) − ttto),

(2.44)

where the violation to the second KKT condition (2.38) can be asymptotically diminished

by the convergence of the Lagrange multiplier ttt(i), thus not requiring an indefinitely large

µi. This effectively prevents ill-conditioning of the step (2.44). In light of (2.44), the

update for the Lagrange multiplier is given by intuition, aiming to find an estimate of

the optimum Lagrange multiplier ttto,

ttt(i+1) ← ttt(i) − µi(AsAsAs(i) − yyy). (2.45)

Iteration steps (2.43) and (2.45) compose the augmented Lagrangian algorithm for con-

strained problem (2.10), where µi does not need to increase indefinitely with i to ensure

convergence and can stay at a much smaller value with comparison to the quadratic

penalty method. For the step (2.43), fixed-point techniques for the unconstrained l1

problem (2.12) can be applied. There exists a threshold of µi above which the solution

of the augmented Lagrangian algorithm asymptotically converges to the optimizer of

the problem (2.10), and a larger µi accelerates the convergence [132, 134]. In practice,

µi should be empirically chosen to be above the threshold and compromise between

convergence rate and the chance of ill-conditioning.
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It is noted that the iterative algorithm of the augmented Lagrange method for the

problem (2.10) coincide with that of the Bregman method [135], although they are

derived using separate theories of convex optimization techniques.

Remark In the above paragraphs, only the basic ideas and techniques of the l1 opti-

mization problem are introduced. The topic of optimization techniques of l1-related

problems has been widely discussed not only in the applications of sparse signal recovery

but also in statistics, regression, etc. For example, the objective form (2.11) is referred

to as the LASSO problem in the context of regression, which has a classic solver namely

spectral projected gradient (SPG) method [85]. Another commonly-used strategy for

solving LASSO is via homotopy/LARS method [136, 137], which proposes to find all the

solutions to the unconstrained problem (2.12) for a series of decreasing parameters λ

using an active-set continuation strategy, and eventually finds the solution to the equiv-

alent LASSO problem (2.11) satisfying the constraint with the parameter τ . The same

strategy also applies for solving the inequality constraint problem (2.12), as the prob-

lems (2.10), (2.11) and (2.12) share the same solution for some fixed parameters σ, τ

and λ respectively [138]. Another continuation strategy for (2.12) is also seen in liter-

ature, where a series of LASSO problems (2.11) with increasing τ ’s are proposed to be

solved, each by spectral projected gradient (SPG) algorithm [138]. Moreover, the alter-

nating direction method of multiplier (ADMM) method, inheriting the idea of augmented

Lagrange method, is also a commonly used framework for l1 problems such as (2.10),

(2.11) and (2.12) [139, 140]. In ADMM, the objective is proposed to be split into the

linear combination of two functions of different variables and so as the constraint. Then,

the optimization of the augmented Lagrangian is proposed to be performed with regards

to each variable, where one of the two subproblems could be solved approximately to

accelerate the algorithm.
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2.4.4.2 Non-convex minimization

Another approach to approximate the NP-hard l0 norm minimization is to relax the

objective to the lv norm (0 < v < 1) to form a non-convex objective. Specifically, define

lv :=
(∑N

n=1 |sn|v
) 1
v
, and the objective writes

ssso = arg min
sss
||sss||vv +

1

2λ
||yyy −AAAsss||22. (2.46)

Compared with the l1 norm convex relaxation, the global optimum of the lv objective

can achieve the exact reconstruction with substantially fewer measurements, due to the

better approximation to the original l0 objective [141]. However, due to the non-convex

nature of the objective, the lv norm recovery are prone to undesired convergence to

some local optimum and has to be solved by iteratively reweighted least square (IRLS)

algorithms (also termed as the FOcal Underdetermined System Solver, FOCUSS) [142].

Each iteration updates the weights on the elements of the signal and solves a least-

square problem by classic convex optimization solver. Specifically, the iterations have

the following form

sss(i) ← arg min
sss

N∑
n=1

w(i)
n sns

∗
n +

1

2λ
||yyy −AAAsss||22,

w(i)
n ←

((
si−1
n

)2
+ ρ
) v

2
−1
, 1 ≤ n ≤ N,

(2.47)

where ρ is a small positive regularization term to prohibit infinite weights. The first

least-square subroutine has the analytic solver

sss(i) ←WWW (i)AAAH
(
AAAWWW (i)AAAH + λIII

)
yyy, (2.48)

where WWW (i) is a N ×N diagonal matrix with w
(i)
n being the nth diagonal element. Vari-

ants of the primitive IRLS adopt continuation strategies on the update of regularization

parameters ρ and λ to ensure and accelerate the convergence [143, 144]. Despite the

possibility of convergence to local mimima, the overall recovery performance of lv norm
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optimization can still be superior than convex relaxation with less stringent requirements

on the compression ratio and signal sparsity.

2.4.4.3 Greedy Algorithms

The basic idea behind the greedy algorithms is that in every iteration the algorithm

detects one index or a few of indices of the sparse signal sss that are most likely to be

non-zero by correlating the measurement vector with every column of the sensing matrix.

The basic and most commonly adopted greedy algorithm is orthogonal matching pursuit

(OMP) [145, 146], where the support of sss is sequentially detected in each iteration. OMP

algorithm implements the heuristic by incrementally pursuing a new support candidate

and finding the optimal solution that describe the detected supports. With empty initial

support Ω(0) = ∅ and sss(0) = 000, the ith iteration updates the residual eee(i), the detected

support Ω(i) and the recovered signal sss(i) by the following procedures:

eee(i) = yyy −AAAsss(i−1) (OMP, residual), (2.49)

Ω(i) = Ω(i−1) ∪ arg max
θ

{∣∣∣∣aaaHθ eee(i)
∣∣∣∣

2
: θ /∈ Ω(i−1)

}
(OMP, correlation, support update)

(2.50)(
sss(i)
)

Ω(i)
= (AAA)Ω(i)

†yyy,
(
sss(i)
)

Ω(i)
= 000 (OMP, least-squares) (2.51)

where subscription (·)Ω denotes a sub-vector or sub-matrix constructed by columns with

indices in set Ω, and (·)† represents pseudo inverse. aaaθ denotes the θth column of the

sensing matrix AAA. Note that OMP, along with most of other greedy algorithms, requires

the sparsity level k as the prior input to the algorithm to determine the maximum number

of iterations. Before reaching the maximum number of iteration, the algorithm can also

be terminated by a smaller enough (by predefined threshold) residual.

Besides the OMP algorithm, other greedy algorithm featuring low complexity and

support detection can be also applied to perform CS recovery, namely Compressive

Sampling Matching Pursuit (CoSaMP) [147], Subspace Pursuit (SP) [148], and Hard



Chapter 2. Literature Review and Background 53

Thresholding Pursuit (HTP) [149], and all these algorithms also require estimated spar-

sity order as the input. The difference between OMP and these three algorithms is that

the OMP cumulatively detects the support in the desired signal, while CoSaMP, SP,

and HTP update a certain number (equal to the specified sparsity order) of supports

batch by batch. A notable variant of OMP - stagewise-OMP (StOMP) [150] is proposed

in the enlightenment of dealing with noisy residuals in signals for greedy pursuit algo-

rithms. The main difference from the original OMP is that StOMP incrementally selects

multiple non-zero indices into the support using a soft thresholding strategy while the

original OMP incrementally selects the most prominent one in each iteration. The main

observation and proved argument in [150] is that the residual correlation in each OMP

step contains a small number of significant non-zeros in addition to a vector disturbed

by Gaussian-like noise in each entry. The threshold in each StOMP’s correlation step

is related to the power of the residual, and in noisy cases, also the noise variance. The

major significance of StOMP is that it does not require the sparsity input and that it

only runs a fixed number of iterations (e.g. 10 suggested in [150]) which can be much

smaller than that of the original OMP. However, it requires the scale of the problem to be

large, i.e. N and M are both large to approximately satisfy the Gaussianity assumption,

where the typical values used for validation in [150] are M = 256 and N = 1024.

2.4.4.4 Sparse Bayesian Learning

The underlying assumption of the lv optimization (0 < v ≤ 1) in sparse recovery is that

the deterministic form of the sensed signal, that is the signal ||sss||0 is small. However,

originally proposed to be applied to support vector machine problem which has similar

linear model and the need of encouraging sparsity, the SBL strategy has been proposed

in sparse signal recovery problem in the perspective of probability [91]. Given the general

CS model (2.7), SBL assumes a Gaussian prior model of the signal to be sensed, :

p(sss;γγγ) = N (sss|000, diag(γγγ)) (2.52)
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where γγγ = [γ1 γ2 · · · γN ] is defined as a vector of prior hyper-parameters. It is noted that

sss is modelled as a statistical signal, where N (sss|000,diag(γγγ)) stands for the probability den-

sity function of Gaussian distribution of variables sss with means 000 and covariance matrix

diag(γγγ). Moreover, considering the Gaussian noise bbb with variance σ2, the probability

density function of measurements yyy conditioned on sss writes

p(yyy|sss;σ) = N (yyy|AsAsAs, σ2III). (2.53)

SBL aims to maximize the marginal PDF (marginal likelihood) with σ and hyperparam-

eters γγγ

(σML, γγγML) = arg max
σ,γγγ

p(yyy;γγγ, σ) = arg max
σ,γγγ

∫
p(yyy|sss;σ)p(sss;γγγ)dsss. (2.54)

The maximization of the integral in (2.54) is referred to as evidence maximization or

type-II maximum likelihood [91, 94]. The integral term can be expressed by

p(yyy;γγγ, σ) = (2π)−(N/2)|ΣΣΣy|−(1/2)exp

{
−1

2
yyytΣΣΣ−1

y yyy

}
, (2.55)

where ΣΣΣy := σ2III + AAA · diag(σσσ) · AAAH [91]. Then the objective of SBL problem can be

written in the equivalent form by taking the logarithm of the marginal PDF, i.e. the

likelihood function

(σML, γγγML) = arg max
σ,γγγ

log{p(yyy;γγγ, σ)} = arg max
σ,γγγ

log |ΣΣΣy|+ yyytΣΣΣ−1
y yyy. (2.56)

The objective in (2.56) is non-convex [94]. To find a local optimum for such non-convex

likelihood objective with unobserved latent data s that has been integrated out as in

(2.54), a common approach is to apply the Expectation-Maximization (EM) algorithm

[151]. The basic idea behind the EM framework is to find a convex surrogate function

approximating the original objective, and an optimum of the original objective can be

found by iteratively optimizing the surrogate function until convergence. In this setting,
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the surrogate function takes the expectation form of following

Q(γγγ,γγγ(i)) = Esss|yyy;σ,γγγ(i)p(yyy|sss;σ)p(sss;γγγ), (2.57)

where the superscript (·)(i) represents the parameters in the ith iteration and Esss|yyy;σ,γγγ(i)(·)

denotes the expectation of a random variable with the conditional probability distribu-

tion f(sss|yyy;σ,γγγ(i)). Using the Bayesian rule, the posterior probability term in p (sss|yyy;σ,γγγ)

is accounted by

p(sss|yyy;σ,γγγ) =
p(sss;γγγ)p(yyy|sss;σ)

p(yyy;γγγ, σ)
= N (yyy|ηηη,ΣΣΣs), (2.58)

where ηηη := σ−2ΣΣΣsAAA
Hyyy and ΣΣΣs :=

{
σ−2AAAHAAA+ [diag(γγγ)]−1

}−1
[91]. Then, the max-

imization step calculates the updates for the parameters γγγ and σ by maximizing the

surrogate function Q(γγγ,γγγ(i))

γ(i+1)
n = [ΣΣΣ(i)

s ]n,n + (η(i)
n )2, 1 ≤ n ≤ N

(σ2)(i+1) =
||yyy −AsAsAs||22 + (σ2)(i)

∑N
j=1

[
1− [ΣΣΣ

(i)
s ]j,j/γ

(i)
j

]
M

, 1 ≤ n ≤ N
(2.59)

where [ΣΣΣ
(i)
s ]n,n is the nth diagonal element of [ΣΣΣ

(i)
s ] calculated by definition by γγγ(i) and

(σ2)(i), and η
(i)
n is the nth element of γγγ(i) calculated by definition by γγγ(i) and (σ2)(i).

Upon convergence, (σML, γγγML) is revealed and ssso is then obtained as the expectation

of the posterior distribution (2.58)

ssso = ηηηML =
(
AAAHAAA+ σ2

ML · diag(γγγML)
)
AAAHyyy. (2.60)

The global optimum of the SBL’s objective is proved to correspond to the sparsest

solution, other than the convex and non-convex relaxation objective where the global

optimum is not generally the sparsest solution [87], which means the recovery is more

accurate when the global optimum is found, i.e. less structural error [94]. Moreover,

compared to non-convex relaxation (lv-norm), the SBL’s objective has explicitly less local

minima, hence less chance of occurring convergence error [94]. Numerical simulation in
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general settings reveals superior recovery performance against both basis pursuit and

FOCUSS, taking both types of error into account. The superiority is reportedly evident

especially in the presence of highly-correlated columns of the sensing matrix AAA, poor

signal sparsity and low SNR [94].

2.5 Compressive Sensing Frameworks for Multiband Sig-

nals

In this section, three popular and practical sub-Nyquist samplers are shown, with the

corresponding CS mathematical models and practicality concerns of them reviewed. At

the end of this section, the implications of compressive sensing techniques on the receiver

performance are presented.

2.5.1 Random Demodulator

The input signal of the random demodulator is assumed to be a multitone signal s(t)

that is frequency-sparse and bandlimited within
[
−B

2 (Hz), B2 (Hz)
]

in the frequency

domain. In a random demodulator system, the input signal is multiplied by a Nyquist-

rate sequence from a pseudorandom chip generator. As a result, the original signal is

modulated pseudorandomly, in other words, scrambled. Then, after an integration stage,

the modulated signal is proposed to be sampled with sub-Nyquist rate and produces

discrete-time samples yyy = [y1, y2, · · · , yM ].

Note the pseudorandom sequence by the following waveform with a chip rate of

1/Ts = B (Hz) at Nyquist rate

p(t) =

M−1∑
i=0

βirectTs(t− i · Ts), 0 ≤ t < NTs, (2.61)

where rectTs(t − i · Ts) is the rectangular waveform whose value is 1 if and only if

1 ≤ t < Ts, and βi denotes the amplitude of the ith rectangular waveform.
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Following the signal model and analysis of the sampling process provided by Tropp

et. al. [71], the compressive sampling of a continuous-time multitone signal s(t) can

be effectively represented by a simple matrix form in accordance with the general CS

model (2.7) using discrete time-domain and frequency-domain signal representations,

noted by sss and xxx respectively. The rationale of such ‘continous-to-discrete’ translation

and relationships among s(t), sss and xxx are detailed in [71]. A detailed modeling of the

random demodulator’s sampling process with a continuous signal model is given in [73].

Using the discrete signal representations sss and xxx proposed by Tropp et. al. [71], one can

relate the sampling process of the random demodulator with a sensing matrix AAA of the

CS system (2.7) in the following form

AAA = HDHDHDΨΨΨ−1, (2.62)

where the block matrix HHHM×N represents the integral process whose rth row has M/N

consecutive elements of 1s from the (rM/N + 1)th column to the ((r + 1)M/N)th col-

umn, for each integer 0 ≤ r ≤ M/N − 1. The effective sampling matrix ΦΦΦ as defined in

the general CS model (2.7) is ΦΦΦ = HDHDHD. The sparsifying matrix ΨΨΨ−1 here is the inverse

discrete Fourier transform matrix (IDFT). DDD = diag(β1, β2, · · · , βM ) is the matrix cor-

responding to the periodic pseudorandom sequence. Rewrite (2.7) using (2.62) and one

has

yyy = HDHDHDΨΨΨ−1xxx = HDsHDsHDs (2.63)

where yyy is the measurement vector; xxx is the discrete frequency-domain representation of

the multitone signal s(t); and sss = ΨΨΨ−1xxx is the discrete time-domain representation of the

multitone signal s(t). With the sampling model (2.63), one can intuitively understand

the sampling process in the time domain. Firstly, the multiplication of the diagonal

matrix DDD and the time-domain signal sss corresponds to the mixing of the input signal

and pseudorandom waveform. Next, the block-diagonal matrix HHH performs the ‘integral

and dump’ operation on the scrambled signal DsDsDs, with each row of HHH corresponding to

one integral interval. The inner product of the nth (n = 1, 2, · · · ,M) row of HHH and the
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scrambled signalDsDsDs turns out to be the nth output sample yn, i.e. the nth element in the

measurement matrix yyy. In addition to the ‘mix, intergrate and dump’ intepretation in

the time domain, the sampling procedure can be viewed in frequency domain such that

the original sparse signal is convolved by various pseudorandom frequency coefficients

into multiple version of ‘signature’, effectively forming an underdetermined linear system

[73].

From the idea of Fourier analysis, any continuous time-domain signal can be decom-

posed by an infinite number of monotone components with different (complex) weights.

In some applications, a real-world signal can be approximated by the weighted sum of

only a limited number of monotones, i.e. a multitone signal, which fits in the signal

model and hence can be applied to the random demodulator. However, such approx-

imation using the multitone model causes one underlying disadvantage of the random

demodulator - some frequency-sparse analog signals require a great number, i.e. N , of

monotone components to be well approximated and provide reasonable spectral reso-

lution in the discrete model, which in other word requires a large dimension N of the

sparse signal sss and hence large CS recovery complexity [65].

Due to the causality of the ‘integration and dump’ process, the matrix HHH in the

CS model (2.63) is restricted to the form of block diagonal matrix, which limits the

Figure 2.8: AIC architecture.
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Figure 2.9: Multicoset sampler architecture.

performance of CS in comparison to a full random matrix. Some literature suggests

multiple channels (i.e. duplicates of the outlined block) of the random demodulator to

form more complex sensing matrices towards full Bernoulli [76, 78]. The properties of

the sensing matrix AAA = HDΨHDΨHDΨ and the performance bounds in the context of CS of the

random demodulator have been investigated in [71].

2.5.2 Multi-Coset Sampler

Multi-coset sampler, however, adopts another sampling architecture by using multiple

branches of sub-Nyquist-rate ADCs to achieve non-uniform sampling [109], as shown in

Fig. 2.9. Each of the P cosets has an ADC sampling at a fraction-L of the Nyquist

frequency.

Consider the baseband frequency-sparse signal s(t) bandlimited to the frequency

range of
[
−B

2 (Hz), B2 (Hz)
]
, where there exist C channels with equal bandwidth of

B
C . The sampling procedure of the p ADCs produces

scp [n] = s

(
nC − cp

B

)
(2.64)

at the sub-Nyquist rate of B/C, for n = Z and p = 1, 2, · · · , P . The unique delay for the
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Figure 2.10: Frequency-domain illustration of the sampling process of the multicoset
sampler. (a)(a)(a) The spectrum of the input multiband signal s(t) with the channels sparsely
occupied; (b)(b)(b) the Fourier transform of the time-shifted sampling pulse train of the pth
channel; (c)(c)(c) the Fourier transform of the discrete samples scp [n]’s, as the convolution of
(a) and (b).

pth ADC is
cp
B , where 0 ≤ cp ≤ C−1 is an exclusively chosen integer, i.e. cp 6= cq for p 6= q.

The discrete samples scp [n]’s are collected, for n = Z and p = 1, 2, · · · , P . Intuitively,

the sampling process can be interpreted in the frequency domain as illustrated in Fig.

2.10. The sub-Nyquist sampling of the delayed input signal can be equivalently regarded

as that multiple identical versions of s(t) are sampled (multiplied) by different time-

shifted versions of a periodic impulse train. In the frequency domain, each time-domain

impulse train can be represented by a series of impulses, whose (complex) amplitudes

are determined by the delay value of the particular branch, as shown in Fig. 2.10 (b).

The resultant discrete samples scp [n]’s of each branch then have the frequency-domain

representation of the multiband signal’s spectrum convolved by these frequency-domain

impulses, effectively creating a linear combination of the spectra from each channel, as

illustrated in Fig. 2.10 (c). Without detailing the derivations, the CS model of such



Chapter 2. Literature Review and Background 61

processing architecture is hereby given directly

yyy(f) = AxAxAx(f), f ∈
[
0,
B

C

)
(2.65)

where yyy(f) = [YYY c1(f),YYY c2(f), · · · ,YYY cP (f)]T is the measurement vector directly related

to the frequency-domain representations of scp [n]’s - YYY cp(f) := C
B e

j2πcp
f
B ·Xcp

(
ej2πf

C
B

)
and Xcp

(
ej2πf

C
B

)
is the discrete-time Fourier transform (DTFT) of scp [n]’s. The vector

xxx(f) :=
[
X(f − B

2 ), X(f − B
2 + B

C ), · · · , X(f + B
2 −

B
C )
]T

has its cth-element being the

’frequency-shifted’ version of s(t)’s spectrum, X(f), representing the spectrum of the cth

channel. The entries in the matrixAAAP×C are expressed by {AAA}p,q = exp j2πcp

(
1
2 −

q−1
C

)
,

for 1 ≤ p ≤ P and 1 ≤ q ≤ C. Each row of AAA is related to the cth branch’s delay cp,

whose values are reflected by the Fourier series of the time-shifted sampling impulse train.

The inner product between each row of AAA and the shifted spectrum xxx(f) corresponds

to the sampling process of each branch, more intuitively, the convolution between the

input signal’s spectrum and the Fourier series of the sampling impulse train, where

the frequency-domain representation of scp [n]’s is a linear combination of the spectrum

from each channel. Readers are referred to Section 5.1 for detailed evidences of such

mathematical model of the multicoset sampler.

The model (2.65) contains a parameter f whose range is a continuous period. The

number of measurement vectors with every applicable f is infinite, so the model (2.65) is

often referred to as an infinite measurement vector (IMV) model. In order to apply CS

recovery algorithms, the IMV model can be simplified to an MMV model by selecting

a group of discrete f ’s to provide a reasonable spectrum resolution or subspace analysis

techniques [80]. For the MMV model, the recovery based on the MMV model is proposed

to be efficiently achieved by simultaneous greedy algorithms, such as SOMP and AR-

SOMP [16], as well as the simultaneous version of other sparse recovery techniques

[152, 153], e.g. M-SBL [154] and M-FOCUSS [45]. Discussions are also present for how

to design a series of delay values, i.e. cp’s to achieve a good sensing matrix, where it

indicates that choosing these values exclusively and uniformly random among integers
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0 ≤ cp ≤ C − 1 is a reasonable practice to construct a good sensing matrix AAA [65].

The architecture of the multicoset sampler has a simple structure and can be realized

by general-purpose ADC devices. It can also form an MMV CS model, where the model

dimension and the recovery complexity may be significantly lower than the SMV model of

the random demodulator to achieve the same spectral resolution. However, it is addressed

in [65] that there are practicality issues regarding the usage of sub-Nyquist-rate ADCs

in the multicoset sampler. Specifically, apart from the sampling rate, ADC devices also

have a practical limitation on front-end bandwidth, the frequency components exceeding

which are lost, potentially causing inaccurate sampling results. In each branch of the

multicoset sampler, the sampling rate is a fraction of the Nyquist-rate but the analog

input signal s(t) seen by the ADC has to have a bandwidth equal to the Nyquist rate

of B Hz. ADCs with such a difference between sampling rate and front-end bandwidth

(referred to as full-power bandwidth, FPBW) need particular attention in design and not

commonly seen. In Fig. 2.11, a chart of wideband ADCs (sampling rate no less than 500

MHz) from Analog Devices product catalog is illustrated. It can be seen that the ratio of

FPBW against maximum sampling rate is small (all less than 5), meaning that one has

to choose ADCs with excessively high maximum sampling rate to satisfy the required

FPBW, but the ADCs are actually running at a low sampling rate. This is effectively

a waste of the hardware’s capability and cost. Moreover, the delays of the sampling

timing are at the resolution corresponding to the Nyquist rate. Hence it is challenging

to achieve such stringent requirements of accurate and dynamic delays, especially the

signal bandwidth is large [155].

2.5.3 Modulated Wideband Converter

The MWC architecture [65] has been designed in a way resembling both of random

demodulator and multicoset sampler - it has multiple branches, and each branch is

implemented in a similar manner as the random demodulator to mix with a specific

pseudorandom sequence and pass an anti-aliasing lowpass filter [73]. The schematic dia-
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Figure 2.11: Anglog Devices wideband ADC (≥ 500 MHz) product range (information
acquired on 16/12/2020).

gram of MWC architecture is illustrated in Fig. 2.12. The design of MWC, although

seemingly more complex in hardware terms, avoids some of the practical problems of both

random demodulator and multi-coset sampler. It can achieve any fractional compres-

sion rate, and removes the need for dynamic and accurate delay distributions required

by multicoset samplers. Also, it worth noting that the MWC architecture has filters

designed to have anti-aliasing lowpass frequency response to limit signal bandwidth seen

by the ADCs, which is only a fraction of the Nyquist rate. Different from the multicoset

sampler, the introduction of the pseudorandom mixing and the anti-aliasing filters in

MWC effectively alleviates the requirement of a large FPBW of the ADC devices [65].

Denote the multiband time-domain signal as s(t) bandlimited to
[
−B

2 (Hz), B2 (Hz)
]

where there exists C channels with equal bandwidth of B
C (Hz). The periodic pseudo-

random sequences have the chip rate of 1/Ts = B (Hz) and period of Ts, formulated

as

pp(t) =

N−1∑
i=0

βp,irectTs(t− i · Ts), 0 ≤ t < CTs, (2.66)

where the chip waveform is rectangular as proposed in [65]; pp(t) is the sequence of
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synced sampling 
at time intervals

Figure 2.12: MWC architecture.

the pth branch with βp,i being the amplitudes of the ith chip in the pth branch. The

following low-pass filters are supposed to have identical impulse response with a passband

of
[
0, BC (Hz)

]
. Then, the ADC array samples the signals of all branches in a synchronized

fashion at sub-Nyquist rate of B
C (Hz).

Similar to the multicoset sampler, the intuitions of the signal processing procedures

of the MWC can be viewed in the frequency domain. Fig. 2.13 (a) exemplifies the

Fourier transform of a 1
Ts

-chip-rate pseudorandom sequence, which is an impulse train

with amplitudes being the Fourier series coefficients, determined jointly the by the chip

sequence βp,i’s (i = 0, 1, · · · , C − 1) and the chips’ waveform. The mixing process can

be viewed as the convolution of the spectrum of input signal s(t), shown in Fig. 2.13

(b), with the frequency-domain impulse train in Fig. 2.13 (b), resulting in the frequency
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Figure 2.13: Frequency-domain illustration of the sampling process of the MWC. (a)(a)(a) The
Fourier transform of the pseudorandom sequence pp(t); (b)(b)(b) the spectrum of the input
multiband signal s(t) with channel sparsely occupied; (c)(c)(c) the Fourier transform of the
mixer’s output s(t)pp(t), as the convolution of (a) and (b); (d)(d)(d) the Fourier transform of
the low-pass filter’s output with the passband of

[
0, BC (Hz)

]
; (e)(e)(e) the Fourier transform

of the sampling pulse train; (f)(f)(f) the Fourier transform of the discrete-time samples yp[n],
n ∈ Z, as the convolution of (d) and (e).
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representation in Fig. 2.13 (c), effectively creating linear combinations of the spectrum

in each of the C channels using the Fourier series coefficients. The following low-pass

filter preserves only the linear combination of the spectrum within the frequency range

of
[
0, BC (Hz)

]
, as shown in Fig. 2.13 (d). Next, the ADC samples this filtered out-

put with the sub-Nyquist rate of B
C (Hz), whose frequency-domain interpretation is the

convolution of the signal in Fig. 2.13 (d) with the Fourier transform of the sampling

pulse train in Fig. 2.13 (e). The final discrete-time samples yp[n]’s (n ∈ Z) has the

frequency-domain representation shown in Fig. 2.13 (f).

Following the derivations from Mishali et. al. [65], the mathematical model of MWC

can be written as

yyy(f) = HHHFFFDDDxxx(f) =



β1,0 β1,1 . . . β1,C−1

β2,0 β2,1 . . . β2,C−1

...
...

...
...

βP,0 βP,1 . . . βP,C−1


FFFDDDxxx(f) = AAAxxx(f), (2.67)

where one can find that pth row ofHHH corresponds to the coefficients of the pseudorandom

sequence in the pth branch. The measurement vector

yyy(f) :=
[
Y1

(
ej2πf

C
B

)
, Y2

(
ej2πf

C
B

)
, · · · , YP

(
ej2πf

C
B

)]T
consists of p DTFT coefficients of the samples from the pth channel, where Yp

(
ej2πf

C
B

)
denotes the DTFT of the discrete samples yp[n]’s (n ∈ Z). The vector

xxx(f) :=

[
X

(
f − B

2

)
, X

(
f − B

2
+
B

C

)
, · · · , X

(
f +

B

2
− B

C

)]T

contains frequency-shifted versions of the spectrum X(f) of the input signal s(t), repre-

senting the spectrum from each of the C channels. FFFC×C is a permuted C-order IDFT

matrix whose entries are {FFF}p,q = exp
[
j2πp

(
q − 1− C

2

)]
. The diagonal matrix has

the definition of DDD := diag
[
d−C

2
, d−C

2
+1, · · · , dC

2

]
, and dl =

1−exp(−j2π l
C )

j2πl . The sens-
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ing matrix AAA := HFDHFDHFD multiplying the vector xxx(f) can be understood to describe the

frequency-domain convolution process between the input signal s(t) with the pseudoran-

dom sequences pp(t)’s, where specifically each row of AAA corresponds to the Fourier series

coefficients of the pseudorandom sequences, and DDD accounts for the impact of the pseu-

dorandom sequences’ (rectangular) waveform on these pseudorandom sequences’ Fourier

series coefficients. Again, same as the multicoset sampler, the MWC expression (2.67)

forms an IMV model, and can be transformed to an MMV model where the signal to

recover is a matrix consisting of xxx(f)’s with finite values of f ’s as columns. Such a matrix

is joint (row) sparse if a large number of channels are vacant, which can be recovered by

simultaneous sparse recovery algorithms [45, 152–154].

