
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

A Variable-Structure Variable-Order Simulation
Paradigm for Power Electronic Circuits
Anandakumar Subbiah
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Subbiah, Anandakumar, "A Variable-Structure Variable-Order Simulation Paradigm for Power Electronic Circuits" (2015). Open Access
Dissertations. 1318.
https://docs.lib.purdue.edu/open_access_dissertations/1318

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1318?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1318&utm_medium=PDF&utm_campaign=PDFCoverPages




A VARIABLE-STRUCTURE VARIABLE-ORDER SIMULATION PARADIGM

FOR POWER ELECTRONIC CIRCUITS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Anandakumar Subbiah

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana



ii

To my family



iii

ACKNOWLEDGMENTS

I sincerely thank Dr. Oleg Wasynczuk for his patient advising, introducing me to

computational science and its use as a modeling tool in the power and energy area.

His comments and constant encouragement helped me shape my research career. I

thank Drs. Scott Sudhoff, Michael Capano and Maryam Saeedifard for serving in my

advisory committee. I thank Dr. Sudhoff for suggesting that I take Solid State Devices

(ECE 606), which helped me gain more insight about semiconductor fundamentals.

I thank the Power and Energy Devices and Systems faculty for providing a pleasant

environment throughout my stay here at Purdue. Last but not the least, I thank my

family for their love, care and support.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of Document . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 ELECTRONIC TRANSPORT MODEL . . . . . . . . . . . . . . . . . . 7

2.1 One Dimensional Diode . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Ionization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Recombination Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Coupled Carrier Transport Equations . . . . . . . . . . . . . . . . . 13

2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 DISCRETIZATION AND MODEL ENCAPSULATION . . . . . . . . . . 17

3.1 Abstract Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Continuity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Central difference method . . . . . . . . . . . . . . . . . . . 23

3.3.2 Scharfetter-Gummel method . . . . . . . . . . . . . . . . . . 26

3.3.3 Boundary charge densities . . . . . . . . . . . . . . . . . . . 31

3.4 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



v

Page

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 COUPLED DEVICE AND ELECTRICAL NETWORK SIMULATION . 37

4.1 Diode Resistor Inductor Network . . . . . . . . . . . . . . . . . . . 37

4.1.1 Models of basic circuit elements . . . . . . . . . . . . . . . . 44

4.2 Coupled Circuit and Device Simulation . . . . . . . . . . . . . . . . 45

4.2.1 Interpretation of interface matrices . . . . . . . . . . . . . . 49

4.3 Comparison with Other Formulations . . . . . . . . . . . . . . . . . 53

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 TEMPORAL INTEGRATION AND PARAMETER EXTRACTION . . 56

5.1 Backward Euler Temporal Integration . . . . . . . . . . . . . . . . . 56

5.2 Parameter Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Diode Resistor Inductor Circuit Example . . . . . . . . . . . . . . . 65

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 EXPERIMENTAL VALIDATION . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Full System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Computational performance . . . . . . . . . . . . . . . . . . 73

6.1.2 Step size and sample rate . . . . . . . . . . . . . . . . . . . 74

6.1.3 ac bus waveforms . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.4 dc bus waveforms . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.5 Diode 1 variables . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.6 Power and energy calculations . . . . . . . . . . . . . . . . . 79

6.2 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 VARIABLE-STRUCTURE VARIABLE-ORDER SIMULATION PARADIGM 83

7.1 Variable-Structure Variable-Order Paradigm . . . . . . . . . . . . . 83

7.1.1 Fixed graded mesh . . . . . . . . . . . . . . . . . . . . . . . 85

7.1.2 Linear solver . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.3 Structurally varying tableau . . . . . . . . . . . . . . . . . . 94

7.2 Single-Phase Bridge Rectifier Simulation . . . . . . . . . . . . . . . 98



vi

Page

7.3 VSVO Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Speed-up calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH . . . . . . . 110

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.1.1 Multi-dimensional/multi-terminal devices . . . . . . . . . . . 112

8.1.2 Coupled Electro-thermal modeling . . . . . . . . . . . . . . 113

8.1.3 Numerical aspects . . . . . . . . . . . . . . . . . . . . . . . . 113

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A DERIVATIONS IN ONE DIMENSION . . . . . . . . . . . . . . . . . . . 123

A.1 Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Derivation of Jacobian Elements . . . . . . . . . . . . . . . . . . . . 126

A.2.1 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . 127

A.2.2 Central difference method . . . . . . . . . . . . . . . . . . . 128

A.2.3 Scharfetter-Gummel method . . . . . . . . . . . . . . . . . . 130

A.2.4 Newton-Raphson iterator . . . . . . . . . . . . . . . . . . . . 133

A.2.5 fi,χ matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B MANUAL TABLEAU DERIVATION . . . . . . . . . . . . . . . . . . . . 138

B.1 Appendix Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C Adaptive Spatial Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.1 Appendix Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D COMPUTER SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . 148

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



vii

LIST OF TABLES

Table Page

2.1 Ionization parameters at T = 300 K. . . . . . . . . . . . . . . . . . . . 10

2.2 Recombination parameters for Si. . . . . . . . . . . . . . . . . . . . . . 11

2.3 Drift-diffusion parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Parameters of an example pn-diode with step junction. . . . . . . . . . 25

3.2 Bernoulli function values. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Resistor-inductor-diode netlist. . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Incidence matrix partitions. . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Estimated Circuit parameters. . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Doping density versus forward voltage drop VF . . . . . . . . . . . . . . 64

5.3 Extracted physical parameters of S1A PIN diode. . . . . . . . . . . . . 65

6.1 Single-phase diode bridge rectifier circuit parameters. . . . . . . . . . . 71

6.2 Single-phase diode bridge rectifier netlist. . . . . . . . . . . . . . . . . . 71

6.3 Profiler output listing computational bottlenecks. . . . . . . . . . . . . 74

6.4 Simulated and measured energy comparisons. . . . . . . . . . . . . . . 82

7.1 Average time for solving 224×224 linear system (smaller the better). . 88

7.2 Performance comparison of 10000 solves of a linear system of 882 equa-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Simulated and measured energy comparisons. . . . . . . . . . . . . . . 105

7.4 VSVO profile results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Estimated speed-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



viii

LIST OF FIGURES

Figure Page

2.1 One-dimensional PIN diode structure. . . . . . . . . . . . . . . . . . . 8

3.1 Finite volume discretization (top) and a prototypical volume (bottom). 23

3.2 Charge densities and Péclet number near pn-junction using central differ-
ence method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Charge densities and Péclet number near pn-junction using Scharfetter-
Gummel method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 A simple RL and diode circuit with no ground node. . . . . . . . . . . 37

4.2 RL and diode circuit with parasitic capacitors and ground nodes added. 39

4.3 Circuit-diode coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Directed graph of the circuit in Figure 4.2. . . . . . . . . . . . . . . . . 40

4.5 Single-phase diode bridge rectifier with resistor-inductor load. . . . . . 52

5.1 Backward Euler algorithm flowchart. . . . . . . . . . . . . . . . . . . . 58

5.2 Simulation algorithm flowchart. . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Circuit used for diode characterization. . . . . . . . . . . . . . . . . . . 62

5.4 Simulated voltage vd across (top) and current id (bottom) through the
sample diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 comparison of I-V characteristics of the diode. . . . . . . . . . . . . . . 67

5.6 PIN diode switching current (top) and voltage (bottom) dynamics. . . 68

6.1 Single-phase diode bridge rectifier. . . . . . . . . . . . . . . . . . . . . 70

6.2 Incidence graph for the circuit with parasitic capacitors and ground node
added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Measured and simulated step-size comparison. . . . . . . . . . . . . . . 75

6.4 Step-size comparison zoomed near 5×10−4 s. . . . . . . . . . . . . . . . 76

6.5 Voltage (top) and current (bottom) waveforms on ac-side. . . . . . . . 77

6.6 Voltage (top) and current (bottom) waveforms on dc-side. . . . . . . . 78



ix

Figure Page

6.7 Diode voltage (top) and current (bottom) waveforms. . . . . . . . . . . 79

6.8 Diode voltage (top) and current (bottom) waveforms near 4 × 10−4 and
5× 10−4 s, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Diode instantaneous power loss waveform. . . . . . . . . . . . . . . . . 80

6.10 Instantaneous power waveforms on ac (top) and dc (bottom) sides. . . 81

7.1 Four Newton iterator matrices are sampled at the marked instances on
current and voltage response of a diode in RLD network. . . . . . . . . 87

7.2 Eigen spectrum of respective Newton iterator matrices in clockwise start-
ing at top left for operating points marked left to right as in Figure 7.1. 88

7.3 Qualitative figure to explain BGE solver’s performance. . . . . . . . . . 93

7.4 Diode activity detector output for the example RLD network. . . . . . 97

7.5 Diode switch on-off states versus time. . . . . . . . . . . . . . . . . . . 99

7.6 Diode 1 current and its on-off state versus time. . . . . . . . . . . . . . 100

7.7 Instantaneous power waveforms of Diode 1 using VSVO. . . . . . . . . 102

7.8 Voltage (top) and current (bottom) waveforms of Diode 1 comparison. 103

7.9 Zoomed voltage and current waveforms of Diode 1 using VSVO. . . . . 103

7.10 Voltage (top) and current (bottom) waveforms on ac-side. . . . . . . . 104

7.11 Voltage (top) and current (bottom) waveforms on dc-side. . . . . . . . 104

7.12 Thread utilization with 3 threads for 2 and 4-diodes on cases. . . . . . 108

A.1 One-dimensional discretization. . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Canonical element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.1 A simple RL and diode circuit. . . . . . . . . . . . . . . . . . . . . . . 138

C.1 Charge densities computed on adaptive mesh. . . . . . . . . . . . . . . 144

C.2 Number of nodes (# Nodes) versus time-step index for adaptive mesh. 146



x

ABSTRACT

Subbiah, Anandakumar Ph.D., Purdue University, December 2015. A Variable-
Structure Variable-Order Simulation Paradigm for Power Electronic Circuits. Major
Professor: Oleg Wasynczuk.

Solid-state power converters are used in a rapidly growing number of applications

including variable-speed motor drives for hybrid electric vehicles and industrial appli-

cations, battery energy storage systems, and for interfacing renewable energy sources

and controlling power flow in electric power systems. The desire for higher power den-

sities and improved efficiencies necessitates the accurate prediction of switching tran-

sients and losses that, historically, have been categorized as conduction and switching

losses. In the vast majority of analyses, the power semiconductors (diodes, transistors)

are represented using simplified or empirical models. Conduction losses are calculated

as the product of circuit-dependent currents and on-state voltage drops. Switching

losses are estimated using approximate voltage-current waveforms with empirically

derived turn-on and turn-off times. With recent increases in switching speeds, these

approximations are no longer valid in many applications. Although it is possible to

simulate power converters using physics-based models of power semiconductors based

upon coupled drift, diffusion, continuity (CDDC) equations, such simulations are

generally prohibitively slow. In this thesis, a variable-structure variable-order simu-

lation paradigm is set forth in which the detailed CCDC-based models are used to

calculate the switching transients and corresponding losses. As devices (e.g., diodes)

become active or inactive, the structure and order of the simulation is dynamically

changed without sacrificing accuracy. A time-step control algorithm is devised such

that the overall simulation captures only the relevant transients. Finally, paralleliza-
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tion strategies are identified that can produce a 483 % improvement in simulation

speed compared with a conventional solution of the CDDC equations.
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1. INTRODUCTION

An important consideration in the design of power electronic converters are the losses

that are produced over their entire operating range. The losses not only affect the

efficiency of the converter, but also its physical size, weight, and ultimately cost, due

to the necessity to channel the losses away from the devices and limit the temper-

atures to safe operating values. In the vast majority of simulations and analyses,

the power semiconductors (diodes, transistors) are represented using highly simpli-

fied or empirical models. Typically, the losses are categorized as either switching

or conduction. Conduction losses are calculated as the product of circuit-dependent

currents times on-state voltage drops for Insulated-Gate Bipolar Transistors (IGBTs)

and as i2RDS,on in Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs).

Switching losses are estimated using approximate voltage-current waveforms with

empirically-derived turn-on and turn-off times established using “test” circuits.

Current trends to improve efficiency and reduce the size and weight of power

electronic converters have lead to higher switching frequencies and correspondingly

faster devices. The assumptions previously made to estimate switching and conduc-

tion losses are no longer always valid. Attempts have been made to improve the

accuracy of simulations by developing more detailed circuit models similar to those

used in SPICE [1]. However, numerous assumptions are also made in their derivation

that may limit the scope or applicability of the resulting model.

A completely different class of simulators such as Medici [2], which uses physical

properties (e.g., geometry, doping levels, lifetimes), is typically used when design-

ing the power semiconductor devices that are used in converter circuits. Therein,

semiconductor devices are modeled at a much higher level of detail based upon their

physical properties and processes that take place within the device such as ionization,

recombination, diffusion, and drift due to electric fields. These provide a much more
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detailed representation of the devices; however, when numerous devices are intercon-

nected to form a complete circuit, the resulting simulations are generally very slow.

The primary objective of this thesis is to establish a simulation paradigm in which

the converter losses (switching and conduction) can be accurately and more rapidly

established at the circuit level, based upon the physical (non-empirical) parameters

of the semiconductor devices utilized within the circuit.

