51 research outputs found

    A Jacobian-free Newton-Krylov method for time-implicit multidimensional hydrodynamics

    Get PDF
    This work is a continuation of our efforts to develop an efficient implicit solver for multidimensional hydrodynamics for the purpose of studying important physical processes in stellar interiors, such as turbulent convection and overshooting. We present an implicit solver that results from the combination of a Jacobian-Free Newton-Krylov method and a preconditioning technique tailored to the inviscid, compressible equations of stellar hydrodynamics. We assess the accuracy and performance of the solver for both 2D and 3D problems for Mach numbers down to 10610^{-6}. Although our applications concern flows in stellar interiors, the method can be applied to general advection and/or diffusion-dominated flows. The method presented in this paper opens up new avenues in 3D modeling of realistic stellar interiors allowing the study of important problems in stellar structure and evolution.Comment: Accepted for publication in A&

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    Efficient Parallel Resolution of The Simplified Transport Equations in Mixed-Dual Formulation

    Get PDF
    International audienceA reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine modelizations are difficult to treat for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. A first implementation of a Lagrangian based domain decomposition method brings to a poor parallel efficiency because of an increase in the power iterations. In order to obtain a high parallel efficiency, we improve the parallelization scheme by changing the location of the loop over the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical scheme (mesh, finite element order). However, it can be significantly optimized for the matching grid case. The good behavior of the new parallelization scheme is demonstrated for the matching grid case on several hundreds of nodes for computations based on a pin-by-pin discretization

    Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999

    A Variable-Structure Variable-Order Simulation Paradigm for Power Electronic Circuits

    Get PDF
    Solid-state power converters are used in a rapidly growing number of applications including variable-speed motor drives for hybrid electric vehicles and industrial applications, battery energy storage systems, and for interfacing renewable energy sources and controlling power flow in electric power systems. The desire for higher power densities and improved efficiencies necessitates the accurate prediction of switching transients and losses that, historically, have been categorized as conduction and switching losses. In the vast majority of analyses, the power semiconductors (diodes, transistors) are represented using simplified or empirical models. Conduction losses are calculated as the product of circuit-dependent currents and on-state voltage drops. Switching losses are estimated using approximate voltage-current waveforms with empirically derived turn-on and turn-off times

    NUMERICAL INVESTIGATION AND PARALLEL COMPUTING FOR THERMAL TRANSPORT MECHANISM DURING NANOMACHINING

    Get PDF
    Nano-scale machining, or Nanomachining is a hybrid process in which the total thermal energy necessary to remove atoms from a work-piece surface is applied from external sources. In the current study, the total thermal energy necessary to remove atoms from a work-piece surface is applied from two sources: (1) localized energy from a laser beam focused to a micron-scale spot to preheat the work-piece, and (2) a high-precision electron-beam emitted from the tips of carbon nano-tubes to remove material via evaporation/sublimation. Macro-to-nano scale heat transfer models are discussed for understanding their capability to capture and its application to predict the transient heat transfer mechanism required for nano-machining. In this case, thermal transport mechanism during nano-scale machining involves both phonons (lattice vibrations) and electrons; it is modeled using a parabolic two-step (PTS) model, which accounts for the time lag between these energy carriers. A numerical algorithm is developed for the solution of the PTS model based on explicit and implicit finite-difference methods. Since numerical solution for simulation of nanomachining involves high computational cost in terms of wall clock time consumed, performance comparison over a wide range of numerical techniques has been done to devise an efficient numerical solution procedure. Gauss-Seidel (GS), successive over relaxation (SOR), conjugate gradient (CG), d -form Douglas-Gunn time splitting, and other methods have been used to compare the computational cost involved in these methods. Use of the Douglas-Gunn time splitting in the solution of 3D time-dependent heat transport equations appears to be optimal especially as problem size (number of spatial grid points and/or required number of time steps) becomes large. Parallel computing is implemented to further reduce the wall clock time required for the complete simulation of nanomachining process. Domain decomposition with inter-processor communication using Message Passing Interface (MPI) libraries is adapted for parallel computing. Performance tuning has been implemented for efficient parallelization by overlapping communication with computation. Numerical solution for laser source and electron-beam source with different Gaussian distribution are presented. Performance of the parallel code is tested on four distinct computer cluster architecture. Results obtained for laser source agree well with available experimental data in the literature. The results for electron-beam source are self-consistent; nevertheless, they need to be validated experimentally

    Model atmospheres of sub-stellar mass objects

    Full text link
    We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.Comment: 31 pages, 10 figure

    Efficient multilevel solvers and high performance computing techniques for the finite element simulation of large-scale elasticity problems

