2,694 research outputs found

    Electrical withstand performance of Malaysian based palm oil under influence of HVDC stress

    Get PDF
    Overvoltage is a phenomenon where electrical waveform applied to circuit or device exceeds normal operating parameters. The sources of overvoltage are often unpredictable and can lead to permanent degradation, failure or temporary malfunction of devices and systems. Equipment running with HVDC needs to be equipped with a proper protection system and insulation strength properties better than typically being rated to the HVAC system

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    Integration of cellular network and wireless LAN

    Get PDF
    This study discusses the significant problems accommodated in the integration of cellular networks and WLANs to the service providers, end-users, etc. This study aims about the current complications, current challenges, substantial significance, future implementations, and the future challenges related to the integration of cellular networks and WLANs. We are performing the research to specifically identify the issues of the integration and how to eliminate these problems to produce a network that delivers higher productivity to users in terms of bandwidth, coverage area, etc. The integration of networks is now in high demand as a diverse range of mobile devices, applications requires the network to be integrated in order to utilize the service anywhere, anytime, and at a reasonable cost. The crucial component in integration is the handoff process that takes place when the user moves from one network to another without experiencing any interruption. Some issues must be considered in all the layers of the protocol stack in order to contribute a breath-taking performance to the end-users who are central to the networks. This study is carried out by referring to past written articles, documents, records, by other researches. This study identifies the problems and issues related to the protocol stack, provides the readers with the importance of integration, and the discussion about this integration of the network

    A Space-time Smooth Artificial Viscosity Method For Nonlinear Conservation Laws

    Full text link
    We introduce a new methodology for adding localized, space-time smooth, artificial viscosity to nonlinear systems of conservation laws which propagate shock waves, rarefactions, and contact discontinuities, which we call the CC-method. We shall focus our attention on the compressible Euler equations in one space dimension. The novel feature of our approach involves the coupling of a linear scalar reaction-diffusion equation to our system of conservation laws, whose solution C(x,t)C(x,t) is the coefficient to an additional (and artificial) term added to the flux, which determines the location, localization, and strength of the artificial viscosity. Near shock discontinuities, C(x,t)C(x,t) is large and localized, and transitions smoothly in space-time to zero away from discontinuities. Our approach is a provably convergent, spacetime-regularized variant of the original idea of Richtmeyer and Von Neumann, and is provided at the level of the PDE, thus allowing a host of numerical discretization schemes to be employed. We demonstrate the effectiveness of the CC-method with three different numerical implementations and apply these to a collection of classical problems: the Sod shock-tube, the Osher-Shu shock-tube, the Woodward-Colella blast wave and the Leblanc shock-tube. First, we use a classical continuous finite-element implementation using second-order discretization in both space and time, FEM-C. Second, we use a simplified WENO scheme within our CC-method framework, WENO-C. Third, we use WENO with the Lax-Friedrichs flux together with the CC-equation, and call this WENO-LF-C. All three schemes yield higher-order discretization strategies, which provide sharp shock resolution with minimal overshoot and noise, and compare well with higher-order WENO schemes that employ approximate Riemann solvers, outperforming them for the difficult Leblanc shock tube experiment.Comment: 34 pages, 27 figure

    Eno-Osher schemes for Euler equations

    Get PDF
    The combination of the Osher approximate Riemann solver for the Euler equations and various ENO schemes is discussed for one-dimensional flow. The three basic approaches, viz. the ENO scheme using primitive variable reconstruction, either with Cauchy-Kowalewski procedure for time integration or the TVD Runge-Kutta scheme, and the flux-ENO method are tested on different shock tube cases. The shock tube cases were chosen to present a serious challenge to the ENO schemes in order to test their ability to capture flow discontinuities, such as shocks. Also the effect of the ordering of the eigen values, viz. natural or reversed ordering, in the Osher scheme is investigated. The ENO schemes are tested up to fifth order accuracy in space and time. The ENO-Osher scheme using the Cauchy-Kowalewski procedure for time integration is found to be the most accurate and robust compared with the other methods and is also computationally efficient. The tests showed that the ENO schemes perform reasonably well, but have problems in cases where two discontinuities are close together. In that case there are not enough points in the smooth part of the flow to create a non-oscillatory interpolation

    Bypass transition in compressible boundary layers

    Get PDF
    Transition to turbulence in aerospace applications usually occurs in a strongly disturbed environment. For instance, the effects of free-stream turbulence, roughness and obstacles in the boundary layer strongly influence transition. Proper understanding of the mechanisms leading to transition is crucial in the design of aircraft wings and gas turbine blades, because lift, drag and heat transfer strongly depend on the state of the boundary layer, laminar or turbulent. Unfortunately, most of the transition research, both theoretical and experimental, has focused on natural transition. Many practical flows, however, defy any theoretical analysis and are extremely difficult to measure. Morkovin introduced in his review paper the concept of bypass transition as those forms of transition which bypass the known mechanisms of linear and non-linear transition theories and are currently not understood by experiments. In an effort to better understand the mechanisms leading to transition in a disturbed environment, experiments are conducted studying simpler cases, viz. the effects of free stream turbulence on transition on a flat plate. It turns out that these experiments are very difficult to conduct, because generation of free stream turbulence with sufficiently high fluctuation levels and reasonable homogeneity is non trivial. For a discussion see Morkovin. Serious problems also appear due to the fact that at high Reynolds numbers the boundary layers are very thin, especially in the nose region of the plate where the transition occurs, which makes the use of very small probes necessary. The effects of free-stream turbulence on transition are the subject of this research and are especially important in a gas turbine environment, where turbulence intensities are measured between 5 and 20 percent, Wang et al. Due to the fact that the Reynolds number for turbine blades is considerably lower than for aircraft wings, generally a larger portion of the blade will be in a laminar transitional state. The effects of large free stream turbulence in compressible boundary layers at Mach numbers are examined both in the subsonic and transonic regime using direct numerical simulations. The flow is computed over a flat plate and curved surface. while many applications operate in the transonic regime. Due the nature of their numerical scheme, a non-conservation formulation of the Navier-Stokes equations, it is a non-trivial extension to compute flow fields in the transonic regime. This project aims at better understanding the effects of large free-stream turbulence in compressible boundary layers at mach number both in the subsonic and transonic regime using direct numerical simulations. The present project aims at computing the flow over a flat plate and curved surface. This research will provide data which can be used to clarify mechanisms leading to transition in an environment with high free stream turbulence. This information is useful for the development of turbulence models, which are of great importance for CFD applications, and are currently unreliable for more complex flows, such as transitional flows

    RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Full text link
    We have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. We have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration we use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. We have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO we have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. We examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. We show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. We have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which we show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.Comment: ApJS in press, 21 pages including 18 figures (6 color figures
    corecore