1.1 Literature Survey

Simulation of the physical phenomena in devices and power electronic circuits is

an active area of research. Developments in computing can be used for advantage

in this type of simulation. The following literature survey includes an overview of

past and recent research in power semiconductor device and power electronic circuit

simulation.

The currents in semiconductors are mainly due to two types of charge carriers

namely electrons and holes. Based upon statistics for semiconductors, many-particle

and short-range-particle interactions, the Boltzmann Equation can be derived [3].

Solving Boltzmann equations analytically and numerically is prohibitively expensive.

A simpler model involving three spatial coordinates and time can be derived. The

zeroth order moment of the Boltzmann equation and the adjoining Poisson’s equa-

tion yields the so-called drift diffusion (DD) equations [4, 5]. Van Roosbroeck first

derived the DD equations in [6]. This system of DD, Poisson’s, and current den-

sity equations together describe averaged physical quantities of the carrier densities

in a semiconductor device. Electron density, hole density, and the electric potential

are the variables in this model, which forms a strongly-coupled partial differential

equation (PDE) system.

In this section, it is sufficient to analyze the type of PDEs in this model. The model

employs two parabolic PDEs to describe the rate-of-change of charge carriers (conti-

nuity equations), and an elliptic PDE that describes the electrostatic potential (Pois-



3

son’s equation). Appropriate boundary conditions and two equations describing the

electron and hole current densities in the device completely model the device physics.

A proof of existence and uniqueness for these PDEs is desirable before attempting

their numerical solution. Zláal and Miloš [7] provided this proof for the solution of

the DD equations. A parabolic PDE equation/system with a unique solution can

be solved numerically using different spatial-temporal discretization techniques [8].

A space-time-dependent PDE discretized both spatially and temporally is often re-

ferred to as a fully discretized system. The discretizing techniques and solution of

the resulting equations are discussed in [9] and summarized here for reference.

Spatial discretization of a parabolic PDE system will result in a system of ordi-

nary differential equations (ODEs). The resulting ODEs can be solved by discretizing

them in time using one of the many available integration algorithms and solving for

the variables at each time step. These algorithms are available in standard computer

applications such as MATLAB [10] or DASSL [11], to name a few. This technique is

called the method of lines (MOL) and a rich mathematical literature is available on

this method due to its popularity. When the order of spatial and temporal discretiza-

tion is reversed, i.e. temporal followed by spatial, the result is a boundary-value prob-

lem that is solved at each time step. This method is called Rothe’s method, which

facilitates implementation of adaptive grids wherein the PDE solver uses different

spatial grids at each time step. Rothe’s method is relatively new and only a limited

literature is available on this method [12]. When the same fixed spatial grid is used in

the MOL and Rothe’s methods, then the methods and solutions are equivalent. The

space-time finite element method, another way of spatial temporal discretization, is

equivalent to Rothe’s method with mathematically sound spatial-temporal step-size

control [8].

A numerical solution of the quantities of interest is sought using the fully dis-

cretized PDEs. Gummel [13] introduced an iterative procedure to decouple and solve

the linear system resulting from discretization of a 1-D transistor. This approach

can be treated as nonlinear Gauss-Seidel method and is used in [14–17]. This it-
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erative technique can be applied when the computational resources are limited or

the discretized system is very large, which is the case for higher (2 or 3) dimen-

sions [15]. Scharfetter and Gummel in [18] introduced an exponentially-weighted

finite difference scheme for the continuity equation, known as Scharfetter-Gummel

discretization. This approach is widely used in the numerical simulation of semicon-

ductor devices [4, 14, 16, 19]. This exponential-weighting has a stabilizing effect on

the discretized system. These two seminal works [13,18] of Gummel have spawned a

large number of papers on semiconductor simulation to date.

Finite difference methods can be used for spatial discretization of DD equa-

tions [19–26]. Finite element methods are an alternative as described in [4, 14, 15,

17, 24, 26–33]. The use of finite difference and finite element methods is described

here in a broad sense. In practical implementations, Poisson’s equation alone can

be discretized using a finite element approach [14,17,22,28,31,32] while finite differ-

ence [14] or finite element methods [17, 22, 28, 31, 32] can be used for the continuity

equations. Alternatively, a hybrid scheme is described in [34], which uses Scharfetter-

Gummel discretization embedded in the finite element method. It is apparent that the

majority of device simulation literature uses a MOL approach to solve the PDEs. The

charge carrier concentration and electric potential variables are decoupled as in [13]

and solved iteratively or the entire system is solved using Newton iterations [22].

The solution of the DD equations changes only in specific regions of the semicon-

ductor. Even for stationary DD equations, a spatially adaptive grid will be useful [35]

where the carrier densities or electric potential change drastically. This phenomenon

is termed spatial stiffness. Additionally, the temporal variations of these variables in

the unstationary DD equations span several orders of magnitude. This phenomenon

is termed temporal stiffness. The unstationary or dynamic problem has both spatial

and temporal stiffness. It is intuitive to use adaptation in both space and time [24]

in this case. Most of the adaptive mesh implementations up to date were devel-

oped for the stationary DD equations [35, 36]. The work by Burgler et al [37] start

with stationary DD equations, use FEM for discretizing Poisson’s equation and a
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divergence-free upwinding discretization scheme for the continuity equations. Then,

a posteriori error [38], estimated based on electrical potential and terminal currents,

is used to refine or coarsen the mesh.

Simpler models can be derived with the help of numerical solutions of the DD

equations and the resulting data. A good survey on the models briefly discussed

here is in [39, 40]. Many of the models resort to simpler version of DD equations

known as ambipolar diffusion equation (ADE) [41–45] or other simpler differential

equations [46,47] because of the computationally expensive physics-based models. A

similar method involves breaking the device into regions of interest and solving charge-

control equations [43] or model as lumped charges [48, 49]. Parameter extraction

via experimental data [49, 50] or simulation of ADE [42], etc. and curve fitting the

data obtained therefrom can be used to develop empirical models. Another way to

model is to augment the small-signal model of the semiconductor devices with sub-

circuits [41, 43] to closely depict the switching transients. Even though the previous

models can be used to estimate the switching losses, only a few [51] actually try

to do this. Others, which do not rely on simulation, use a three-component power

loss model with turn-on, conduction, and turn-off losses. Analytical expressions are

used to approximate these components and hence the total loss [52–54]. Apart from

estimating the losses in the device, simulating the transients during turn-on and turn-

off is also of interest [49].

1.2 Motivation

There is significant interest in simulating the device accurately when used in a

power circuit. Of the many reasons for simulation, a few are to gain confidence in the

design, to estimate the losses in the device, to predict the transients during switching

and mitigate them when they affect the performance. There are different levels of

device models to achieve one or more of these objectives. Physics-based models meet

most of these objectives but require large computational resources. Simpler empirical
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models, when they do not meet some of these objectives, require modification with ad

hoc networks. However, these models can be integrated with commercially available

simulation environments and are fast. Other models that are somewhere in between

these two extremes are based on certain assumptions that limit their applicability.

As noted previously, the primary objective of this thesis is to establish a sim-

ulation paradigm in which the converter losses (switching and conduction) can be

accurately and more rapidly established at the circuit level based upon the physical

(non-empirical) parameters of the semiconductor devices utilized within the circuit.

The proposed approach is based upon developing a computationally efficient numeri-

cal solution of the coupled DD, continuity, and Poisson’s equations of the devices, and

the algebraic and differential equations corresponding to the external circuit elements

and their interconnection.

1.3 Outline of Document

The outline of this document is as follows. The semiconductor charge trans-

port model is reviewed in Chapter 2 including models of the relevant physical pro-

cesses such as ionization, electrostatics, charge transport, charge recombination, and

boundary equations. Discretization of the resulting PDEs (temporal and spatial) is

described in Chapter 3 wherein an encapsulated device model is set forth. A proce-

dure to couple these encapsulated device models with the circuit equations to result

in a set of differential-algebraic equations (DAEs) is established in Chapter 4. The

temporal integration of the DAEs and extraction of the physical parameters of a

commercial PIN diode is described in Chapter 5. Simulation of a single-phase diode

bridge rectifier circuit is validated by experimental measurements in Chapter 6. A new

variable-structure variable-order (VSVO) simulation paradigm is set forth in Chap-

ter 7 and simulation results are compared with validated complete-system-simulation

results. The major conclusions, strategies to simulate similar problems, and potential

future research topics are identified in Chapter 8.
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2. ELECTRONIC TRANSPORT MODEL

A detailed model of the semiconductor diode is used in this research for power-loss es-

timation. To this end, the semiconductor charge transport model is reviewed. Models

of the relevant physical processes including ionization, electrostatics, charge transport,

and charge recombination are discussed in the subsequent sections. All of the cor-

responding equations are combined into one set whose consistent numerical solution

can be used to describe the voltages and currents both within the device and at its

terminals.

2.1 One Dimensional Diode

A PIN diode is considered in this research which is extensively used in high-

power circuits. They are typically used in rectifiers (ac to dc converters) and as

freewheeling diodes in other types of converters. The general physical structure of a

semiconductor PIN diode is shown in Figure 2.1 (top). The anode and cathode ohmic

contacts are at the coordinates x = xa = 0 and x = xc = X respectively. The ohmic

contacts are assumed to be placed in the neutral regions of the semiconductor. These

contacts form semiconductor-metal junctions that provide electrical connection with

the external electrical circuit. A good ohmic contact exhibits a negligible voltage

drop and resistance compared to the voltage drop and bulk resistance of the diode,

respectively.

In this diode, an intrinsic semiconductor region i is sandwiched between highly

doped p+ and n+ regions and hence the name PIN diode. Two semiconductor-

semiconductor junctions, p+-i and i-n+, are formed as a result of this arrangement.

The bottom of Figure 2.1 shows the doping profile of a typical PIN diode. The

quantity logN is the logarithm of absolute sum of the acceptor (NA) and donor (ND)
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p+ i n+
Ohmic

contact

Ohmic

contact

xa = 0

logN = log(NA +ND)

xc = X

xXjp

NA

Wd

ND

Xjn

ND

Fig. 2.1.: One-dimensional PIN diode structure.

doping densities. Over the distance Xjp the acceptor density decreases smoothly from

a large number of the order of 1018 to 1016. At x = Xjp there is step junction formed

by p+ and i regions. The intrinsic region extends over a distance of Wd. The doping

profile increases over the distance Xjn starting from x = Xjp + Wd. The terminal

behavior of the diode can usually be satisfactorily described by a one-dimensional

model. The quantities of interest such as terminal currents can be found by appro-

priately scaling terminal current densities by the device cross-sectional area. Some

of the relevant semiconductor processes are reviewed and modeled in the subsequent

sections.

2.2 Ionization Model

A semiconductor specimen is called as an intrinsic semiconductor when the amount

of impurity atoms in it is insignificant. The number of electrons and holes in such a

specimen are equal. When impurity atoms are added to the intrinsic semiconductors,



9

this balance is shifted and results in an extrinsic semiconductor. Silicon belongs to

Group IV in the periodic table. Elements from Group III or V is added to the in-

trinsic semiconductor to produce p or n-type extrinsic semiconductors. The primary

n-type dopant in Si is phosphorus from Group V while aluminum from Group III is

the primary p-type dopant. The ionization energy of both dopants are approximately

45 meV. The ionization model may be approximated as [55],

n =
ND

1 + gD
NC
e

ED
kT

, (2.1)

wherein ED is the donor ionization energy and gD is the donor-site degeneracy factor.

The effective density of states at the conduction band edge may be expressed as,

NC = 5.3886× 1015 × T 3/2 cm−3. (2.2)

In (2.1), n appears on both sides of the equation. It is possible to solve for n in terms

of T even if (2.1) is implicit. A similar expression for the p-type ionization model [55]

is,

p =
NA

1 + gA
NC
e

EA
kT

, (2.3)

where EA is the acceptor ionization energy and gA is the acceptor-site degeneracy

factor. The effective density of states (NV ) at the valence band edge may be expressed

as,

NV = 2.0015× 1015 × T 3/2 cm−3. (2.4)

The ionization parameters for the Si material at a temperature of 300 K are summa-

rized in Table 2.1. At T = 300 K the effective density of states at the conduction

and valence bands are as in [56]. Based on this number, a temperature dependency

is included as in (2.2) and (2.4).

2.3 Poisson’s Equation

The charge distribution within the semiconductor device obeys the Gauss’s law.

According to Gauss’s law, the divergence of the electric field should equal the charge
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Table 2.1.: Ionization parameters at T = 300 K.

gD n-type Degeneracy factor 2

gA p-type Degeneracy factor 4

ED Ionization energy (Phosphorus) 45 meV

EA Ionization energy (Aluminum) 44.39 meV

enclosed. By observing that the electric field is the negative gradient of the electric

potential, it is rewritten as Poisson’s equation. The right-hand side ρ describes the

charge distribution within the body of the semiconductor. The general form of the

Poisson’s equation may be expressed as,

−∇ · (ε∇ψ) = ρ. (2.5)

where ψ is the intrinsic electric potential, ρ is the net electric charge density, ε is the

permittivity. In one dimension,

εrε0
d2ψ

dx2
= −qe

(
p(x)− n(x) +N+

D (x)−N−A (x)
)
, (2.6)

where qe is the electron charge, εr is the relative permittivity of the semiconductor

material, ε0 is the permittivity of the free space, p and n are the mobile hole and elec-

tron densities, respectively, N+
D and N−A are the density of immobile ionized donor and

acceptor ions, respectively, which are established from the ionization equations (2.1)

and (2.3). It is assumed here that the permittivity of the semiconductor is constant

throughout the material and hence ε = εrε0 is factored out.