It is noted that in MWC the matrix HHH has full pseudorandom entries. By designing

the distribution of these random sequences one can achieve desired RIP properties of the

sensing matrix, i.e. AAA = HFDHFDHFD, leading to more robustness and compressibility in CS

recovery. Gold sequences with binary amplitudes βp,i are proposed and the corresponding

CS performance is analyzed [156]. Compared with the multicoset sampler, the MWC

achieves the linear combination of the spectrum of all C channels by the introduction

of the mixing stage in the analog domain before the ADCs, rather than at the sampling

stage for the multicoset sampler case. Such mixing stage of the MWC enabling the

combination of channels’ spectrum makes it possible to limit the signal bandwidth to

B/C (Hz) by low-pass filtering at the front end of the ADCs. Thus, it is a major

advantage that the MWC structure does not require the ADCs to have the FPBW of B

(Hz), but only a fractional of it, i.e. B/C (Hz) [65]. However, the Nyquist chip rate and

the synchronization of the pseudorandom sequences, along with the non-ideal low-pass

cutoff and inconsistency of the filters are the challenges of its real-world implementations.

2.5.4 Noise in the Signal Acquisition of Compressive Sensing

It is vital to understand the compressive sampler’s performance against distortions,

which affects the SNR of the acquired signal or, in other words, the dynamic range
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of the receiver. Similar to the conventional non-compressive signal acquisition, in the

case of compressive sampling, noise appearing in the front end of the analog-digital con-

version and the distortions at the conversion process jointly contribute to the noise in

the discrete-time samples, i.e. the compressed measurements. Furthermore, the noise in

the compressive measurements leads to impairments in the recovered signal. Analytical

examinations are necessary to reveal the implications of compressive sampling and CS

signal reconstruction on the signal-to-noise performance of the recovered signal. Starting

with the following model slightly different from the CS model (2.7),

yyyM×1 = AAAM×N (xxxN×1 +nnnN×1) , M < N, (2.68)

the noise term nnn represents the noise additive to the Nyquist-rate sparse signal xxx appear-

ing at the front end of the analog-to-digital conversion, and xxx is the Nyquist-rate sparse

signal to recover. To provide a conventional signal acquisition counterpart to compare

with the compressive sampling case, the signal acquired by conventional sampling is

thought to be the original Nyquist rate samples with additive noise, i.e. xxx + nnn. Apart

from the additive noise, the quantization at the analog-to-digital conversion further con-

tributes to the error at the measurements. For the additive-noise-free case, the quantized

measurements by a n-bit quantization function are expressed by Qn(yyy) = Qn(AxAxAx) and

Qn(xxx), respectively for compressive sampling and conventional Nyquist-rate sampling.

To investigate the impacts of either the additive noise or the quantization noise on the

sampling outputs, the SNRs at the output are reviewed separately for each type of

error source. Formally, define the input (in-band) SNR (ISNR) as ISNR :=
N ||xxx||22
k||nnn||22

and for the compressive sampling case particularly, the recovered SNR (RSNR) as

RSNR :=
||xxx−xxxr||22
||xxx||22

, where k := ||xxx||0 is the sparsity and xxxr is the recovered signal

from the measurements with the consideration of either additive noise, yyy = AAA(xxx+nnn), or

quantization noise, Qn(AxAxAx).
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2.5.4.1 Additive Noise

For evaluating the practical performance of radio receivers, the additive noise is com-

monly measured by the thermal noise floor and the cascaded noise figure of all stages of

front-end components. Before discussing the noise performance of the sampling stage,

it should be noted firstly that some additional hardware in the compressive sampling

architectures may worsen the total front-end noise figure compared to direct Nyquist-rate

sampling. For the multicoset sampler and MWC, for instance, a P -way power splitter

is necessary which inevitably introduces a noise figure of at least 10 log10 P dB. More-

over, the noise figure of the mixer output in the random demodulator and MWC may be

affected by the noise in the pseudorandom sequences and multiplication imperfections.

Using the RIP of the sensing matrixAAA with orthogonal rows and with the assumption

of using a greedy algorithm to find the correct support of the signal in question xxx, i.e.

supp(sssr) = supp(sss), it is shown [83] that the relationship between the ISNR and RSNR

is bounded by the following inequalities

M(1− δk)
N

≤ RSNR

ISNR
≤ M(1 + δk)

N
, (2.69)

where δk is the RIP constant of sparsity k. The RSNR-ISNR gain in (2.69) appears to

be the ‘best-case’ as this gain is expected to be less for the 1-norm minimization sparse

recovery, where it is implied that for 1-norm minimization recovery [83]

k(1− δk)
N(1 + δk)

.
RSNR

ISNR
.

k(1 + δk)

N(1− δk)
. (2.70)

The superiority in terms of RSNR of greedy algorithms over 1-norm minimization can

be interpreted by the fact that a greedy algorithm automatically zeros the elements in

xxxr that are not detected as the support, while for 1-norm minimization noise terms

are present in every element of xxxr. Hence, a factor of k
M of the bounds in (2.69) over

(2.70) can be generally expected. Consider a small δk, one can conclude a ‘best-case’
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‘rule-of-thumb’ gain of SNR due to the additive noise,

(
RSNR

ISNR

)
dB

≈ 10 log10

(
M

N

)
. (2.71)

The conventional Nyquist-rate sampling of the signal xxx + nnn preserves the ISNR. More-

over, a commonly-used oversampling technique, consisting super-Nyquist sampling and

decimation to recover the resultant Nyquist-rate signal, would lead to an SNR gain of

10 log10(r) where r denotes the oversampling rate, i.e. the ratio of the actual sampling

rate over the Nyquist rate [157]. The same ‘3dB SNR gain per octave’ rule also applies

for undersampling schemes, such as band pass sampling [110], known as ‘noise folding’ for

the interpretation in the frequency domain [84]. This result somewhat coincides with the

general rule (2.71), where the oversampling rate can be thought effectively as M/N < 1,

i.e. the compression ratio. To summarize, compressive sampling implies a ‘3dB per half

of the sampling rate’ deterioration of SNR due to additive noise, which poses a signif-

icant challenge in the dynamic range of the receiver and hence the implementation of

real-world compressive sampling systems.

2.5.4.2 Quantization Noise

In conventional non-compressive signal acquisition, the measurement-to-quantization-

noise ratio follows definition and expression of

MQNRNYQ(xxx) :=
||Qn(xxx)− xxx||22
||xxx||22

≥
(

2n

γ(xxx)

)2

, (2.72)

where n is the number of bits of the midrise uniform quantization function and the signal

xxx is assumed to marginally saturate the quantizer [83]. The term γ(xxx) := ||xxx||∞·
√
N

||xxx||2 is

referred to as the peak-to-average ratio (PAR) of xxx, which measures the ratio between the

signal’s peak value and power. The MQNR in (2.72) translates to the well-known ‘6dB

per bit’ relationship of the quantization SNR,
(
MQNRNYQ(xxx)

)
dB

& 6.02n−20 log (γ(xxx)).

In the compressive sampling case, the MQNR of the measurements Qn (yyy) = Qn (AxAxAx)
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can be analyzed by the bound [83]

(MQNRCS(yyy))dB & 6.02n+ 20 log


√

(1− δk)NM ||xxx||∞
γ(xxx)||yyy||∞

 . (2.73)

Furthermore, by introducing a recovery guarantee of the recovery algorithm as ||xxxr −

xxx||2 ≤ κ||Qn(yyy) − yyy||2, the relationship of the quantization-induced RSNR with the

MQNR is found as RSNR ≥ MQNRCS(yyy)
(1+δk)κ , and consequently the quantization-induced

RSNR can be expressed in decibels as

RSNR & 6.02n+ 20 log10


√

(1− δk)NM ||xxx||∞
γ(xxx)||yyy||∞

− 20 log10 ((1 + δk)κ) , (2.74)

where κ > 1 is a constant in the recovery guarantee [83]. By comparing the RSNR of the

compressive sampling (2.74) against the MQNR of conventional Nyquist-rate sampling

(2.73), other than the small constant terms δk and κ, the main difference lies in the

additional coefficient on the PAR-related term, which writes

√
N
M
||xxx||∞

||yyy||∞ . The coefficient

contains both xxx and yyy, implying a connection to the sensing matrix AAA. By assuming a

sub-Gaussian random matrix AAA, such coefficient can be concluded to have a bound with

a high probability, i.e.
N
M
||xxx||2∞
||yyy||2∞

≥ γ2(xxx)
4 logM , further making the bound in (2.74) to finally

become

RSNR & 6.02n− 20 log10

(
2

√
logM

1− δk

)
− 20 log10 ((1 + δk)κ) . (2.75)

with high probability [83]. Note that the bound in (2.75) is irrelevant of the PAR, indi-

cating that in compressive sampling, the RSNR of the recovered signal can be improved

against MQNRNYQ for an input signal xxx with large PAR. By comparing (2.75) and

(2.73), the RSNR’s gain (in dB) over MQNRNYQ is approximated by
(

RSNR
MQNRNYQ

)
dB
≈

10 log10

(
γ2(xxx)

4 logM

)
, which is in the range of

10 log10

(
1

4 logM

)
.

(
RSNR

MQNR

)
dB

. 10 log10

(
N

4 logM

)
, (2.76)
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based on the PAR range of the signal xxx, that is 1 ≤ γ2(xxx) ≤ N [83]. Looking at such

bounds in (2.76), one can expect that the RSNR induced by quantization error to be (1)

greatly improved from the MQNR if the input signal has high PAR and (2) deteriorated

if the input signal has low PAR. Such potential improvement of the quantization-induced

SNR can be explained intuitively by the ‘democratic’ sampling process in the CS dictated

by AAA, where elements in yyy tend to have ‘equal weights’ of all the elements in xxx and thus

a high-PAR input xxx can be transformed into a low-PAR measurement vector yyy.

It should be pointed out that in the signal models used in the remaining of the thesis,

quantization distortions are not modeled specifically and the quantization noise can be

generally thought of as consisting of part of the additive noise in the measurements,

contributing to the SNR of the corresponding CS signal model.

2.6 Summary

This chapter covers the literature review of cognitive radio, dynamic spectrum sharing

and conventional and sub-Nyquist wideband spectrum sensing techniques. Background

of sampling theories, compressive sensing theories and related techniques for sub-Nyquist

wideband spectrum sensing, including sparse recovery algorithms and sub-Nyquist sam-

pling architecture is also presented. As already highlighted in Chapter 1, there are a few

major challenges in CSS which lead to the remaining chapters of this thesis.



Chapter 3

Low-Complexity Compressive

Spectrum Sensing with Sparsity

Estimation

Compressive sensing (CS) techniques have been proposed for wideband spectrum sensing

applications to achieve sub-Nyquist-rate sampling. The complexity of the CS recovery

algorithm and the detection performance against noise are two of the main challenges

of the implementation of compressive spectrum sensing (CSS). Greedy algorithms have

been of particular interest in CSS due to their low complexity. A novel spectrum spar-

sity estimation scheme directly from sub-Nyquist measurements is firstly proposed, with

which the computational effort of greedy pursuit algorithms can be saved and recov-

ery performance improved. Besides, the spectrum sparsity estimates also enable hard

detection of channel occupancy where threshold adaption for energy detection is avoided.

Moreover, with the detected dimension of signal subspace, it is proposed to implement a

joint-block-sparse multiple-measurement-vector (MMV) model of CSS whose dimension

can be reduced to the minimum, and meanwhile, a large portion of the noise is removed.

The proposed MMV model with noise and dimension reduction further improves the

73
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detection performance and also keeps the complexity low. Finally, the hard thresholding

pursuit algorithm is generalized to recover joint-block-sparse signals. In simulations, the

detection performance and complexity of the proposed CSS scheme show evident supe-

riority against multiple benchmarking schemes. The rest of this chapter is structured as

follows. Section 3.1 gives the introduction of the related work and the outlined contri-

bution of the work in this chapter. In Section 3.2, system and signal models of CSS are

presented. In Section 3.3, the proposed spectrum sparsity and active channel number

estimation scheme are detailed. In Section 3.4, the dimension reduction of the MMV

model and noise removal is introduced. Then, performances of various commonly-used

greedy algorithms are discussed and the HTP algorithm is generalized for joint-block-

sparse signals. Monte-Carlo simulation results and further comments are given in Section

3.5.

3.1 Introduction

3.1.1 Related Work

Considering the demand for DSA applications, rapid spectrum reconstruction and robust

spectrum availability detection are desired in CSS. Optimization methods in CSS have

been discussed in literature, including convex l1 optimization [14, 15], non-convex lv

(0 < v < 1) optimization [53], and sparse Bayesian learning [94, 158]. However, the com-

plexity of CS recovery algorithms, especially these optimization methods, has been one

of the major bottlenecks of the implementation of CSS applications. Among these algo-

rithms, greedy algorithms, especially the Hard Thresholding Pursuit (HTP) [149] and its

derivations, have drawn great attention due to their lower computational cost compared

to these optimization-based sparse recovery schemes [55]. Most greedy algorithms for

sparse recovery require the sparsity order of the signal to be recovered as a priori input

information. Inputting an excessively large sparsity tends to lead to unnecessary free

dimensions of the signal space, which does not help detect the support of the desired

signal and makes the recovery fidelity worse. However, in practice, valid estimates of
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sparsity in a dynamic scenario are difficult to obtain, hence the a priori known upper

bound of the sparsity based on long-term observations of the spectrum of interest or the

maximum allowed value of sparsity is often input to these algorithms to ensure reliable

spectrum reconstruction. Another simple solution is to directly use the channel sparsity

information from the geo-location database. However, such information could be inac-

curate as geo-location database relies on a propagation model which is designed to give

conservative channel availability to protect PUs [6, 45]. Some spectrum sparsity estima-

tion solutions have also been seen in the literature [58, 59]. In these works, prior to the

actual spectrum sensing step, the spectrum sparsity is estimated offline using the recov-

ered signals from multiple trials of recovery implementations, which makes the actual

spectrum sensing inefficient. In [90], a novel metric for sparsity is proposed for noisy

signals, and estimation is performed directly from compressive measurements. However,

the measurements are required to be sampled by various measurement matrices of a

special formation. Moreover, the sparsity information in [58, 59, 90] is proposed to be

applied to convex-optimization and adaptively optimize the compression ratio, which is

fundamentally different from how the sparsity estimation is proposed to be used in this

chapter.

Robust detection of spectrum availability is also a crucial procedure in CSS. The sim-

ple yet commonly adopted method is Neyman-Pearson (NP) energy detection (ED) on

each channel’s spectrum energy, which determines the channel occupancy in a soft deci-

sion manner by setting a proper threshold [103]. Some work in CSS proposes cyclostation-

ary feature extraction on the recovered spectrum and then performs ED [158, 159]. Some

prior information on the noise statistics is essential to optimal threshold setting. Prac-

tical noise estimation and threshold setting schemes for conventional non-compressive

spectrum sensing have been proposed in the literature [97, 160]. However, it is dis-

covered in [161] that the statistical model of the channel energy based on the recovered

spectrum differs from that of the conventional model, and the parameters of these models

have to be learned from multiple recovered spectrum samples in order to set the proper
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threshold. The proposed parameter learning scheme also has the realistic shortcoming

that the estimation requires time-consuming recovery operations.

3.1.2 Contributions

To address the sparsity estimation issue, a novel sparsity estimation directly from time-

domain sub-Nyquist samples is presented. The proposed sparsity estimation is achieved

by the subspace analysis of the auto-correlation matrix of sub-Nyquist samples. In the

area of array processing, a similar problem is source enumeration. The full-row-rank

‘sensing matrix’ in the CSS context is an analogy of the full-column-rank ‘array steer-

ing matrix’, and the spectrum sparsity is actually equivalent to the number of sources

in array processing. Source numeration problem has been being studied for decades,

with some information theoretic criteria (ITC) proposed [162, 163] to select the optimal

number of principle and noise subspace dimensions in the sense of information distance

through eigendecomposition, including Akaike’s information criterion [164] and minimum

description length (MDL) [165] (or equivalently Bayesian Information Criterion (BIC) in

Bayesian formulation [166]). BIC has drawn particular interests due to its better asymp-

totic performances [167]. It is chosen to use an enhanced BIC strategy to achieve the

spectrum sparsity estimation. A pioneering subspace-aided sparsity estimation strategy

has been recently outlined in [16]. However, the specific estimation methods applied,

estimation performance, or the advantages of spectrum sparsity estimates have not been

discussed.

This chapter considers a general multi-band signal model where the baseband spec-

trum consists of multiple channels of equal bandwidth and only sporadic channels have

active signals present. In the CS model, such signal’s spectrum to be reconstructed has a

joint-sparse structure. The proposed spectrum sparsity estimation is based on multiple

samples of the sub-Nyquist measurement vectors and the sparsity estimate can be trans-

lated to the estimate of active channel numbers. Note that the proposed spectrum spar-

sity estimation scheme does not assume hence is not limited to a joint-sparse spectrum
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model, and therefore, for some frequency-sparse signals that do not have sparse channel

occupancy, the proposed spectrum sparsity estimation still applies to obtain a sparsity

input for greedy algorithms for general sparse signals. Next, it is further proposed to

use the multiple-measurement-vector (MMV) model for joint-block-sparse signals for CS

directly instead of the single-measurement-vector (SMV) model. Based on the subspace

decomposition of the sparsity estimation scheme, it is natural to reduce the dimensional-

ity of the MMV model to its minimum by removing the noise subspace, which effectively

achieves denoising from the measurements. Finally, the HTP algorithm is extended

for recovering joint-block-sparse signals, which empirically gives better detection perfor-

mance than l1 optimization and orthogonal matching pursuit (OMP) counterparts while

keeping the complexity low.

The merits of the proposed spectrum sparsity estimation scheme and the implemen-

tation of dimension-reduced MMV model are summarized as follows:

• The estimation of spectrum sparsity is directly from compressed measurements,

which does not require recovery operations;

• A valid estimate of spectrum sparsity aids the greedy pursuit algorithm to reduce

the complexity and enhance the recovery performance;

• Dimension reduction of the MMV model further improves the recovery performance

and reduces recovery complexity.

• With a valid estimate of spectrum sparsity, hard detection (HD) of channel occu-

pancy with the detected number of occupied channels can be achieved without the

need of dictating or adapting the threshold.
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3.2 System and Signal Models

3.2.1 System Model

Consider a cognitive radio system with primary users (PUs) being ‘virtual’ transceiver

stations that transmit orthogonal frequency division multiplexing (OFDM) signals within

C frequency channels within a band whose bandwidth is B (Hz). Each channel has

an equal bandwidth of B/C (Hz). The OFDM signal model is straightforward to be

used to formulate a multiband signal with arbitrary frequency supports defined by the

OFDM symbols carried by a series of monotone sub-carriers. The OFDM signal model is

therefore adopted purely to conveniently describe a general multiband signal with sparse

channel occupancy in the frequency domain, for example as illustrated in Fig. 3.2, where

Fs (Hz) is the frequency spacing of the adjacent sub-carriers, in other words, the symbol

rate of the imaginary OFDM transmitters. In the upper half in Fig. 3.1, the model

diagram of a virtual OFDM-based radio transmitter is illustrated. The baseband signal

from the cth transmitter is to be upconverted by F0 +(c−1)B/C (Hz) to the cth channel

of the interested wideband spectrum, where the frequency range is [F0 (Hz), F0+B (Hz)].

Then, the number of sub-carriers for each PU transmitter is determined by B/Fs (Hz),

which is assumed to be an integer.

3.2.2 Signal Model

Here, the model of the signal to be sensed is constructed. Firstly, with accordance to the

PU transmitter diagram in Fig. 3.1, one can write the continuous time-domain signal of

OFDM transmitters within one symbol duration as

so(t) =
C∑
c=1

B
CFs∑
d=1

(ac,d + jbc,d)e
j2π[(d−1)Fs+(c−1)B/C]t, (3.1)

where 0 ≤ t < (1/Fs). ac,d and bc,d represents the dth data symbol from the cth PU, of

in-phase and quadrature component respectively. Practical implementations of OFDM

are digital via the inverse fast Fourier transform (IFFT) algorithm of B/Fs points, and
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Figure 3.1: The proposed system architecture: PU transmitters and a sensing node.
Specific definitions of the signal notations are throughout Chapter 3.

for a wideband system compromising C channel the Nyquist frequency is fNYQ = B (Hz).

The discrete time-domain signal (sososo) B
Fs
×1 is equivalent to the continuous version (3.1)

sampled at Nyquist frequency fNYQ, that is

sososo =

[
so(0) so

(
1

B

)
· · · so

(
B
Fs
− 1

B

)]T
= GGGγγγ. (3.2)

where GGG B
Fs
× B
Fs

is effectively a B
Fs

-point IDFT matrix. The vector γγγ is defined by γγγ =[
γγγT1 γγγ

T
2 · · · γγγTC

]T
, where data symbol blocks (γγγc) B

CFs
×1 (c = 1, 2, · · · , C) are presented

by

γγγc =
[
ac,1 + jbc,1 ac,2 + jbc,2 · · · ac,B/CFs + jbc, B

CFs

]T
. (3.3)

In order to express the sparse channel occupation, for some 1 ≤ c ≤ C, each γγγc is a

vector with non-zero entries, which represent the frequency coefficients of the occupied

channels, and for other γγγc’s, γγγc = 000 which models the vacant channels. The frequency

representation (i.e. the DFT) of ssso is effectively γγγ = GGG−1ssso = GGG−1GGGγγγ. At the receiver’s
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Figure 3.2: A conceptual illustration of the interested TVWS wideband spectrum.

end, the received frequency-domain signal through a generic multipath channel is γ̂γγ =

[γ̂γγ1, γ̂γγ2, · · · , γ̂γγC ], where

γ̂γγc = Lc

[
1√

Kc + 1
+

√
Kc√

Kc + 1
· hhhc
]
◦ γγγc, 1 ≤ c ≤ C. (3.4)

◦ denotes element-wise product. Lc’s are the path loss from the transmitter occupying

the cth channel and the receiver. hhhc’s are multipath channel gain where (hhhc) B
CFs
×1 ∼

CN (000, III). Kc is the power ratio between multipath and line-of-sight components. Denote

the time-domain representation of the received signal by ŝsso := GGG−1γ̂γγ.

Consider a simple single-node non-cooperative CSS scenario. Denote the Nyquist-

rate time-domain signal as ssstN×1 = [st[0] st[1] . . . st[N − 1]]T and its frequency-domain

representation sssf = FFFssst = [sf [0] sf [1] . . . sf [N − 1]]T where FFFN×N stands for the N -

point discrete Fourier transform (DFT) matrix. The sparse signal sssf with the sparsity

denoted by δ(sssf ) := ||sssf ||0, can be recovered from a M -element sub-Nyquist-rate mea-

surement vector yyyM×1 where M < N , with the product (i.e. sensing matrix) AAA := ΦΦΦFFF−1

meeting the restricted isometry property [55]. The sub-Nyquist-rate sampling can be

characterized by a linear system

yyy = ΦΦΦssst + bbb = AAAsssf + bbb, (3.5)

where ΦΦΦM×N is the sampling matrix with structured random entries corresponding to

analog-to-information converter (AIC) settings [71], and bbbM×1 ∼ CN
(
000M×1, σ

2IIIM
)

is a

vector of independent and identically distributed (i.i.d.) complex additive white Gaussian
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noise present in the measurements. Recovering a sparse sssf from the SMV model with

additive noise (3.5) is a typical problem in the CS area. Denote the recovered signal as

sssrf . SNR is formally defined by

SNR :=
E
[
||ΦsΦsΦst||22

]
(Mσ2)

. (3.6)

Consider that the practically large number of points B
Fs

of the spectrum at receiver γ̂γγ

may provide unnecessarily high resolution and adds to the complexity for CS. Here, the

decimated version of the spectrum is considered as the sparse spectrum to be recovered

sssf in (3.5), writing

sf [n] := γ̂

[
n · B

FsN

]
, n = 0, 1, · · · , N − 1, (3.7)

where it is assumed N is chosen to make B
CFsN

an integer. It is straightforward from (3.7)

that δ(sssf ) non-zeros entries in sssf are independent zero-mean complex random variables.

The Nyquist-rate time-domain samples ssst in the CS model (3.5) is then related to ŝsso by

st[n] =
1√
N

N−1∑
i=0

sf [i] · ej2π
in
N

=
1√
N

N−1∑
i=0


B
Fs
−1∑

m=0

ŝo[m] · e−j2π
m(i· B

FsN )Fs
B

 ej2π inN
=

1√
N

B
Fs
−1∑

m=0

ŝo[m]

[
N−1∑
i=0

e−j2π
i(m−n)
N

]

=
√
N

B
NFs
−1∑

k=0

ŝo[kN + n], n = 0, 1, · · · , N − 1,

(3.8)

where the last equation is based on the following relationship

N−1∑
i=0

e−j2π
i(m−n)
N =


N, m− n = kN and k ∈ Z,

0, otherwise.
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The expression (3.8) indicates that by considering the decimated version of spectrum,

sf [n]’s, in the CS system (3.5), the time domain samples s[t]’s in (3.5) should be obtained

by summing every N -sample frames in the raw time domain samples ŝo[m]’s, resulting

in a N -sample vector ssst = [st[0], st[1], · · · , st[N − 1]]T .

3.3 Spectrum Sparsity Estimation based on Subspace Decom-

position

Stack T samples of the measurement vectors obtained from sub-Nyquist sampling as

columns of a matrix, YYY , expressed by

YYY :=
[
yyy(1) yyy(2) · · · yyy(T )

]
= AAA

[
sss

(1)
f sss

(2)
f · · · sss(T )

f

]
+
[
bbb(1) bbb(2) · · · bbb(T )

]
= AAASSSf +BBB = YYY s +BBB,

(3.9)

where SSSf :=
[
sss

(1)
f sss

(2)
f · · · sss(T )

f

]
and BBB :=

[
bbb(1) bbb(2) · · · bbb(T )

]
. The underdetermined

system (3.9) consists of a MMV model in the CS literature, where the spectrum support

can be determined after recovering the joint row-sparse matrix (SSSf )N×T . It is hereby

assumed that the channel occupancy remains the same in the period of sample acquisition

T/Fs, hence SSSf is joint row-sparse. Apart from the joint row-sparse property of SSSf , it

also features a block-sparse property due to the channel structure, where every single

(NC ×T )-element block corresponding to the same channel contains non-zero elements or

all zero elements for an occupied or vacant channel respectively. The sparsity pattern

of SSSf is hereby termed by ‘joint-block-sparse’ as exemplified in Fig. 3.3 and the term

‘channel’ and ‘block’ are used interchangeably in the remainder of this chapter.

Examine the auto-correlation matrix of sub-Nyquist rate measurement vectors,

RRRy = AAARRRsf (FFF−1)HΦΦΦH + σ2IIIM , (3.10)
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T

Figure 3.3: A visualization of the joint-block-sparse matrix SSSf .

where

RRRy = E
[
yyyyyyH

]
= lim

T→∞

1

T

T∑
p=1

yyy(p)
(
yyy(p)

)H
and

RRRsf = E
[
sssfsss

H
f

]
= lim

T→∞

1

T

T∑
p=1

sss
(p)
f

(
sss

(p)
f

)H
.

With finite sample size T , one can only obtain estimates of auto-correlation matrices RRRy

and RRRsf denoted by R̂RRy and R̂RRsf , where it holds

R̂RRy =AAAR̂RRsf (FFF−1)HΦΦΦH +
1

T
BBBBBBH

=
1

T
YYY sYYY

H
s +

1

T
BBBBBBH ,

(3.11)

where R̂RRy = 1
T

∑T
p=1 yyy

(p)
(
yyy(p)

)H
= 1

TY YY YY Y
H , and R̂RRsf = 1

T

∑T
p=1 sss

(p)
f

(
sss

(p)
f

)H
= 1

TSfSfSfSfSfSf
H .

In Proposition 1 that follows, it is presented the property on the rank of R̂RRsf and R̂RRy

under noise-free conditions, based on which the sparsity of spectrum is proposed to be

estimated.

Lemma 1. Given ααα(1),ααα(2), · · · ,ααα(s) ∈ Cr is a series of arbitrary vectors and s < r, a

random vector ααα(s+1) ∈ Cr whose entries are independent and follow an absolutely contin-

uous distribution makes dim{ααα(1),ααα(2), · · · ,ααα(s),ααα(s+1)} = dim{ααα(1),ααα(2), · · · ,ααα(s)} + 1

with the probability of 1.