    Get PDF
    Bei der Simulation realistischer strukturmechanischer Probleme können Gleichungssysteme mit mehreren hundert Millionen Unbekannten entstehen. Für die effiziente Lösung solcher Systeme sind parallele Multilevel-Methoden unerlässlich, die in der Lage sind, die Leistung moderner Hardware-Technologien auszuschöpfen. Die Finite-Elemente- und Löser-Toolbox FEAST, die auf die Behandlung skalarer Gleichungen ausgelegt ist, verfolgt genau dieses Ziel. FEAST kombiniert Hardware-orientierte Implementierungstechniken mit einer Multilevel-Gebietszerlegungsmethode namens ScaRC. In der vorliegenden Arbeit wird ein Konzept entwickelt, multivariate Elastizitätsprobleme basierend auf der FEAST-Bibliothek zu lösen. Die generelle Herangehensweise besteht darin, die Lösung multivariater Probleme auf die Lösung einer Reihe von skalaren Problemen zurückzuführen. Dieser Ansatz ermöglicht eine strikte Trennung von skalaren "low level" Kernfunktionalitäten (in Form der FEAST-Bibliothek) und multivariatem "high level" Anwendungscode (in Form des Elastizitätsproblems), was aus Sicht der Softwareentwicklungstechnik sehr vorteilhaft ist: Alle Bemühungen zur Verbesserung der Hardware-Effizienz, sowie Anpassungen an zukünftige technologische Entwicklungen können auf skalare Operationen beschränkt werden, während die multivariate Anwendung automatisch von diesen Erweiterungen profitiert. Im ersten Teil der Arbeit werden substantielle Verbesserungen der skalaren ScaRC-Löser entwickelt, die dann als essentielle Bausteine zur Lösung multivariater Elastizitätsprobleme eingesetzt werden. Ausführliche numerische Untersuchungen zeigen, wie sich die Effizienz der skalaren FEAST-Bibliothek auf den multivariaten Lösungsprozess überträgt. Die Löserstrategie wird dann auf nichtlineare Probleme der Elastizität mit finiter Deformation angewandt. Durch Einsatz einer Liniensuche-Methode wird die Robustheit des Newton-Raphson-Verfahrens signifikant erhöht. Es werden verschiedene Strategien miteinander verglichen, wie genau die linearen Probleme innerhalb der nichtlinearen Iteration zu lösen sind. Zur Behandlung der wichtigen Klasse von (fast) inkompressiblen Materialien wird eine gemischte Verschiebung/Druck-Formulierung gewählt, die mit Hilfe von stabilisierten bilinearen finiten Elementen (Q1/Q1) diskretisiert wird. Eine erweiterte Version der klassischen "Druck-Poisson"-Stabilisierung wird präsentiert, die auch für hochgradig irreguläre Gitter geeignet ist. Es werden Vor- und Nachteile der Q1/Q1-Diskretisierung erörtert, insbesondere in Bezug auf zeitabhängige Rechnungen. Zwei Löser-Klassen zur Behandlung der entstehenden Sattelpunkt-Probleme werden beschrieben und miteinander verglichen: einerseits verschiedene Arten von (beschleunigten) entkoppelten Lösern (Uzawa, Druck-Schurkomplement-Methoden, Block-Vorkonditionierer), andererseits gekoppelte Mehrgitter-Verfahren mit Vanka-Glättern. Effiziente Schurkomplement-Vorkonditionierer, die für die erste Löser-Klasse notwendig sind, werden im Rahmen statischer und zeitabhängiger Probleme besprochen. Die zentrale Strategie, die Lösung multivariater Systeme auf die Lösung skalarer Systeme zu reduzieren, ist nur im Falle der entkoppelten Lösungsmethoden anwendbar. Es wird gezeigt, dass für die Klasse der Elastizitätsprobleme, die in dieser Arbeit behandelt werden, die entkoppelten Löser den gekoppelten hinsichtlich numerischer und paralleler Effizienz deutlich überlegen sind.In the simulation of realistic solid mechanical problems, linear equation systems with hundreds of million unknowns can arise. For the efficient solution of such systems, parallel multilevel methods are mandatory that are able to exploit the capabilities of modern hardware technologies. The finite element and solution toolbox FEAST, which is designed to solve scalar equations, pursues exactly this goal. It combines hardware-oriented implementation techniques with a multilevel domain decomposition method called ScaRC that achieves high numerical and parallel efficiency. In this thesis a concept is developed to solve multivariate elasticity problems based on the FEAST library. The general strategy is to reduce the solution of multivariate problems to the solution of a series of scalar problems. This approach facilitates a strict separation of 'low level' scalar kernel functionalities (in the form of the FEAST library) and 'high level' multivariate application code (in the form of the elasticity problem), which is very attractive from a software-engineering point of view: All efforts to improve hardware-efficiency and adaptations to future technology trends can be restricted to scalar operations, and the multivariate application automatically benefits from these enhancements. In the first part of the thesis, substantial improvements of the scalar ScaRC solvers are developed, which are then used as essential building blocks for the efficient solution of multivariate elasticity problems. Extensive numerical studies demonstrate how the efficiency of the scalar FEAST library transfers to the multivariate solution process. The solver strategy is then applied to treat nonlinear problems of finite deformation elasticity. A line-search method is used to significantly increase the robustness of the Newton-Raphson method, and different strategies are compared how to choose the accuracy of the linear system solves within the nonlinear iteration. In order to treat the important class of (nearly) incompressible material, a mixed displacement/pressure formulation is used which is discretised with stabilised bilinear finite elements (Q1/Q1). An enhanced version of the classical 'pressure Poisson' stabilisation is presented which is suitable for highly irregular meshes. Advantages and disadvantages of the Q1/Q1 discretisation are discussed, especially in the context of transient computations. Two solver classes for the resulting saddle point systems are described and compared: on the one hand various kinds of (accelerated) segregated solvers (Uzawa, pressure Schur complement methods, block preconditioners), and on the other hand coupled multigrid solvers with Vanka-smoothers. Efficient Schur complement preconditioners, which are required for the former class, are discussed for the static and the transient case. The main strategy to reduce the solution of multivariate systems to the solution of scalar systems is only applicable in the case of segregated methods. It is shown that for the class of elasticity problems considered in this thesis, segregated solvers are clearly superior to Vanka-type solvers in terms of numerical and parallel efficiency

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth
    corecore