2.4 Recombination Model

When the semiconductor is perturbed from its equilibrium state, certain processes

occur in order to restore that equilibrium. Recombination-Generation (R-G) is such
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a process where charges are annihilated or created, respectively. Some of the other

recombination processes are recombination via shallow level, recombination involving

excitons, Auger recombination and band-to-band recombination [55]. Of these, only

the dominant R-G or SRH (Shockley, Read, Hall) recombination generation process

is modeled. The general form for the recombination rate R is,

R = rn = rp =
n(x, t)p(x, t)− n2

ie

τp(n+ n1) + τn(p+ p1)
, (2.7)

where,

rp = − ∂p(x, t)

∂t

∣∣∣∣
R-G

, (2.8)

rn = − ∂n(x, t)

∂t

∣∣∣∣
R-G

, (2.9)

and nie is the intrinsic electron concentration,

nie =
√
NCNV e−Eg/2kT . (2.10)

Also, τn and τp are time constants which depend on trap density (NT ) and capture

coefficients (cp or cn). Specifically,

τp =
1

cpNT

, (2.11a)

τn =
1

cnNT

, (2.11b)

Table 2.2.: Recombination parameters for Si.

Symbol Parameter Value

τp Time constant 10−4 s

τn Time constant 10−4 s

Eg Gap energy 1.11 eV
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and,

p1 = niee
(Ei−ET )/kT , (2.12a)

n1 = niee
(ET−Ei)/kT , (2.12b)

where ET is the trap density and Ei is the intrinsic level (near mid-gap). It is

assumed that ET ≈ Ei whereupon p1 = n1 = nie. The recombination parameters are

summarized in Table 2.2.

2.5 Continuity Equation

The rate of change of charges within a small volume of the semiconductor, apart

from recombination, depends on the drift and diffusion phenomena. The drift phe-

nomenon is the response or the transport of charges (p or n) due to the electric field

in the device. The diffusion phenomenon is the response or the transport of charges

due to the distribution gradient of the respective charges i.e. transport of charges

from the regions of higher concentration to the lower ones. The continuity equation

can be expressed,

∂n

∂t
=
∂n

∂t

∣∣∣∣
drift

+
∂n

∂t

∣∣∣∣
diffusion

+
∂n

∂t

∣∣∣∣
R-G

(2.13)

∂n

∂t
=

1

qe
∇ · Jn +

∂n

∂t

∣∣∣∣
R-G

(2.14)

where
1

qe
∇ · Jn represents the net influx of electrons per unit time,

∂n

∂t

∣∣∣∣
R-G

is the

generation rate due to thermal ionization less the rate of recombination. In one

dimension,
∂n(x, t)

∂t
=

1

qe

dJn(x, t)

dx
+
∂n(x, t)

∂x

∣∣∣∣
R-G

. (2.15)

A similar relationship applies to holes,

∂p(x, t)

∂t
= − 1

qe

dJp(x, t)

dx
+
∂p(x, t)

∂x

∣∣∣∣
R-G

. (2.16)



13

The current densities Jn and Jp are sum of the drift and diffusion currents. They

are expressed as,

Jn(x, t) = qeµnn(x, t)E(x, t) + qeDp
∂n(x, t)

∂x
, (2.17a)

Jp(x, t) = qeµpp(x, t)E(x, t)− qeDp
∂p(x, t)

∂x
. (2.17b)

The first term on the right-hand side of each equation represents the drift current

while the other term represents the diffusion current. The drift/diffusion parame-

ters [57] for Si corresponding to a temperature of 300 K are summarized in Table 2.3

Table 2.3.: Drift-diffusion parameters.

Symbol Parameter Value

µn Electron mobility 973.90 cm2/V-s

µp Hole mobility 495.00 cm2/V-s

Dn = µnkT/qe Diffusion constant 35.224 cm2/s

Dp = µpkT/qe Diffusion constant 12.820 cm2/s

2.6 Coupled Carrier Transport Equations

∂n(x, t)

∂t
=

1

qe

dJn(x, t)

dx
− n(x, t)p(x, t)− n2

ie

τp(n+ n1) + τn(p+ p1)
(2.18a)

∂p(x, t)

∂t
= − 1

qe

dJp(x, t)

dx
− n(x, t)p(x, t)− n2

ie

τp(n+ n1) + τn(p+ p1)
(2.18b)

Jn(x, t) = qeµnn(x, t)E(x, t) + qeDn
∂n(x, t)

∂x
(2.18c)

Jp(x, t) = qeµpp(x, t)E(x, t)− qeDp
∂p(x, t)

∂x
(2.18d)

d2ψ(x, t)

dx2
= − qe

εrε0

(
p(x)− n(x) +N+

D (x)−N−A (x)
)

(2.18e)
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E(x, t) = −dψ
dx

(2.18f)

All of the above equations modeling the transport of charges and the supplementing

equations are combined and called the Coupled Carrier Transport (CCT) equations

for convenience. There are six equations with six unknown distributions (n, p, Jn,

Jp, ψ and E). It is assumed that the immobile donor acceptor densities, N+
D and

N−A , and the diffusion, mobility, and recombination parameters are known. Of these,

six unknown distributions, p and n distribution can alone be used to determine the

other four. Usually, a numerical solution of CCT seeks p, n and ψ distributions often

known as primary variables. These equations form the basis for programs such as

Medici [2], which can be used to establish the steady-state and dynamic characteristics

of semiconductor devices.

These model equations are then supplemented with appropriate boundary condi-

tions as discussed in the following paragraphs. The ohmic contacts form Dirichlet

boundaries at the semiconductor-metal contact interfaces. The electric potential and

charge densities are assumed to be fixed at these interfaces. The quasi-Fermi po-

tentials at the anode and cathode are fixed by the respective terminal potentials.

Quasi-Fermi potential is a nonphysical quantity used to quantify the carrier concen-

tration under non-equilibrium conditions. When the quasi-Fermi potentials are fixed,

the carrier concentration at the boundaries are also fixed. The boundary electric

potential ψ is fixed such that there exists a zero-space charge for these carrier con-

centrations, p+N+
D = n+N−A . Inserting pn = n2

ie into this relation gives the following

quadratic.

p2 + p(N+
D −N−A )− n2

ie = 0 (2.19)

The solution to this quadratic equation along with the inequalities N−A � nie, N
−
A �

N+
D in p region and N+

D � nie, N
+
D � N−A in n region leads to the following boundary

charge densities.

p(xa) =
N−A
2

+

√(
N−A
2

)2

+ n2
ie ≈ N−A (2.20a)
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n(xa) =
n2
ie

N−A
(2.20b)

n(xc) =
N+
D

2
+

√(
N+
D

2

)2

+ n2
ie ≈ N+

D (2.20c)

p(xc) =
n2
ie

N+
D

(2.20d)

These boundary charge densities and quasi-Fermi potentials are used to compute the

respective boundary electrical potentials given by (2.21).

ψ(xa) = va −
kT

qe
ln

(
p(xa)

nie

)
(2.21a)

ψ(xc) = vc +
kT

qe
ln

(
n(xc)

nie

)
(2.21b)

The external-circuit voltage applied at the diode terminals anode and cathode are

va and vc respectively. Equations (2.18), (2.20), and (2.21) can be solved numerically

to find the aforementioned primary variables.

The charge densities vary from 1015 to 1018 within the semiconductor according

to the doping concentration. The variation in electric potential may range from a

few volts to several hundred. This large difference between the variables can cause

numerical difficulties. It is a common practice to scale the charge densities and the

other relations accordingly in these situations. For numerical implementation, the

scaling factor NM , defined as the maximum of N+
D and N−A concentration, is used.

For simplicity, all derivations hereafter use the scaled quantities and is written without

the use of tilde where there is no ambiguity.

p̃ =
p

NM

; ñ =
n

NM

p̃1 =
p1

NM

; ñ1 =
n1

NM

J̃p =
Jp
NM

; J̃n =
Jn
NM

ñie =
nie
NM

; Ñ−A =
N−A
NM

Ñ+
D =

N+
D

NM

; NM = max(N+
D , N

−
A )

(2.22)
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2.7 Chapter Summary

The physical processes that are responsible for the charge transport within a

semiconductor are modeled using appropriate equations from referenced sources [55–

57]. Several assumptions are made in deriving these equations. The temperature of

the device is assumed to be lumped and is constant (e.g. T = 300 K). Drift and

diffusion parameters are assumed to be constant which can possibly vary according

to the doping level and electric field. Carrier lifetimes that can vary with doping level

are also assumed to be constant. Recombination processes that are non-dominant

and impact ionization models are neglected. When the results of the semiconductor-

circuit simulation is discussed in Chapter 6, it will be evident that these are reasonable

assumptions. The important model equations, namely CCT, is derived which is used

to establish a numerical solution.
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3. DISCRETIZATION AND MODEL ENCAPSULATION

The CCT equations (2.18) must be discretized in both time and space to establish a

solution numerically. A numerical solution of the fully discretized system gives the

primary unknown distributions (p, n, ψ) in the device. Post-processing this informa-

tion gives the current density, turn-on, turn-off, and conduction losses of the device

under consideration. In the first section, the discretization approach is described ab-

stractly and the basic patterns are set forth. Spatial discretization is performed first

to result in a system of ordinary differential equations, which can be solved using any

one of a number of established temporal integration algorithms. In the second sec-

tion, a finite element discretization of the Poisson’s equation is explained followed by

a discussion on finite volume discretization of the continuity equation based on central

and exponentially-weighted difference (Scharfetter-Gummel) approaches. With some

foresight, device terminal equations are augmented to the discretized CCT equations

to result in model encapsulation as illustrated in the last section.

3.1 Abstract Discretization

It is useful to consider the continuity and Poisson equations from CCT equations.

Poisson’s equation is rewritten and the right-hand sides of the continuity equations

are condensed into general functions to form the following set of equations,

∂p

∂t
= fp(p, n, ψ), (3.1a)

∂n

∂t
= fn(p, n, ψ), (3.1b)

0 = fψ(p, n, ψ,N−A , N
+
D ), (3.1c)

where it is assumed that p = p(x, t), n = n(x, t), etc.
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The solution is to be established for a time partition t0 < t1 < . . . < tm < . . . < tM

with intervals ∆tm = tm−tm−1. The next time step’s (mth) solution is computed using

(m− 1)th-step solution and the time-step size ∆tm. The backward Euler algorithm is

used first to discretize (3.1) in time to get

pm − pm−1 = ∆tmfp(p
m, nm, ψm), (3.2a)

nm − nm−1 = ∆tmfn(pm, nm, ψm), (3.2b)

0 = fψ(pm, nm, ψm, N−A , N
+
D ). (3.2c)

The set of equations in (3.2) form a nonlinear system requiring iterative solution.

Newton-Raphson (NR) iteration is preferred over fixed-point methods due to its rapid

(quadratic) convergence in the neighborhood of the exact solution. It should be kept

in mind that this set of equations is discretized only in time and yet to be discretized

in space. The NR iteration indices are denoted using k, k + 1, . . . and χ as place

holder for p, n, or ψ. The previous time step’s convergent solution is denoted as

χm−1,∞, and χm,k is the kth iterate at the mth time step. It is convenient to define

∆χ = χm,k+1 − χm,k. The NR iterator is derived using the truncated Taylor’s series

expansion of the nonlinear equation about the convergent solution. Expanding the

functions in (3.2) using Taylor series up to first order and rearranging results in the

equations below (arguments of fχ are omitted for brevity).

0 = pm − pm−1 −∆tmfp + (I − ∂fp
∂p

)∆p− ∂fp
∂n

∆n− ∂fp
∂ψ

∆ψ (3.3a)

0 = nm − nm−1 −∆tmfn + (I − ∂fn
∂n

)∆n− ∂fn
∂p

∆p− ∂fn
∂ψ

∆ψ (3.3b)

0 = fψ +
∂fψ
∂p

∆p+
∂fψ
∂n

∆n+
∂fψ
∂ψ

∆ψ (3.3c)

The gradient functions fχ are evaluated using χm,k values of the associated arguments.

The NR iterator is the matrix-vector representation of the previous set of equations.

The Jacobian elements are given by ∂fχ/∂χ. When the Jacobian is computed in every

iteration using χm,k values, the iterative method is called full Newton method. In some

cases, it suffices to evaluate the Jacobian once per time step using χm−1,∞ values.
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This is known as simplified-Newton or quasi-Newton method, a rigorous analysis of

its convergence properties can be found in [58]. The computational performance of

these variations of NR are examined in Chapter 6 to identify a suitable method for

this thesis.

The linear system to be solved using NR iteration is shown in (3.4). Next, it

is useful to consider a spatial partition 0 = x1 < x2 . . . < xi < . . . < xN = X

with interval hi = xi+1 − xi. Then each fχ and ∂fχ/∂χ can be discretized in space

to get vectors and matrices with dimensions N × 1 and N × N , respectively. The

pattern seen in (3.4) is the block-matrix pattern of a fully discretized system. In the

subsequent sections, a spatial discretization is performed first followed by a temporal

discretization. The order of the spatial discretization and temporal discretization

does not matter when spatial and time partitions such as those described previously

are used. However, this relation no longer holds [8] when a spatially adaptive mesh

is used.