Proposition 1. Given σ2 = 0, and that random vector sssf has the sparsity of δ(sssf ),
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if T ≥ δ(sssf ), it holds with probability of 1 that rank(R̂RRsf ) = δ(sssf ). Furthermore, if

the sensing matrix AAA has full rank and M ≥ δ(sssf ), it holds with probability of 1 that

rank(R̂RRy) = rank(R̂RRsf ) = δ(sssf ).

Proofs for Lemma 1 and Proposition 1 are given in the Appendix. Proposition 1

indicates that the sparsity δ(sssf ) can be revealed by the rank of the estimated autocor-

relation of the measurements RyRyRy under the conditions that 1) T ≥ δ(sssf ), 2) M ≥ δ(sssf )

and that 3) the sensing matrix AAA has full rank. Since CS theory requires the product

of the sampling matrix ΦΦΦ and the sparsifying matrix FFF−1 to be nearly orthogonal [55],

and the number of measurements to meet M > O(δ(sssf ) logN) [168], condition 2) and

3) can be naturally met in most practices of CS. Therefore, one need guarantee that

the number of measurement vector samples is larger than the maximum sparsity of the

spectrum in order to employ the proposed sparsity estimation scheme.

Performing the eigendecomposition of AAAR̂RRsfAAA
H which has the rank of δ(sssf ) from

Proposition 1 will yield δ(sssf ) non-zero eigenvalues. With the presence of noise, R̂RRy is

presented by

R̂RRy =

δ(sssf )∑
i=1

λivvvivvv
H
i +

1

T
BBBBBBH , (3.12)

where λ1, · · · , λδ(sssf ) denote the (non-zero) eigenvalues in the signal’s subspace spanned

by the corresponding eigenvectors vvv1, · · · , vvvδ(sssf ). In practice, the eigendecomposition of

estimated auto-correlation matrix R̂RRy with the consideration of noise is applied as such

R̂RRy =
M∑
i=1

λ̂iv̂vviv̂vv
H
i , (3.13)

where λ̂1 ≥ · · · ≥ λ̂M and v̂vv1, · · · , v̂vvM denote the descending-ordered eigenvalues and

corresponding eigenvectors of the estimated auto-correlation matrix. The eigenvalue

profile based on the autocorrelation estimates R̂RRy asymptotically converges to, with a

increasing number of observations - T , to the true eigenvalues of RRRy, which consists of

δ(sssf ) dominant eigenvalues corresponding to the signal power components perturbed by
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noise and (M−δ(sssf )) small and equal eigenvalues equal to σ2 only representing the noise

power [169]. This implies that the sparsity estimation may be obtained by differentiating

two groups of eigenvalues by their amplitudes.

3.3.1 A Bayesian-Information-Criteria-Based Estimator

In practical estimation-based eigendecomposition (3.13), only limited numbers of samples

can be used for estimation and the SNR can be low, hence, the noise subspace eigenvalues

are not identical and can be difficult to be discriminated from signal subspace eigenvalues.

The above-described sparsity estimation problem is analogous to the source enumeration

which is a fundamental problem in array processing. A recently-proposed algorithm

based on information theoretic criteria (ITC) for estimating the dimensionality of signal

subspace is the enhanced Bayesian Information Criterion (BICe) [170] which defines the

ITC metric as

BICe(k) =− 2 log f(YYY |λ̂1, · · · , λ̂M ; k)

− 2 log f(λ̂1, · · · , λ̂M ; k) + Ck log T,

(3.14)

k = 1, · · · ,M ,where f(·) denotes probability density function and Ck = k(2M − k)

[162] is the number of free parameters related to k. Then the estimation ko of δ(sssf ) is

determined by

ko = arg min
k

BICe(k). (3.15)

Additionally, note sssf and bbb are independent and both zero-mean random vectors, one

can approximately regard yyy as a zero-mean Gaussian random vector as a result of central

limit theorem. Hence, the posterior probability of T independent observations YYY , given

the estimated eigenvalues parameterized by k, is expressed by the multivariate Gaussian
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model [171]

f(YYY |λ̂1, · · · , λ̂M ; k) =

T∏
p=1

exp tr
((
yyy(p)

)H · R̂RRy · yyy(p)
)

πM ·
∏k
i=1 λ̂i · (σ̂2)M−k

=
1

πM ·
∏k
i=1 λ̂i · (σ̂2)M−k

,

(3.16)

where λ̂1, · · · , λ̂k and σ̂2 :=
∑M

i=k+1 λ̂i/(M −k) are maximum-likelihood (ML) estimates

for λ1, · · · , λk and σ2, respectively.

The joint probability density f(λ̂1, · · · , λ̂M ; k) is proposed [170] to be approximated

by the product of the probability density of signal subspace eigenvalues and the proba-

bility density of noise subspace eigenvalues, using the ML estimates to approximate the

true values, that is

f(λ̂1, · · · , λ̂M ; k) =f(λ̂1, · · · , λ̂k|λ1 = λ̂1, · · · , λk = λ̂k)

·f(λ̂k+1, · · · , λ̂M |σ2 = σ̂2).

(3.17)

The probability densities f(λ̂1, · · · , λ̂k|λ1, · · · , λk) and f(λ̂k+1, · · · , λ̂M |σ2) are derived

in [171] and [167] respectively. By relating (3.16) and (3.17) into (3.14), after terms

irrelevant to k being removed, the optimization of BICe can be rearranged as the following

ko = arg min
k

BICe(k)

= arg min
k

{
2(M − k)(T +M − k) log σ̂2

− 2T
M∑

i=k+1

log λ̂i + 2
k∑
i=1

log λ̂i + 2
M−k∑
i=1

log Γ(i)

+ T

M∑
i=k+1

(
λ̂i − σ̂2

σ̂2

)2

− 4

M∑
i=k+1

M∑
j=i+1

log |λ̂i − λ̂j |

+ (4Mk − 2k2 − k) log T

}
,

(3.18)

where Γ(·) denotes the real Gamma function.
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3.3.2 Initial Performance Analysis

As a generalization of the original BIC detector, the BICe-based detector is reported

to inherit the asymptotic consistency property [170] that both the overestimation and

underestimation probability converge to zero with T increasing to infinity, regardless of

the SNR. Furthermore, overestimation probability converges much more rapidly, and is

reportedly small enough empirically and analytically [172] to be neglected.

The eigenvalue profiles of varying SNR and T are firstly shown in Fig. 3.4 (a) and

(b) respectively. With decreasing SNR, it is a natural result that the increasing eigen-

values from noise subspace lead to more difficulty in discriminating the signal subspace

eigenvalues from the eigenvalue profile. With decreasing T , the number of noise sub-

space eigenvalues is also harder to be determined as the noise subspace eigenvalues tend

to be more inconsistent in the eigenvalue profile. Moreover, the BICe metrics against

1 ≤ k ≤M are illustrated with changing SNR and T in Fig. 3.5 (a) and (b). With SNR

and T above certain level, the proposed BICe-based detection method can accurately

detect the sparsity of spectrum ko = rank(RRRsf ) = δ(sssf ). However, with either further

decreasing SNR or T , the k values corresponding to minimum BICe metrics tend to be

underestimated, that is ko < δ(sssf ). Additionally, in Fig. 3.5, overestimation is never

spotted with finite times of simulations and the smallest eligible T = M = 512. In this

sense, one can reasonably match T = 512 to the qualitative description ‘large sample

size’ in terms of negligible overestimation probability.

3.3.3 Estimation of Active Channel Number

As the sparse presentation SSSf is a joint-block-sparse matrix, having estimated the spar-

sity of the spectrum, one finally needs the estimated active channel number as the num-

ber of blocks to be detected in the recovery algorithm. Hereby, the estimation of active

channel number is proposed based on the constraint that the dimension of signal sub-

space only can be multiples of the number of spectrum bins of each channel, which is

δ(sssf ) = l · N/C with the actual number of occupied channels 0 ≤ l ≤ C being some
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Figure 3.4: Descending-ordered eigenvalue profiles (a)(a)(a) with varying SNR from −9dB to
9dB and T = 5120; (b)(b)(b) with varying T and SNR = 0dB.
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Figure 3.5: Enhanced BIC metric against sparsity values k (a)(a)(a) with varying SNR from
−9dB to 9dB and T = 5120; (b)(b)(b) with varying T and SNR = 0dB.

integer. Hence, with negligible overestimation probability, it is proposed to estimate the

active channel number lo from the detected sparsity of spectrum by

lo :=

⌈
ko · C
N

⌉
. (3.19)
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This ceiling operation in active channel number detection effectively enhances the its

robustness against low SNR and low values of T in which case the spectrum sparsity are

possibly underestimated, by amending the underestimated spectrum sparsity δ(sssf ) −

N/C < ko < δ(sssf ) as the case where the number of active channel is correctly detected.

With the estimated active channel number lo, one can get the compensated version of

spectrum sparsity as

kc :=
N · lo

C
=
N ·

⌈
ko·C
N

⌉
C

. (3.20)

3.4 Low-Complexity CSS Scheme with Estimated Active

Channel Number

In Section 3.3, it has been presented that one can apply a Bayesian-information-criterion-

based approach to get valid sparsity estimates by detecting the ‘best’ dimension in

the measurements’ eigen-space that belongs to the signal components. This separa-

tion between the signal and noise subspace of the measurements indicates that one may

remove the noise components and formulate a ‘denoised’ version of measurements for the

benefit of performances of the following CS recovery procedures and the incumbent signal

detection. Hereby, firstly, in Section 3.4.1, the noise reduction in the compressed mea-

surements based on the valid sparsity estimation is presented, which effectively results in

a new CS linear model with lower dimensions with lower recovery complexity expected.

Next, in order to perform low-complexity sparse recovery based on the proposed noise-

and-dimension-reduced model, greedy pursuit routines are investigated and empirically

evaluated in Section 3.4.2. Then, in Section 3.4.3, a most interested greedy pursuit

algorithm is chosen, which is further adapted to the newly proposed CS model to solve

the joint-sparse spectrum signal in question. Finally, some useful conclusions on the

convergence and complexity of the proposed recovery procedure are shown in Section

3.4.4.
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3.4.1 Noise and Dimension Reduction based on Subspace Decomposi-

tion

Consider the sparse recovery based on the CS linear models. The introduction of the

MMV model (3.9) can potentially improve the detection performance as the model

includes multiple samples of random measurement vectors compared to SMV case (3.5).

From the evaluations in Section 3.3.3, the proposed channel sparsity estimation may

require a large number of measurement vectors T to achieve satisfactory performance.

To enable quick spectrum sensing updates and rapid spectrum access, one could use a

possibly smaller number of measurement vectors, i.e. T
′ ≤ T to form the following MMV

model

YYY
′

= AAASSS
′
f +BBB

′
= YYY

′
s +BBB

′
, (3.21)

where YYY
′

=
[
yyy(1) yyy(2) · · · yyy(T

′
)
]
, SSS
′
f =

[
sfsfsf

(1) sfsfsf
(2) · · · sfsfsf (T

′
)
]
, andBBB

′
=
[
bbb(1) bbb(2) · · · bbb(T

′
)
]
.

The sample acquisition period for (3.21) is then T
′
/Fs.

However, noting that the sparse recovery’s complexity via an MMV model grows lin-

early with the number of measurement vectors T
′
[16], sparse recovery via an MMV model

(21) with a large T
′

becomes impractical. Besides that the subspace-aided approach in

Section 3.3 provides the estimate of spectrum sparsity, it is hereby noted that by a sim-

ilar subspace decomposition operation one can also reduce a great portion of noise from

the measurements and also the dimension of CS recovery problem. Similar to (3.13),

one has the estimated autocorrelation of YYY
′
, which writes R̂RR

′

y := 1
T ′
∑T

′

p=1 yyy
(p)
(
yyy(p)

)H
=

1
T ′
YYY
′
Y
′

Y
′

Y
′H , and perform eigendecomposition of R̂RR

′

y. With the compensated sparsity esti-

mate kc, one can separate the subspace of R̂RR
′

y into signal and noise subspace

R̂RR
′

y =
kc∑
i=1

λ̂
′
iv̂vv
′

iv̂vv
′H
i +

rank R̂RR
′
y∑

i=kc+1

λ̂
′
iv̂vv
′

iv̂vv
′H
i

=VVV sΛΛΛsVVV
H
s + VVV nΛΛΛnVVV

H
n ,

(3.22)



Chapter 3. Low-Complexity Compressive Spectrum Sensing with Sparsity Estimation 91

where λ̂
′
i’s are descending-ordered eigenvalues and v̂vv

′

i are corresponding eigenvectors, for

1 ≤ i ≤ rank R̂RR
′

y; ΛΛΛs = diag(λ̂
′
1, λ̂

′
2, · · · , λ̂

′
kc) and ΛΛΛn = diag(λ̂

′
kc+1, λ̂

′
kc+2, · · · , λ̂

′

rank R̂RR
′
y

).

The components in noise subspace can be easily identified and removed after kc is

obtained. In order to preserve the estimated dimension of signal subspace, i.e. kc,

it is required that rank R̂RR
′

y ≥ kc. On the other hand, from the dimension of R̂RR
′

y itself,

its rank satisfies rank R̂RR
′

y = min
{
M,T

′
}
. Hence, it is necessary that the number of

measurement vectors for sparse recovery meet T
′ ≥ kc.

Then, the support of spectrum is proposed to be directly determined by the compo-

nents in signal subspace VVV sΛΛΛsVVV
H
s , that is

VVV s(ΛΛΛs)
1
2 = AAASSSv +BBBv, (3.23)

where (SSSv)N×kc is the signal to be recovered by CS algorithm, and BBBv denotes the per-

turbing term due to noise residual in the signal subspace. It is noted that the dimension

of the joint-block-sparse matrix SSSv in (3.23) instead of SSS
′
f (21) can be greatly reduced

from N × T ′ to N × kc. The relationship between the sparse signal of the two MMV

models, SSSv and SSS
′
f in (3.23) and (21) respectively, is expressed by

supp(SSSv) ⊆ supp(SSS
′
f )= supp(SSSf ), (3.24)

where the equality holds when the spectrum sparsity is correctly estimated, i.e. kc =

δ(sssf ). With underestimated spectrum sparsity when SNR and T are small, the model

(3.23) can still be used with possibly worse detection performance as the support of SSSv

is a subset of SSSf . The rationale of (3.24) is provided in Proposition 2 and Corollary 1

below1.

Proposition 2. For arbitrary matrices MMM ∈ Ca×b and NNN ∈ Ca×c, if MMMMMMH = NNNNNNH ,

then span(MMM) = span(NNN).

1The support of a joint-sparse matrix supp(·) is defined as the set of the indices of the rows whose
0-norm are non-zero.
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Corollary 1. If the MMV model (21) is transformed to (3.23) by zeroing the noise

subspace in (3.22), and the dimensionality of signal subspace is not overestimated, i.e.

kc ≤ δ(sssf ), then (3.24) is met. Equality in (3.24) is guaranteed if kc = δ(sssf ).

Proofs for Proposition 2 and Corollary 1 are given in the Appendix.

3.4.2 Evaluations on Greedy Algorithms

Here, four algorithms frequently referred to in literature are considered, namely Orthogo-

nal Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CoSaMP) [147],

Subspace Pursuit (SP) [148], and Hard Thresholding Pursuit (HTP) [149], all of which

also require estimated sparsity as input. For simplicity, the basic SMV model (3.5) is

examined here to compare these algorithms, where kc is a natural choice of input spar-

sity estimate of sssf . It is noted that the complexity of these algorithms is dominated

by the correlation multiplication step with the complexity of O(NM), and the least-

square estimation step as it refers to the computation of the pseudo-inverse of a M × kc

column-full-rank matrix - an O
(
(kc)2M

)
operation2. Without the knowledge of the sig-

nal sparsity, a safe practice is inputting an overestimated or the maximum allowed value

as estimated sparsity in order to reduce the residual as much as possible. The difference

between OMP and these three algorithms is that the OMP cumulatively detects the

support in the desired signal, while CoSaMP, SP and HTP update a certain number

of supports batch by batch until a satisfactory support is detected upon convergence.

For OMP, the maximum allowed input of sparsity estimate is M with which a unique

solution is marginally guaranteed in the least-square estimation step. The complexity

reduction due to a valid estimated sparsity is apparent - the explicit number of iterations

is reduced from M to kc.

In the other three algorithms, in each iteration, the pruning operation is essential to

update the support of the original sparse signal sssf where the elements of sssf corresponding

to this support set are most likely to be non-zero. Specifically, CoSaMP has the pruning

2In this chapter, the pseudo-inverse of a a× b matrix (b < a) is considered to be implemented by the
SVD-based algorithm, which gives the complexity of O(ab2).
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procedure where kc most prominent supports out of 3kc remain in each iteration. This

pruning procedure dictates the maximum allowed input kc = M/3, which implies sparsity

can not be too much overestimated. Similarly, SP proposes to prune kc out of 2kc

supports and then recalculates the least-squares in each iteration. In terms of HTP,

the pruning process selects the kc most relevant supports out of M . The complexity

reduction comes from two aspects - one is the reduced dimensionality of the least-square

estimation problem in each iteration from O(M3) to O
(
(kc)2M

)
, and another is the

reduced average number of iterations as a valid estimate of sparsity aids to find the

correct subspace dimension of the signal to be recovered.

In addition to the benefits of reduced complexity, the estimated sparsity information

also aids to reliably recover the signal and find the correct signal support. Informally,

for general greedy algorithms, inputting an overestimated signal’s sparsity results in

excessive free dimensions in the least-squares step, hence it leads to more inclusion of

falsely-detected non-zero entries caused by noise perturbations in inaccurate measure-

ments.

For direct empirical results, experiments are conducted for the SMV spectrum recov-

ery problem (3.5) using the four interested greedy algorithms in order to compare their

performance on recovery fidelity and running time. To provide fairness, the same stop-

ping criteria are used for CoSaMP, SP and HTP - that the detected support is the same

in two consequent iterations, or the algorithm reaches the maximum number of iterations

of 100. These improvements on recovery fidelity illustrated in Fig. 3.6 is evaluated by

normalized minimum-squared error (NMSE), defined by

NMSE =
||sssrf − sssf ||22
||sssf ||22

. (3.25)

In Fig. 3.6 it is observed that all four algorithms shows the best recovery fidelity near

accurate estimate of sparsity kc = δ(sssf ) = 64. For HTP, with the input sparsity estimate

approaching M , the pruning is less effective and the recovery performance degrades
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with M more severely compared with OMP. It worth noting that when inputting the

sparsity estimate as M , the HTP algorithm degenerates to a single correlation step

(which has only 2 iterations) and the recovery performance is the worst in terms of

NMSE. However, with a valid sparsity estimate, the HTP algorithm offers the lowest

NMSE, which is consistent with both the theoretical superiority [149, Th. 3.8] over the

other three algorithms. For the time complexity of these algorithms, as shown in Fig.

3.7 (a) and (b), one can see that CoSaMP is sensitive to the input sparsity. Specifically,

the detected support tends not to converge with overestimated input sparsity (reaching

maximum iteration number of 100). Additional stopping criteria, which terminates the

iteration when the residual is less than a predefined tolerance, may be desired to stop

the algorithm before reaching the maximum number of iteration. However, the tolerance

of the residual is related to the noise level, which requires prior knowledge of the signal.

On the other hand, HTP still converges with small numbers of iterations. The good

convergence performance of HTP and SP leads to the considerate less recovery time of

both when compared with CoSaMP. Especially, OMP does not require termination upon

convergence by running an explicit number of iterations which equals kc, and the running

time also largely exceeds that of HTP and SP.

3.4.3 HTP-Based Blind Block Support Detection

From both the theoretical guarantees and the empirical results above and in [149], it is

found the HTP algorithm interesting which has superiority in both recovery fidelity and

convergence with inaccurate sparsity input. Consequently, it is proposed that one can

exploit the basic SMV form of HTP and revise it for solving the joint-block-sparse MMV

model (3.23), namely joint-block-sparse hard thresholding pursuit (JB-HTP). Having

obtained the estimated active channel number lo from subspace-decomposition-based

spectrum sparsity estimation, it is proposed to use lo as the input to the proposed algo-

rithm. The routines of the proposed algorithm are illustrated in Algorithm 1. To clarify

the notations in the step 4, (·)BLK,Ω(i+1) stands for the sub-matrix whose rows/columns

are indexed by the block entries in the set Ω(i+1), and (·)† denotes pseudo-inverse. In
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Figure 3.6: NMSEs of four greedy algorithms on the SMV model (3.5) against different
input sparsity estimates kc. Parameters are set as N = 1280, M = 512, SNR = 6dB
and δ(sssf ) = 64.
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Figure 3.7: (a)(a)(a) Average number of iterations of CoSaMP, SP and HTP on the SMV
model (3.5) against different input sparsity estimates kc (maximum number of iteration
is 100); (b)(b)(b) Average running time per recovery of four greedy algorithms on the SMV
model (3.5) against different input sparsity estimates kc.

the step 3 in the proposed algorithm, the Frobenius-norm is calculated for each block,
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which writes ∣∣∣∣∣∣∣∣(SSS(i+1)
v

+ (AAA)H
[
VVV s(ΛΛΛs)

1
2 −AAASSS(i+1)

v

] )
BLK,{c}

∣∣∣∣∣∣∣∣
F

(3.26)

for c = 0, 1, · · · , C − 1. in comparison with the original HTP routine for SMV that

employs 2-norm [149].

Algorithm 1 Joint-Block-Sparse Hard Thresholding Pursuit (JB-HTP)

Input: ΦΦΦ, VVV s(ΛΛΛs)
1
2 , lo, maxIter.

Output: SSSrv, Ω.

1: Initialize SSS
(i+1)
v ← 000, Ω(0) ← ∅, Ωold ← ∅, i← 0.

2: while
(
Ω(i) 6= Ωold and i < maxIter

)
or i = 0 do

3: Ω(i+1) ←
{

indices of lo largest || · ||F block entries of SSS
(i)
v +

(AAA)H
[
VVV s(ΛΛΛs)

1
2 −AAASSS(i)

v

]}
;

4: Ωold ← Ω(i);
5: i← i+ 1;

6:

(
SSS

(i)
v

)
BLK,Ω(i)

← 000;

7:

(
SSS

(i)
v

)
BLK,Ω(i)

←
[
(AAA)BLK,Ω(i)

]†
VVV s(ΛΛΛs)

1
2 ;

8: end while
9: Ω← Ω(i);

10: SSSrv ← SSS
(i)
v ;

Having finished the recovery of the joint-block-sparse matrix SSSv, one can perform

ED based on the recovered matrix SSSrv to determine the channel occupancy. However,

ED refers to setting an optimal threshold in the sense of detection probability, which

requires extra knowledge of statistics of SSSv. Due to the nature of greedy pursuit, it is

proposed to utilize the byproduct of the recovery algorithm - the detected block support

Ω as the spectrum occupancy decision, which forms an HD scheme.

If the reconstructed spectrum
(
SSS
′
f

r
)
N×T ′

analogous to the original joint-block-sparse

spectrum SSS
′
f in the MMV model (21) is desired, it can be obtained by an additional single
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projection step

(
SSS
′
f

r
)

BLK,Ω
← 000(

SSS
′
f

r
)

BLK,Ω
←
[
(AAA)BLK,Ω

]†
YYY
′
s.

(3.27)

To summarize this section, the full procedures of the low-complexity blind CSS with

spectrum sparsity estimation proposed in Section 3.3 and 3.4 are given in Alg. 2 and a

complete overview of the proposed CSS system architecture is given in Fig. 3.1.

Algorithm 2 Low-Complexity Blind CSS with Spectrum Sparsity Estimation

Input: M,N, T,ΦΦΦ,YYY ,C,maxIter.
Output: Ω

1: Construct R̂RRy from T snapshots and perform EVD to obtain λ̂1, · · · , λ̂M and
v̂vv1, · · · , v̂vvM as in (3.13);

2: Calculate BICe for k = 1, · · · M and find ko corresponding the minimum BICe as in
(3.18);

3: Compensate for underestimation and obtain lo and kc as in (3.19) and (3.20) respec-
tively;

4: Construct VVV s and ΛΛΛs as in (3.22);
5: Recover the spectrum and detect incumbent blocks by {SSSrv,Ω} ←

JB-HTP
(
ΦΦΦ,VVV s(ΛΛΛs)

1
2 , lo,maxIter

)
;

3.4.4 Theoretical Guarantees and Time Complexity of JB-HTP

Here, two conclusions of JB-HTP of interest are exhibited - firstly the exact recovery

and convergence guarantee with accurate measurements of joint-block-sparse signals, and

secondly the guarantee of the order of iteration times.

Proposition 3. If the 3kcth-order restricted isometry constant3 of the sensing matrix

AAA := ΦFΦFΦF−1 ∈ CM×N satisfies σΦΦΦ,3kc < 1/
√

3, for any joint-block-sparse matrix SSSv ∈

CN×kc with row sparsity of kc, the solution SSS
(i)
v in the ith iteration of JB-HTP based on

the MMV model (3.23) converges exactly to SSSv.

3Defined in Lemma 2 in Appendix A.
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See Appendix A for proof of Proposition 3.

Proposition 4. If the 3kcth-order restricted isometry constant of the sensing matrix

AAA := ΦFΦFΦF−1 ∈ CM×N satisfies σΦΦΦ,3kc < 1/
√

3, for any joint-block-sparse matrix SSSv ∈

CN×kc with row sparsity of kc and block sparsity of l, the average number of iterations

required by the JB-HTP algorithm based on the MMV model (3.23) is at most O(log l) +

O(1).

See Appendix B for proof of Proposition 4.

Theoretically, each iteration of the proposed JB-HTP algorithm for MMV model

(3.23) has complexity of O(kcNM) from the matrix multiplication in the correlation

step (line 3) and O
(
(kc)2M

)
from pseudo-inverse in the least-square step (line 4). Con-

sequently, each iteration’s complexity writes O(kcNM) + O
(
(kc)2M

)
= O(kcNM) as

kc << N always holds. Hence, with Proposition 4, the total complexity of JB-HTP is

expressed by O(kcNM log l).

3.5 Numerical Simulations

In simulations, time-domain OFDM signals ssso and ssst are generated as in (3.2) and

(3.8) to provide a multiband signal model with sparse channel occupancy. Constant

parameters are set as B = 8 (MHz), C = 40, N = 1280 and CB/Fs = 7680, and

each row of ΦΦΦ is independent and generated by normalized Gaussian random vector

CN (000, 1
N III). For simplicity of discussion, The wireless channel is considered to have unity

gain and no multipath effect, i.e. Lc = 1 and Kc = 0 for c = 1, 2, · · · , C as in (3.4).

Source symbols for the cth channel γγγc are set independent Gaussian, γγγc ∼ CN (000, σ2
γIII), if

the cth channel is active or otherwise 0’s in order to model a general multiband signal of

which the spectrum coefficients in the active channels are Gaussian random. Additive

white Gaussian noise model bbb ∼ CN
(
000, σ2III

)
is adopted and the received power, i.e. the

variance of all γc’s of all occupied channels are identical. Unless specified elsewhere, the

default settings of parameters in the simulation are as follows. Actual active channel
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number is set as l = 3, making δ(sssf ) = 96 with central frequencies of incumbent channels

set by [f1 f2 f3] = [76 164 244] (MHz), and the number of elements in each measurement

vector is M = 512. The number of measurement vectors for sparse recovery in (21) is

T
′

= M = 512. The SNR, as formally defined in (3.6), can be revealed to be controlled

by the ratio of σ2
γ and the noise variance σ2 in the simulation setting,

SNR =
E
[
||ΦsΦsΦst||22

]
(Mσ2)

=
M
N E

[
||sssf ||22

]
(Mσ2)

=
(3.7)

M
N ·

FsN
CB ·

(
lB
Fs
σ2
γ

)
(Mσ2)

=
l · σ2

γ

C · σ2
.

3.5.1 Performance Evaluation of the Proposed Spectrum Sparsity Esti-

mation Scheme

Firstly, as shown in Fig. 3.8, it is noted that the proposed spectrum sparsity estimation

scheme accurately detects the true sparsity δ(sssf ) = lN/C = 96 when SNR and the

number of measurement vectors T are sufficiently large. Moreover, possible determina-

tions of the active channel number lo = 1, 2, 3 based on ko have been shown. As a result

of that the spectrum sparsity ko is never overestimated, the proposed ceiling operation

in (3.19) is justified and it provides more robustness against low SNR and T while still

accurately detects the active channel number in high SNR and T cases.

In Fig. 3.9, the minimum integer SNRs with which the detection marginally gives

correct active channel number with varying sample size T are shown. The results have

verified the expectation that the decreasing M or increasing l lead to reduced dimen-

sionality of the noise subspace, hence deteriorated performance.

3.5.2 Performance Evaluation of the Proposed CSS Scheme

3.5.2.1 Benchmark scheme settings

In order to evaluate the performance of the proposed JB-HTP-based CSS scheme, it

is to be compared with a few chosen benchmark schemes illustrated in Table 3-A. In

scheme No. I, II, and III, three CS recovery algorithms, BP, OMP and HTP are chosen
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Table 3-A: Settings of the Proposed CSS Solution and Benchmark Schemes
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T

Figure 3.8: Estimated sparsity ko and estimated number of active channels lo against
SNR and the number of snapshots for estimation T .

T

Figure 3.9: Minimum SNRs to ensure correct detection of active channel number lo = l
against numbers of snapshots T , of varying numbers of elements each measurement vector
M and l.

to solve the sparse recovery problem of the SMV model (3.5) without the knowledge of

the spectrum sparsity where the ED scheme is used. To compare to SMV-ED schemes,

using the active channel number estimation scheme proposed in Section 3.3, SMV-HD

schemes with OMP and HTP recovery algorithms are examined in scheme No. IV and

V. Apart from the proposed active channel number estimation scheme, in scheme No.
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VI, VII, and VIII, the MMV model with dimension and noise reduction proposed in

Section 3.4, i.e. (21), applies for sparse recovery. Particularly, in scheme No. VI, the

MMV version of BP - multiple-BP (M-BP) [173] - is used to solve (3.9) where sparsity

estimation is not applicable and hence ED has to be used. In scheme No. VI and VII,

the MMV version of OMP, simultaneous-OMP (SOMP) [174], and the proposed JB-HTP

are used for MMV model (21) where HD is used because a spectrum sparsity estimation

is required by the formulation of the proposed model (21).

It should be noted that the recovery algorithms - OMP, HTP and SOMP in scheme

No. IV, V and VII are not intended for block-sparse signals so that the block support

(i.e. the active channel support) is not directly output by these recovery algorithms. In

these schemes, an intuitive procedure to produce the active channel support is used here

as in [54]. Having recovered the spectrum sssrf = [srf [0] srf [1] . . . srf [N − 1]]T from (3.5) or

(SSSrv)N×kc from (3.23), the channel energy is calculated by pppf = [pf [0] pf [1] . . . pf [N − 1]]T

whose entries are

pf [c] =

(c+1)N/C−1∑
i=cN/C

|srf [i]|2, (3.28)

for SMV model (3.5) or

pf [c] =
∥∥∥(SSSrv)BLK,{c}

∥∥∥2

F
, (3.29)

for MMV model (3.23), where c = 0, 1, · · · , C − 1. One can then directly determine

the active channels by sorting pf [n]’s and indicating the channels corresponding to the

largest lo entries, which effectively achieves hard detection, formally

Ω = {ω1, · · · , ωlo |pf [ω1] ≥ · · · ≥ pf [ωlo ] ≥ · · · ≥ pf [ωC ]} . (3.30)

3.5.2.2 Evaluation Metrics

For the purpose of spectrum sensing in DSA applications, the performance of detecting

occupied and vacant channels is the natural choice of the performance metrics. In Monte-

Carlo simulations, by definition, the probability of detection Pd and the probability of
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false alarm Pf are presented by

Pd =
total # correctly detected channels

# recovery trials× l
,

Pf =
total # falsely detected channels

# recovery trials× (C − l)
.

3.5.2.3 Simulation results

For the general effectiveness of the proposed scheme VII with JB-HTP, the detection

performance with different numbers of samples per measurement vector M and block

sparsity l of the spectrum is shown in Fig. 3.10. One can observe that the default

setting (M = 512, l = 3) gives Pd close and approaching 1 (Pd > 0.99) and Pf close

and approaching 0 (Pf < 10−3) starting from the SNR as low as −20dB. In comparison

with other combinations of M and l, the proposed scheme, like other CSS schemes,

shows superior detection performance with larger M (i.e. larger compression ratio) and

smaller l (i.e. smaller spectrum sparsity). It should be made clear that the estimated

active channel number used here is accurate, that is lo = l being input to Algorithm 1.

Next, the detection performance of the SMV schemes is examined to exhibit the ben-

efit of using the HD scheme brought by the proposed active channel number estimation.

Receiver operating characteristics (ROCs) of HD scheme IV and V are given in Fig. 3.11

to compare with ROC curves of ED schemes - I, II, and III. Note that ROCs of HD

schemes are scattered points as it is a hard decision scheme. Within the ED schemes,

the BP algorithm outperforms the greedy algorithms in scheme II and III. Moreover, the

advantage in detection performance of HD schemes is obvious as each ROC scatter lies

in the upper-left region to its counterpart ROC curve of the ED scheme, and even the

ED scheme with BP, under the same SNR. Specifically, the proposed HD scheme can

achieve the same Pd level while dramatically reduces Pf by orders of magnitude. This

advantage may be intuitively credited to the aid of the extra information of the active

channel number estimation to both the recovery and decision-making procedures. It is
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Figure 3.10: Detection performance of the proposed JB-HTP scheme on the MMV model
(3.23) against SNR. It is assumed the active channel number are correctly estimated,
lo = l in all shown cases.

also noted that the effect of the hard decision based on lo intrinsically constrained Pf

with Pd, that is Pf = (lo − lPd)/(C − l). This implies that the proposed hard-decision

scheme has constrained and small Pf when Pd is relatively large and l is only a fraction

of C. The constraint for lo = l = 3 is drawn in Fig. 3.11 where Pf < 0.016 is guaranteed

when Pd > 0.8. This inherent constraint on Pf is desirable compared to the ED scheme,

where setting a threshold with Pf constraints requires knowledge of the noise statistics.

Furthermore, one would like to account for the benefit of implementing the noise and

dimension reduction (3.22) and using the MMV model (3.23) by comparing the detection

performance of MMV-HD schemes - VII and VIII - with that of SMV-HD schemes - IV

and V. In Fig. 3.12, it is clear that each MMV scheme - the proposed JB-HTP or SOMP -

shows evidently higher robustness regarding detection performance against noise. Taking

Pd > 0.99 and Pf < 10−3 as reference levels, quantitatively, the proposed CSS scheme

(VIII) with JB-HTP shows the superior robustness against the noise of as much as 20

dB to achieve equivalent detection performance in comparison to both SMV-HD schemes
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Figure 3.11: ROC curves of SMV-ED schemes and scatterplots of SMV-HD schemes in
Table 3−A with SNRs from −1dB to −5dB and lo = l = 3.

with OMP and HTP. On the other hand, Fig. 3.12 indicates that the use of the proposed

JB-HTP algorithm based on the MMV model (3.23) proves to deliver better detection

performance than using SOMP in scheme No. VII. Furthermore, results have also been

obtained for the proposed scheme (VIII) with different numbers of measurement vectors,

T
′

= 256, 512, and 1024. As expected, a larger number of stacked measurement vectors

in (21) leads to better separation of signal and noise components via eigendecomposition

hence better detection performance after sparse recovery, but one should bear in mind

that a large T
′

also implies longer sample acquisition time and consequently delays in

obtaining spectrum sensing results.

In Fig. 3.13, the detection performance of MMV schemes VI, VII, and VIII are

illustrated in the form of ROC scatterplots and curves. The results show that the

proposed scheme VIII with JB-HTP outperforms scheme VII with SOMP and scheme

VI with M-BP and ED in respect of detection performance, while scheme VII is only

slightly better than the ED scheme VI. Additionally, it is also worth considering the

cases when lo is underestimated due to low SNR or the number of measurement vectors

T , and the possible option of purposely overestimating lo. With underestimated lo,
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Figure 3.12: Detection performance against SNR of MMV-HD schemes compared with
SMV-HD counterparts. It is assumed the active channel number are correctly estimated,
lo = l in all shown cases.

any HD scheme, can only achieve relatively poor Pd upper-bounded by lo/l, as a direct

consequence of at least l− lo miss-detected active channel. However, one can deliberately

compensate lo by some integer where some levels of underestimation are prone to appear

under certain SNRs. The price of such compensation method is that lo is also likely to

be overestimated. Results are also obtained for the proposed scheme VII to evaluate the

detection performance with both underestimate (lo = l − 1 = 2) and overcompensate

(lo = l + 1 = 4) cases and results are also given in Fig. 3.13. In the underestimate

case, Pd’s deterioration is obvious - it can only achieve no higher than 0.67 as expected.

In the overcompensate case, the price is the increased Pf which is lower-bounded by

1/(C − l) = 0.027, and Pd is somehow greater, compared to the case where lo = 3 under

the same SNRs.

Finally, the complexity of these benchmarked schemes I-VII and the proposed scheme

VIII are investigated. The time complexity of each CSS scheme in Table 3-A has been

accounted for in the order of atomic manipulations of complex addition and multipli-

cation. In comparison within either SMV or MMV schemes, the HTP or the proposed
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Figure 3.13: ROC curves of MMV-ED schemes and scatterplots of MMV-HD schemes
in Table 3 − A with SNRs from −20dB to −24dB and lo = l = 3. ROC scatterplots
of MMV-HD schemes with underestimated active channel number lo = l − 1 = 2 and
overcompensated active channel number lo = l + 1 = 3 are also shown for comparison.

JB-HTP scheme has the smallest order of time complexity in the recovery phase. Note

there is also an additional complexity of O(M3) in scheme No. IV-VIII from the active

channel number estimation due to the SVD procedure. In addition, the empirical results

on the average time per recovery of the 8 schemes are shown in Fig. 3.14 with 3 different

values of M . The time required for estimating the active channel number has also been

accounted for schemes where applicable. As a general trend, the average time consumed

per recovery is positively related to the value of M . More importantly, the empirical

time complexities, with the account of estimation of lo, of scheme No. VIII and VI are

also the smallest among MMV and SMV schemes, respectively. By comparing the pro-

posed MMV scheme VIII with the SMV counterparts III and VI, although the analytic

complexity order and recovery time of scheme VIII is found slightly greater as shown

in Fig. 3.14, it is reminded by the earlier experiments in Fig. 3.11 and 3.12 that the

superiority of the scheme VIII in detection performance is tremendous.
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Figure 3.14: Average time consumed by the CS recovery schemes in Table 3-A together
with the active channel number estimation scheme (if applicable).

3.6 Summary

This chapter presents a novel greedy-pursuit-based CSS scheme with the aid of subspace-

decomposition-based spectrum sparsity estimation, where the spectrum sparsity is directly

estimated from the output of the sub-Nyquist measurements without recovery opera-

tions. In the proposed scheme, an MMV model with noise and dimension reduction is

introduced, and a generalized version of HTP for joint-block sparse signals is proposed

as the recovery algorithm. The benefits of such a novel CSS scheme are summarized in

three aspects. Firstly, the estimation of spectrum sparsity effectively alleviates the com-

putational complexity of spectrum recovery with an explicit spectrum sparsity estimate

compared to the cases where such information is absent. Secondly, the use of the pro-

posed MMV model with noise and dimension reduction further enhances the detection

performance (as much as 20dB seen in simulation) while effectively keeping the complex-

ity low. Thirdly, the use of the spectrum sparsity estimate enables hard detection when

determining the occupancy of wireless channels, which improves the detection perfor-

mance from that of energy detection schemes, as well as removes the need for threshold

adaption. Monte-Carlo simulations have evaluated the performance of the spectrum
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sparsity estimation, shown the superior detection performance of the proposed scheme

against multiple benchmarking schemes, and verified its low time complexity.



Chapter 4

Channel Energy Modeling and

Threshold Adaption in

Compressive Spectrum Sensing

Spectrum sensing is a proactive way in cognitive radio systems to achieve dynamic spec-

trum access, and compressive spectrum sensing (CSS) techniques alleviate the demand

for high-speed sampling in wideband spectrum sensing. Most of the existing literature

discusses Neyman-Pearson channel energy detection and threshold adaption schemes to

achieve optimal detection performance in conventional non-compressive spectrum sens-

ing scenarios. However, in the CSS, it is found that the channel energy statistics and

optimal threshold not only depend on noise energy but also the compression ratio, the

sparsity of spectrum, and the nature of recovery algorithms. To investigate the channel

energy statistics of the recovered spectrum, a statistical model of channel energy for

CSS is postulated and a learning algorithm based on Mixture Model and Expectation-

Maximization techniques is proposed. Additionally, having verified the validity of the

postulated model, a practical threshold adaption scheme for CSS is proposed aiming

to keep constant false alarm rates in channel energy detection. In simulations, it is

110
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shown that the postulated channel energy statistical models with parameters learned by

the proposed learning algorithm fit well with empirical distributions for various chan-

nel models and recovery algorithms. Moreover, it is shown that the proposed threshold

adaption scheme keeps the false alarm rate near the predefined constant, which in turn

validates the postulated model. The rest of this chapter is organized as follows. Section

4.1 outlines the introduction and contributions of the work in this chapter. In Section

4.2, the signal model and the NP energy detection problem in CSS are illustrated. In

Section 4.3, the postulated statistical model for recovered signal in CSS is presented and

an algorithm for learning the parameters in the postulated statistical model is proposed.

In Section 4.4, based on the results in Section 4.3, the threshold adaption scheme based

on noise statistics estimation is proposed. Simulation results to prove the effectiveness of

the postulated channel energy statistical model and the proposed learning algorithm, as

well as the performance of the proposed threshold adaption scheme, is shown in Section

4.5.

4.1 Introduction

4.1.1 Related Work

statistical model Detection of occupied channels using spectrum reconstructed by CS

recovery algorithms is a crucial procedure of CSS. Cyclostationary feature detection

(CFD) and channel energy detection are two major types of detection techniques applied

in CSS that are reported in the literature. CFD exploits the cyclic stationary property in

modulated radio signals and it conducts detection in the spectrum of cyclic frequency and

spectral frequency [103, 104]. Compared with energy detection, CFD has been shown to

perform better in lower signal-to-noise ratio (SNR) conditions [69, 175]. However, it adds

considerable computational complexity to receivers and CFD-based detection algorithms

only work with specific and known types of modulation of signals. The simpler yet more

commonly used method is Neyman-Pearson (NP) channel energy detection whose objec-

tive is to directly differentiate the present signal from noise in a certain channel’s power
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spectrum by setting a proper threshold [97]. A common problem of energy detectors

is that statistics of the noise, for example, the variance, are a priori unknown in most

cases, because the noise in the received signal depends on the receiver’s noise figure and

gain control, temperature, ambient radio interference, etc. Thus, the noise statistics

need to be estimated to achieve optimal detection performance. As in most literature

of conventional spectrum sensing, it is assumed the noise is Gaussian distributed in the

NP energy detection method and the detection performance can be evaluated for various

channel models [100, 160]. Under the assumption of Gaussian noise, it has been pro-

posed in [100, 160, 176, 177] that noise variance estimation and threshold adaption can

be achieved in an online fashion. Other discussions on threshold adaption schemes with-

out prior assumptions on signal statistics are seen in the literature where supervision in

the adaptation process is necessary [103, 178]. However, the supervised learning process

requires training radio pilots of which the spectrum occupancy information is readily

known to sensing nodes, which is unrealistic in real-world spectrum sensing applications.

In CSS, the desired spectrum for energy detection is not directly available from time-

domain samples of analog-to-information converter (AIC) [71]. The spectrum of interest

needs to be recovered from these sub-Nyquist-rate samples by sparse recovery algorithms.

From both restricted isometry property theory of CS [179] and practice of wideband CSS

[14–16, 59, 180], the sparse recovery of a noisy signal results in an inconsistent recov-

ered spectrum compared to the true spectrum, and such inconsistency depends on spec-

trum sparsity, compression ratio and SNR of the sensed signal. From past experiments

[15, 181], it is discovered that in CSS the energy statistics of the recovered spectrum

differ from that of the true spectrum. In order to achieve optimal energy detection per-

formance, a proper statistical model and unknown statistics in the recovered spectrum

need to be learned.
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4.1.2 Contributions

The main contribution of this chapter is that, to the best knowledge, it is the first

work to address and model the statistics of the recovered signal in the energy detection

problem of CSS. It is discovered that the channel energy statistics in CSS are fundamen-

tally different from that in conventional non-compressive spectrum sensing. Specifically,

to set NP energy detection hypotheses for recovered signals, it is postulated that the

channel energy statistics model of the recovered spectrum still conforms to that of the

original spectrum, however, parameters of the model for recovered signals are treated as

unknown. Mixture Model (MM) and Expectation-Maximization (EM) techniques [182]

have been commonly used to obtain maximum-likelihood estimates of the parameters

given analytic distributions of statistics, and the specific use of Rayleigh-Gaussian MM

has been seen in [183, 184] to learn the signal statistics in non-compressive spectrum

sensing. In this chapter, the focus is on the channel energy in CSS and a customized

EM-based algorithm for a chi-square-MM is proposed to learn the channel energy statis-

tics of the recovered signal. Simulations have shown that the postulated statistical model

for recovered spectrum is a reasonably good fit with parameters learned from the sample

data set by the proposed algorithm.

An additional contribution is that, furthermore, a novel and practical threshold adap-

tion scheme is proposed based on the newly-addressed statistical model to achieve the

detection performance of constant false alarm rate (CFAR) for energy detection in CSS.

In simulations, it is shown how differently the thresholds should be set in various settings

of the CSS. Moreover, the results that the probability of false alarm can be kept near the

predefined constant also validate the good fit of the postulated model of channel energy

statistics and learning algorithm.
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4.2 Signal Model and Problem Statement

4.2.1 Compressive Spectrum Sensing

Consider CSS by single sensing node in non-cooperative scenario. Denote the Nyquist

time-domain signal as ssst = [s
(1)
t s

(2)
t . . . s

(N)
t ]T and its frequency-domain representation

sssf = FFFssst = [s
(1)
f s

(2)
f . . . s

(N)
f ]T where FFFN×N stands for N -point Discrete Fourier Trans-

form (DFT) matrix. A signal sparse in frequency domain can be recovered based on M

sub-Nyquist-rate measurements yyy = [y(1) y(2) . . . y(M)]T where M < N . The sub-Nyquist

sampling can be expressed as a linear system

yyy = ΦsΦsΦst + bbb = ΦFΦFΦF−1sssf + bbb, (4.1)

where ΦΦΦM×N is the sampling matrix with structured random entries corresponding to

AIC sampler settings, and bbb = [b(1) b(2) . . . b(M)] is additive noise present in measure-

ments.

The recovery of the sparse signal sssf can be achieved by solving the optimization

problem, writing

sssrf = arg min
sssf
||sssf ||l +

1

2λ
||ΦFΦFΦF−1sssf − yyy||22, (4.2)

where the norm 0 < l ≤ 1 and λ accounts for the penalty function and sssrf is the recovered

version of the original signal. Specifically when l = 1, the optimization problem is

convex and can be solved by Basis Pursuit Denoising algorithm. Furthermore, when

λ = 0, which is usually adopted as penalization term is often a priori unknown, the

recovery algorithm is called Basis Pursuit (BP). Besides, greedy algorithms are also an

efficient category of sparse recovery solvers, among which the most commonly used is the

Orthogonal Matching Pursuit (OMP) [55]. Sparse Bayesian Learning (SBL) has been

recently proposed for solving the sparse recovery problem in a probabilistic setting. By

introducing the Gaussian assumption on noise, specifically p(yyy|sssf ) being Gaussian and

assuming parameterized Gaussian priors sssf ∼ CN (000,diag(γγγ)) that induces sparsity in the

recovered signal, it aims to find maximum a posteriori probability of the hyperparameters
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Figure 4.1: System architecture of (a)(a)(a) conventional non-compressive compressive sensing
and (b)(b)(b) CSS.

γγγ [91, 94]:

sssrf = arg max
γγγ

p(γγγ|yyy) = arg max
γγγ

∫
p(yyy|sssf )p(sssf ;γγγ)dsssf . (4.3)

4.2.2 Channel Energy Detection in Spectrum Sensing

Consider wideband spectrum sensing for multiband signals where a channel is the unit

of frequency resource. To detect the channel occupancy, one can calculate the average

of the power spectrum density (PSD) bins within each channel for NP energy detection

as

p(c)
c =

∑
(c−1)R≤i<cR

1

R
|x(i+1)
f |2, (4.4)

for c = 1, 2, . . . , C, where C is the total number of channels and R is the number of PSD

bins in each channel. The system architecture diagrams of non-compressive spectrum

sensing and CSS with channel energy detection are illustrated in Fig. 4.1 (a) and (b)

respectively.

Next, the statistical model of channel energy is formulated for conventional non-

compressive spectrum sensing, and the differences in the channel energy statistics for

compressive spectrum sensing cases are described.

For non-compressive spectrum sensing, express the sensed spectrum as

xxxf = sssf +nnnf = FxFxFxt = FFF(ssst +nnnt), (4.5)
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wherennntN×1 = [ω
(1)
t ω

(2)
t · · ·ω

(N)
t ]T denotes complex independent-and-identically-distributed

(i.i.d.) additive white Gaussian noise (AWGN) as is widely adopted in the literature

[15, 97, 100]. Denote nnnt ∼ CN (000, σ2III). Note that the dimension of xxxf here is N = C ·R.

Consider a general multipath scenario, the expressions of x
(n)
t of the null hypothesis H0

corresponding to absent radio activity and H1 corresponding to active radio activity, are

written by

x
(n)
t =


w

(n)
t H0

√
Ke

(n)
t +

√
1−Ke(n)

t h
(n)
t + w

(n)
t H1

for n = 1, 2, · · · , N , where a commonly-adopted model

hhht = [h
(1)
t h

(2)
t · · ·h

(N)
t ]T ∼ CN (000, III)

is considered that characterizes the multipath effect of channel. K is the power ratio of

line-of-sight versus multipath components. The vector eeet = [e
(1)
t e

(2)
t · · · e

(N)
t ]T represents

the deterministic samples in a time frame of the PUs’ transmitted signal attenuated by

channel gain, and it is defined that eeef = [e
(1)
f e

(2)
f · · · e

(N)
f ] := FeFeFet. After performing

a linear transform (i.e. the DFT) on ssst and some rearrangements, one can reach the

statistical model of xxxf

x
(n)
f =


w

(n)
f ∼ CN (0, Nσ2) H0

√
Ke

(n)
f +

√
1−Ke(n)

f h
(n)
f + w

(n)
f

∼ CN (
√
Ke

(n)
f , (1−K)|e(n)

f |
2 +Nσ2)

H1

(4.6)

where one can find

hhhf = [h
(1)
f h

(2)
f · · ·h

(N)
f ]T ∼ CN (000, III)

and denote

nnnf = [ω
(1)
f ω

(2)
f · · ·ω

(N)
f ]T := FnFnFnt ∼ CN (000, Nσ2III)
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.

Moreover, from (4.4), the statistical model of average channel PSD level p
(c)
c is found

characterized by a central and a noncentral chi-square distribution, as a direct result of

summing the squared Gaussian distributions of xxxf in (4.6) with zero means and non-zero

means respectively. Specifically, it writes

p(c)
c =



∑
(c−1)R≤i<cR

|w(i+1)
f |2

R = Nσ2

2R r0, r0 ∼ χ2(2R) H0∑
(c−1)R≤i<cR

1

R
|
√
Ke

(i+1)
f +

√
1−Ke(i+1)

f h(i+1) + w
(i+1)
f |2

= β(c)r1, r1 ∼ χ′2(2R,α(c))

H1

(4.7)

for c = 1, 2, · · · , C, where χ2(k) and χ′2(k, q) represents central chi-square distribution

of degree of freedom (DoF) k and non-central chi-square distribution of DoF k and

noncentrality parameter q respectively. In (4.7), r0 ∼ χ2(2R) and r1 ∼ χ′2(2R,α(c)) are

random variables. Parameters α(c) and β(c) are expressed as

α(c) =
∑

(c−1)R≤i<cR

K|e(i+1)
f |2

(1−K)|e(i+1)
f |2 +Nσ2

, (4.8)

and

β(c) =

(1−K)
∑

(c−1)R≤i<cR
|e(i+1)
f |2/R+Nσ2

2R
. (4.9)

As special cases, expressions for the Rayleigh channel and AWGN channel can be

obtained by setting K = 0 and K = 1, respectively. In the Rayleigh channel case,

noting that α(c) = 0, the general noncentral chi-square distribution of H1 degenerates to

a central chi-square distribution.

In conventional non-compressive spectrum sensing, it is generally valid to assume

Gaussianity of noise added on the signal as a prior information. However, in CSS, when

Gaussian noise is assumed and certain channel model of original signal, it is noted that
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the two hypotheses’ distributions in recovered signal do not preserve distributions in the

original signal. Specifically, let the sensed spectrum to be xxxf = sssrf in CSS scenario,

and it is found that the distributions in (4.7) parameterized by R, (4.8) and (4.9) no

longer hold. This finding should not be surprising, as it is a common conclusion that

the recovery performance gets worse with decreasing compression ratio and spectrum

sparsity, resulting in more occurrences of miss detected and falsely detected spectrum

supports. A direct result of this discrepancy is that attempts in CSS to achieve CFAR in

detection using threshold setting methods [97] for non-compressive spectrum sensing will

lead to varying false alarm probability, which have been appeared in [15, Fig. 7, Fig. 8],

[181, Fig. 6, Fig. 8] and [185, Fig. 4]. To give a direct example of such changes on signal

statistics, comparisons of original and recovered on spectrum, average channel PSD, and

histogram of average channel PSD are given in Fig. 4.2. To simplify the problem, from

this point, it is assumed the hypothesis H1 to have same parameters across all channels,

i.e. α = α(1) = · · · = α(C) and β = β(1) = · · · = β(C). Hence, the average channel PSDs

p
(c)
c from different channels are not differentiated. Instead, they are treated as multiple

samples of pc as they are drawn from the same statistical model. The scales of axis

in each subfigure pairs for comparison are fixed to give a clear view of the differences.

It is particularly noted that the difference in the statistics of pc between original and

recovered signal is obvious in Fig. 4.2 (c) and (f).

4.3 Modelling and Learning of Channel Energy Statistics

for Compressive Spectrum Sensing

In this section, the statistical model of channel energy in the CSS is formulated, and

an EM-based algorithm to learn the unknown parameters in the formulated model is

presented.
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Figure 4.2: Comparisons of original and recovered signal and their statistics. (a)(d)(a)(d)(a)(d) PSDs
of original and recovered signal, respectively; (b)(e)(b)(e)(b)(e) average channel PSDs of original and
recovered signal, respectively; (c)(f)(c)(f)(c)(f) average channel PSD distributions of original and
recovered signal, respectively.

4.3.1 Model and Problem Formulation

To examine the statistics of the recovered signal of compressive spectrum sensing, the

concise and direct way is through mathematical analysis of the probability density func-

tion of the output signal step by step following certain compressive sensing algorithm.

However, common compressive sensing algorithms include optimization sub-routines that

have complex and evidently nonlinear forms [55, 91, 94], which makes the PDF derivation

rather challenging. Instead, a general statistical model is tentatively postulated where

the hypotheses H0 and H1 of recovered signal still conform to central and non-central

chi-square distribution respectively with parameters relaxed as unknown. To express
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this postulated statistical model on the two hypotheses, one has

pc =


σ2

2Rr0, r0 ∼ χ2(2R) H0

βr1, r1 ∼ χ′2(2R,α) H1

(4.10)

where σ2, R, α and β are no longer defined as in (4.4), (4.8) and (4.9), and are treated

as unknowns which are to be estimated from the learning dataset. This effectively

formulates an MM learning problem of two components in each channel. Specifically,

after performing multiple runs of CS recovery of the spectrum, suppose there is a series

of T recovered spectra as the learning dataset. Thus, one can obtain CT samples of pc[t]

(t = 1, 2, · · · , CT ) according to (4.4). The expression of likelihood function is formulated

as

f(pc;σ
2, R, α, β, πH0 , πH1)

=πH0fH0(pc;σ
2, R) + πH1fH1(pc;R,α, β),

(4.11)

where prior probability is represented as πH0 = Pr(Z = H0) and πH1 = Pr(Z = H1).

The MM learning problem mentioned above is to find the optimal θθθo of parameters

θθθ = [σ2, R, α, β, πH0 , πH1 ] (4.12)

to obtain maximum likelihood (ML) estimation of parameters, expressed by

θθθo = arg max
θθθ

CT∏
t=1

f(pc[t];θθθ)

= arg max
θθθ

CT∑
t=1

log [f(pc[t];θθθ)].

(4.13)
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Problem (4.13) can be solved by EM algorithm [186] which sets a surrogate majorization

function

Q(θθθ;θθθ<j>) = EZ|pc;θθθ<j>
{ CT∑
t=1

log [f(pc[t], z[t];θθθ)]
}

=

H1∑
z=H0

CT∑
t=1

Pr(Z = z|pc = pc[t];θθθ
<j>) log

{
πzfz(pc[t];θθθ)

} (4.14)

parameterized by θθθ<j> and maximize the surrogate function over θθθ iteratively. The joint

probability density in (4.14) of pc and latent variable of hypothesis Z = z in (4.14) is

expressed as

f(pc, z;θθθ) =πH0δ(z = H0)fH0(pc;σ
2, R)

+ πH1δ(z = H1)fH1(pc;R,α, β),

(4.15)

where δ(a = A) is indicator function which equals to 1 only if a = A and elsewhere 0. It

is proved [186] that by iteratively decreasing the surrogate function, each EM procedure

will not decrease the objective until convergence to at least a local optimum.

In the remaining part of Section 4.3, the iterative maximization of the surrogate

function Q(θθθ;θθθ<j>) is illustrated, and in the following part of Chapter 4, the superscipt

(·)<j> denotes the parameter of the jth iteration.