(3.4)


I/∆tm − ∂fp/∂p −∂fp/∂n −∂fp/∂ψ
−∂fn/∂p I/∆tm − ∂fn/∂n −∂fn/∂ψ
∂fψ/∂p ∂fψ/∂n ∂fψ/∂ψ




∆p

∆n

∆ψ



=


−(pm,k − pm−1,∞)/∆tm + fp(p

m,k, nm,k, ψm,k)

−(nm,k − nm−1,∞)/∆tm + fn(pm,k, nm,k, ψm,k)

−fψ(pm,k, nm,k, ψm,k, N−A , N
+
D )


3.2 Poisson’s Equation

Poisson’s equation, which relates the carrier densities and electric field, produces

an algebraic relationship between p, n, and ψ (third equation in (3.1)) and is an

elliptic PDE. Numerical methods such as the finite element method can be used to

numerically solve an elliptic PDE. The problem can be formulated using variational or

Galerkin approaches, both resulting in a similar discretized linear system of equations.

The mathematical theory behind the existence and uniqueness of the solution to this
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type of problem is well established [59]. In the one-dimensional case, the Poisson’s

equation may be expressed as,
d2ψ

dx2
= −ρ(x)

ε
. (3.5)

In one dimension, ψ(x) is approximated as piecewise linear or, equivalently, as a

weighed sum of basis functions,

ψ(x) =
N∑
i=1

ψiϕi(x), (3.6)

where ψi = ψ(xi) are the nodal values of the electrical potentials. The basis function

ϕi(x) with a support of [xi−1, xi+1] is defined as,

ϕi(x) =


x− xi−1

xi − xi−1

: x ∈ [xi−1, xi],

xi+1 − x
xi+1 − xi

: x ∈ [xi, xi+1],

0 otherwise.

(3.7)

Dirichlet boundary values of ψ are specified at x = 0 and x = X. Substitut-

ing (3.6) into (3.5) and using integration by parts.∫ xc

−xa
εψ′(x)

N∑
i=1

ϕ′idx =

∫ xc

−xa
ρ(x)

N∑
i=1

ϕidx (3.8)

The support of the basis functions is such that for the ith equation, {i−1, i, i+1} nodes

are involved. A detailed derivation of the ith equation is provided in Appendix A.1.

The final result is given by,

(3.9)− ε

hi−1

ψi−1 +

(
ε

hi−1

+
ε

hi

)
ψi −

ε

hi
ψi+1 =

hi−1

6
ρi−1 +

(
hi−1

3
+
hi
3

)
ρi +

hi
6
ρi,

where,

ρi = qeNM(pi − ni +N+
D,i −N−A,i), (3.10)

and,

hi = xi+1 − xi. (3.11)

The left-hand side of (3.9), when expressed for i = 1, ...N , can be written as a matrix-

vector product. The matrix is known as stiffness matrix (Š). The ith equation of the
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stiffness matrix has nonzero entries in the columns {i − 1, i, i + 1} resulting in a

tridiagonal matrix. ψ is a vector of the nodal values of electrical potential ψ. The

vector on the right-hand side ρ̌ is the source vector.

Šψ− ρ̌ = 0 (3.12)

The source vector ρ̌ is expressed using a matrix Ď times a charge vector product.

The resulting equation is given in (3.12).

Šψ− Ď(p− n + N+
D −N−

A ) = 0 (3.13)

The matrices Š and Ď require modification to take boundary conditions into

account. A concise representation of (3.13) is (A.14). The boundary values of the

electric potentials are known at x = 0 and x = X. Thus, a linear solve of an

N − 2 × N − 2 dimensional system is required to establish the N − 2 unknown

potentials. Instead of excluding these potentials from (3.13), they are still included,

however, with modification to the stiffness matrix by zeroing the first and last rows

and setting the (1, 1) and (N,N) entries to unity. A similar modification of the first

and last rows of the Ď matrix is performed. This is done such that boundary ψ is

equal to the values specified by a boundary vector. The boundary vector is defined

using the knowledge of the diode terminal anode voltage (va), cathode voltage (vc)

and charge densities such that the first and last entries correspond to the nodal values

ψ1 and ψN . The boundary potentials given by (2.21) are repeated here for the sake

of completeness in setting up a boundary value problem.

ψ1 = va −
kT

qe
ln

(
p(xa)

nie

)
ψN = vc +

kT

qe
ln

(
n(xc)

nie

) (3.14)

The complete system of equations that are to be solved to establish the electric

potential given the charge densities are summarized as follows,

0 = Sψ−D(p− n + N+
D −N−

A )− b(va, vc), (3.15a)
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S =



1 0 0 · · · 0 0

− ε
h1

ε
h1

+ ε
h2
− ε
h2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ε
hN−2

+ ε
hN−1

− ε
hN−1

0 0 0 · · · 0 1


, (3.15b)

D = qeNM



0 0 0 · · · 0 0

h1
6

h1+h2
3

h2
6
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · hN−2+hN−1

3

hN−1

6

0 0 0 · · · 0 0


, (3.15c)

b(va, vc) =



va − kT
qe

ln
(
p(xa)
nie

)
0
...

0

vc + kT
qe

ln
(
n(xc)
nie

)


. (3.15d)

3.3 Continuity Equations

The first two equations in (3.1) represent continuity equations. These equations

are discretized using the finite volume approach. A one-dimensional spatial partition,

similar to that in Section 3.1, and a prototypical finite volume is depicted in Figure 3.1.

The nodal values of the charge densities, namely pi = p(xi) and ni = n(xi), are the

average value over the volume (hi−1 + hi)/2. The electric field Ei+1/2 or flux in

a given interval [xi, xi+1] of the partition is found using a finite difference formula

(negative gradient of the electric potential). The gradient of electrical potential,

since ψ is approximated by piecewise linear functions, is piecewise constant. For the

computation of current density J entering the volume face at xi+1/2 = (xi + xi+1)/2,

values of the charge densities at the face are required. The current or flux is assumed
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to enter the volume face at xi−1/2 and leave at xi+1/2. The current density values

can be approximated using central difference or Scharfetter-Gummel methods. These

methods are discussed in the following subsections.

x1 x2 x3 xN−2 xN−1 xN

x1+1/2 x2+1/2

xi−1 xi xi+1

(hi−1 + hi)/2

hi−1 hi

Ji−1/2, Ei−1/2 Ji+1/2, Ei+1/2

Fig. 3.1.: Finite volume discretization (top) and a prototypical volume (bottom).

3.3.1 Central difference method

In the finite volume method, the Divergence theorem is applied to the differential

equations to be discretized. Then, the derivative terms are approximated by appro-

priate finite difference formulae using the nodal values of the spatial partition under

consideration. When applied to the continuity equation, the rate of change of charge

densities averaged over the finite volume is the difference in the flux (current densities

in semiconductors) entering and leaving the ith control volume.

∂pi
∂t

= − 1

qe

Jp,i+1/2 − Jp,i−1/2

(hi−1 + hi)/2
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(3.16a)

∂ni
∂t

=
1

qe

Jn,i+1/2 − Jn,i−1/2

(hi−1 + hi)/2
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(3.16b)
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The current densities due to holes and electrons are computed numerically by dis-

cretizing the respective equation from the CCT equation , producing

Jp,i+1/2 = qe

(
µp

(pi + pi+1)

2
Ei+1/2 −Dp

pi+1 − pi
hi

)
, (3.17a)

Jn,i+1/2 = qe

(
µn

(ni + ni+1)

2
Ei+1/2 +Dn

ni+1 − ni
hi

)
, (3.17b)

Ei+1/2 = −ψi+1 − ψi
hi

= −∆ψi+1/2

hi
. (3.17c)

The main difference between the central difference and Scharfetter-Gummel methods

is in the approximation of the current densities. A linear interpolation of the charge

densities at the volume faces is used here. The volume face is located midway between

two nodes. In the central difference approach, the charge densities at the volume face

is the average of the values at the neighboring nodes. Substituting (3.17) into (3.16)

results in,

∂pi
∂t

= − 1

(hi−1 + hi)/2

[
µp

(
pi + pi+1

2

ψi − ψi+1

hi
− pi−1 + pi

2

ψi−1 − ψi
hi−1

)
−Dp

(
pi+1 − pi

hi
− pi − pi−1

hi−1

)]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
, (3.18a)

∂ni
∂t

=
1

(hi−1 + hi)/2

[
µn

(
ni + ni+1

2

ψi − ψi+1

hi
− ni−1 + ni

2

ψi−1 − ψi
hi−1

)
+Dn

(
ni+1 − ni

hi
− ni − ni−1

hi−1

)]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
. (3.18b)

The finite difference formulae should possess certain properties including conser-

vation, boundedness, and transportiveness, which collectively ensure reliable (con-

vergent) results [60]. The numerical approach preserves conservation when the flux

leaving a volume face is the same as that entering the adjacent volume face. When

the discretization method results in a diagonally dominant system matrix, the bound-

edness property is satisfied. This ensures that the solution increases or decreases

monotonically. In this context, flow of species is nothing but the flow of current den-

sities. When the flow is drift-dominated the species density at a node varies more

due to the upwind node (next node against the flow) than due to a downwind (next

node along the flow). A transportive discretization method takes this flow’s direction
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and influence of neighboring node species densities at a given node accordingly into

account. The central difference method is conservative but during drift-dominated

operation, it loses its transportive and boundedness properties.

Table 3.1.: Parameters of an example pn-diode with step junction.

Variable Symbol Value

Diode length X 0.005 m

pn-junction area ac 0.01 cm2

Acceptor concentration NA 1019 cm−3

Donor concentration ND 5× 1016 cm−3

The ratio of drift and diffusion components of current are quantified using the

so-called Péclet number (Pe). In particular, the Péclet number Pe is the ratio of drift

to diffusion component coefficients within each volume. For the central difference

method to satisfy boundedness, the Péclet number must satisfy Pe ≤ 2 [60]. The Pe

for the semiconductor CCT is derived using (3.17). This number is the same for both

the electron and hole currents.

|Pe| =
∣∣∣∣∣qeµn(ψi − ψi+1)

hiqe
Dn

hi

∣∣∣∣∣
=

∣∣∣∣µn(ψi − ψi+1)

Dn

∣∣∣∣
=

∣∣∣∣ψi − ψi+1

VT

∣∣∣∣
(3.19)

The Péclet number is large in the semiconductor diode when it operates under

reverse bias. To illustrate this, the diode model is discretized using central difference

method on a logarithmically spaced 100-node grid for an example pn diode with step

junction. The doping density is constant through out the region and drops to zero at

the junction to form a step junction. The species densities undergo a rapid change

with respect to position near the vicinity of depletion region formed around this step
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junction. The diode is simulated with a bias voltage of −50 V is shown in Figure 3.2.

The parameters of the diode is given in Table 3.1.
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Fig. 3.2.: Charge densities and Péclet number near pn-junction using central difference

method.

As shown, the scaled charge densities oscillate near the edges of the depletion

region where |Pe| is greater than two and the boundedness property is not satisfied.

The central difference method does not take the flow direction into account while

computing the flux at volume faces. Consequently, the central difference method does

not satisfy the transportiveness property, especially at high Pe. These two difficulties

are circumvented in the following discretization approach.

3.3.2 Scharfetter-Gummel method

The drift part of the current density in (3.17) uses equal weight for the p or n at

the neighboring nodes. In the Scharfetter-Gummel method [13, 18], an exponential
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weight, which is a function of electrical potential ψ, is used. The discretization of the

continuity equation starts with the current density equations,

Jp,i+1/2 = qeµppEi+1/2 − qeDp
∂p

∂x
, (3.20a)

Jn,i+1/2 = qeµnnEi+1/2 + qeDn
∂n

∂x
. (3.20b)

The electric field Ei+1/2 is the the discrete approximation of−∇ψ in one-dimensional

interval [xi, xi+1]. A piecewise linear approximation of ψ implies that the electric field

is piecewise constant. When the current density in interval [xi, xi+1] is constant the

current density equations can be treated as a simple boundary value problem in each

interval. The Einstein’s relation is,

Dp

µp
=
Dn

µn
=
kT

qe
= VT , (3.21)

where VT is thermal voltage. The hole current density equation (3.20a) along with

Einstein’s relation is written as,

Jp,i+1/2 = qeµpEi+1/2p− qeDp
d p

dx
, (3.22a)

Jp,i+1/2

−qeDp

=
d p

dx
− Ei+1/2

VT
p, (3.22b)

j =
d p

dx
− νp, (3.22c)

where,

ν =
Ei+1/2

VT
, j =

Jp,i+1/2

−qeDp

. (3.22d)

The definitions (3.22d) are made to make the derivation more clear and readable.

The only variable that changes with position x in (3.22c) is hole density p. If the

current density in the interval considered is not assumed to be constant then this

equation cannot be solved. The first-order derivative corresponds to the diffusion

current component while the charge density times ν (equivalent drift velocity) is the

drift component. Multiplying both sides of (3.22c) by an exponential factor exp(−νx)
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and integrating both sides with respect to x yields the sequence of equations in (3.23).