4.3.2 EM Algorithm: Expectation

In expectation step, the probability term conditioned on θθθ<j> in (4.14) is called “mem-

bership probability” and obtained by the definition

M<j>
z [t] :=Pr(Z = z|pc = pc[t];θθθ

<j>)

=
π<j>z fz(pc[t];θθθ

<j>)

π<j>H0
fH0(pc[t];θθθ<j>) + π<j>H1

fH1(pc[t];θθθ<j>)
,

(4.16)

where z = H0,H1.
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4.3.3 EM Algorithm: Maximization

The maximization step of EM procedure finds the next update of parameters θθθ<j+1>

by setting partial derivatives of Q(θθθ;θθθ<j>) to zero if closed-form partial derivatives are

available. For prior probabilities, considering the normalization relationship M<j>
H0

+

M<j>
H1

= 1, the update, which is irrelevant to PDF of chi-square distribution, simply

follow

∂Q(θθθ;θθθ<j>)

∂πH0

=

CT∑
t=1

M<j>
H0

[t](πH0)−1 −M<j>
H1

[t](1− πH0)−1

= 0⇒ π<j+1>
H0

=

CT∑
t=1

M<j>
H0

CT

(4.17)

and

π<j+1>
H1

= 1− π<j+1>
H0

. (4.18)

Regarding updating σ2, it only relates to central chi-square-like PDF fH0 , which has

closed-form expression

fH0(pc;σ
2, R) =


(
R
σ2

)R · (pc)
R−1e

−Rpc
σ2

Γ(R) , pc > 0

0, pc ≤ 0.

(4.19)

Thus, the partial derivatives of logarithm PDF over σ2 is not relevant to the Gamma

function Γ(·), and the update can be presented by,

∂Q(θθθ;θθθ<j>)

∂σ2
=

CT∑
t=1

M<j>
H0

[t]
(
− R

σ2
+
pc[t]R

σ4

)
= 0⇒ (σ2)<j+1> =

∑T
t=1M

<j>
H0

[t]pc[t]∑T
t=1M

<j>
H0

[t]
.

(4.20)

Exact optimization of the surrogate function over parameters R, α and β requires

differentiating the non-central chi-square PDF fH1 which is known to have a modified

Bessel function term including an infinite series of Gamma function [187], so it is difficult
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to derive a straightforward expression of derivatives. The moment-matching method can

be adopted as an alternative approach of ML to estimate parameters of MMs by directly

matching the moment of mixture’s PDF and moment estimations of samples [182]. In

this particular case, however, the dimension of parameter vector θθθ to be estimated is so

large that one needs to match high-order moments and solve high-order equations which

is impractical. Although it is unfeasible to directly apply optimization or moment-

matching estimation, it is proposed to use simpler moment-matching updates on the

above mentioned parameters in the EM’s maximization step to get an increase of the

surrogate function. Relating to the theory of EM algorithm [186], the non-decreasing

property of objective function in (4.13) can be preserved as long as Q(θθθ<j+1>;θθθ<j>) ≥

Q(θθθ<j>;θθθ<j>), thus the maximization step can be relaxed to an increasing step at a

price of possibly slower convergence rate. To illustrate the moment-matching method

in the maximization step, to begin with, the update of R is detailed. The second-order

central moment of the hypothesis H0 is expressed as

VarH0;θθθ = E{(pc − σ2)2|Z = H0;θθθ} = σ4/R. (4.21)

The second-order central moment estimation of samples pc[t] on condition of H0 and

parameters θθθ<j> is expressed as (4.22). Note that a prior occurrence probability of

samples Pr(pc = pc[t]) is treated as uniform across all t.

CT∑
t=1

(pc[t]− σ2)2 · Pr(pc = pc[t]|Z = H0;θθθ<j>)

=

CT∑
t=1

Pr(Z = H0|pc = pc[t];θθθ
<j>)[pc[t]− (σ2)<j>]2∑T

t=1 Pr(Z = H0|pc = pc[t];θθθ<j>)

=

∑CT
t=1M

<j>
H0

[t][pc[t]− (σ2)<j>]2∑CT
t=1M

<j>
H0

[t]
.

(4.22)

Then this second-order central moment estimation (4.22) is used over θθθ<j> to match the
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parameters given in (4.21) for next update θθθ<j+1>,

[(σ2)<j+1>]2

R<j+1>
=

∑CT
t=1M

<j>
H0

[t](pc[t]− (σ2)<j>)2∑CT
t=1M

<j>
H0

[t]
, (4.23)

where R<j+1> is solved with (σ2)<j+1> given in (4.20).

Similarly, given R<j+1>, the moment-matching updates for α and β is obtained by

the first-order moment and second-order central moment of H1,

µH1;θθθ<j+1> = β<j+1>[2R<j+1> + α<j+1>]

=

∑CT
t=1M

<j>
H1

[t]pc[t]∑CT
t=1M

<j>
H1

[t]
,

(4.24)

and

VarH1;θθθ<j+1> = 4[β<j+1>]2[R<j+1> + α<j+1>]

=

∑CT
t=1M

<j>
H1

[t]
{
pc[t]− β<j>[2R<j> + α<j>]

}2∑CT
t=1M

<j>
H1

[t]
.

(4.25)

It should be noted that the updates using the moment-matching method do not

necessarily decrease Q(θθθ;θθθ<j>). In order to guarantee an explicit non-decreasing step,

an additional step is proposed where the moment-matching method only updates the

corresponding parameter if the value of the surrogate function is not decreased by the

moment-matching method. This is accomplished by calculating the surrogate function

Q(θθθ<j+1>;θθθ<j>) andQ(θθθ<j>;θθθ<j>) where the value of central and non-central chi-square

PDFs can be well approximated by numerical methods. Moreover, as (4.24) and (4.25)

consist of a quadratic equation set, it is noted that there will exist two sets of solutions

[α<j+1>
1 , β<j+1>

1 ] and [α<j+1>
2 , β<j+1>

2 ]. For each update, one should choose the set of

solutions leading to the greater increase, if there is any, of the surrogate function.

To finalize this section, the proposed EM-based learning algorithm above is summa-

rized as in Algorithm 3.
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Algorithm 3 EM-based learning of channel energy statistics in compressive spectrum
sensing

Input: CT average channel PSD samples of pc[t], t = 1, 2, · · · , CT .
Output: Parameters θθθ<j> of two hypotheses’ PDF in (4.7) optimized by (4.13).

1: initialize (σ2)<0> > 0, R<0>) > 0, α<0> > 0, β<0>) >= 0, 1 > π<0>
H0

= 1− π<0>
H1

>
0, j = 0.

2: repeat
3: for each hypothesis z = H0 and H1 and each sample t = 0 to CT do
4: update membership probability M<j+1>

z [t] as in (4.16)
5: end for
6: update (σ2)<j+1> as in (4.20)
7: update R<j+1> as in (4.23)
8: θθθtemp0 ← θθθ<j> with element R<j> replaced by R<j+1>

9: if Q(θθθtemp0;θθθ<j>) < Q(θθθ<j>;θθθ<j>) then
10: R<j+1> ← R<j>

11: end if
12: update π<j+1>

H0
and π<j+1>

H1
as in (4.17) and (4.18)

13: solve (4.24) (4.25) to get two sets of solutions [α<j+1>
1 , β<j+1>

1 ] and

[α<j+1>
2 , β<j+1>

2 ]

14: θθθtemp1 ← θθθ<j> with elements α<j> and β<j> replaced by α<j+1>
1 and β<j+1>

1

15: θθθtemp2 ← θθθ<j> with elements α<j> and β<j> replaced by α<j+1>
2 and β<j+1>

2

16: if Q(θθθtemp1;θθθ<j>) > Q(θθθtemp2;θθθ<j>) then

17: α<j+1> ← α<j+1>
1 , β<j+1> ← β<j+1>

1

18: else
19: α<j+1> ← α<j+1>

2 , β<j+1> ← β<j+1>
2

20: end if
21: if Q(θθθtemp1;θθθ<j>) < Q(θθθ<j>;θθθ<j>) and Q(θθθtemp2;θθθ<j>) < Q(θθθ<j>;θθθ<j>) then
22: α<j+1> ← α<j>, β<j+1> ← β<j>

23: end if
24: j ← j + 1
25: until ||Q(θθθ<j>;θθθ<j>)−Q(θθθ<j−1>;θθθ<j>||2 < a small threshold

4.4 Threshold Adaption via Noise Statistics Estimation in

Compressive Spectrum Sensing

Although in Section 4.3 it is presented that the postulated statistical model (4.7), it is

noted that Algorithm 3 is impractical in CSS applications due to the following reasons:

1. Algorithm 3 involves multiple calculations of the surrogate function in each itera-

tion, which requires considerable computational effort;
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2. As a common drawback of EM algorithms, Algorithm 3 can converge to one of

many local maxima. Setting initial values θθθ<0> close to the real maxima helps the

algorithm converge to the global maximum [188]. In order to find the global maximum,

a common practice is that the algorithm should run multiple times with θθθ<0> randomly

chosen, which adds more computational complexity. Alternatively, human involvement

to choose the proper θθθ<0> or other initial value selection scheme should be applied;

3. In real-world applications, the sensed channel energy or channel model of each

channel is hardly likely to be the same. Hence the samples from active channels would

be drawn from differently parameterized hypothesis H1, which may lead to failure to fit

with the postulated statistical model (4.7).

Due to these problems, in this section, a robust and practical threshold adaption

scheme via noise statistics estimation is proposed based on the verified statistical model

of hypothesis H0 in (4.7). However, these drawbacks do not affect the usefulness of

Algorithm 3. The purpose of Algorithm 3 is not to provide a practical method - it is

proposed to verify the postulated statistical model (4.10) and to compute the parameters

θθθ with various CSS settings.

4.4.1 The Proposed Threshold Adaption Scheme

In this subsection, a threshold adaption scheme which specifically aims to achieve CFAR

in the detection phase is presented. According to NP detection theory, CFAR only relates

to hypothesis H0, which means that only parameter learning of H0 is required. In the

following, procedures of the proposed threshold adaption scheme are detailed.

4.4.1.1 Identification of Vacant Channels in the Learning Dataset

Given the learning dataset which comprises T ′ samples of spectrum recovered by CS algo-

rithm, prior to estimating the parameters relating to H0, the first step of the proposed

threshold adaption is to initially identify these samples of hypothesis H0. Specifically,

given t = 0, 1, · · · , T ′ observations of recovered spectrum and consequently p
(c)
c [t]’s, it is
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intended to identify these channels that are free throughout these observations. Due to

sparse spectrum usage and rapid observation acquisition, it is a reasonable assumption

that the channel occupancy is static with at least one occupied and multiple vacant chan-

nels during the acquisition process. This identification problem falls into the category of

clustering [189]. The average channel PSD level p
(c)
c of these vacant channels conforms

to the same distribution; however, other channels have different statistics (usually larger

mean and standard deviation) from these of vacant channels. One can exploit this fea-

ture and k-means clustering algorithm to identify these vacant channels. In this specific

problem, the k-means clustering is conducted in two dimensions - sample means and

sample standard deviation - to produce two clusters. K-means is a basic model of clus-

tering which aims to find the clustering solution with minimum intra-cluster distance.

In this particular case, it aims to solve the following optimization problem to obtain the

vacant channel set C, which writes

C = arg min
X

∑
X=S,S\X

∑
k∈X

∥∥∥∥∥ddd(k) −
∑
v∈X

ddd(v)/|X |

∥∥∥∥∥
2

, (4.26)

where S = 1, 2, · · · , C is the set of all channels and the statistics are presented by two-

element vector containing sample means and sample standard deviation

ddd(c) =


∑T

′

t=1 p
(c)
c [t]

T ′
,

√√√√√∑T ′

t=1

[
p

(c)
c [t]−

∑T
′

τ=1 p
(c)
c [τ ]

T ′

]2

T ′ − 1

 . (4.27)

Details of the k-means clustering algorithm are not to be given in this thesis and readers

are referred to [189, 190].

4.4.1.2 ML Estimation of Parameters in H0

After these vacant channels are identified, the samples of these channels are used to

estimate the parameters R and σ2 of chi-square-like distribution in (4.19). Denote the

number of identified vacant channels as C
′

= |C|. ML estimator which maximizes the
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joint probability of each sample in the dataset for estimation [191] is adopted, expressed

by

(Ro, (σ2)o) = arg max
R,σ2

L(σ2, R)

= arg max
R,σ2

T
′∏

t=1

∏
c∈C

fH0(p(c)
c [t];σ2, R).

(4.28)

The maximization1 is achieved by solving the stationary point of the log likelihood

function, where

∂ log [L(σ2, R)]

∂σ2
=
C
′
T
′
R

σ2
−
R
∑T

′

t=1

∑
c∈C p

(c)
c [t]

σ4
= 0

⇒ (σ2)o =

∑T
′

t=1

∑
c∈C p

(c)
c [t]

C ′T ′

(4.29)

and

∂ log [L(σ2, R)]

∂R
= C

′
T
′
[logR+ 1− log σ2 − Γ

′
(R)

Γ(R)
]

+

T
′∑

t=1

∑
c∈C

log p(c)
c [t]−

∑T
′

t=1

∑
c∈C p

(c)
c [t]

σ2
= 0.

(4.30)

(σ2)o can be easily solved in (4.29). However, Ro is not easy to solve analytically but

can be solved numerically. Use Stirling’s expansion [192] of the digamma function when

R is relatively large

Γ
′
(R)

Γ(R)
= log(R)− 1

2R
− 1

12R2
+

1

120R4
− 1

252R6
+O

(
1

R8

)
, (4.31)

and adopt a partial cut-off sum of the series to insert into (4.30). Thus the equation

(4.30) can be solved by the Newton-Ralphson method which implements the iteration

R<j+1> ← R<j> − ∂ log [L(σ2, R)]/∂R

∂2 log [L(σ2, R)]/∂R2

∣∣∣∣
R=R<j>

, (4.32)

1Examine the equations (4.29) and (4.30). It is noted that partial derivatives of log
[
L(σ2, R)

]
with

regards to R > 0 and σ2 both have only one zero point. Hence global optimality is guaranteed.



Chapter 4. Channel Energy Modeling and Threshold Adaption in Compressive Spectrum
Sensing 129

where the first and second partial derivatives are easy to obtain as it only relates to

polynomial of R. The initial value of iteration should be near the root to ensure fast

convergence and it can be obtained by moment-matching. Recall (4.21), and the initial

value is obtained by

R<0> =
C
′
T
′
[(σ2)o]2∑T ′

t=1

∑
c∈C [p

(c)
c [t]− (σ2)o]2

. (4.33)

4.4.1.3 Threshold Adaption

NP tests on channel energy are deployed based on the threshold δ

p(c)
c

H1

≷
H0

δ, (4.34)

where the threshold can be determined by CFAR strategy. Probability of false alarm are

found to satisfy the constant complementary cumulative probability density (CCPD) of

H0,

Pf = Pr(p(c)
c > δ|H0) =

Γ(R, Rδ
σ2 )

Γ(R)
, (4.35)

where Γ(a, b) is the incomplete Gamma function. For given Pf in CFAR, the correspond-

ing threshold δ can be easily found numerically, for example, by binary search method,

as CCPD values can be computed2 and is monotonically decreasing.

4.4.2 Asymptotic Performance of the Proposed Threshold Adaption

Scheme

Here the asymptotic performance of the noise energy statistics estimation and thresh-

old adaption is analyzed. The ML estimator (4.28) has the property of an asymptotic

minimum-variance and unbiased estimator [191]. Specifically, the distribution of the

parameters learned by the proposed ML method asymptotically converges to a Gaussian

distribution (
Ro, (σ2)o

) C′T ′∼ N
(
(R, σ2), III−1(R, σ2)

)
, (4.36)

2Note R in (4.35), as an output of the proposed ML estimation, can be arbitrary positive value. In
simulations the Matlab functions chi2cdf is used to calculate CCPD.
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where Fisher information matrix III is

III(R, σ2) =

−E
[
∂2 log [L(σ2,R)]

∂R2

]
−E

[
∂2 log [L(σ2,R)]

∂R∂σ2

]
−E

[
∂2 log [L(σ2,R)]

∂σ2∂R

]
−E

[
∂2 log [L(σ2,R)]

∂(σ2)2

]


=

C ′T ′
(

1
R −

Γ
′′

(R)

Γ′ (R)

)
0

0 C
′
T
′
R

σ4

 .
(4.37)

The variance of estimated parameters
(
Ro, (σ2)o

)
asymptotically approaches Cramer-

Rao lower bound,

Var(Ro)
C
′
T
′

∼ 1

C ′T ′

(
1

R
− Γ

′′
(R)

Γ′(R)

)−1

, (4.38)

and

Var
(
(σ2)o

) C′T ′∼ σ4

C ′T ′R
. (4.39)

With the increasing and sufficiently large number of samples C
′
T
′
, these lower bounds

(4.38) and (4.39) can be approached asymptotically and well approximates the real vari-

ance, which represents the analytic performance of the ML estimation (4.28).

Moreover, the variance of the real Pf is another relevant parameter, as it indicates

how well the proposed noise statistics estimation and threshold adaption can determine

a threshold to keep a target Pf . To quantify the variance of Pf , the asymptotic variance

bounds (4.38) and (4.39) are used. To obtain the closed-form expression of the variance

of Pf , the variance of Pf with regards to random variables Ro and (σ2)o should be derived

using the relationship (4.35). As the expression (4.35) has a complex formulation which

contains the incomplete Gamma function, the derivation of the variance of Pf is not a

trivial task. Alternatively, Monte-Carlo simulations are used to inspect this variance,

where the number of null channels is set as T
′

= 34 (the same value are used in Section

4.5 where 6 channels out of 40 are active) and the sample variance in Monte-Carlo

simulation is used as the approximation to the real variance. The legitimacy behind this

Monte-Carlo simulation is the law of large numbers - for the sufficient simulations, the
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sample variance of multiple independent observations of Pf converges to the variance of

the random variable Pf . The process of such a Monte-Carlo simulation is detailed as

follows. Firstly, choose a target Pf and the true parameters R and σ2. For each run

of the Monte-Carlo simulation, use formula (4.35) with random Ro ∼ N (R,Var(Ro))

and (σ2)o ∼ N (σ2,Var((σ2)o)) whose variations are as shown in (4.38) and (4.39), to

get a threshold value δ. Next, for each time of simulation, use this obtained δ and the

true values of R and σ2 to get the practical value of Pf . Finally, calculate the (sample)

variance of the Pf ’s resulted in each time of the Monte-Carlo run. Fig. 4.3 (a) gives the

numerical results of the standard deviation, as the squared root of the variance of Pf ,√
Var(Pf ), against R and σ2 for target Pf = 0.01 given T

′
value of 500. At first glance,

it is noted that the variance of Pf is nearly constant across the parameter σ2’s range and

even for larger ranges of σ2 which are not shown. This should not come as a surprise,

as one can note that σ2 from in (4.10) is a factor only accounting for the dilation of

the channel energy, which does not affect any statistics of the null hypothesis H0 expect

for a constant scaling value relating to σ2. Therefore, the value of σ2 should not affect

the asymptotic performance of the proposed threshold adaption scheme. Without the

need to consider the varying value of σ2, in Fig. 4.3, the standard deviation of Pf versus

the degree-of-freedom-related parameter R is examined, with fixed value of σ = 1, for

different target Pf values of 0.01 and 0.05 and T
′

values of 50, 200 and 500. With the

interested range of R ∈ (0, 32] in Fig. 4.3 (b), for fixed sample size T
′

and a certain

target Pf , the variance of practical Pf increases with larger R value, i.e. larger DoF

of the chi-squared model of H0. However, it is highly undesirable that the standard

deviation of the practical Pf becomes close to the corresponding target Pf value, which

implies a poor ability to keep the practical Pf near the target. By selecting a larger

size of the observed dataset T
′
, smaller variations of practical Pf can be achieved. For

example, as in Fig. 4.3 (b), the standard deviation of practical Pf can be decreased by

more than an order of magnitude, by increasing T
′

4 times from 50 to 200, and around

two orders of magnitude by increasing T
′

10 times from 50 to 500.
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Figure 4.3: Asymptotic lower bound of standard deviation of practical Pf for the pro-
posed threshold adaption scheme. (a)(a)(a) the standard deviation of practical Pf versus the
two parameters, R and σ2, of the ML estimation, for sample size T

′
= 500, and target

Pf = 0.01. (b)(b)(b) the standard deviation of practical Pf versus R for various sample size
T
′
’s and target Pf ’s, where σ2 = 1 is set.

4.5 Numerical Simulation

In this section, simulation results of the proposed signal energy statistics algorithm and

threshold adaption via noise statistics estimation are presented. Time-domain signals

are generated as in (4.40) to emulate signals with continuous support in the frequency

domain,

st
(n) =

K∑
i=1

√
EiBsinc[B(n− ni)]ej2πfit, (4.40)

where K is the number of active channels; B is channel bandwidth; Ei, ni, fi stands for

total energy, time offset and central frequency of the ith active channel. To simulate the

band of TVWS in UK (470-790MHz), the interested spectrum bandwidth is chosen to be

320MHz and set N = 1280, B = 8MHz, K = 6, and Ei = 1280/6. For each combination

of recovery algorithm, SNR and compression ratio, learning dataset is generated by the

channel occupancy patterns as [f1, · · · , f6] = [36, 44, 164, 172, 244, 252](MHz). SNR is

defined as SNR = ||ssst||22/(Nσ2) where σ2 is the power of complex zero-mean additive

noise w
(n)
t ∼ CN (0, σ2).



Chapter 4. Channel Energy Modeling and Threshold Adaption in Compressive Spectrum
Sensing 133

4.5.1 Effectiveness of Channel Energy Statistics Learning for Compres-

sive Spectrum Sensing

In this subsection, the proposed channel energy statistics learning algorithm is focused

on and implemented using the samples pc[t] from channel set whose central frequencies

are [f1, · · · , f6] and [f7, · · · , f12] = [60, 68, 188, 196, 268, 276](MHz) so that this set of

C = 12 channels has channel occupancy rate of 0.5. The dimension of the dataset is

T = 300.

The proposed learning algorithm is experimented over recovered signals by three

major sparse recovery algorithms - BP, OMP and SBL, and two propagation scenarios

- the AWGN and Rayleigh channel. Fig. 4.4 (a) and (c) exemplify the distributions

of average channel PSD level p
(c)
c conditioned on hypotheses H0 and H1 and uncon-

ditional distribution whose parameters are learned from the proposed algorithm, using

BP, a compression ratio of 0.2 and SNR of 0dB, over the AWGN and Rayleigh channels

respectively. It can be seen that the learned distributions align well with the histogram

of the learning dataset in both cases. Fig. 4.4 (b) and (d) correspond to (a) and (c)

respectively and show the increasing and convergent results of likelihood functions which

the proposed learning algorithm aims to maximize. Fig. 4.5 (a) and (b) show the learn-

ing results of signals recovered by OMP and SBL algorithm respectively. Again, SNR is

set to 0dB in AWGN channel and compression ratio of 0.5 and 0.25 in (a) and (b) respec-

tively. The examples in Fig. 4.5 indicate that the learning results may also describe the

empirical distribution of learning dataset with OMP and SBL recovery algorithms.

To further characterize how well the empirical distribution from simulation matches

the postulated model in (4.10), the Kullback-Leibler divergence (KLD) is adopted as

a measure of the similarity of the two distributions [193]. The KLD may be any non-

negative value KLD of 0 reveals two identical distributions, and a smaller KLD value

towards 0 indicates more similarity. From simulations, the learning dataset forms a

histogram of empirical distribution, instead of a continuous probability density function.
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Figure 4.4: (a)(c)(a)(c)(a)(c) Histogram and learned distributions of BP recovery, SNR = 0dB,
compression ratio of 0.2, in AWGN and Rayleigh channel respectively; (b)(d)(b)(d)(b)(d) Likelihood
function over first 25 iterations of learning process in (a) and (c), respectively.
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Figure 4.5: Histogram and learned distributions, SNR = 0dB in AWGN channel, using
(a)(a)(a) OMP with compression ratio of 0.5 and (b)(b)(b) SBL with compression ratio of 0.25.

Therefore, the discrete probability form of the KLD definition is adopted,

DKL(Pempirical‖Pmodel) =

I∑
i=1

Pempirical(i) log

(
Pempirical(i)

Pmodel(i)

)
, (4.41)
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where Pempirical(i) is the histogram value of empirical distribution, normalized by

I∑
i=1

Pempirical(i) = 1; (4.42)

Pmodel(i) is the normalized probability in the ith interval of the postulated model,

expressed by

Pmodel(i) =

∫
ith interval fz(pc;θθθ

o)dpc∫
all intervals in I fz(pc;θθθ

o)dpc
, z = H0,H1. (4.43)

The range of interested intervals is determined as

[a, b] =
[

min
{
pc [t] |t = 1, 2, · · · , T ′

}
,

max
{
pc [t] |t = 1, 2, · · · , T ′

}]
.

(4.44)

Then the interval is evenly divided into I (in simulations I = 250 is used) smaller

ones such that the ith interval corresponds to
[
a+ (i− 1) b−aI , a+ i b−aI

]
. Fig. 4.6 plots

the KLD values from empirical data to the postulated model, for the three algorithms,

against compression ratio and SNR respectively. For a small KLD close enough to 0, it

can be understood that the two distributions are nearly identical with minor similarities.

In all cases of the simulations, KLD values turn out to be small, within the range

from 10−2 to 5 × 10−2. With these small KLD values, the postulated models with the

learned parameters are verified to be good representations of the corresponding empirical

distributions of the channel energy values. It is also noted that in Fig. 4.6 the KLD

values tend to be relatively higher for smaller compression ratios and SNRs, and also for

the OMP algorithm compared to the other two algorithms. This increased KLD values

can be preliminarily explained by the fact that under these circumstances the recovery

algorithms tend to have poorer recovery performance and the resultant mixture models

of channel energy statistics are less evident, i.e. the distributions of two hypotheses are

less separated, so that the EM parameter learning procedure has more propensity to find

a local minimum that deviates from the true model.

Next, the compression ratio is made varying and the parameter changes learned
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Figure 4.6: KLD from empirical data to postulated models versus compression ratio and
SNR. (a)(b)(a)(b)(a)(b) BP; (c)(d)(c)(d)(c)(d) OMP; (e)(f)(e)(f)(e)(f) SBL.

by the proposed algorithm are focused on. Fig. 4.7 gives these results of three recovery

algorithms in AWGN channel under the condition SNR = 0dB. Moreover, each parameter

value of the average channel PSD level distribution of the original signal is drawn as a

reference. As a general and intuitive trend, most parameters from signals recovered by

three algorithms approach to the original signal’s reference with increasing compression

ratio. An interesting exception is R of SBL which fluctuates slightly near 32. This

can be explained by SBL’s assumption of Gaussian prior distribution of the signal to be

recovered [94]. Given this assumption and by the definition of the chi-square distribution,

the distribution of average channel PSD level has a definite DoF which equals twice the

number of PSD bins in each channel, considering complex Gaussian noise over each PSD

bin. Fig. 4.8 gives similar results in Rayleigh channel situation with the same settings
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Figure 4.7: Learned parameters against compression ratio using three major recovery
algorithms, compared with original signal parameters. SNR = 0dB, AWGN channel.

as in Fig. 4.7. It is noted that the SBL’s parameter α is negligible and approximates the

original signal’s reference of 0. In the Rayleigh channel scenario, not only the elements

in sssf corresponding to the hypothesis H0 but also H1 have Gaussian distribution. This

prior distribution of original signals matches the SBL’s Gaussian assumption. As a result,

SBL induces the Gaussianity of the original signal set, which leads to central chi-square

statistics in H1 in the recovered signal.

4.5.2 Performance of Noise Energy Estimation and Threshold Adap-

tion

In this section, the performance of the noise energy estimation and threshold adaption

proposed in Section 4.4 are evaluated. As the first step, k-means clustering is performed

for several learning datasets with different SNRs and dataset dimensions. Qualitatively,

it is obvious from CLT that the larger the dataset dimension is, the more concentrated
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Figure 4.8: Learned parameters against compression ratio using three major recovery
algorithms, compared with original signal parameters. SNR = 0dB, Rayleigh channel.
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the statistics ddd(c) within one cluster (for either vacant or incumbent channels) tend to

be. Thus, it means that the global maximum of clustering objective (4.26) is more likely

to correspond to the true channel occupancy pattern. On the other hand, in lower SNR

cases, the statistics ddd(c) from vacant and incumbent channel clusters are less separated.

To investigate the effectiveness of the proposed k-means clustering step, the clustering

results are presented with a small dataset (T
′

= 20) and low SNR (-10dB), accompanied

by other three clustering results with larger dataset T
′

= 200 and higher SNR of -8dB.

Although the clustering performance tends to deteriorate for decreasing the SNR and

the sample size T
′
, the results in Fig. 4.9 show that the proposed k-means clustering

suffices to identify the vacant channels in a worst case with SNR = −10dB and small

dataset size T
′

= 20. Here, the SNR of −10dB is a level where compressive spectrum

recovery becomes unreliable so that the detection performance is not usable.

Next, the samples of p
(c)
c from identified vacant channels are extracted, and ML

estimation based on T
′

= 200 spectrum samples are performed and the thresholds δ

given Pf = 0.01 are obtained. In Fig. 4.10 and Fig. 4.11, the adapted thresholds

are plotted for three major recovery algorithms, against compression ratio and SNR

respectively. To stress the necessity of the proposed threshold adaption scheme, again,

thresholds for non-compressive cases are calculated based on original signals ssst and drawn

for reference. These two figures are direct illustrations of how evidently discrepant the

thresholds should be valued among varying SNRs, compression ratios, and different

choices of recovery algorithms, and especially between non-compressive and compressive

cases. Moreover, as an intuitive rule, thresholds of all three CS algorithms approach

those of non-compressive cases with compression ratio and SNR increasing.

Using the thresholds adapted, Monte-Carlo tests of the detection performance are

performed by using these thresholds for detection over a new sample set of the recovered

spectrum. Note that the dataset used here for detection performance simulation is other

than the learning dataset used for threshold adaption. Fig. 4.12 illustrates the probabil-

ity of detection and false alarm against compression ratio using the proposed threshold
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Figure 4.10: Threshold adapted from the proposed scheme against compression ratio of
three major recovery algorithms, given target Pf = 0.01. SNR = 0dB.

SNR (dB)
-8 -6 -4 -2 0 2 4 6

T
h
re

s
h
o
ld

0

10

20

30

40

OMP

SNR (dB)
-8 -6 -4 -2 0 2 4 6

T
h
re

s
h
o
ld

0

2

4

6

8

10

BP
SBL
non-compressive

Figure 4.11: Threshold adapted from the proposed scheme against SNR of three major
recovery algorithms, given target Pf = 0.01. Compression ratio is 0.4.

adaption scheme for the three major recovery algorithms with SNR = 0dB. It is discov-

ered that the proposed threshold adaption scheme can maintain a close approximate of

predefined Pf of 0.01. Similarly, Fig. 4.13 gives CFAR detection performance against

SNR for the three selected recovery algorithms while keeping the compression ratio 0.4.

Again, the actual Pf tends to maintain constant with minor variance. Moreover, the

results of Pf which are kept nearly constant from Fig. 4.12 and Fig. 4.13 in turn verify
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Figure 4.12: CFR detection performance of three major recovery algorithms against com-
pression ratio using proposed noise energy statistics estimation and threshold adaption.
SNR = 0dB.
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Figure 4.13: CFR detection performance of three major recovery algorithms against SNR
using proposed noise energy statistics estimation and threshold adaption. Compression
ratio is 0.4.

the reasonableness of the postulated model (4.10) and the effectiveness of the proposed

threshold adaption scheme via noise energy statistics estimation.
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4.6 Summary

In this chapter, the inconsistency of channel energy statistics and hence optimal thresh-

old between CSS and conventional non-compressive spectrum sensing is addressed for

the first time. Then a channel energy statistics model was postulated for CSS and an

algorithm used for learning the parameters of the postulated model was proposed. It is

postulated that the two hypotheses of channel energy of absent and active radio activ-

ity conform to central and noncentral chi-square distributions, respectively, both with

unknown parameters. Given the proposed statistics model being validated, a robust and

practical scheme of threshold adaption achieved by channel noise statistics estimation

was proposed. The asymptotic performance of the scheme was analyzed by presenting

the variance lower bound of actual false alarm probability. By numerical simulations, it

was shown that the postulated model provided a good fit to the empirical distributions,

in the sense of data-to-model KLD. Next, out of interest for the trend of these parameters

in different CS settings, the learning algorithm is experimented with in various compres-

sion ratio settings and presented the trend of each parameter versus compression ratio.

Furthermore, the adapted thresholds given target false alarm probability were plotted

against SNR and compression ratio, where the discrepancies in thresholds between com-

pressive and non-compressive spectrum sensing are directly illustrated. Moreover, the

actual false alarm probability using the thresholds adapt by the proposed scheme was

shown to be near the target value, which inversely verified the validity of the postulated

model.



Chapter 5

Compressive Spectrum Sensing

based on Practical Multicoset

Sampler towards mmWave

Compressive sensing (CS) has been introduced to be applied to wideband spectrum

sensing to achieve real-time sampling at sub-Nyquist rates, hence alleviating the need

for the complexity and high cost of analog-to-digital converters (ADCs) [15, 161]. Sev-

eral practical baseband processing architectures have been proposed in the literature to

obtain the compressed signal under the frame of CS, including the random demodu-

lator [71], the multicoset sampler [61] and the modulated wideband converter (MWC)

[65]. The multicoset sampler has a simpler hardware architecture than the MWC, and

effectively constructs a multiple-measurement-vector (MMV) model of CS, instead of

single-measurement-vector (SMV) produced by the random demodulator. Inheriting

the configurations of signal reconstruction system based on interleaved ADCs [194], it

employs multiple parallel ADCs sampling various time-shifted versions of the baseband

signal with a fraction of the Nyquist rate. Although the concept of the ideal multicoset

sampler has been widely discussed, there is little in the literature on the real-world mod-

143
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eling and implementation of the multicoset sampler. It is hence important to identify

the challenges and potentials to implement the multicoset-sampler-based compressive

spectrum sensing for wideband scenarios, especially for multi-gigahertz baseband for

promising millimeter-wave (mmWave) applications.

Practical attempts have been known to realize a 4-branch MWC front-end and the

CSS system for the instantaneous bandwidth of 6 GHz, working with National Instru-

ments (NI) software-defined radio (SDR) platform [81]. With the four ready-to-use

analog-to-digital converters (ADCs) sampling at 120 MHz equipped on the SDR plat-

form, the major design challenge lies in the front end subsystem, where the generation,

distribution, and synchronization of the 6 GHz-chip-rate pseudorandom sequences, which

has been shown to be implemented using a field-programmable gate array (FPGA) devel-

opment board, ensuring tight synchronization and low phase noise [82]. Moreover, such

an MWC system’s implementation is designed to processing real-valued signals, not suit-

able for in-phase-and-quadrature processing for general baseband applications.

One major reason why the multicoset sampler architecture is of particular interest

in the quest of real-world realization as its comparatively straightforward architecture

makes it more feasible to be built using off-the-shelf ADCs without introducing much

hardware complexity that might undermine the advantage of sub-Nyquist sampling. The

implementation of the random demodulator has been largely discussed by the integrated-

circuit design communities, as the wideband analog integrator before the sampling-and-

hold device is the key component that has to be built as application-specific. Looking

at the MWC, although it is possible to be implemented using general-purpose devices,

in addition to the ADC array, one can note that the parallel structure of MWC requires

more stages of analog processing, e.g. a low pass filter and a mixer, inducing more hard-

ware complexity and uncontrollable factors on the consistency of the analog chains and

possibly impeding the expansion to more analog branches. Whereas for the multicoset

sampler, the main design issue is how to realize the random and precise timing offsets

in analog branches or in the timing of the sampling, which already has a good technical
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Figure 5.1: Pictorial illustration of the interested spectrum and channels.

Figure 5.2: The proposed baseband processing model of multicoset sampler.

foundation in a similar setting of the interleaved ADCs.

Given the aforementioned potentials of the multicoset sampler architecture, this chap-

ter is motivated by its real-world implementations, starting with the modeling of the

practical multicoset sampler in Section 5.1 and then the important issue of spectrum

leakage in Section 5.2. Sparsity estimation and dimension reduction are proposed to be

applied to the practical multicoset model to enable greedy algorithms and to further

reduce the recovery complexity in Section 5.3. Then, a CSS demo at 28.5 GHz with

3.072 GHz bandwidth is presented based on a mmWave SDR platform to illustrate the

complete design of a multicoset-sampler-based CSS. Finally, it is identified that the pre-

cision of these offsets, which is limited in practice due to imperfection, has impacts on

the precision of the compressed measurements as well as the recovered spectrum. Such

measurement errors induced by undesired timing skews are analyzed and quantified in

Section 5.5.
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5.1 System Model of Multicoset Sampler

Denote a bandlimited complex time-domain signal by s(t) ∈ C, t ∈ R spanning the

frequency band of
[
−B

2 (Hz), B2 (Hz)
]
, where there are C equally-spaced channels with

the bandwidth of B/C (Hz), as illustrated in Fig. 5.1. A multicoset sampler [16, 65]

with P (P < C) cosets discretize the analog signal s(t) at a fraction-C of the Nyquist

sampling rate 1
B (Hz), which writes

scp [n] = s

(
nC − cp

B

)
, n ∈ Z (5.1)

for p = 1, 2, · · · , P , where cp ∈ [0, C) denotes the ratio of time delay of the pth

coset to the Nyquist-rate period. The frequency-domain presentation, i.e. discrete-time

Fourier transform (DTFT) of the sampled signal scp [n]’s is to be examined by definition

Xcp

(
ej2πf

C
B

)
:=
∑+∞

n=−∞ scp [n] exp (−j2πfnC/B). It is a convenient treatment that the

DTFT of each coset’s signal is to be expressed by a Fourier transform of a series of Dirac

delta pulses

Xcp

(
ej2πf

C
B

)
:=

+∞∑
n=−∞

scp [n] exp

(
−j2πfnC

B

)

=

∫ +∞

−∞
s(t− cp

B
) ·

[
+∞∑

n=−∞
d(t− nC

B
)

]
exp (−j2πft) dt,

(5.2)

where d(·) denotes Dirac delta function and
∑+∞

n=−∞ d(t − nC
B ) is a Dirac comb whose

Fourier transform is

F

{
+∞∑

n=−∞
d(t− nC

B
)

}
=
B

C

+∞∑
n=−∞

d(f − nB

C
). (5.3)

By rewriting (5.2) and applying (5.3), the DTFT of each coset’s signal can be related to

the Fourier transform of s(t) denoted by X(f) := F {s(t)} =
∫ +∞
−∞ s(t) exp(−j2πft)dt.
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It is expressed by

Xcp

(
ej2πf

C
B

)
= F

{
s(t− cp

B
) ·

+∞∑
n=−∞

d(t− nC

B
)

}

=

[
X(f) exp

(
−j2πcp

f

B

)]
∗

(convolution)

[
B

C

+∞∑
n=−∞

d(f − nB

C
)

]

=
B

C

+∞∑
n=−∞

exp

(
j2πcp

(
n

C
− f

B

))
X

(
f − nB

C

)

=
B

C
exp

(
−j2πcp

f

B

) +∞∑
n=−∞

exp
(
j2πcp

n

C

)
X

(
f − nB

C

)
(5.4)

Note that the DTFT in (5.4) by definition is B
C -periodic, and one only needs to

examine one period with regards to f . To align the channel structure of the shifted

spectrum in (5.4) with the interested interval, one can choose any l ∈ Z to make the

interval f ∈
[
lB
C ,

(l+1)B
C

)
. Recall X(f) = 0 for f /∈

[
−B

2 ,
B
2

]
, the number of summations

in (5.4) is reduced to C, and (5.4) is rewritten for f ∈
[
0, BC

)
as

Ycp(f) =

C
2∑

n=−C
2

+1

exp
(
j2πcp

n

C

)
X

(
f − nB

C

)

=

C−1∑
n=0

exp

(
j2πcp

(
1

2
− n

C

))
X

(
f − B

2
+
nB

C

) (5.5)

where Ycp(f) := C
B ·Xcp

(
ej2πf

C
B

)
exp

(
j2πcp

f
B

)
for f ∈

[
0, BC

)
. The equation (5.5) can

be arranged in the matrix form where a CS model with sparse channel occupancy is
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revealed,



Yc1(f)

Yc2(f)

...

YcP (f)


=
C

B
diagPp=1

(
e
j2πcpf

B

)


Xc1

(
ej2πf

C
B

)
Xc2

(
ej2πf

C
B

)
...

XcP

(
ej2πf

C
B

)



= AAA



X
(
f − B

2

)
X
(
f − B

2 + B
C

)
...

X
(
f + B

2 −
B
C

)


,

(5.6)

which is then rewritten by vector notations

yyy(f) =
C

B
∆∆∆(f)xxxc

(
ej2πf

C
B

)
= AAAxxx(f). (5.7)

The entries inAAAP×C are expressed by {AAA}p,q = exp
(
j2πcp(

1
2 −

q−1
C )
)

, for 1 ≤ p ≤ P , 1 ≤

q ≤ C, where q represents the index of channel. The matrix ∆∆∆(f) := diagPp=1

(
e
j2πcpf

B

)
denotes a diagonal matrix orderly constructed by arguments parameterized by p from 1 to

P . In (5.6), it is noted that spectrum sliced into channels, i.e. xxx(f), has infinite frequency

resolution, which leads to the CS linear system (5.6) being an infinite-measurement-

vector (IMV) model. The reliable recovery of xxx(f) is desired given the assumption that

the wideband spectrum has sparse occupancy.

In practice, only a finite-length samples can be obtained by each coset, i.e. s̃cp [n] =

scp [n] · wp[n] for n = 0, 1, · · · , N − 1 where N is the number of samples for each coset

per sensing round and wp[n] for n = 0, 1, · · · , N − 1 denotes the window function of

each coset. Denote the N -point discrete Fourier transform (DFT) of s̃cp [n] by X̃cp [k] :=∑N−1
n=0 s̃cp [n] exp (−j2πnk/N). Similarly, the DFT of each coset’s samples can be linked

to the frequency-domain presentation X̃(f) of s̃(t), which is a windowed version of s(t)
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defined by s̃(t) := s(t)w(t), writing

X̃cp [k] =
B

C
exp

(
−j2πcp

f

B

)
·

+∞∑
n=−∞

exp
(
j2πcp

n

C

)
X̃

(
f − nB

C

) ∣∣∣∣∣
f= kB

NC

(5.8)

where w(t) is the continuous-time-domain presentation of the primitive window function.

Discrete-time window function wp[n] is related to the primitive continuous-time window

function w(t) by

wp[n] = w

(
nC − cp

B

)
, n = 0, 1, · · · , N − 1 (5.9)

Select the frequency-domain indices k = 0, 1, · · · , N−1 according to the interested period

f ∈
[
0, BC (Hz)

)
and the relationship f = kB

NC (Hz) from (5.8), and (5.8) is reorganized

as

Ỹcp [k] =

C
2∑

n=−C
2

+1

exp
(
j2πcp

n

C

)
X̃

(
kB

NC
− nB

C

)

=
C−1∑
n=0

exp

(
j2πcp

(
1

2
− n

C

))
X̃

(
kB

NC
− B

2
+
nB

C

)
,

(5.10)

where ˜Ycp [k] := C
B · X̃cp [k] exp

(
j2πcp

k
NC

)
for k = 0, 1, · · · , N − 1. A SMV-model expres-
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sion can be directly written for each k = 0, 1, · · · , N − 1 based on (5.10),



Ỹc1 [k]

Ỹc2 [k]

...

˜YcP [k]


=
C

B
· diagPp=1

(
e
j2πcpk

NC

)


X̃c1 [k]

X̃c2 [k]

...

X̃cP [k]



= AAA



X̃
(
kB
NC −

B
2

)
X̃
(
kB
NC −

B
2 + B

C

)
...

X̃
(
kB
NC + B

2 −
B
C

)



(5.11)

which is then rewritten by vector notation,

ỹyy[k] =
C

B
· ∆̃∆∆[k]x̃xxc[k] = AAAx̃xx[k], (5.12)

where ∆̃∆∆[k] := diagPp=1

(
e
j2πcpk

NC

)
.

If one stacks the N column vectors x̃xxc[k] and ỹyy[k] into matrices X̃XXC×N and ỸYY P×N

respectively, the linear system (5.11) can be expressed by a MMV model,

ỸYY = AAAX̃XX, (5.13)

where, specifically

ỸYY :=



Ỹc1 [0] Ỹc1 [1] · · · Ỹc1 [N − 1]

Ỹc2 [0] Ỹc2 [1] · · · Ỹc2 [N − 1]

...
...

. . .
...

˜YcP [0] ˜YcP [1] · · · ˜YcP [N − 1]


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and

X̃XX :=



X̃
(
−B

2

)
X̃
(
B
NC −

B
2

)
· · · X̃

(
(N−1)B
NC − B

2

)
X̃
(
−B

2 + B
C

)
X̃
(
B
NC −

B
2 + B

C

)
· · · X̃

(
(N−1)B
NC − B

2 + B
C

)
...

...
. . .

...

X̃
(
B
2

)
X̃
(
B
NC + B

2

)
· · · X̃

(
(N−1)B
NC + B

2

)


.

The baseband processing architecture of the multicoset sampler is illustrated in Fig. 5.2.

The signal of interest X̃XX is assumed to be row sparse, as a direct result of sparse

spectrum usage assumption. It is by definition a discrete ’sliced’ spectrum of the win-

dowed baseband signal with the frequency resolution of B
NC (Hz). Recovering a row-

sparse matrix X̃XX from compressed measurements ỸYY under the sensing matrix AAA is a

fundamental problem in the CS literature [55]. Specifically, for the multicoset samplers

architecture in Fig. 5.2, one should set cp’s as distinct integers, i.e. cp ∈ {0, 1, · · · , C−1},

and cp 6= cr for p 6= r, making the matrix AAA a permuted partial Fourier basis, with which

good recovery performance is intuitively indicated by its low mutual coherence among

all randomly structured dictionary matrices [56]. In the general compressive sensing

context, AAA (after normalization for each row) satisfies the restricted isometric property

with high probability hence guarantees reliable recovery if the number of measurements

P is large compared to the sparsity of xxx(f) [122]. Moreover, a necessary condition is

given in [65, 125] based on the Kruskal rank of the sensing matrix, that is, arbitrary

sparse signal with the sparsity less than P/2 can be guaranteed to be recovered with AAA

which has full Kruskal rank (i.e. AAA is a universal sampling pattern). Therefore, a set

of fixed delays cp’s which leads to the sensing matrix AAA to satisfy RIP or be a universal

sampling pattern may be used in practice to provide satisfactory recovery performance.

Also, the matrix AAA is a universal sampling pattern with high probability, if the delays

cp’s are drawn uniformly randomly from the set {0, 1, · · · , C − 1} [65, 126].
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5.2 Spectrum Leakage and Windowing in Multicoset Sam-

pler

It is a well-known fact that any perfectly bandlimited signal has an infinite length in

the time-domain. However, in line with requirements of rapid spectrum acquisition

in spectrum sensing applications and considering the causality of the practical signal

samples, one can only obtain a frame of the infinite signal samples, necessarily causing

spectrum leakage. This problem makes the spectrum assumed to be sparse not perfectly

sparse. CS algorithms can generally deal with imperfect sparse models (e.g. log-decaying

signals) and still exhibit satisfactory recovery performance, especially when the sample

length is not too short and the leakage is buried in the additive noise. As a result,

such effects are not considered in the literature. However, it is still worth modeling and

investigating it as it is found by experiments to impact the performance of the sparsity

estimation scheme, and also the CS recovery itself for short sample sizes. Hereby, taking

the model of the multicoset sampler, the spectrum leakage problem is revealed in the

context of CSS and its impact is proposed to be mitigated by windowing the samples

to transform the spectrum leakage into noise-like interference uniformly spreading the

spectrum.

By simply considering an N -sample raw frames from the branches of the multicoset

sampler, one equivalently applies an N -sample rectangular window

wrect(t) =


1, 0 ≤ t < NC/B

0, otherwise

(5.14)

to each branch. Recall that the Fourier transform of the signal s̃(t) := s(t)wrect(t)

presents in (5.8), which is then expressed by

X̃(f) = F {s(t)wrect(t)} = F {s(t)} ∗ F {wrect(t)}

= X(f) ∗
[
B

NC
sinc(

B

NC
f) exp (−jπf B

NC
)

]
,

(5.15)
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where F {·} denotes Fourier transform. From (5.15), it is seen that the spectrum X̃(f)

appearing in X̃XX is the original spectrum X(f) convolved with the frequency response of

a rectangular window. Consequently, spectrum leakage is present in X̃(f), specifically

causing the energy in the occupied channels to leak to other channels, especially to their

adjacent channels. This effect will cause an imperfect row-sparse structure of X̃XX, which

may impose negative effects on the sparsity estimation and the row sparse recovery

procedures.

To address the problem of spectrum leakage, it is proposed to use an NC-sample

Dolph-Chebyshev window function, wdch[m], 0 ≤ m ≤ CN − 1, on top of the raw

samples. The frequency response of a Dolph-Cheybyshev window has equiripple sidelobe

with minimum magnitude given mainlobe bandwidth. This means that spectrum leakage

can be controlled such that the majority of the leakage power is concentrated in the

mainlobe bandwidth around the channel edges, while a small amount of power evenly

leaks into the rest of the spectrum. The multicoset sampling process with the proposed

windowing is then expressed by

s̃cp [n] = wdch [nC − cp] · s
(
nC − cp

B

)
, 0 ≤ n ≤ N − 1. (5.16)

Accordingly, the expression of the spectrum X̃(f) in (11) changes to

X̃(f) = X(f) ∗ F

{
NC−1∑
n=0

wdch[n]δ(t+
nC

B
)

}

= X(f) ∗

[
NC−1∑
n=0

wdch[n] exp (j2π
nC

B
)

] (5.17)

Note that the last term in (5.17) is actually the DTFT of the chosen NC-sample Dolph-

Chebyshev window, which has the following closed-form expression derived from Cheby-

shev polynomial [195],

Wdch(f) =
cos
{
NC cos−1

[
b cos

(
πfC
B

)]}
cosh

[
NC cosh−1(b)

] , (5.18)
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Figure 5.3: Presentation of the amplitude of ˜X(f) (a)(a)(a) without the proposed windowing
as in (5.15); (b)(b)(b) with Dolph-Chebyshev windowing as in (5.17).

where b := cosh
[

1
NC cosh−1( 1

a)
]

is the parameter related to the ripple magnitude a. The

mainlobe edge frequency can be then found related to a [195],

fdch =
B

πC
cos−1

(
1

b

)
(Hz). (5.19)

An example of comparison between ˜X(f) in (5.15) (i.e. without the proposed window-

ing) and in (5.17) (i.e. with Dolph-Chebyshev windowing) with a = 10−2 is presented

in Fig. 5.3.

Since most of the spectrum leakage appears in the half mainlobe bandwidth of the

Dolph-Chebyshev window around the channel edges, f = −B
2 ,−

B
2 + B

C , · · · ,
B
2 , in order

to minimize the impact of spectrum leakage, it is proposed to remove the first and last

W columns of which the corresponding frequencies falling into the mainlobe bandwidth

in the sliced spectrum X̃XX. W is determined by

W = dfdche =

⌈
1

π
cos−1

(
1

b

)⌉
, (5.20)

where d·e represents ceiling operation.

As a result of the removal of 2W columns, the MMV linear relationship in (5.13) can
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be updated by

ŶYY P×(N−2W ) = AAAP×CX̂XXC×(N−2W ) + B̂BB, (5.21)

where

ŶYY =

[(
ỸYY
)
·,W+1

,
(
ỸYY
)
·,W+2

, · · · ,
(
ỸYY
)
·,N−2W

]
,

X̂XX =

[(
X̃XX
)
·,W+1

,
(
X̃XX
)
·,W+2

, · · · ,
(
X̃XX
)
·,N−2W

]
,

and B̂BB is additive noise. Due to the equi-ripple property of the Dolph-Chebyshev win-

dow’s sidelobe, the spectrum leakage after removing 2W column in (5.21) can be effec-

tively accounted by the noise term B̂BB, and one can consider

supp
(
X̂XX
)

= supp (XXX) . (5.22)

5.3 Row Sparsity Estimation and Model Dimension Reduc-

tion for Multicoset Sampler

To enable the row-sparse signal X̂XX in the MMV model (5.21) of the multicoset sampler

to be solved by greedy algorithms, an estimate of row sparsity has to be provided to the

algorithms. Hereby, the sparsity estimation scheme proposed in Section 3.3 for the SMV

problem is extended to the MMV setting to be useful for multicoset sampler.

With a finite number L of measurement frames, an observation set is obtained,

denoted by ŶYY obs :=
[
ŶYY

(1)
, ŶYY

(2)
, · · · , ŶYY

(L)
]
. A practical consistent estimation of the

autocorrelation of ŶYY , i.e. E
[
ŶYY ŶYY

H
]
, denoted by R̃ŶRŶRŶ = 1

L

∑L
l=1 ŶYY

(l)
(
ŶYY

(l)
)H

, satisfies

R̃ŶRŶRŶ =

(
B

C

)2

AAAR̃X̂RX̂RX̂AAA
H +

1

L

L∑
l=1

B̂BB
(l)
(
B̂BB

(l)
)H

, (5.23)

where R̃X̂RX̂RX̂ = 1
L

∑L
l=1 X̂XX

(l)
(
X̂XX

(l)
)H

and elements in B̂BB
(l)

are assumed to be independent
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random variables and each follows CN (0, σ2). Assuming the spectrum occupancy is static

during the observation of L frames, one can arrive at a proposition which guarantees the

rank of R̃ŶRŶRŶ to be determined by the row-sparsity of X̂XX in the noiseless setting.

Proposition 5. Given B̂BB = 000, and that random matrix X̂XX has the row-sparsity of δ(X̂XX),

if (N − 2W )L ≥ δ(X̂XX), it holds with probability of 1 that rank(R̃ŶRŶRŶ ) = rank(R̃X̂RX̂RX̂) = δ(X̂XX).

Proof. See [54, Lemma 1, Proposition 1].

The conclusion in Proposition 1 implies that in the noiseless setting one could perform

eigendecomposition and determine the row-sparsity by counting the number of non-zero

eigenvalues. Express the eigendecomposition of the estimated autocorrelation of the true

measurement matrices (
B

C

)2

AAAR̃X̂RX̂RX̂AAA
H =

δ(X̂XX)∑
i=1

λivvvivvv
H
i , (5.24)

where λi and vvvi are the ith eigenvalue and corresponding eigenvector, 1 ≤ i ≤ δ(X̂XX).

In the presence of noise, the following is obtained from (5.23) and (5.24),

R̃ŶRŶRŶ =

δ(X̂XX)∑
i=1

λivvvivvv
H
i +

1

L

L∑
l=1

B̂BB
(l)
(
B̂BB

(l)
)H

=

P∑
i=1

λ̂iv̂vviv̂vvi
H , (5.25)

where λ̂i and v̂vvi denote the ith largest eigenvalue and corresponding eigenvector of noisy

R̃ŶRŶRŶ , 1 ≤ i ≤ P . With relatively large signal-to-noise ratio (SNR), the noise will perturb

the δ(X̂XX)-dimensional signal space spanned by vvvi’s, and the resultant eigenvalues and

eigenvectors in the noisy scenario satisfy λ̂i ≈ λi and v̂vvi ≈ vvvi, 1 ≤ i ≤ δ(X̂XX), as a

result of high SNR. The eigenspaces spanned by v̂vv
δ(X̂XX)+1

, v̂vv
δ(X̂XX)+2

, · · · , v̂vvP is determined

by noise only, whose amplitudes are small compared to those of signal subspace and

asymptotically converge to v̂vv
δ(X̂XX)+1

= v̂vv
δ(X̂XX+2)

= · · · = v̂vvP = σ2 with the increasing

number of frames L.

The sparsity estimation problem then translates into finding the integer po (1 ≤
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po < P ) splitting the P descending-ordered eigenvalues into two groups, corresponding

to signal subspace and noise subspace. Formally, this can be achieved by minimizing

some information theoretic criterion (ITC). The enhanced Bayesian information crite-

rion (BICe) [163] is hereby proposed to be employed, whose objective function is effec-

tively the joint probability of all the observations, ỸYY obs, and signal subspace eigenvalues

λ1, λ2, · · · , λp. The objective of the proposed BICe-based row-sparsity estimation writes

po = arg min
p

BICe(p)

= arg min
p

{
− 2 log f(ỸYY obs|λ̂1, λ̂2, · · · , λ̂P ; p)

− 2 log f(λ̂1, λ̂2, · · · , λ̂P ; p)− Cp log [(N − 2W )L]
}
,

(5.26)

where f(·) denotes probability density function and Cp = p(2P − p) is the number of

free parameters. Following the statistical models in [54, 167], one can rearrange the

estimation objective function as follows,

po = arg min
p

BICe(p)

= arg min
p

{
2(P − p) [(N − 2W )L+ P − p)] log σ̂2

− 2(N − 2W )L

P∑
i=p+1

log λ̂i + 2

p∑
i=1

log λ̂i + 2

P−p∑
i=1

log Γ(i)

+ (N − 2W )L
P∑

i=p+1

(
λ̂i − σ̂2

σ̂2

)2

− 4
P∑

i=p+1

M∑
k=i+1

log |λ̂i − λ̂k|

+ p(4P − 2p− 1) log [(N − 2W )L]
}
,

(5.27)

where σ̂2 :=
∑P

i=p+1 λ̂i/(P −p) is an estimate of noise variance and Γ(·) denotes Gamma

function.

Having a valid estimation of the row-sparsity po of the sliced spectrum X̂XX, one

can reduce the dimension of the MMV linear system (5.21) from N − 2W to po by

removing the components in the noise subspace. Denote the R̃ŶRŶRŶ ’s component in the

signal subspace by
∑po

i=1 λ̂iv̂vviv̂vvi
H = VVV sΛΛΛsVVV

H
s , where (VVV s)P×po = [v̂vv1, v̂vv2, · · · , ˆvvvpo ] and
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Figure 5.4: BICe profiles of R̃ŶRŶRŶ (a)(a)(a) with no windowing; (b)(b)(b) with Dolph-Chebyshev
windowing.

(ΛΛΛs)po×po = diag
(
λ̂1, λ̂2, · · · , λ̂po

)
. The reduced MMV linear system can be then

expressed by

VVV s (ΛΛΛs)
1
2 = AAAX̂XXv + B̂BBv, (5.28)

where B̂BBv denotes the noise perturbing the signal subspace, and it is guaranteed [16,

54] that supp

((
X̂XXv

)
C×po

)
= supp

(
X̂XX
)

. Furthermore, from (5.22), one also gets the

support of the original signal supp (XXX) = supp
(
X̂XXv

)
.