The boundary values of the hole densities at xi and xi+1 are pi and pi+1 respectively.

je−νx =
d

dx
pe−νx − νpe−νx (3.23a)

je−νx =
d

dx
pe−νx (3.23b)∫ xi+1

xi

je−νxdx =

∫ xi+1

xi

d

dx
pe−νxdx (3.23c)

j
e−νx

−ν

∣∣∣∣xi+1

xi

= pe−νx
∣∣xi+1

xi
(3.23d)

− j
ν

(
e−νxi+1 − e−νxi

)
= pi+1e

−νxi+1 − pie−νxi (3.23e)

− j
ν

(
e−ν(xi+1−xi) − 1

)
= pi+1e

−ν(xi+1−xi) − pi (3.23f)

j = −ν pi+1e
−νhi − pi

e−νhi − 1
(3.23g)

Jp,i+1/2 = qeDp

Ei+1/2

VT

pi+1 exp(−Ei+1/2hi/VT )− pi
exp(−Ei+1/2hi/VT )− 1

(3.23h)

The definitions (3.22d) are used to recover the actual hole current density equa-

tion (3.23h). It should be noted that Ei+1/2hi = −∆ψi+1/2. Equation (3.23h) is

further rewritten to get the current density at the control volume face.

Jp,i+1/2 = qeµpEi+1/2

exp
(
∆ψi+1/2/VT

)
pi+1 − pi

exp
(
∆ψi+1/2/VT

)
− 1

(3.24)

where µp = Dp/VT . A similar expression for electron current density at the control

faces can be derived.

Jn,i+1/2 = qeµnEi+1/2

exp
(
−∆ψi+1/2/VT

)
ni+1 − ni

exp
(
−∆ψi+1/2/VT

)
− 1

(3.25)

where µn = Dn/VT .

A definition of Bernoulli function B(x) =
x

exp(x)− 1
and a change of variable

zi+1/2 = ∆ψi+1/2/VT makes the hole and electron current density equations more

compact.

Jp,i+1/2 =
qeDp

hi

[
−pi+1B(−zi+1/2) + piB(zi+1/2)

]
(3.26a)

Jn,i+1/2 =
qeDn

hi

[
ni+1B(zi+1/2)− niB(−zi+1/2)

]
(3.26b)
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The continuity equation is discretized by inserting (3.26) in (3.16) with some

manipulation to get,

∂pi
∂t

=
2Dp

hi + hi−1

[B(−zi+1/2)

hi
pi+1 +

B(zi−1/2)

hi−1

pi−1

−
(B(zi+1/2)

hi
+
B(−zi−1/2)

hi−1

)
pi

]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(3.27a)

∂ni
∂t

=
2Dn

hi + hi−1

[B(zi+1/2)

hi
ni+1 +

B(−zi−1/2)

hi−1

ni−1

−
(B(−zi+1/2)

hi
+
B(zi−1/2)

hi−1

)
ni

]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(3.27b)

From (3.26), it is obvious that current densities are linear functions of the re-

spective charge densities. The weighting coefficient of these charge densities is the

Bernoulli function and hence this is an exponentially weighted approach. This expo-

nentially weighting adds numerical stability to the method.

Table 3.2.: Bernoulli function values.

Current zi+1/2 B(zi+1/2) Jp,i+1/2

Diffusion

dominant

approx.

zeros,

Ei+1/2 ≈ 0

→ 1 −qeDp
pi+1 − pi

hi

Drift

dominant

large

positive,

Ei+1/2 � 0

→ 0 −qe
Dp

hi

∆ψi+1/2

VT
pi+1 = qeµpEi+1/2pi+1

Drift

dominant

large

negative y,

Ei+1/2 � 0

→ −y −qe
Dp

hi

∆ψi+1/2

VT
pi = qeµpEi+1/2pi

The robustness of the Scharfetter-Gummel method is explained with the help of

the hole current density equation (3.26a) and Table 3.2. It is apparent from (3.17) that

the diffusion component of the current dominates in the regions of zero electric field.
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Fig. 3.3.: Charge densities and Péclet number near pn-junction using Scharfetter-

Gummel method.

This corresponds to the first row in Table 3.2. In the other extreme where the electric

fields are high, the current densities are dominated by the drift components. The drift

components are evaluated using either the ith node or (i + 1)th node charge density

rather than the linear interpolation of these two values. This first-order approximation

of the drift component, as opposed to a second-order linear interpolated value, tends to

damp the numerical oscillations in the charge densities and preserve the boundedness

property. For the same reason, the flow direction and node potential’s influence is

taken into account making Scharfetter-Gummel method transportive.

The ith node charge density alone affects the solution when the electric field is

in the positive x direction, while in the opposite case it is due to (i + 1)th node.

This strategy of using either of the neighboring node’s information in flux evalu-

ation is known as the upwinding scheme in computational fluid dynamics. Since

the Scharfetter-Gummel method takes the flow direction into account, the method

also satisfies the transportiveness property. For illustration, the diode with parame-



31

ters given in Table 3.1 with 100 logarithmically-spaced nodes is discretized using the

Scharfetter-Gummel method. The results of a simulation of the diode with a bias of

−50 V is shown in Figure 3.3. It can be seen that the charge densities do not become

negative implying that the boundedness property is preserved. The reason for the

small overshoot in n near the edge of the depletion region is due to the lack of nodes

resolving the change in n.

3.3.3 Boundary charge densities

The continuity equations require the boundary data before a numerical solution

is computed. The boundary charge densities given in (2.20) is repeated here for

convenience.

n(xc) =
N+
D

2
+

√(
N+
D

2

)2

+ n2
ie ≈ N+

D (3.28a)

p(xc) =
n2
ie

N+
D

(3.28b)

p(xa) =
N−A
2

+

√(
N−A
2

)2

+ n2
ie ≈ N−A (3.28c)

n(xa) =
n2
ie

N−A
(3.28d)

3.4 Temporal Discretization

The discretized continuity equations for each control volume can be assembled

into a concise form. Let p, n and ψ represent vectors of nodal values of p, n and ψ

respectively. The equations take the form,

dp

dt
= fp(p,n,ψ),

dn

dt
= fn(p,n,ψ),

0 = Sψ−D(p− n + N+
D −N−

A )− b(va, vc) = fψ(p,n,ψ).

(3.29)

This is a semi-discretized version of the CCT equations, since it is discretized only

with respect to space. In order to establish a fully discretized equation, it is necessary
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to select a time partition as in Section 3.1 and apply a suitable integration algorithm

to (3.29). The system of differential equations (3.29) is commonly referred to as

Differential Algebraic Equations (DAEs). The first two systems in (3.29) are systems

of differential equations along with the last system of algebraic equations relating

the states and electric potential, and hence the name DAE. The algebraically-related

electric potential makes this a temporally stiff DAE system.

Stiff DAEs require a stiffly-stable integration algorithm and the vast majority of

such algorithms are implicit. A stiffly stable integration algorithm can take larger

time steps after fast transients subside without producing numerical instability. The

simplest stiffly-stable integration algorithm is backward Euler method. The fully dis-

cretized system, after using backward Euler method with a partition as in Section 3.1,

is given by

pm − pm−1 = ∆tmfp(pm,nm,ψm),

nm − nm−1 = ∆tmfn(pm,nm,ψm),

0 = fψ(pm,nm,ψm,N−
A ,N

+
D ).

(3.30)

This is a nonlinear system of equations requiring iterative solution. In Sec-

tion 3.1, the Newton-Raphson iterator is derived using truncated Taylor’s series sim-

ilar to (3.3). Following the same approach, the Newton-Raphson iterator for (3.30)

is derived and given by,

(3.31)


I/∆tm − fp,p −fp,n −fp,ψ

−fn,p I/∆tm − fn,n −fn,ψ

fψ,p fψ,n fψ,ψ




∆p

∆n

∆ψ



=


−(pm,k − pm−1,∞)/∆tm + fp(pm,k,nm,k,ψm,k)

−(nm,k − nm−1,∞)/∆tm + fn(pm,k,nm,k,ψm,k)

−fψ(pm,k,nm,k,ψm,k,N−
A ,N

+
D )

 ,



33

where the indices are as explained in Section 3.1 along with following notations for

compact representation.

fp,p = ∂fp/∂p; fp,n = ∂fp/∂n; fp,ψ = ∂fp/∂ψ;

fn,p = ∂fn/∂p; fn,n = ∂fn/∂n; fn,ψ = ∂fn/∂ψ;

fψ,p = ∂fψ/∂p; fψ,n = ∂fψ/∂n; fψ,ψ = ∂fψ/∂ψ.

(3.32)

There exists a unique solution to (3.29) if fψ,ψ is invertible in the neighborhood of

the solution [61]. The Jacobian element fψ,ψ, derived in Appendix A.2.1, turns out to

be the stiffness matrix S of the Poisson’s equation. The stiffness matrix arising from

discretizing Poisson’s equation using the finite element method is typically a sym-

metric positive definite matrix and hence invertible [59]. The Jacobian elements are

derived in Appendix A.2 and are different for the central difference and Scharfetter-

Gummel methods. Regardless of the method used to spatially discretize fp or fn, the

general block-matrix structure of the Newton-Raphson iterator remains the same as

predicted in (3.4).

3.5 Encapsulation

CCT equations describing the dynamics within the device is discretized using the

techniques discussed in the previous section. The quantities of interest in a coupled

device and electrical network simulation are the device terminal currents. Augment-

ing device terminal current equations to CCT equations allows the circuit to query

the device model for terminal currents which are necessary in the solution of circuit

variables. Similarly the device model can query the circuit model for the terminal

voltages which affects the device operation. This process of augmenting device ter-

minal current equations to the CCT equations is herein referred to as encapsulation.

The necessary derivations for this encapsulation is elaborated here.

The terminal currents are obtained by scaling the current densities by the cross-

sectional area ac of the diode. The total anode and cathode terminal current densities

are denoted by Ja and Jc respectively. These current densities are sum of drift and
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diffusion current densities expressed in terms of scaled charge densities. The scaling

factor NM is included in the calculations if scaled charge densities are used. The

expressions for the current densities in terms of the charge densities are different

depending on spatial discretization strategy used. The vector notations used to rep-

resent these currents are given below.

fid =

qeNMacJ̃a

qeNMacJ̃c

 =

ia
ic

 = id (3.33)

The equations of the terminal currents based on central difference and Scharfetter-

Gummel discretization methods are given, respectively, in the following sets of equa-

tions.

ia = qeNMac

[
ψ1/2

h1

(
−µp

(p1 + p2)

2
− µn

(n1 + n2)

2

)
+Dn

(n2 − n1)

h1

−Dp
(p2 − p1)

h1

]
(3.34a)

ic = qeNMac

[
ψN−1/2

hN−1

(
−µp

(pN−1 + pN)

2
− µn

(nN−1 + nN)

2

)
+Dn

(nN − nN−1)

hN−1

−Dp
(pN − pN−1)

hN−1

]
(3.34b)

ia =
qeNMac
h1

[
Dp

(
p1B(z3/2)− p2B(−z3/2)

)
−Dn

(
n1B(z3/2)− n2B(−z3/2)

)]
(3.35a)

ic =
qeNMac
hN−1

[
Dp

(
pN−1B(zN−1/2)− pNB(−zN−1/2)

)
−Dn

(
nN−1B(zN−1/2)− nNB(−zN−1/2)

)]
(3.35b)
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The vectorized terminal current equations are augmented to (3.29) resulting in (3.36).

The current equations are algebraic and it is apparent that one block-row and block-

column needs to be added to (3.32).

dp

dt
= fp(p,n,ψ)

dn

dt
= fn(p,n,ψ)

0 = Sψ−D(p− n + N+
D −N−

A )− b(va, vc) = fψ(p,n,ψ)

0 = id − fid = fi(p,n,ψ)

(3.36)

For a unique solution to exist for (3.36), Jacobian fi,i should be invertible in

addition to fψ,ψ [61]. fψ,ψ is the stiffness matrix and is invertible. fi,i in this case is a

2× 2 identity matrix that is invertible and hence there exists a unique solution. The

following Newton iterator can be obtained for (3.36) without repeating derivations

utilizing the pattern recognized in the previous section.

(3.37)


I/∆tm − fp,p −fp,n −fp,ψ 0

−fn,p I/∆tm − fn,n −fn,ψ 0

fψ,p fψ,n fψ,ψ 0

fi,p fi,n fi,ψ fi,id




∆p

∆n

∆ψ

∆id



=


−(pm,k − pm−1,∞)/∆tm + fp(pm,k,nm,k,ψm,k)

−(nm,k − nm−1,∞)/∆tm + fn(pm,k,nm,k,ψm,k)

−fψ(pm,k,nm,k,ψm,k,N−
A ,N

+
D )

−fi(p
m,k,nm,k,ψm,k)


The newly added Jacobian partitions in the last column are zero because the

charge densities and electric potential within the device does not vary with a change in

terminal current. Nonzero Jacobian partitions fi,p, fi,n and fi,ψ due to these formulae

has a similar structure and a dimension of 2×N with following definitions.

fi,p = ∂fi/∂p; fi,n = ∂fi/∂n;

fi,ψ = ∂fi/∂ψ; fi,id = ∂fi/∂id.
(3.38)
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Since the terminal currents depend on the charge densities and electrical potentials at

the two boundary nodes near the anode and cathode, each of these partitions has only

four nonzero entries. These partitions mathematically couple the boundaries of the

semiconductor (ohmic contacts) with the external circuit via the boundary condition

of the diode model. The nonzero pattern of each partition with a placeholder χ for p,

n, ψ is shown below and a detailed derivation of the nonzero terms in these partitions

are derived in the Appendix A.2.5.

fi,χ =

∂ia/∂χ1 ∂ia/∂χ2 . . . 0 0

0 0 . . . ∂ic/∂χN−1 ∂ic/∂χN


(2×N)

(3.39)

The number of nonzeros in these partitions will be proportional to the number of

Dirichlet boundary nodes in general for multi-dimensional device models.