After obtaining the support of spectrum, according to the original form of the MMV

model (5.13), it takes a single step of projection to recover X̃XX itself

X̃XX ←
(
AAAsupp(XXX)

)†
ỸYY (5.29)

where (·)† denotes psuedo-inverse and AAAsupp(XXX) is the submatrix of AAA whose columns are

indexed by supp(XXX).

The performance of the proposed BICe-based row-sparsity estimator is analyzed. The

baseband frequency range is set as [−160 (MHz), 160 (MHz)] consisting of 40 channels,

making B = 320 (MHz) and C = 40. The length of frame is set to N = 32 and the

number of frames in the observation set is L = 16 unless otherwise stated. 6 out of

40 channels are set occupied. The number of cosets is fixed at P = 16. Time-domain
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Figure 5.5: The average detected row-sparsity with and without the proposed windowing
over 1000 simulations, with varying SNR and number of frames L.

OFDM signals s(t) are generated by

s(t) =

C∑
c=1

B
CFs∑
d=1

ηc,de
j2π[(d−1)Fs+(c−1)B]t, (5.30)

where ηc,d is complex Gaussian-distributed symbols and Fs = 39.0625 (kHz) is the

OFDM symbol rate. SNR is formally defined by SNR := ||X̃XX||2F /(σ2NC). A 1280-

sample Dolph-Chebyshev window is used with a = 10−3 and M = 2 is determined from

(5.20). In Fig. 5.4, the BICe profiles of the estimated autocorrelation matrix R̃ŶRŶRŶ in (5.21)

is directly given with comparison with the estimated autocorrelation (1/L)
∑L

l=1 ỸYY ỸYY
H

where ỸYY corresponds to sampling without the proposed windowing (i.e. with rectangular

windowing). The impact of spectrum leakage mentioned in Section 5.2 is apparent - the

BICe profile without the proposed windowing tend to have its minimum at indices over

the spectrum’s true row-sparsity, i.e. 6, while the BICe’s minimal with Dolph-Chebyshev

windowing converges to 6 with increasing SNR. In Fig. 5.5, the row-sparsity esti-

mation performance with and without the proposed windowing are illustrated against

varying SNR and frame count L. As an important trend, the estimation performance

has more robustness against noise with a larger observation set of frames. Moreover,

the spectrum leakage causes severe overestimation, especially when noise is not large

enough to cover spectrum leakage, making the estimator unusable. Hence, the proposed

Dolph-Chebyshev windowing is necessary for robust row-sparsity estimation, although it
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has very slight performance deterioration under low SNRs as a result of removing 2W

columns in (5.21).

5.4 Software-Defined-Radio Demo for mmWave-Band Multicoset-

Sampler-Based Compressive Spectrum Sensing

Having detailed the practical model and a few technical considerations of the multicoset

sampler in this chapter, it is of great interest to implement such the multicoset-sampler-

based compressive spectrum sensing (CSS) in a real-world wideband receiver system.

The work on realizing a real-time sub-Nyquist CSS system demo based on NI mmWave

SDR platform [196] is hereby demonstrated. In this experiment, two sets of the NI

mmWave SDR devices are used, as the Tx and RX respectively, as shown in Fig. 5.6

(a). Each device features a host computer with a peripheral component interface express

(PCIe) bus and the full superheterodyne transmitter or receiver architecture, consisting

of a front-end module (namely mmWave head) and a few pieces of modular PCIe cards

as the all necessary components in the Tx or Rx chain. Those Tx/Rx chain modules

can be controlled and programmed by software on the host computer through the PCIe

bus. Baseband processing can be performed by one or more hard processors PXIe-7902,

each of which features a Xilinx Virtex-7 FPGA [197]. Moreover, those processing tasks

not suitable to be implemented in FPGA and intermediate data can be offloaded to

the host computer for further processing and input/output (I/O) purposes. The setup

appearance of the two SDR devices are shown in Fig. 5.6 (b).

At the transmitter side, multiple orthogonal frequency division access (OFDM) sig-

nals conforming to the Verizon 5G New Radio physical layer specifications are generated,

each having a 3.072 GHz symbol rate spanning the bandwidth of 100 MHz. Such multi-

band frequency-sparse signals are upconverted to the 12 GHz intermediate frequency

(IF), and then to the mmWave radio frequency (RF) of 28.5 GHz. At the receiver

end, reversely, such RF signals are downconverted from the RF central frequency to IF

and then to the baseband. The baseband in-phase (I) and quadrature (Q) signals are
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(a)

(b)

Figure 5.6: (a)(a)(a) System architecture of National Instrument mmWave SDR platform. (b)(b)(b)
Pictorial presentation of the TX and RX SDR setup.
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respectively sampled at 3.072 GHz [196].

To achieve the interleaved sub-Nyquist sampling pattern of the multicoset sampler,

only part of the 3.072 GHz (Nyquist-rate) samples are retained for processing. As indi-

cated in Fig. 5.2, measurements X̃cp [k] (0 ≤ k ≤ N − 1 and 1 ≤ p ≤ P ) are obtained

through a parallel structure and the pre-recovery processing is implemented in one of

the FPGA card. The measurements are then transferred from the FPGA card to the

host via the PCIe bus and the real-time spectrum is recovered from the measurements

at the host CPU.

Apart from the configuration on the ready-to-use transmitter-side 5G-physical-layer

reference design, the main development work is carried out using NI LabView and Lab-

view FPGA toolchains and contains developments of the programs for three parts, with

their main functions summarized as below. 1

• Rx processor 1 (PXIe-7902) - interfacing with the ADC card (PXIe-3630); convert-

ing the two (I and Q) 3.072 GHz 16-bit serial data streams from the ADC card into

two 192 MHz 256-bit parallel data stream to adapt to FPGAs’ timing constraints;

transmitting the paralleled data to Rx processor 2 via two 4-channel high-speed

serial interfaces for I and Q respectively, each fulfilling the 49.152 Gbps data rate;

a routine of calculating the average power of the baseband data to be fed to the

host to achieve automatic gain control of the Rx chain;

• Rx processor 2 (PXIe-7902) - interfacing with the Rx processor 1 and receiving

two streams of I and Q data; decimating the Nyquist rate samples according to the

interleaved sampling pattern of the multicoset sampler; splitting the decimated

data into C (C ≤ 16 due to FPGA resource and timing constraints) branches,

each having an N -sample frame; each of the branches performing windowing and

N -FFT in real-time as shown in Fig. 5.2; a first-in-first-out (FIFO) buffer at

the end of each branch caching and feeding the measurements X̃cp [k]’s through

1Credit to Mr. Zihang Song for his contributions to the software development of this demo.
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Figure 5.7: Control and display panel of the SDR demo.

the direct-memory-access (DMA) process of the PCIe bus to the host computer’s

memory.

• Host computer - initializing and configuring the Rx chain, including the mmWave

head mmRH-3602, the IF to baseband converter PXIe-3620, and the ADC card

PXIe3630; triggering the data streaming between Rx processor 1 and 2, and the

FIFO-DMA transfer between the Rx processor 2 and the host, through the PCIe

bus; issuing the multicoset sampler pattern cp’s and parameters P , C and N to

the Rx processors; reading the DMA memory region and performing the proposed

sparsity estimation and dimension reduction as discussed in Section 5.2; applying

greedy sparse recovery algorithms on the dimension-reduced MMV problem (5.28)

and (5.29) to obtain the real-time reconstructed spectrum X̂XX; providing a graphical

user interface (GUI) for configuration and control inputs and real-time spectrum

display as shown in Fig. 5.7.

The GUI panel of the host program is as presented in Fig. 5.7. The parameters for the

multicoset sampler can be input at the left-hand side. The sampling pattern, i.e. the
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timing offsets of the interleaved samples, is generated randomly by the host. The left

bottom shows the sparsity estimation results, along with the eigenvalue profiles and the

BICe values discussed in Section 5.2. On the right, the original data frames are directly

acquired from the Rx processor 1 by DMA and displayed for comparison, in the form

of time-domain data, logarithmic and linear scale power spectrum with blue color. Two

versions of the recovered spectrum are shown in red color, with SOMP and JB-HTP

greedy algorithms (presented in Chapter 3) respectively implemented on the host.

It should be noted that the reason why the greedy sparse recovery is implemented

on the host is that the greedy algorithm requires arithmetics of complex and float-point

valued matrices, such as inversion, which is considered challenging and unsuitable to

be implemented by hardware and that the parallel signal processing routines of the

multicoset sampler already requires a large number of hardware resources of the FPGA.

Moreover, there are technical challenges as the following related to the throughput of

the proposed demo system

• Could the timing constraints of the Rx processor 2 FPGA be met with two 192

MHz 256-bit data streams from the raw ADC output and the hardware utilization

of 16 branches of windowing and FFT blocks?

• Could the average running time for the greedy sparse recovery on the host be less

than the time of a single frame so that the real-time recovery becomes possible?

These problems are more or less platform-dependent. The first one may be mitigated by

using an FPGA model with abundant resources and applying careful timing optimization

of the FPGA design. However, the latter is more of a common problem for all kinds of

platforms. For instance, the time consumption of greedy algorithms on the NI SDR host

computer is empirically of the magnitude order of 10 ms, far exceeding the time of a

frame, 10 us. To alleviate such a problem, and also to relieve the timing constraints of

the FPGA design, it is necessary to reduce the system throughput to allow for real-time

spectrum recovery. Hereby it is proposed to include an additional ‘frame summing’ stage
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right after the 196 MHz data stream input at the Rx processor 2. Define the summing

factor D and suppose there are D consecutive frames of N -point time-domain Nyquist

rate data

s[n] = s(t)|t=n/B n = 0, 1, · · · , DN − 1, (5.31)

where s(t) is the baseband signal and 1/B the Nyquist rate. By summing all D frames

point by point, one can obtained the summed frame as

sSUM,D[n] =
D−1∑
d=0

s[dN + n− 1], (5.32)

without discarding any time-domain sample. Looking at the frequency-domain represen-

tation of the Nd-sample data and the averaged N -sample sequence, one can write the

DFT coefficients as

X[k] =
DN−1∑
n=0

s[n]exp
(
−j2πk n

DN

)
XSUM,D[k] =

N−1∑
n=0

D−1∑
d=0

s[dN + n− 1]exp
(
−j2πk n

N

) (5.33)

where it is revealed

X[Dk] = XSUM,D[k], k = 0, 1, · · · , N − 1. (5.34)

The relationship above implies that the spectrum of the summed frame equivalently

consists of the decimated frequency bins of the spectrum of the DN -sample sequence

- in the frequency domain every 1 of D consecutive frequency bins are preserved as is.

Applying multicoset sampling pattern on the summed frames reduce the data throughput

to 1
D of the raw data throughput. Recall the original sampling pattern for multicoset

sampler is as (5.1), rewritten as follows

scp [n] = s(t)|
t=

nC−cp
B

= s[nC − cp]. (5.35)
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After applying the proposed frame summing procedure, the multicoset sampler works on

the summed frames, formally

scp [n] = sSUM,D[nC − cp] =
D−1∑
d=0

s[dN + nC − cp − 1], n = 0, 1, · · · , N − 1. (5.36)

With this proposed throughput reduction method by summing the consecutive frames,

real-time sparse recovery implemented on the host computer is made possible without

discarding some of the time-domain frames, thus avoiding invisibility of some short-lived

incumbent radio activities. On the other hand, this approach only preserves one out

of D original frequency bins, implying compromised spectrum resolution, which could

impose a problem for narrowband signals.

5.5 On Timing Skews of Practical Multicoset Samplers

With the motivation to bring the real-time wideband CSS implementation from TV

whitespace [15, 16, 161] towards multi-gigahertz bandwidth system in mmWave bands,

the hardware requirements of multicoset sampler pose larger challenges in the precision

of timing control, and the accuracy of compressed measurements is hence more prone

to timing errors. It is noted that in the multicoset sampling pattern (5.1), the resolu-

tion of the sample timing offset is 1/B, i.e. the Nyquist sampling period, and with the

significant increase of the baseband instantaneous bandwidth for mmWave applications,

precise timing control is essential for such interleaved sampling. For example, if the

frequency spectrum being sampled has a bandwidth of 2 GHz, the timing offset step

should be around 500 ps, and the error tolerance of the offset should be only a frac-

tional of 500 ps to minimize the error due to imperfect timing in the obtained samples.

Proposals for the implementation of the multicoset sampler in the literature have relied

on delay filters on the analog paths in front of the ADCs to achieve time-shifted ver-

sions of the baseband signal [194, 198, 199]. For multicoset samplers, it is preferred that

randomly selected delays are used to form a universal sampling matrix AAA to ensure guar-

anteed recovery performance [61]. Therefore, the delays should be reconfigurable in order
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to obtain the optimal performance of the signal reconstruction. Current reconfigurable

analog delay lines in literature largely rely on transistor switching architecture or tunable

line elements, and existing implementations have limited delay reconfigurability and low

bandwidth to be applicable in multicoset samplers [200–203]. An alternative and more

practical strategy to achieve reconfigurable delays is to apply delays on the sampling

clocks instead, by using clock distribution techniques, for example, delay-locked loops

and delay-locked loops. In the real-world implementation of the multicoset sampler,

regardless of the specific techniques used to achieve the delays, however, the precision

of the timing offset of the sampling is always finite [194], and it is of particular interest

at the system level to quantify the error in the compressed measurements induced by

timing skews, which further leads to performance degradation of signal reconstruction.

Although additive white Gaussian noise is widely discussed in most evaluations of multi-

coset samplers to model the thermal noise of the receiver [15, 16], the analysis of timing

skew and its impact in multicoset samplers is still absent in the literature.

The error analysis based on the timing skews of multicoset samplers is presented in

Section 5.5.1. Verification of the analytic forms of measurement error is provided in

Section 5.5.2, where the impacts of such error to signal recovery are initially evaluated.

5.5.1 Error Analysis for Timing Skews

In this subsection, the amount of error at the measurements caused by timing skews of all

cosets is examined. From the implementation perspective in Fig. 5.2, such timing skews

can be caused by signal trace length mismatch, design limitations of the delay units,

aperture delay discrepancies across ADCs, and skews of the sampling clocks. Start by

separating the offset at each coset into two components, i.e.

cp = τp + δp (5.37)

where τp is the desired offset and δp denotes the skew.
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5.5.1.1 Error in SMV Measurements

Recall (5.12) and rewrite it as follows

x̃xxc[k] =
B

C
·
(
∆̃∆∆[k]

)−1
AAAx̃xx[k], (5.38)

where ∆̃∆∆[k] and AAA are determined by the values of cp’s. Separate ∆̃∆∆[k] into ∆̃∆∆τ [k] and

∆̃∆∆δ[k] which only depend on τp’s and δp’s respectively, and one may easily obtain the

following

∆̃∆∆[k] = ∆̃∆∆τ [k] · ∆̃∆∆δ[k], (5.39)

where ∆̃∆∆τ [k] = diagPp=1

(
(exp

(
j2πτp

k
NC

))
and ∆̃∆∆δ[k] = diagPp=1

(
exp

(
j2πδp

k
NC

))
. As for

matrix AAA, the element-wise presentation rewrites

{AAA}p,q = e(j2πcp(
1
2
− q−1

C ))

= e(j2πτp(
1
2
− q−1

C ))e(j2πδp(
1
2
− q−1

C )),

(5.40)

In order to separate AAA into AAAτ and AAAδ, one may linearize the exponential term relevant

to δp’s using Taylor’s series for δp’s near 0, which is

e(j2πδp(
1
2
− q−1

C )) = 1 +

+∞∑
n=1

(
j2πδp

(
1
2 −

q−1
C

))n
n!

. (5.41)

Therefore, one can separate AAA under addition,

AAA = AAAτ +AAAδ, (5.42)

where

{AAAτ}p,q = e(j2πτp(
1
2
− q−1

C )) (5.43)

and

{AAAδ}p,q = e(j2πτp(
1
2
− q−1

C ))
+∞∑
n=1

(
j2πδp

(
1
2 −

q−1
C

))n
n!

. (5.44)
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Insert (5.39) and (5.42) into (5.38), and one has the following

x̃xxc[k] =
B

C
·
(
∆̃∆∆τ [k]

)−1 (
∆̃∆∆δ[k]

)−1
(AAAτ +AAAδ) x̃xx[k]. (5.45)

Suppose the measurements x̃xxc[k] compromises a skew-less component x̃xxτ [k] only relevant

to τ , and an error term x̃xxe[k], where

x̃xxτ [k] =
B

C
·
(
∆̃∆∆τ [k]

)−1
AAAτx̃xx[k] (5.46)

and consequently

x̃xxe[k] =x̃xxc[k]− x̃xxτ [k]

=
B

C

{(
∆̃∆∆τ [k]

)−1 (
∆̃∆∆δ[k]

)−1
AAAδx̃xx[k]

−
(
∆̃∆∆τ [k]

)−1
[
III−

(
∆̃∆∆δ[k]

)−1
]
AAAτx̃xx[k]

}

=
B

C
( ˜xxxe,1[k]− ˜xxxe,2[k])

(5.47)

The Euclidean norm of the error term x̃xxe[k] satisfies the following according to geometry

inequality, writing

‖x̃xxe[k]‖2 = ‖ ˜xxxe,1[k]− ˜xxxe,2[k]‖2 ≤ ‖ ˜xxxe,1[k]‖2 + ‖ ˜xxxe,2[k]‖2 (5.48)

Examine the Euclidean norm of the first error term

‖ ˜xxxe,1[k]‖2 =

∥∥∥∥(∆̃∆∆τ [k]
)−1 (

∆̃∆∆δ[k]
)−1

AAAδx̃xx[k]

∥∥∥∥
2

= ‖AAAδx̃xx[k]‖2 (5.49)

due to the fact that ∆̃∆∆τ [k] and ∆̃∆∆δ[k] are unitary. Recall that the assumption from Section

5.1 that the spectrum of interest has sparse channel occupancy and such occupancy

pattern is hereby formally expressed by K := supp (x̃xx[k]) . Moreover, without loss of

generality, it is supposed that these non-zero elements in x̃xx[k] are independent random
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variables with zero mean and variance of 1, and as a result, one can rewrite (5.49) as

E
[
‖AAAδx̃xx[k]‖22

]
=

P∑
p=1

∑
q∈K
{AAAδ}p,q {AAAδ}

∗
p,q . (5.50)

One can safely ignore the terms in the series AAAδ whose orders are greater than 2 and

simplify (5.50) as

E
[
‖AAAδx̃xx[k]‖22

]
= 4π2

P∑
p=1

∑
q∈K

δ2
p

(
1

2
− q − 1

C

)2

, (5.51)

on condition that δp’s are small enough to meet

∣∣∣∣j2πδp(1

2
− q − 1

C

)
1

2!

∣∣∣∣� 1, ∀p, q, (5.52)

which translates to

|δp| �
2

π
, ∀p. (5.53)

The Euclidean norm of the second term writes

‖ ˜xxxe,2[k]‖2 =

∥∥∥∥(∆̃∆∆τ [k]
)−1

[
III−

(
∆̃∆∆δ[k]

)−1
]
AAAτx̃xx[k]

∥∥∥∥
2

=

∥∥∥∥[III− (∆̃∆∆δ[k]
)−1

]
AAAτx̃xx[k]

∥∥∥∥
2

≤
∥∥∥∥III− (∆̃∆∆δ[k]

)−1
∥∥∥∥

2

‖AAAτx̃xx[k]‖2 ,

(5.54)

Here, the l2-norm for matrices refers to induced norm defined by ‖XXX‖2 :=
√
λmax (XXXHXXX)

where λmax(·) denotes the maximum of the argument’s eigenvalue, and the inequality in

(5.54) is obtained by the definition of induced matrix norm.

Note that III −
(
∆̃∆∆δ[k]

)−1
is diagonal, the square of the induced-matrix-norm term∥∥∥∥III− (∆̃∆∆δ[k]

)−1
∥∥∥∥

2

in (5.54) is easily calculated as follows

∥∥∥∥III− (∆̃∆∆δ[k]
)−1

∥∥∥∥2

2

= max
p

(∣∣∣∣exp

(
j2πδp

k

NC

)
− 1

∣∣∣∣2
)
. (5.55)
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Similar to (5.41), one may expand exp
(
j2πδp

k
NC

)
− 1 in (5.55) by

exp

(
j2πδp

k

NC

)
− 1 =

+∞∑
n=1

(
j2πδp

(
k
NC

))n
n!

(5.56)

and then only its first order term of the expansion is preserved

exp

(
j2πδp

k

NC

)
− 1 = j2πδp

(
k

NC

)
(5.57)

on the condition that the skews are small enough to meet

∣∣∣∣j2πδp k

NC

1

2!

∣∣∣∣� 1, ∀p, k, (5.58)

which is further relaxed to the following form irrelevant to k

|δp| �
C

π
, ∀p. (5.59)

Insert expression (5.57) back to (5.55), one finally gets the norm of the matrix norm in

(5.54) ∥∥∥∥III− (∆̃∆∆δ[k]
)−1

∥∥∥∥2

2

= 4π2

(
k

NC

)2

max
p
δ2
p. (5.60)

The expectation of the square of the term ‖AAAτx̃xx[k]‖2 in (5.54) accounts

E
[
‖AAAτx̃xx[k]‖22

]
=

P∑
p=1

∑
q∈K
{AAAτ}p,q {AAAτ}

∗
p,q = |K| · P. (5.61)

Consequently, according to (5.60) and (5.61), the expectation of (5.54) writes

E
[
‖ ˜xxxe,2[k]‖22

]
≤
∥∥∥∥III− (∆̃∆∆δ[k]

)−1
∥∥∥∥2

2

· E
[
‖AAAτx̃xx[k]‖22

]
= |K|P ·

∥∥∥∥III− (∆̃∆∆δ[k]
)−1

∥∥∥∥2

2

= 4π2 |K|P
(

k

NC

)2

·max
p
δ2
p

(5.62)
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where the equality in (5.54) and (5.62) is met when the diagonal terms in III−
(
∆̃∆∆δ[k]

)−1

are equal, i.e. δ1 = δ2 = · · · = δP .

According to Cauchy-Schwarz inequality in the form of expectations of random vari-

able, one has the following property on the expectation of arbitrary random variables

X,Y ∈ C,

|E [XY ]|2 ≤ E
[
X2
]

E
[
Y 2
]
, (5.63)

which immediately leads to the following

E
[
‖ ˜xxxe,1[k]‖2 ‖ ˜xxxe,2[k]‖2

]
≤
√

E
[
‖ ˜xxxe,1[k]‖22

]
E
[
‖ ˜xxxe,2[k]‖22

]
. (5.64)

From (5.47), finally one has the upper bound of the expectation of error vector by scaling

using inequalities (5.48), (5.62) and (5.64),

σ2
x̃xxe[k] := E

[
‖x̃xxe[k]‖22

]
=
B2

C2
E
[
‖x̃xxe1[k] + x̃xxe2[k]‖22

]
≤ B2

C2
E
[
(‖x̃xxe1[k]‖2 + ‖x̃xxe2[k]‖2)2

]
=
B2

C2
E
[
‖x̃xxe1[k]‖22 + ‖x̃xxe2[k]‖22 + 2 ‖x̃xxe1[k]‖2 ‖x̃xxe2[k]‖2

]
≤ B2

C2

(
E
[
‖x̃xxe1[k]‖22

]
+ E

[
‖x̃xxe2[k]‖22

]
+ 2

√
E
[
‖x̃xxe1[k]‖22

]
E
[
‖x̃xxe2[k]‖22

])

=
B2

C2

(√
E
[
‖x̃xxe1[k]‖22

]
+

√
E
[
‖x̃xxe2[k]‖22

])2

≤
(

2πB

C

)2
(√
|K|P k

NC
·max

p
|δp|

+

√√√√ p∑
p=1

δ2
p

∑
q∈K

(
1

2
− q − 1

C

)2
)2

.

(5.65)

The power of the signal without the impact of timing skew is denoted by

σ2
x̃xxτ [k] := E

[
‖x̃xxτ [k]‖22

]
=
B2

C2
|K|P (5.66)
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as a direct result of (5.61). Define the error-to-signal ratio (ESR) of the measured signal

x̃xxτ [k] by

ESRx̃xxc[k] :=
σ2
x̃xxe[k]

σ2
x̃xxτ [k]

, (5.67)

which is considered as a metric describing the level of error appearing in the measure-

ments compared to the signal power. The upper bound of ESR is obtained from (5.65)

ESRx̃xxc[k] ≤ 4π2

(
kρ1ψ1 +

ρ2ψ2√
|K|P

)2

(5.68)

where for clarity, denote ρ1 := 1
NC and the term related to channel occupancy is presented

by ρ2 :=

√∑
q∈K

(
1
2 −

q−1
C

)2
, and ρ1 and ρ2 are separated in two terms. The skew-

related terms are expressed by ψ1 := maxp |δp| and ψ2 :=

√(∑p
p=1 δ

2
p

)
.

5.5.1.2 Error in MMV Measurements

With Unknown Skews If the skews of cosets are unknown, having obtained the DFT

of each coset’s samples x̃xxc[k]’s, one can only construct the MMV measurements ˜yyy[k]’s in

(5.12) using the known τp-related ∆̃∆∆τ [k] in (5.39), writing

ỹyy[k] =
C

B
· ∆̃∆∆τ [k]x̃xxc[k] =

C

B
· ∆̃∆∆τ [k] (x̃xxτ [k] + x̃xxe[k]) . (5.69)

Denote the skew-free version of MMV measurement ỹyy[k] by

ỹyyτ [k] :=
C

B
· ∆̃∆∆τ [k]x̃xxτ [k], (5.70)

and the error in MMV measurement is denoted by

ỹyye[k] : = ỹyy[k]− ỹyyτ [k] =
C

B
∆̃∆∆τ [k]x̃xxe[k], (5.71)
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which can be alternatively expressed in the matrix form by stacking these N column

vectors

YYY e = YYY − YYY τ . (5.72)

Define the power of error signal ỹyye[k], expressed by

σ2
ỹyye[k] := E

[
‖ỹyye[k]‖22

]
=
C2

B2
σ2
x̃xxe[k]. (5.73)

The power of skew-free signal ỹyyτ [k] writes

σ2
ỹyyτ [k] := E

[
‖ỹyyτ [k]‖22

]
=
C2

B2
E
[
‖x̃xxτ [k]‖22

]
=
C2

B2
σ2
x̃xxτ [k]. (5.74)

For each measurement vector in YYY , i.e. ỹyy[k] for k = 0, 1, · · · , N − 1, define the ESR as

follows

ESRỹyy[k] : =
σ2
ỹyye[k]

σ2
ỹyyτ [k]

=
σ2
x̃xxe[k]

σ2
x̃xxτ [k]

= ESRx̃xx[k] (5.75)

Note Frobenius-norm of matrix by ‖XXX‖F and by definition the power of the matrix-form

signal (5.72) is given by σ2
YYY e

:= E
[
‖YYY e‖2F

]
and σ2

YYY τ
:= E

[
‖YYY τ‖2F

]
. For the matrix YYY of

measurements, define the ESR as follows

ESRYYY :=
σ2
YYY

σ2
XXX

=

∑N−1
k=0 σ2

ỹyye[k]∑N−1
k=0 σ2

ỹyyτ [k]

=
1

N

N−1∑
k=0

ESRỹyy[k]

≤ 4π2 ·

(
4ψ2

1

3C2

(N − 1)(N − 1
2)

N2

+
ρ2

2ψ
2
2

|K|P
+

ρ2ψ1ψ2

C
√
|K|P

(N − 1)(N − 2)

N2

)

< 4π2 ·

(
2ψ2

1

3C2
+
ρ2

2ψ
2
2

|K|P
+

ρ2ψ1ψ2

C
√
|K|P

)
.

(5.76)

With Known Skews If the skews are known, the MMV measurements are obtained

as in (5.12) using ∆̃∆∆[k] which relates to both known offsets τp’s and skews δt’s. Recall
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(5.12) and separate ∆̃∆∆[k] according to (5.39)

ỹyy[k] =
C

B
· ∆̃∆∆[k]x̃xxc[k]

=
C

B
· ∆̃∆∆δ[k]∆̃∆∆τ [k]x̃xxc[k] = (AAAτ +AAAδ) x̃xx[k].

(5.77)

By relating (5.46) in the definition the skew-free version of MMV measurement ỹyy[k], it

is then expressed by

ỹyyτ [k] :=
C

B
· ∆̃∆∆τ [k]x̃xxτ [k] = AAAτx̃xx[k]. (5.78)

Consequently, the error in MMV measurement writes

ỹyye[k] = ỹyy[k]− ỹyyτ [k] = AAAδx̃xx[k]. (5.79)

The power of error signal ỹyye[k] in the scenario of known skews writes as follows according

to (5.50)

σ2
ỹyye[k] := E

[
‖ỹyye[k]‖22

]
= 4π2ψ2

2ρ
2
2. (5.80)

The power of skew-free signal ỹyyτ [k] in the scenario of known skews writes as follows

according to (5.61)

σ2
ỹyyτ [k] := E

[
‖ỹyyτ [k]‖22

]
= |K|P. (5.81)

For each measurement vector in YYY , i.e. ỹyy[k] for k = 0, 1, · · · , N − 1, the ESR of ỹyy[k] is

hereby expressed by

ESRỹyy[k] : =
σ2
ỹyye[k]

σ2
ỹyyτ [k]

= 4π2 · ψ
2
2ρ

2
2

|K|P
. (5.82)

Furthermore, for the matrix YYY of measurements, the ESR of YYY is expressed by

ESRYYY :=

∑N−1
k=0 σ2

ỹyye[k]∑N−1
k=0 σ2

ỹyyτ [k]

= 4π2 · ψ
2
2ρ

2
2

|K|P (5.83)

which is an exact value instead of an upper bound.
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Figure 5.8: Frequency-domain representation of generated baseband waveforms in Sec-
tion 5.5.2, for channel occupancy pattern I, II and III from top down.