3.6 Chapter Summary

The key contribution of this chapter is the derivation of an encapsulated de-

vice model with a consistent set of equations. Albeit nontrivial to implement, it

is straightforward to extend this methodology to model multi-dimensional multi-

terminal semiconductor devices including bipolar junction (BJT), field-effect (FET),

and insulated-gate bipolar (IGBT) transistors. This encapsulation is conducive to

the addition and/or deletion of semiconductor physical processes modeled, spatial

dimension and the number of device terminals considered. The external circuit needs

to be modeled and the encapsulated device model is added to this circuit model

in a consistent way. A procedure for assembling these equations is required which

makes the coupled device-circuit simulation possible. Any aforementioned change in

encapsulated device model does not change this procedure of assembling complete

device-circuit system equations whatsoever.
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4. COUPLED DEVICE AND ELECTRICAL NETWORK

SIMULATION

Semiconductor devices (one or more) in power electronic circuits operate together

with external sources and other circuit elements to control the flow of or convert

electric power from one form (ac or dc) or voltage level to another. The sources

and basic circuit elements such as resistors, inductors, and capacitors are typically

modeled by ordinary differential equations (ODEs) using their respective lumped

parameters. In order to simulate semiconductor devices and external circuit elements

together, these ODEs are augmented to the encapsulated device model set forth in

the previous chapter. The device and external electrical circuit models communicate

with each other via the boundary conditions. A systematic procedure for coupling

devices and external circuit elements is set forth in this chapter.

4.1 Diode Resistor Inductor Network

Vs

R L D
1 2 3 4

Fig. 4.1.: A simple RL and diode circuit with no ground node.

A simple circuit, where a diode is connected in series with a voltage source, resistor

and inductor (RL), is shown in Figure 4.1. This simple circuit is considered for

demonstrating the procedure of assembling equations from the netlist bearing in mind
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that the proposed strategy is extendable to other complex circuit configurations. The

circuit shown in Figure 4.1 is described in a netlist format in Table 4.1. The line

number of the netlist is shown to the left of the box. A line-by-line description of the

netlist is given below.

1. This line is reserved for the title of the circuit described by the netlist.

2. A 10-Ω resistor R1 is connected between nodes 1 and 2.

3. A 10-µH inductance L1 is connected between nodes 2 and 3.

4. Current netlist line consists of a comment.

5. A diode D1 is connected between nodes 3 and 4. It is modeled using Coupled

Carrier Transport (CCT) equations and initializing file is given by init.m.

6. A sinusoidal ac voltage source Vs is connected between nodes 1 and 4. It has

an offset, amplitude, frequency and phase of 0, 5 V, 5 kHz, and 0 respectively.

7. The end of the netlist file.

Current through two-terminal devices is assumed to be leaving the positive node

and entering the negative node. These node numbers are listed in order from left to

right after the element’s unique name. The syntax for other basic circuit elements

and independent sources are similar to that used in conventional SPICE netlists.

When a physics-based diode model is used in the simulation, parasitic capacitors

Table 4.1.: Resistor-inductor-diode netlist.

1 simple RL and diode circuit
2 R 1 2 10
3 L 2 3 1e-5
4 ! a distributed diode model
5 D 3 4 CCT init.m
6 Vs 1 4 ac sin(0 5 5000 0)
7 .END
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are used to couple device and circuit as shown in Figure 4.2. The capacitors Ca

and Cc denote the parasitic capacitances at the anode and cathode terminals of the

diode. Their values are generally small and difficult to establish analytically; however,

accurate knowledge of their values is not essential since the transients associated with

these parasitic capacitances are very short-lived. In case an accurate estimate of

these capacitors and other circuit parasitics are needed, then solution of the relevant

equations from the set of Maxwell’s equation is required along with knowledge of

the physical placement of the circuit components and their interconnections. The

encapsulated device model and external RL circuit is coupled using the boundary

conditions of the device model. These boundary conditions, namely the Dirichlet

boundary, are obtained from the voltage across the parasitic capacitors.

It is necessary to build an incidence matrix to simulate the circuit in Figure 4.2.

The positive-current-direction assumption from first node to the second (listed order

in netlist) is used to represent a directed edge from first to the second. Each branch

of the circuit is represented by the directed edges connected between nodes. This

information is embedded in a matrix, known as incidence matrix, with number of

rows and columns corresponding to total number of nodes and branches in the circuit,

respectively. When branch j leaves (enters) a node i, a nonzero value +1 (−1) is

entered in ith row and jth column of the incidence matrix with rest of the entries

being zero. Such an incidence matrix is built using the circuit in Figure 4.2.

Vs

R L D

Ca Cc

Fig. 4.2.: RL and diode circuit with parasitic capacitors and ground nodes added.
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In a two-terminal device, current flowing into one terminal should equal the current

flowing out of the other. However, the anode and cathode terminal currents of an

encapsulated diode model can possibly be different for very brief periods of time

(of the order of pico seconds). Consequently, the terminal currents are modeled as

two dependent current sources that are functions of charge densities and electrostatic

potential within the diode, and the diode terminal voltage. Two edges are used

to represent these dependent current sources of an encapsulated diode model in the

directed graph. Coupling the diode with the circuit is more amenable with insertion of

parasitic capacitors Ca, Cc and using dependent current sources ia, ic for the terminal

currents as illustrated in Figure 4.3.

The directed graph generated using this strategy is shown in Figure 4.4. There

are 5 nodes (including the reference node) in the circuit considered. The number of

branches including the added parasitic capacitance is 6, when the diode is represented

using single edge. The proposed approach, however, uses 7 branches where a diode

Ca Cc

na nc

(a) Diode along with parasitic coupling

capacitors and ground nodes.

Ca ia

na nc

ic Cc

(b) Diode-circuit coupling using depen-

dent current sources.

Fig. 4.3.: Circuit-diode coupling.

1 2

3
4

0

Fig. 4.4.: Directed graph of the circuit in Figure 4.2.
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is represented using two dependent current sources. Thus, the incidence matrix has

a dimension of 5 rows and 7 columns.

Kirchhoff’s current law (KCL) states that the algebraic sum of the currents en-

tering any node is zero. Kirchhoff’s voltage law (KVL) states that the algebraic sum

of potential differences around any closed loop is zero. A KCL equation can be writ-

ten for each node in the circuit. When all the branch currents are combined into a

vector, an appropriate matrix can be obtained such that the matrix-vector product

is the KCL equation for all nodes. This appropriate matrix is the incidence matrix

described earlier. The resulting incidence matrix is linearly dependent. Any one row

can be deleted from this matrix to obtain a linearly independent incidence matrix.

Conventionally, the datum, reference, or ground node equation is removed. The re-

sulting incidence matrix is called the reduced incidence matrix. Hereafter, the term

incidence matrix (A) is used to refer to the reduced incidence matrix for simplicity.

With this foresight, KCL equations are written only for nodes 1 through 4 as given

in the following equations. Each branch current is denoted using i subscripted with

the branch name, except for the current source branches where the values are used

right away.

iR + iVs = 0

−iR + iL = 0

−iL + iCa + ia = 0

−ic + iCc − iVs = 0

(4.1)

This equation is written as matrix-vector product as follows.


0 0 1 0 1 0 0

0 0 −1 1 0 0 0

1 0 0 −1 0 1 0

0 1 0 0 −1 0 −1





iCa

iCc

iR

iL

iVs

ia

ic


=


0

0

0

0

 , (4.2)
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These 4 KCL equations relate 7 branch currents. The matrix on the left-hand

side is the incidence matrix (A) whose dimension is 4 × 7. The branch currents

can be grouped by branch type and reordered to form a vector. It is convenient to

represent this branch current vector as i = [iCa iCc iR iL iVs ia ic]
T (superscript T

denotes transpose). Then KCL is expressed compactly as a partitioned matrix-vector

products as follows,

[
AC AR AL AV AI

]


iC

iR

iL

iV

iI


=



0

0

0

0

0


, (4.3)

Ai = 0. (4.4)

The vector of branch currents grouped by branch type is denoted by ik, where k is

one of {R,L,C, V, I} corresponding to resistors, inductors, capacitors, voltage sources

and current sources, respectively. The number of each branch type is denoted by nk,

which implies each ik is an nk-dimensional vector. A similar notation is used for other

partitions of the incidence matrix as shown in Table 4.2.

The voltage across each branch is the difference between the node voltages to

which the branches are connected. These equations are explicitly expressed as,

vCa = v3,

vCc = v4,

vR = v1 − v2,

vL = v2 − v3,

Vs = v1 − v4,

vIa = v3,

vIc = −v4.

(4.5)

These equations are rewritten to a form similar to the KCL equations with similar

notations. The vector of voltages of a specific branch type is denoted as vk, an nk-
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Table 4.2.: Incidence matrix partitions.

Variable Description with dimension in parentheses

nn number of nodes in the circuit

nb number of branches in the circuit (nb = nC + nR + nL + nV + nI)

AC Capacitance incidence matrix (nn − 1× nC)

AR Resistance incidence matrix (nn − 1× nR)

AL Inductance incidence matrix (nn − 1× nL)

AV Voltage source incidence matrix (nn − 1× nV )

AI Current source incidence matrix (nn − 1× nI)
A Incidence matrix (nn − 1× nb)

dimensional vector for all k in {R,L,C, V, I}. The branch voltages are denoted in a

vector form using vb, which is an nb-dimensional vector. Matrix-vector-product form

or partitioned-matrix-vector-product forms of the voltage equations are given below.

vCa

vCc

vR

vL

Vs

vIa

vIc


=



0 0 1 0

0 0 0 1

1 −1 0 0

0 1 −1 0

1 0 0 −1

0 0 1 0

0 0 0 −1




v1

v2

v3

v4

 (4.6)



vC

vR

vL

vs

vI


=



AT
C

AT
R

AT
L

AT
V

AT
I


v (4.7)

vb = ATv (4.8)
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4.1.1 Models of basic circuit elements

Current through a capacitor, with a fixed capacitance C, is the product of its

capacitance and the rate of change of applied voltage. This calculation is done for

all capacitors in a given network. Voltage across all capacitors in the circuit is given

by vC = AT
Cv. It is convenient to define a capacitance matrix C that is an nC × nC

diagonal matrix with its nonzero values corresponding to each capacitor’s value in

the network. Then, the capacitor currents are derived using the capacitance matrix

and voltage across the capacitors, i.e.

iC = C
dvC
dt

= CAT
C

dv

dt
. (4.9)

Similarly, all resistor currents are computed with an nR × nR diagonal conductance

matrix G and the voltage across the resistors found using AT
R. These resistor currents

are given by,

iR = GvR = GAT
Rv. (4.10)

The voltage across an inductor is the rate of change of flux linking it. This flux linkage

(λ) for all inductive branches is conveniently expressed using an inductance matrix

L and respective branch current vector iL. Then, the inductor voltages are given by,

vL =
dλ

dt
= L

diL
dt

= AT
Lv. (4.11)

Equations (4.4), (4.8), (4.9), (4.10), (4.11) along with voltage and current source

equations can be used to build a tableau and simulate the given circuit. The tableau

thus derived may not appear to have an algebraic structure. Some structure in these

equations is obtained by manipulating (4.4) with the help of basic circuit element

equations to obtain the following

ACCAT
C

dv

dt
+ ARGAT

Rv + ALiL + AV iV + AIiS = 0 (4.12)

Equation (4.12) is augmented with inductor and source voltage equations. The re-

sulting set of equations comprise the so-called Modified Nodal Analysis (MNA) equa-

tions [62]. The index analysis of this system of differential-algebraic equations and its
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solvability is thoroughly analyzed in [63]. The set of equations thus derived becomes,

ACCAT
C

dv

dt
+ ARGAT

Rv + ALiL + AV iV + AIiS = 0, (4.13a)

L
diL
dt

= AT
Lv, (4.13b)

AT
V v = vs. (4.13c)

The circuit dynamics are modeled using (4.13). A brief note on the sign of com-

puted source currents iV is due at this point. The computed source currents will have

a negative sign, since current is assumed to flow from positive (node 1) to negative

(node 2) in a two-terminal device. If positive source currents are desired, then replac-

ing AV with −AV resolves the issue. The encapsulated device model is augmented

with (4.13). With some care, augmenting/removing multiple encapsulated device

models is straightforward. This is a desirable attribute for implementing variable-

structure variable-order simulation strategies discussed in Chapter 7. This procedure

of assembling the complete system of equations is delineated in the following section.

4.2 Coupled Circuit and Device Simulation

Manually assembling the equations involved in simulating coupled device-circuits

is feasible but is time consuming and tedious. Appendix B contains a manual deriva-

tion of the device-circuit system equations for the example circuit in Figure 4.1. A

similar derivation must be repeated for any change in network topology. On the

other hand automatically assembling the necessary equations enables a quick setup

of complex circuit simulations. It also requires less effort from the modeling engineer

and reduces the derivation/programming errors.

To this end, modified nodal analysis (MNA) is used. A detailed derivation of the

MNA equations was discussed in the previous section. The number of unknowns in

the MNA approach is NMNA = nn + nL + nV − 1, which is the sum of dimensions of

the vectors v, iL and iV . A vector of circuit variables is defined as yckt = [v iL iV ]T .
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This definition and a rewritten form of (4.13) gives the equations in (4.14). This form

helps in coupling the circuit and semiconductor device.
ACCAT

C 0 0

0 L 0

0 0 0

 d

dt


v

iL

iV

 =


−ARGAT

R −AL −AV

AT
L 0 0

−AT
V 0 0




v

iL

iV



+


−AIis

0

vs

 . (4.14)

The voltage and current source vectors is and vs, respectively, are the inputs to

the circuit equations. A combination of independent and dependent current sources

can inject currents into the circuit. The current source vector and the respective inci-

dence matrix is partitioned by independent and dependent sources. This partitioning

facilitates coupling (4.14) and the encapsulated device model equations.

The current source vector is is partitioned such that is = [iind idep]T . The vec-

tors of independent and dependent current sources are represented by iind and idep,

respectively. This leads to a corresponding partitioning in the incidence matrix due

to current sources as in AI = [Aind Adep]. MNA equations are rewritten using this

partitioning in the following form.
ACCAT

C 0 0

0 L 0

0 0 0

 d

dt


v

iL

iV

 =


−ARGAT

R −AL −AV

AT
L 0 0

−AT
V 0 0




v

iL

iV



+


−Adepidep

0

0

+


−Aindiind

0

vs

 . (4.15)

The discretized diode equations are given in (4.16) for reference. In (4.16c),

b(va, vc) is a vector that takes care of the boundary potential due to the zero-space-

charge assumption at the ohmic contacts and diode applied voltages. The diode model

should get these voltages from the solution of the circuit equations. Consequently it
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is necessary to rewrite this vector as the sum of a boundary potential vector vb and

diode applied voltages vd as in (4.17). Similarly, the diode current vector id is given

as an input to the MNA equations via the dependent current source partitions in the

right-hand side of (4.15).

dp

dt
= fp(p,n,ψ) (4.16a)

dn

dt
= fn(p,n,ψ) (4.16b)

fψ = Sψ−D(p− n + N+
D −N−

A )− b(va, vc) = 0 (4.16c)

id = fid(p,n,ψ) (4.16d)

b(va, vc) =



va −
kT

q
log

(
p(xa)

nie

)
0
...

0

vc +
kT

q
log

(
n(xc)

nie

)


=



va

0
...

0

vc


+



−kT
q

log

(
p(xa)

nie

)
0
...

0

kT

q
log

(
n(xc)

nie

)


= vd + vb

(4.17)

It is convenient to define all of the diode variables using a vector, yd = [p n ψ id]
T .

Equations in (4.16) along with (4.17) is rewritten as,
I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0


d

dt


p

n

ψ

id

 =


0 0 0 0

0 0 0 0

−D D S 0

0 0 0 I




p

n

ψ

id

−


0

0

vd

0

+


fp

fn

−D(N+
D −N−

A )− vb

−fid

 .
(4.18)

The vectors vd and idep play a key role in setting up coupled circuit-device sim-

ulation. All that is left is to determine matrices that map circuit variables to the

appropriate diode vd and diode currents to the appropriate idep. The circuit-variable-

to-diode-voltage vector mapping is derived for the simple circuit considered in Fig-
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ure 4.2 in the following equations. The nonzero entries in matrix Ad,ckt are selected

such that the matrix maps the circuit variables to diode voltage vector vd.

−


0

0

vd

0


(3N+2)×1

= Ad,cktuckt (4.19)

A one-dimensional diode model is considered here. For the mesh-node numbering

convention used in this research, Node 1 and Node N are the anode and cathode

terminals, respectively. The dimension of Ad,ckt should be (3N + 1) × NMNA. The

nonzero entries appear in Rows 2N + 1 and 3N , and, Columns 3 and 4 of Ad,ckt for

the example circuit. It is given explicitly in the following equation for clarity, with

na = 3 and nc = 4.

Ad,ckt =



1 . . . na . . . nc . . . NMNA

1 0 . . . 0 . . . 0 . . . 0
...

...
. . .

...

2N + 1 0 . . . −1 . . . 0 . . . 0
...

...
. . .

...

3N 0 . . . 0 . . . −1 . . . 0

3N + 1 0 . . . 0 . . . 0 . . . 0

3N + 2 0 . . . 0 . . . 0 . . . 0


(4.20)

A short-flat border matrix Ackt,d is formed that maps the diode currents to the

appropriate nodes to which the diode terminals are connected and KCL equations

are written. The nonzero entries of this matrix are picked such that,

−


Ads 0 0

0 0 0

0 0 0




idep

0

0

 = Ackt,dyd (4.21)
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This implies that the dimension of Ackt,d matrix is NMNA × (3N + 2). The nonzero

entries of this matrix will be in the rows na and nc, and, the last two columns. Once

again, the values of this matrix are given explicitly for the example circuit considered.

Ackt,d =



1 . . . 3N + 1 3N + 2

1 0 . . . 0 0
...

...
...

...

na 0 . . . −1 0
...

...
...

...

nc 0 . . . 0 1
...

...
...

...

NMNA 0 . . . 0 0


(4.22)

4.2.1 Interpretation of interface matrices

It is useful to discuss the relation between interface matrices Ackt,d, and, Ad,ckt

and different incidence matrix partitions. From (4.21), it is obvious that Ackt,d is

a slightly reformed version of dependent current source incidence matrix partition

Adep due to the devices. When a multi-terminal device is modeled, this matrix is to

be formed accordingly. The tall Ad,ckt interface matrix is also a reformed version of

an incidence matrix partition. To be specific, the incidence matrix partition due to

the coupling capacitors is used to obtain the nonzero entries in this tall matrix. It

is interesting to note that the nonzero entries correspond to the Dirichlet boundary

nodes of the encapsulated device model equations. From these two observations, it is

apparent that, as long as the interface matrices are built consistently, the procedure of

assembling equations is opaque to the changes in the spatial dimension of the device

models and number of device terminals.

At this point, all the equations, matrices, and vectors are readily available to write

the equations that simulates the example circuit considered in Figure 4.2. Several
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matrix and vector notations are used that will help the final system of equations to

fit the page width. The matrix notations are given below.

Md =


I 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

 Ad =


0 0 0 0

0 0 0 0

−D D S 0

0 0 0 I



Mckt =


ACCAT

C 0 0

0 L 0

0 0 0

 Ackt =


−ARGAT

R −AL −AV

AT
L 0 0

−AT
V 0 0


(4.23)

The vector notations are as follows:

yd =


p

n

ψ

id

 yckt =


v

iL

iV



fd =


fp

fn

−D(p− n)− vB

−fid

 uckt =


−Aindiind

0

vs


(4.24)

The dimensions of these matrix and vector notations are given below for reference.

Md, Ad ∈ R(3N+2)×(3N+2)

Mckt, Ackt ∈ RNMNA×NMNA

Ackt,d ∈ RNMNA×(3N+2)

Ad,ckt ∈ R(3N+2)×NMNA

yd, fd ∈ R3N+2

yckt,uckt ∈ RNMNA

(4.25)
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Equations (4.15),(4.18),(4.19) and (4.21) are combined into a single equation with

the help of (4.24).Md 0

0 Mckt

 d

dt

 yd

yckt

 =

 Ad Ad,ckt

Ackt,d Ackt

 yd

yckt

+

 fd

uckt

 (4.26)

This set of differential-algebraic equations is then integrated with respect to time

using any choice of stiffly-stable solver. The procedures and notations are in place for

extending this formulation to a circuit with multiple diodes. The procedure is listed

below:

1. Parse the given SPICE like netlist.

2. Process the basic circuit elements and sources as usual. Keep track of dis-

tributed devices as they are encountered in the netlist and add terminal-parasitic

capacitors as needed. These capacitors are processed as any other capacitor in

the network.

3. Build Mckt and Ackt matrices.

4. For each terminal of the distributed device add a dependent current source with

appropriate direction and assemble Md and Ad.

5. Build interface matrices Ackt,d and Ad,ckt according to the number of terminals

and spatial dimension of device considered. In this thesis, they are 2 and 1

respectively.

6. Insert the encapsulated diode equations along with the interface matrices in

order.

7. Insert the circuit equations in the end to result in the full system equation.

A single-phase diode bridge rectifier is shown in Figure 4.5. This circuit has 4

diodes and according to the proposed strategy there will be 8 dependent current

sources and parasitic capacitors inserted in addition to the existing components.



52

vs

is

Rs Ls

iD1

RL

LL

iL

iD4

iD2

iD3

Fig. 4.5.: Single-phase diode bridge rectifier with resistor-inductor load.

The single diode and external circuit model equation (4.26) is extended to a single-

phase diode bridge rectifier. It is relatively straightforward to simulate a complex

circuit with multiple diodes using the strategy set forth. Without loss of generality,

an abstract and compact equation can be used to describe the dynamics of a coupled

semiconductor device and circuit problem as in the following equation.

M
dy

dt
= Ay + f(y, iind,vs) (4.27)

where for a single-phase diode bridge rectifier,

M =



Md1 0 0 0 0

0 Md2 0 0 0

0 0 Md3 0 0

0 0 0 Md4 0

0 0 0 0 Mckt


(4.28a)

y =



yd1

yd2

yd3

yd4

yckt


(4.28b)
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A =



Ad1 0 0 0 Ad1,ckt

0 Ad2 0 0 Ad2,ckt

0 0 Ad3 0 Ad3,ckt

0 0 0 Ad4 Ad4,ckt

Ackt,d1 Ackt,d2 Ackt,d3 Ackt,d4 Ackt


(4.28c)

f =



fd1

fd2

fd3

fd4

uckt


(4.28d)

The vector y is a vector of the combined diode and circuit variables. The indepen-

dent voltage vs and current iind are the inputs. This system of differential-algebraic

equations is integrated with respect to time using a stiffly-stable integrator. A com-

mon choice of stiffly-stable integration algorithm is the backward Euler algorithm.

Since the BE algorithm is implicit, a linear system is solved within Newton-Raphson

iterations for solving this type of nonlinear initial-value problem. The right-hand side

is expressed in a form that helps in deriving the Jacobian as the sum of a linear non-

varying part, and, a nonlinear time-varying part which, in turn, is used in the linear

solution. The solution methodology and implementation of the implicit integration

algorithm is discussed in detail in the following chapter.

4.3 Comparison with Other Formulations

XyceTM is a parallel circuit simulator developed by Sandia Laboratories. The

circuit simulator is targeted towards coupled device-circuit simulation of VLSI cir-

cuits. The underlying mathematical formulation is discussed in [64]. Xyce forces the

terminal currents to be equal to that computed using the device physics. That is, a

device level KCL is enforced. In addition, in order to deal with nonlinearities in the

simulation the device voltage is not allowed to change significantly (by how much is
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unspecified). This operation, so-called ’voltage limiting’, apparently helps in the con-

vergence of nonlinear iterations. Reference [64] mentions briefly that this operation

is inconsistent and adds numerical algorithm implementation difficulties.

A similar coupled device-circuit simulation formulation is the topic of a disser-

tation [63]. This dissertation is also targeted towards VLSI circuits where KCL is

enforced at the device level more so in a mathematical way. For charge conservation,

the divergence of hole and electron density less displacement current should be zero.

The displacement current is obtained by finding the time derivative of Poisson’s equa-

tion. In case of diodes, the charge conservation equation is manipulated to make the

anode and cathode current equal. Then it is sufficient to include only one terminal

current in circuit formulation with similar extension to other multi-terminal devices.

In order to compute the displacement current, it is necessary to track the electric field

near the semiconductor-metal contacts (terminals). It is apparent that the boundary

electric fields are added states, which increase as the spatial dimension of the device

model goes from one through three.

The device terminal currents are algebraic functions of the charge densities and

electric potentials at the boundaries in the proposed strategy. No additional state

needs to be considered because electric field is computed as a function of electric

potential. The formulation set forth in this thesis does not force KCL at the device

level and also no voltage limiting is used. There are several terminal current equations

added to CCT when compared to Xyce and no extra states are added when compared

to [63].

4.4 Chapter Summary

Circuit model development using Modified Nodal Analysis is reviewed and a sys-

tematic procedure for assembling device-circuit system equations is set forth. Ex-

tension of the discussed concepts to different, possibly larger, circuit topologies is

straightforward. Currently, the implementation supports only resistors, inductors,
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capacitors, sources, and diodes. When coupled elements such as transformers or multi-

terminal circuit elements are used, the formulation requires an appropriate update

for the circuit equations. A similar update is required when multi-terminal semicon-

ductor devices are included. As long as the interface matrices are built in consistence

with the number of terminals and spatial dimension considered, the procedure set

forth herein is equally applicable to any device modeled using device physics.
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5. TEMPORAL INTEGRATION AND PARAMETER

EXTRACTION

A systematic procedure set forth in the previous chapter is used to assemble the encap-

sulated diode model and circuit equations to result in a system of differential-algebraic

equations (DAEs). The coupled device-circuit network is simulated by implementing

a temporal integration for the DAE system derived. Implementation of backward

Euler method for DAE system is discussed in this chapter. In addition, a procedure

to extract the physical parameters of a PIN diode based upon its measured response

is set forth.

5.1 Backward Euler Temporal Integration

It is useful to consider the system of DAE (5.1b) with mass matrix M, which can

be singular. This system is usually obtained after the spatial discretization of the

semiconductor devices and augmenting the circuit equations as derived in previous

chapter. The vector u consists of semiconductor species densities, electric potential

and circuit variables combined as depicted in (4.26). The backward Euler algorithm

is applied to (5.1b) to get (5.1c).