5.5.2 Numeric Analysis

Real-world baseband signals generated by a National Instruments mmWave SDR plat-

form are used for evaluation. The signals span the frequency range of −1 GHz to 1 GHz,

i.e. B = 2 GHz, and frames of I = 81920 raw samples from an ADC sampling at 3.072

GHz are collected, denoted by r[i]’s. To obtain the continuous-time signal s(t), one may

perform interpolation using a sinc function to preserve the components within the 2 GHz

instantaneous bandwidth by

s(t) =
I∑
i=0

2B · r[i]sinc (2Bt) .

Split the baseband bandwidth into C = 40 channels so that each channel spans B/C = 50

MHz, and the SDR transmitter can generate multiple 100 MHz orthogonal frequency-

division multiplexing waveforms at given central frequencies. Signal frames of three-

channel occupancy patterns are used, referred to as pattern I, II, and III, as shown

in Fig. 5.8. To remove the undesired impact of additive thermal noise in this analysis,

noise components in the vacant channels are zeroed in these frames. In all three patterns,

four channels are occupied, i.e. |K| = 4, and channel occupancy is K = {1, 2, 39, 40},

{11, 12, 29, 30}, and {19, 20, 21, 22} for pattern I, II, and III respectively. The number of

samples per coset for each frame is set to N = 4096.
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Figure 5.9: ESR bounds in (5.76) and emprical ESRs from signals of three channel
occupancy patterns against the level of unknown skews.

Figure 5.10: Analytic-form ESR in (5.83) and emprical ESRs from signals of three chan-
nel occupancy patterns against the level of known skews.

In Fig. 5.9, under the circumstance of unknown skews, the ESR bounds of three

occupancy patterns calculated by (5.76) are plotted against the level of skews across all

cosets, quantified by the mean of root sum square of skews, i.e. ψ2/P =
√∑P

p=1 δ
2
p/P .

Empirical ESRs are calculated from 500 sample frames in the SDR-generated dataset

using various levels of skews, which are also shown in Fig. 5.9 as scatters. It can

be seen that each curve from (5.76) serves as the upper bound of the empirical ESRs

correctly. Moreover, it is also noted that the ESR significantly varies with the channel
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occupancy pattern. Specifically, the more distant the occupied channels are from the

central frequency, the larger ESR it leads to, with the same amount of skew, which can

be ascribed to the occupancy-related term ρ2 in (5.76).

In Fig. 5.10, for known skews, the analytic-form ESR and also the empirical ESRs

of three occupancy patterns calculated by (5.83) against the level of skews across all

cosets are presented, ψ2/P . It is found that the analytic-form ESR curves align well

with the simulation results when skews are small. Furthermore, when skews are large,

the high-order terms in the Taylor expansion (5.41) becomes too evident to be ignored,

and consequently, the analytical ESR curves deviate from the simulation results. One

may include higher-order terms in (5.41) to have a more accurate but complex form of

the analytical ESR.

Finally, the recovery performance of SDR-generated signals of three occupancy pat-

terns is illustrated in Fig. 5.11. The simultaneous orthogonal matching pursuit (SOMP)

[174] is implemented as the recovery algorithm for the MMV model (5.13) and exam-

ine the normalized mean square error (NMSE) and detection probability of occupied

channels in Fig. 5.11 (a) and (b) respectively, where NMSE is formally defined by

NMSE := ||X̃XXr − X̃XX||2F
/
||X̃XX||2F , where X̃XXr denotes the signal recovered by SOMP. Note

that both NMSE and detection probability gets deteriorated with increasing level of

skews, and with channel occupancy more distant from the central frequency. The trends

of skew-induced recovery performance deterioration are consistent with increasing ESRs.

5.6 Summary

This chapter focuses on the multicoset sampler architecture as the front-end of a CSS

system in wideband scenarios for mmWave applications and provides the modeling of

practical multicoset sampler as an MMV model. In the following, two major problems

emerging in the attempts of applying low-complexity greedy algorithms to the multi-
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(a) (b)

Figure 5.11: Recovery performance of signals of three-channel occupancy patterns using
SOMP against the level of skews. (a)(a)(a) NMSE; (b)(b)(b) Detection probability.

coset sampler model are discussed. Firstly, the spectrum leakage problem is considered

and a windowing scheme is proposed for the multicoset sampler model to diminish the

spectrum leakage compact in the spectrum sparsity estimation and the sparse recovery

of the spectrum. Then, to obtain the necessary input for the greedy algorithms, a spec-

trum sparsity estimation scheme is proposed. Moreover, with such sparsity information,

the original MMV CS model can be simplified by subspace techniques, and hence the

sparse recovery complexity can be reduced. Next, an SDR demo for a mmWave-band

multicoset-sampler-based CSS system is presented. Serving as a testbed for a realistic

multi-gigahertz bandwidth CSS system, the demo is developed on the NI mmWave plat-

form and achieves multicoset sampling with sparse recovery by greedy algorithms and

the abovementioned windowing and sparsity estimation schemes.

Furthermore, it is noted that one major technical challenge for real-world wideband

multicoset sampler is the timing control of the sampling, especially when the bandwidth

reaches multiple gigahertz in mmWave applications. Inaccuracies in sampling timing
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would induce undesired errors in the samples taken by the multicoset sampler. Since

such errors further contribute to the inaccuracies in the recovered spectrum for sparse

recovery techniques, it is of interest at the system level to quantify such measurement

errors. In Section 5.5 the timing-skew-induced error in the MMV measurements of the

multicoset sampler is analyzed.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

The ever-evolving development for wireless communication services and the increasing

demand for high data rates and wide service coverage has been facing the bottleneck

of spectrum scarcity. The availability of the finite spectrum resource with certain prop-

agation capabilities has been a persisting need. Spectrum sensing and cognitive radio

techniques are essential to obtain accurate information of ambient radio activities and

spectrum usage, enabling the vacant spectrum to be used in dynamic spectrum access

applications. With the recent developments of compressive sensing theories, sub-Nyquist

techniques have been applied for the application of real-time wideband spectrum sensing

to massively reduce the necessary sampling rate, on which topics this thesis focuses. The

background and current developments of compressive sensing techniques in the context

of wideband spectrum sensing are reviewed in Chapter 2. In the following chapters,

some major work during the Ph.D. has been presented contributing to addressing the

following three challenges in the current development of compressive spectrum sensing -

• the low-complexity realization of recovery of the sparse spectrum and the sparsity

estimation issue;

181
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• channel energy modeling and robust energy detection for occupied channels in the

wideband spectrum;

• realizing the multicoset sampler architecture as the sub-Nyquist sampling front

end towards gigahertz bandwidth for mmWave applications and identifying the

imperfections due to technical limitations.

In Chapter 3, the low-computational-complexity recovery of spectrum in compressive

spectrum sensing is focused on. It is proposed that the key problem of sparsity esti-

mation for low-complexity greedy algorithms can be solved directly and rapidly by an

eigendecomposition-based detector. By further formulating a reduced-dimension com-

pressive sensing model to be solved by a chosen greedy algorithm, it is presented that

computational complexity can be greatly saved and the performance of incumbent radio

detection enhanced as a result of the aid of sparsity estimation and dimension reduction.

In Chapter 4, it is discovered that the statistical model of the recovered power spec-

trum by CSS is different from that of the original signal for conventional spectrum

sensing. This part of the work especially considers the energy detection problem and

tentatively builds the channel energy statistical model for CSS. Additionally, based on

the statistical model, a threshold adaption scheme is proposed for CSS to keep a constant

false alarm rate in the energy detection.

In Chapter 5, the multicoset sampler architecture is examined in particular towards

its real-world implementation. A few practical problems of the processing routines are

discussed, such as the windowing of the measurements and low-complexity sparse recov-

ery. Next, a demonstration for a wideband CSS system emulating multicoset sampler

at 28.5 GHz is built on the National Instruments mmWave soft-defined-radio platform.

Furthermore, it is identified that the timing accuracy of the sampling is essential for mul-

ticoset sampler in wideband applications and the initial investigation is made to quantify

the timing-skew-induced error in the compressed measurements.
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6.2 Future Work

Although the theory of compressive sensing and various signal processing topics in wide-

band CSS have been intensively investigated, open problems remain to be addressed

towards the real-world implementations of spectrum sensing with wider bandwidth, con-

sidering the distinctive architectures of sub-Nyquist samplers and the practical limita-

tions. The promising topics of future work are identified as follows.

6.2.1 On the Hardware Mismatches of Sub-Nyquist Samplers

Multicoset sampler consists of an ADC array to achieve interleaved sampling patterns.

However, one major problem with time interleaving sampling is that the ADCs and

the parallel analog signal paths before the ADCs, though required to be identical, do

not practically have identical performances. Such part-to-part discrepancies refer to the

properties such as gains, phase offsets, dispersion, and in-phase-quadrature imbalance.

For conventional Nyquist-rate interleaved sampling systems, these mismatches cause non-

harmonic spurious impairments on the frequency domain of the sampled signal, known as

‘interleaving spurs’, which has been frequently studied and considered in practice [204].

However, the multicoset sampler inheriting the interleaved sampling structure and also

the modulated wideband converter (MWC) with parallel ADCs would suffer from such

mismatches as well, and it is hence necessary to model the mismatches for the multicoset

sampler, quantify the error in the measurements or the recovered signal. Moreover,

existing conventional foreground [205] (using a known calibration signal) and background

calibration techniques [206, 207] have seen to apply to Nyquist-rate interleaved ADCs

with little extra hardware, and similar strategies can potentially adapt to the sub-Nyquist

sampling models to overcome such hardware imparities.

6.2.2 Compensating the Undesired Skews of Multicoset Sampler

It is indicated in Chapter 5 that the undesired timing skews can cause a significant impact

on the accuracy of the compressed measurements. Although some of these undesired
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skews can be minimized on the hardware, i.e. precise length matching of the traces

and analog delay units, also there may be possibilities to compensate these skew on the

signal processing level. The current multicoset sampler model dictates the timing offsets

to have the resolution of the Nyquist sampling period so that the sensing matrix is a

partial Fourier matrix where the rows are ideally orthogonal. It is intriguing to know the

system performance if one includes the undesired skews into the sensing matrix to form

non-ideally-orthogonal rows and compare with the performance with unknown skews and

the impaired measurements. By inserting the undesired skew terms in the compressive

sensing model, such an idea of compensation may reduce the impact of these undesired

skews.

6.2.3 Quantifying the Skew-Induced Error in the Recovered Signal and

Other Sub-Nyquist Samplers

The skew-induced error on the compressed measurement of the multicoset sampler is

quantified in Section 5.5. However, for a more direct indicator of system-level perfor-

mance deterioration, one may account for the skew-induced error in the final signal

recovered by a specific sparse recovery algorithm by analyzing the sparse recovery rou-

tines, potentially via some underlying properties such as the restricted isometry prop-

erties. It is also noted that the undesired skew is not only a problem specifically for

the multicoset sampler, a similar issue arises for other sub-Nyquist sampling front-ends

employing parallel branches and requiring synchronization, such as the MWC. It is hence

worth investigating the skew-induced error issue for other sub-Nyquist samplers for the

purpose to implement them for a larger bandwidth.

6.2.4 Performances of Windowing Schemes for Sub-Nyquist Samplers

It is proposed in Section 5.2 that a Dolph-Chebyshev window can be used in particular

to mitigate the impact of the spectrum leakage to the sparsity of the signal and hence

the eigendecomposition-based sparsity detector in the context of the multicoset sampler.

However, when dealing with finite-length data, other types of common windowing func-
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tions may still be interested to be applied for varying levels of compromise between the

windowed signal’s frequency resolution and amplitude resolution (or dynamic range), and

their empirical performances of sparse recovery and implications to the sparsity estima-

tion may need to be evaluated. More generally, the use of various types of windows with

steep roll-off frequency responses for sub-Nyquist sampling is especially worth investigat-

ing, as general compressive sensing theories do not necessitate a strictly sparse spectrum

model for robust sparse recovery, that is, fast-decaying non-ideally-sparse signals can be

reconstructed into a sparse approximate with small reconstruction error [208]. Examples

can be seen in [73] that in the MWC setting, a violation of the strict sparsity model

caused by spectrum leakage, even with rectangular windowing, does not necessarily fail

the signal reconstruction.

6.2.5 Adaptive Adjustment of Compression Ratio in Compressive Spec-

trum Sensing

The compression of the sampling rate in CSS is desired to be as low as possible to

minimize the power consumption while ensuring the sparse recovery performance. In

Section 2.4.3 it is mentioned that it is sufficient to use a sensing matrix to recover an

arbitrary sparse signal of which the sparsity is less than half of the Kruskal rank of

the sensing matrix. In the context of CSS, for the multicoset sampler and the MWC

model, this condition translates to the following - it is sufficient to have the number of

parallel ADC branches larger than two times the number of the occupied channels of

the spectrum to ensure exact sparse recovery. One may devise an adaption scheme to

determine the number of active ADCs (i.e. the compression ratio) sufficient for reliable

spectrum recovery based on the sparsity estimation technique proposed in this thesis.

Additionally, it may also be possible to use some comparison metrics between the raw

sub-Nyquist samples from the ADCs and the recovered version to evaluates the recovery

performance and tentatively adjust the number of active ADCs based on such empirical

metrics.
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Appendix A

Proof of Lemma 1 in Chapter 3

Proof. Denote the subspace dimension dim{ααα(1),ααα(2), · · · ,ααα(s)} = v, and naturally one

has v ≤ s < r. Consider the case thatααα(s+1) falls in the subspace span{ααα(1),ααα(2), · · · ,ααα(s)},

where the probability equals to the integral of the probability density function that is

absolutely continuous in space Cr on a v-dimension hyperplane, which has the measure of

0. Hence, with the probability of 1, ααα(s+1) is linear-independent with {ααα(1),ααα(2), · · · ,ααα(s)},

which completes the proof.
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Appendix B

Proof of Proposition 1 in Chapter

3

Proof. Given arbitrary sss
(1)
f , from Lemma 1, it holds that dim{sss(1)

f sss
(2)
f } = 2 with proba-

bility of 1. For 2 ≤ s ≤ δ(sssf )− 1, assuming dim{sss(1)
f · · ·sss(s)

f } = s, again from Lemma 1,

it holds that dim{sss(1)
f · · · sss

(s+1)
f } = s+1. Consequently, one can have the first δ(sssf ) sam-

ples satisfying dim
{
sss

(1)
f sss

(2)
f · · · , sss(δ(sssf ))

f

}
= rank

[
sss

(1)
f sss

(2)
f · · · , sss(δ(sssf ))

f

]
= δ(sssf ). Then,

with P − δ(sssf ) more samples as columns, one naturally has rank (SSSf ) ≥ δ(sssf ). On

the other hand, consider the sparsity of sss
(p)
f ’s, it also holds rank (SSSf ) ≤ δ(sssf ). From

both inequalities, one has rank (SSSf ) = δ(sssf ). From R̂RRsf = 1
PSfSfSfSfSfSf

H , one can write

rank(R̂RRsf ) = rank(SSSf ) = δ(sssf ).

Furthermore, consider YYY = ΦΦΦFFF−1SSSf , one can obtain rank(YYY ) = min
{

rank(ΦFΦFΦF−1), δ(sssf )
}

=

δ(sssf ). Finally, it is reached that rank(R̂RRy) = rank( 1
PY YY YY Y

H) = rank(YYY ) = δ(sssf ).
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Appendix C

Proof of Proposition 2 in Chapter

3

Proof. ∀xxx ∈ Cbs.t.MMMHxxx = 000, one hasMMMMMMHxxx = 000, which means null(MMMH) ⊆ null(MMMMMMH).

Similarly, ∀xxx ∈ Cb s.t. MMMMMMHxxx = 000, the quadratic form satisfies xxxHMMMMMMHxxx = 000,

then MMMHxxx = 000, which is equivalent to null(MMMMMMH) ⊆ null(MMMH). Thus, it holds that

null(MMMMMMH) = null(MMMH). For matrix NNN , again, one has null(NNNNNNH) = null(NNNH) and it

follows that null(MMMH) = null(NNNH) = null(NNNNNNH) = null(MMMMMMH). Finally, from rank-

nullity theorem, it holds that span(MMM) = null(MMMH)⊥ = span(NNN) = null(NNNH)⊥, which

completes the proof.
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Appendix D

Proof of Corollary 1 in Chapter 3

Proof. Consider the case BBBv = 000, and it is noted that VVV sλλλsVVV
H
s = YYY

′
sYYY
′
s
H

when kc =

δ(sssf ). From Proposition 2 one has span
(
VVV s(ΛΛΛs)

1
2

)
= span(YYY s). Since columns of the

two matrices span the same kc-dimension subspace in CM , they can be linked via a unique

linear transform characterized by full-(column-)rank matrix LLLP×kc , that is VVV s(ΛΛΛs)
1
2 =

YYY sLLL. There exists a matrix SSSv = SfLSfLSfL that satisfies VVV s(ΛΛΛs)
1
2 = ΦΦΦSSSv = YYY sLLL = ΦΦΦSSSfLLL.

And such SSSv apparently has the same support as SSSf (i.e. equality in (3.24)) with row

sparsity of δ(sssf ).

For underestimated dimensionality of signal subspace kc < δ(sssf ), the detected signal

subspace has reduced dimensionality compared to that of YYY s, that is span
(
VVV s(ΛΛΛs)

1
2

)
⊂

span(YYY s). Then, the relationships VVV s(ΛΛΛs)
1
2 = YYY sLLL and SSSv = SSSfLLL hold where there exists

a matrix LLLP×δ(sssf ) with the rank of kc. Similarly, this leads to supp(SSSv) ⊆ supp(SSSf ).
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Appendix E

Proof for Proposition 3 in

Chapter 3

Proof. Before formally starting the proof, the following Lemma 2 is introduced directly

from the definition of restricted isotropic property (RIP).

Lemma 2 ([149] ). Define the RIP constant of matrix AAA with sparsity s as

σAAA,s := max
{S| card(S)≤s}, ∀xxx∈CS

〈(
(AAA)H·,S(AAA)·,S − III

)
xxx,xxx

〉
||xxx||22

, (E.1)

and the following relations hold

∣∣∣∣〈(III −AAAHAAA)uuu,vvv
〉∣∣∣∣

2
≤ σt||uuu||2||vvv||2,

∀uuu,vvv s. t. card (supp(uuu) ∪ supp(vvv)) ≤ t,
(E.2)

and

∣∣∣∣ ((III −AAAHAAA)vvv)U ∣∣∣∣2 ≤ σt||vvv||2,
∀U,vvv s. t. card (U ∪ supp(vvv)) ≤ t.

(E.3)
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For conciseness, denote AAA := ΦFΦFΦF−1 and MMM s := VVV s(ΛΛΛs)
1
2 . From the least-square

step (line 4) in Algorithm 1, the residue produced in the (i + 1)th iteration AAASSS
(i+1)
v −

MMM s is orthogonal to the measurement space determined by the selected block support,

span
(

(AAA)BLK,Ω(i+1)

)
. This leads to

(ASvASvASv)
H
(
AAASSS(i+1)

v −MMM s

)
= 000, ∀SSSv s. t. (SSSv)BLK,Ω(i+1) = 000, (E.4)

which can be rewritten as

(
AAAHASvASvASv

)H (
SSS(i+1)
v −SSSv

)
= 000,∀SSSv s. t. (SSSv)BLK,Ω(i+1) = 000. (E.5)

Then, examine the error from the detected support

∣∣∣∣∣∣ (SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

∣∣∣∣∣∣2
F

= tr

((
SSS(i+1)
v −SSSv

)H (
SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

)
=

(E.5)
tr

((
SSS(i+1)
v −SSSv

)H
·
(
III −AAAHAAA

) (
SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

)

≤
(E.2)

σAAA,2kc
∣∣∣∣∣∣SSS(i+1)

v −SSSv
∣∣∣∣∣∣
F

∣∣∣∣∣∣∣∣ (SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

∣∣∣∣∣∣∣∣
F

,

(E.6)

from which one can arrive at

∣∣∣∣∣∣ (SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

∣∣∣∣∣∣
F
≤ σAAA,2kc

∣∣∣∣∣∣SSS(i+1)
v −SSSv

∣∣∣∣∣∣
F
. (E.7)
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Next, the total error at the (i+ 1)th iteration is accounted,

∣∣∣∣∣∣ (SSS(i+1)
v −SSSv

) ∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣ (SSS(i+1)

v −SSSv
)

BLK,Ω(i+1)

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣ (SSS(i+1)

v −SSSv
)

BLK,Ω(i+1)

∣∣∣∣∣∣2
F

≤σ2
AAA,2kc

∣∣∣∣∣∣SSS(i+1)
v −SSSv

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣ (SSS(i+1)

v −SSSv
)

BLK,Ω(i+1)

∣∣∣∣∣∣2
F
,

(E.8)

from which one can obtain

∣∣∣∣∣∣SSS(i+1)
v −SSSv

∣∣∣∣∣∣2
F

≤ 1

1− σ2
AAA,2kc

∣∣∣∣∣∣ (SSS(i+1)
v −SSSv

)
BLK,Ω(i+1)

∣∣∣∣∣∣2
F
.

(E.9)

On the other hand, examine the correlation step (line 3) in Algorithm 1 and one instantly

has the following

∣∣∣∣∣∣ (SSS(i)
v +AAAH

(
MMM s −AAASSS(i)

v

))
BLK,Ω(i+1)

∣∣∣∣∣∣2
F

≥
∣∣∣∣∣∣ (SSS(i)

v +AAAH
(
MMM s −AAASSS(i)

v

))
BLK,Ωs

∣∣∣∣∣∣2
F
,

(E.10)

where Ωs is the block support of SSSv. The above may be rewritten as

∣∣∣∣∣∣ (SSS(i)
v +AAAH

(
MMM s −AAASSS(i)

v

))
BLK,Ω(i+1)\Ωs

∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i+1)

v −SSSv
))

BLK,Ω(i+1)\Ωs

∣∣∣∣∣∣2
F

≥
∣∣∣∣∣∣ (SSS(i)

v +AAAH
(
MMM s −AAASSS(i)

v

))
BLK,Ωs\Ω(i)

∣∣∣∣∣∣2
F
.

(E.11)

The right-hand side of the inequality (E.11) is reorganized as the following given the fact
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(
SSS

(i+1)
v

)
BLK,Ω(i+1)

= 000,

∣∣∣∣∣∣ (SSS(i)
v +AAAH

(
MMM s −AAASSS(i)

v

))
BLK,Ωs\Ω(i+1)

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i)

v −SSSv
))

BLK,Ωs\Ω(i+1)

+
(
SSSv −SSS(i+1)

v

)
BLK,Ω(i+1)

∣∣∣∣∣∣
F

≥
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i)

v −SSSv
))

BLK,Ωs\Ω(i+1)

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣ (SSSv −SSS(i+1)

v

)
BLK,Ω(i+1)

∣∣∣∣∣∣
F
.

(E.12)

Focus on the last term and one can shrink it from (E.12) and (E.11)

∣∣∣∣∣∣ (SSSv −SSS(i+1)
v

)
BLK,Ω(i+1)

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i)

v −SSSv
))

BLK,Ωs\Ω(i+1)

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i)

v −SSSv
))

BLK,Ω(i+1)\Ωs

∣∣∣∣∣∣
F

≤
√

2
∣∣∣∣∣∣( (III −AAAHAAA)
·
(
SSS(i)
v −SSSv

))
BLK,(Ωs\Ω(i+1))∪(Ω(i+1)\Ωs)

∣∣∣∣∣∣
F

≤
(E.3)

√
2σAAA,3kc

∣∣∣∣∣∣ (SSSv −SSS(i)
v

) ∣∣∣∣∣∣
F
.

(E.13)

Congregate (E.9) and (E.13) and one can finally obtain the recurrence relation of error,

writing ∣∣∣∣∣∣SSS(i+1)
v −SSSv

∣∣∣∣∣∣
F
≤

√√√√ 2σ2
AAA,3kc

1− σ2
AAA,2kc

∣∣∣∣∣∣SSS(i)
v −SSSv

∣∣∣∣∣∣
F
. (E.14)

Convergence of the algorithm requires the constant in (E.14) less than one. By definition,

σAAA,3kc > σAAA,2kc naturally holds. This immediately leads to σAAA,3kc < 1/
√

3 as a guarantee

of JB-HTP’s convergence, which completes the proof.
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Appendix F

Proof of Proposition 4 in Chapter

3

Proof. The final iteration of JB-HTP is determined at the point where Ω(i−1) = Ω(i) =

Ω = Ωs. For starter, consider the selected block upon convergence ∀p ∈ Ω and others

∀q ∈ Ω, and the following can be obtained

∣∣∣∣∣∣ (SSS(i−1)
v +AAAH

(
MMM s −AAASSS(i−1)

v

))
BLK,{p}

∣∣∣∣∣∣
F

>
∣∣∣∣∣∣ (SSS(i−1)

v +AAAH
(
MMM s −AAASSS(i−1)

v

))
BLK,{q}

∣∣∣∣∣∣
F

(F.1)

On the left-hand side, it can be observed

∣∣∣∣∣∣ (SSS(i−1)
v +AAAH

(
MMM s −AAASSS(i−1)

v

))
BLK,{p}

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ (SSSv)BLK,{p} +

((
III −AAAHAAA

) (
SSS(i−1)
v −SSSv

))
BLK,{p}

∣∣∣∣∣∣
F

≥ε−
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i−1)

v −SSSv
))

BLK,{p}

∣∣∣∣∣∣
F
,

(F.2)
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where ε := minp∈Ω

∥∥∥(SSSv)BLK,{p}

∥∥∥
F

. On the right-hand side, given the fact that (SSSv)BLK,{q} =

000, it holds that

∣∣∣∣∣∣ (SSS(i−1)
v +AAAH

(
MMM s −AAASSS(i−1)

v

))
BLK,{q}

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i−1)

v −SSSv
))

BLK,{q}

∣∣∣∣∣∣
F
.

(F.3)

Subtract (F.3) from (F.2), and one may write and further re-organize as follows,

∣∣∣∣∣∣ (SSS(i−1)
v +AAAH

(
MMM s −AAASSS(i−1)

v

))
BLK,{p}

∣∣∣∣∣∣
F

−
∣∣∣∣∣∣ (SSS(i−1)

v +AAAH
(
MMM s −AAASSS(i−1)

v

))
BLK,{q}

∣∣∣∣∣∣
F

≥ε−
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i−1)

v −SSSv
))

BLK,{p}

∣∣∣∣∣∣
F

−
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i−1)

v −SSSv
))

BLK,{q}

∣∣∣∣∣∣
F

≥
(E.2)

ε−
√

2
∣∣∣∣∣∣ ((III −AAAHAAA) (SSS(i−1)

v −SSSv
))

BLK,{p,q}

∣∣∣∣∣∣
F

≥ε−
√

2σAAA,3kc
∥∥∥SSS(i−1)

v −SSSv
∥∥∥
F

≥
(E.14)

ε−
√

2σAAA,3kc


√√√√ 2σ2

AAA,3kc

1− σ2
AAA,2kc

i−1 ∥∥∥SSS(0)
v −SSSv

∥∥∥
F

=ε−
√

1− σ2
AAA,2kc · µ

i
∥∥∥SSS(0)

v −SSSv
∥∥∥
F

>
Prop. 3

ε−
√

2

3
· µi
∥∥∥SSS(0)

v −SSSv
∥∥∥
F
,

(F.4)

where µ := σAAA,3kc

/√
1− σ2

AAA,2kc . To guarantee (F.2) to hold, inequality (F.4) may be

bounded as following where i can be determined as a conservative upper bound,

0 <ε−
√

2

3
· µi
∥∥∥SSS(0)

v −SSSv
∥∥∥
F

i <

⌈ log

(√
2
3 ·

∥∥∥SSS(0)
v −SSSv

∥∥∥
F

ε

)
log 1

µ

⌉
.

(F.5)
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The specific upper bound of iteration number relies on the original sparse signal SSSv

which is a statistical signal, and the initial value SSS
(0)
v . Here, consider a common case

where SSS
(0)
v = 000 and use a constant ρ to denote the expected logarithm ratio between the

average received energy among all active channels and the minimum received channel

energy,

ρ := E

[
log

(
‖SSSv‖F
lε

)]
. (F.6)

Get expectations on both sides (F.5) and obtain

E[i] < E

⌈ log
(√

2
3 ·
‖SSSv‖F
ε

)
log 1

µ

⌉
≤ E

 log
(√

2
3 ·
‖SSSv‖F
ε

)
log 1

µ

+ 1

=
log
(√

2
3

)
+ log l + E

[
log
(
‖SSSv‖F
lε

)]
log 1

µ

+ 1

=
log
(√

2
3

)
+ log l + ρ

log 1
µ

+ 1 = O(log l) +O(1),

(F.7)

which completes the proof.
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