M
dy

dt
= Au + f(u, iind,vs) (5.1a)

M
dy

dt
= g(u, iind,vs) (5.1b)

M
(
ym − ym−1

)
= ∆tmg(ym) (5.1c)

Equation (5.1c) represents a nonlinear system of equations. A Newton-Raphson

(NR) iteration is commonly used to solve nonlinear systems of this form. The NR

iterator is obtained by expanding (5.1c) using a Taylor’s series about um up to first-

order terms and equating the resulting expression to zero. Instead of solving for
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ym directly, the increment z = ym − ym−1 is solved. The right-hand side gradient

g is rewritten as gz(z) = g(ym−1 + z). This implementation is based on implicit

Runge-Kutta methods explained in [61].

Mz−∆tmgz(z) +

[
M−∆tm

∂gz(z)

∂z

]
∆z = 0 (5.2)

Several sparse matrix-vector products are avoided in this implementation compared

with direct solutions of ym. Although the computational savings is small, this im-

plementation is more efficient nonetheless. The two equivalent versions of the NR

iterator that can be implemented are given in the following set of equations.[
M−∆tm

∂gz(z)

∂z

]
∆z = −Mz + ∆tmgz(z) (5.3a)[

M

∆tm
− ∂gz(z)

∂z

]
∆z = −M

z

∆tm
+ gz(z) (5.3b)

The linear system above is solved for the iterative update zk+1 = zk + ∆z until

‖∆z‖ is less than a specified tolerance. The Jacobian
∂gz(z)

∂z
, which is approximated

as
∂g(y)

∂y

∣∣∣∣
y=ym−1

has a linear fixed part and a nonlinear varying part as shown in the

equation below.
∂g(y)

∂y

∣∣∣∣
y=ym−1

= A +
∂f(y)

∂y

∣∣∣∣
y=ym−1

(5.4)

The linear fixed part is A and the nonlinear time-varying part of the Jacobian

is ∂f/∂y. Each of these parts has partitions due to diodes and circuit elements as

discussed in the previous chapter.

In a quasi-NR method, the Jacobian is computed only once per time step as

opposed to every iteration as in full-NR. A decision to choose one of these approaches

is based on the comparison of computational performance of the complete simulation.

Full-NR tends to converge faster and takes fewer time steps to complete the simulation

than the quasi-NR. A flag is used to choose between these NR implementations. The

computational performance for these two cases is compared in Chapter 6 to decide

the most suitable implementation for the type of simulation problem considered in

this thesis. The backward Euler algorithm is depicted as a flowchart in Figure 5.1.
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k: = 1, z1: = 0

Compute Jacobian
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‖∆z‖2 < NRTOL k > ITERMAX

Full NR

Return
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No

No

No

Yes

Yes, NR Diverge

Fig. 5.1.: Backward Euler algorithm flowchart.

The temporal error in the simulation is controlled by keeping the local truncation

error (LTE) at each time step less than a user-specified tolerance. The time step is

also chosen such that the truncation error is acceptable within user-specified tolerance

limits. The steps are chosen using an automatic step control mechanism discussed
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in [65]. Usually, the LTE is computed by constructing an inexpensive higher-order

solution ŷm and approximating the LTE as ŷm − ym. In each time-step calculation,

the initial iterate zk
∣∣
k=1

is assumed to be zero. Consequently, the first gradient com-

putation is the gradient at tm−1. The gradient computed during converging iterations

of the Newton method corresponds to that at tm. With no further computational

overhead, these values are used in trapezoidal integration rule to compute ŷm.

ŷm = ym−1 +
∆tm

2
[g(ym−1) + g(ym)] (5.5)

The approximate LTE and the error norm [61] are given by,

LTE ≈ ŷm − ym, (5.6a)

LTE ≈ ∆tm

2
[g(ym−1)− g(ym)], (5.6b)

ERR =

√√√√ 1

n

n∑
i=1

(
LTEi

Atoli + Rtoli ·max(|ym−1
i |, |ymi |)

)2

. (5.6c)

A weighted root-mean-square norm is used to compute the error using this LTE.

User-specified relative and absolute error tolerances (scalar or vector) are the weights

in the weighted root-mean-square norm. When the solution at the current time step

satisfies the error tolerance norm ERR ≤ 1, since LTE ≤ tol, the next time step is

chosen larger or smaller depending on this ERR. The time-step control formula (5.7)

employs ERR and exponent q = (min(o, ô) + 1), where o and ô are the orders of

backward Euler and trapezoidal integration methods.

∆tm+1 = ∆tm ·
(

1

ERR

)1/q

(5.7)

This factor, which multiplies the last time step size (∆tm), makes the subsequent

step sizes to grow or shrink automatically. When the current step solution does not

meet the tolerance criterion, the step is rejected and repeated with the smaller step

size chosen by the formula. The same formula is used to grow the next step size when

the step is accepted. If the NR iteration fails to converge, the step is rejected and step

size scaled by 0.1. In order to improve the likelihood that the next step is accepted,
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this factor is scaled by fac and limited between facmin and facmax. In a simulation

environment, it is also advisable to limit the step size between ∆tmin and ∆tmax.

∆tnew = ∆tm ·min
(
facmax,max

(
facmin, fac · (1/ERR)1/q

))
(5.8a)

∆tm+1 = min (∆tmax,max (∆tmin,∆tnew)) (5.8b)

The usual choices of the factors are made as facmin = 0.1, 1.5 ≤ facmax ≤ 5 and

0.8 ≤ fac ≤ 0.9. A time step of 10−6 s is a common choice in the simulation of power

electronic circuits. The time scale of the fast dynamics within the semiconductor diode

are of the order of 10−12 s. Consequently, a choice for the minimum and maximum

step sizes are ∆tmin = 10−16 s and ∆tmax = 10−6 s. A flow chart of the simulation

algorithm is shown in Figure 5.2.

The tolerances used in the error-norm calculation, namely the absolute and rel-

ative tolerances, can be either vectors or scalars. A brief and clear explanation on

the choices of these tolerances is given in [66]. It suggests the use of a vector-valued

tolerance when the solution scales are too different. As a rule of thumb, these tol-

erances are chosen such that when d decimal places of accuracy are sought in umi ,

then Rtoli = 10−(d+1). A choice of Atoli is made for which |umi | is insignificant. In

this thesis, only the charge densities and circuit variables are used in the error norm

computation. The electrostatic potential is a function of charge densities within the

respective device and in an implicit integration algorithm, this relation is satisfied

within the error due to computer’s finite precision. Consequently, these can be ne-

glected in the LTE computations.

5.2 Parameter Extraction

The system of equations for an example diode resistor inductor network are as

derived in the previous chapter. The partitions in (5.3) for the system of equations
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Fig. 5.2.: Simulation algorithm flowchart.

in (4.26) are shown explicitly here. On a block level, the iterator is given by the

following equation.

M

∆tm
−
(

A +
∂g(y)

∂y

)
=


Md

∆tm
−
(

Ad +
∂fd
∂yd

)
−Ad,ckt

−Ackt,d
Mckt

∆tm
−
(

Ackt +
∂uckt

∂yckt

)
 (5.9)

The top left block matrix is due to the encapsulated diode model. It is block

representation of the left-hand side matrix derived in (3.37). The partitions within

this block matrix are derived in Appendix A.2. Of the two diagonal block matrices,
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Vs

R L D

Fig. 5.3.: Circuit used for diode characterization.

the right bottom one is due to the circuit. The partition fckt,ckt is zero (matrix)

because the fckt vector is due to independent voltage and current sources. If nonlinear

circuit elements are present, then this partition will be nonzero. The matrix Ackt is

already derived and readily available once a given netlist is parsed. The flow chart in

Figure 5.2 can be used to implement a coupled device and network simulation.

Physical parameters of a diode are required for a system-level simulation. A

commercially available PIN diode is considered here to demonstrate a procedure for

approximating these physical parameters. The procedure given in [67] is modified

according to the assumptions and operating conditions of the diode. PIN diode S1A

(Fairchild) is a relatively slow diode with a recovery time of 1.8 µs when the forward

current is 0.5 A. The forward voltage drop of the diode is 1.1 V at a rated current of

1 A and the reverse breakdown voltage is 50 V.

The circuit in Figure 5.3 is used for diode characterization. The voltage source

used for quasi-steady state, and, switching measurements are sinusoidal, and, square

wave voltage sources respectively. The frequency of the voltage source is chosen to be

approximately 100 Hz assuming that the diode dynamics, one of the fastest dynamics

in the systems, settles down within a half-period of the source. A commercial function

generator (Agilent 33120A) is used to generate both sinusoidal and square wave source

voltages.

Internal resistance of function generator together with the wire resistance is used

as the resistive load. The inductance of the connecting wire is approximated using the
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Table 5.1.: Estimated Circuit parameters.

Part Description value

Vs voltage source (square or sinu-

soidal)

10 Vpp 100 Hz sine or square

Rs Source resistance and wire resis-

tance

51.6 Ω

Ls inductance of wire running between

the source and diode

950 nH

Ca, Cc coupling capacitors 1 pF

formulae for parasitic inductances as presented in [68]. The estimated circuit param-

eters are given in Table.5.1. The formulation developed in this thesis for simulating

coupled device-circuit simulation problem is both tested and used to characterize the

commercial diode.

The p+ and n+ regions in a PIN diode are heavily doped. The doping densities

in these heavily doped regions are assumed to be equal as in [67]. This assumption

implies that most of the forward voltage (VF ) is dropped across the p+i and in+

junctions equally. There will be some voltage dropped across the intrinsic region of

the diode during normal operation. It is assumed that this voltage drop is small

compared to the voltages dropped across the junctions. The doping in the p+ and n+

regions can be adjusted to match the forward voltage drop across the diode close to

that given in the datasheet. When Ndop is used to represent the doping densities in

p+ and n+ regions, the built-in voltage of these junctions can be expressed as,

VF ≈ 2× Vbi,

Vbi =
kT

q
ln

(
Ndop

ni

)
.

(5.10)

The intrinsic carrier density for Si, ni, is constant. A table of Vbi versus Ndop

is given in Table.5.2 for immediate reference. Assuming a small voltage is dropped
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across the intrinsic region, this table is used for ascertaining the doping levels. The

doping density of heavily doped region is assumed to be 1018 cm−3 for a nominal

voltage drop of 1.1 V.

Table 5.2.: Doping density versus forward voltage drop VF .

Ndop (cm−3) Vbi (V) VF (V)

1020 0.6 1.2

1019 0.5 1.0

1018 0.4816 0.9632

1017 0.4221 0.8442

The reverse breakdown voltage of the diode under consideration is 50 V. For a

lightly doped i region, the doping density is determined from breakdown voltage

versus doping density chart in [69], and approximated as 1016 cm−3. The doping

density in p+ region is assumed to vary as cos(
πx

2Xjp

). A similar variation cos(
πx

2Xjn

)

is assumed in the n+ region. The corresponding carrier life time is approximately

τn = τp = 10−4 s. The diode current density is approximated as
qe(p̄− ni)wi

τ
[69].

The total current density is expressed using the notations of this thesis as,

J =
I

ac
=
qe(p− ni)Wd

τp
, (5.11)

where I is the current through the diode with cross-sectional area ac. Given a doping

density for the heavily doped region and ni of Si, the approximate width of the

intrinsic layer (Wd) and ac are estimated.

The physical parameters are fine-tuned by performing several quasi-steady state

and switching simulations starting with their approximate estimates. The comparison

of measured I-V characteristics and diode reverse-recovery with simulation results are

used as a guidance to perturb the parameters. The perturbation is done judiciously

and iteratively to improve the agreement between measurements and simulations.

Only a few iterations of these simulations runs are required to converge to a set of
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physical parameters. The iteratively refined parameter set is given in Table 5.3. The

comparison of the simulation of RL and diode circuit with the fine-tuned parameters

and measurements is presented in the next section.

5.3 Diode Resistor Inductor Circuit Example

A 10-V zero-to-peak and 100-Hz voltage is applied to an example network of RL

and diode with converged physical parameter estimates. The simulated diode (with

Table 5.3) variables for two cycles of the source voltage are shown in Figure 5.4. The

diode current id is nonzero and follows the applied voltage due to positive half-cycle

of the voltage source. The inset plot shows the reverse recovery current as the diode

becomes reverse-biased. After the diode turns off, the voltage across it is same as

negative half-cycle of applied source voltage.

The simulated and measured quasi-steady state I-V characteristics of the diode is

shown in the Figure 5.5. The simulated and measured characteristics agree reasonably

well. Even with a 100-Hz voltage supply, there is a small reverse recovery as shown in

the inset plot of Figure 5.4 and this is the reason for splitting in the I-V characteristics

near the cut-in voltage of the diode. The curve is highly nonlinear near the cut-

Table 5.3.: Extracted physical parameters of S1A PIN diode.

Parameter Description Value

Xjp p+ region length 29 µm

Xjn n+ transition length 2 µm

Xx n+ region length 29 µm

Wd intrinsic layer width 80 µm

ac cross-sectional area 110× 10−4 cm2

Ndop doping density in p+ and n+ regions 1018 cm−3

ND doping density in intrinsic layer 1016 cm−3
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Fig. 5.4.: Simulated voltage vd across (top) and current id (bottom) through the

sample diode.

in voltage and becomes almost linear thereafter. The function generator used to

characterize the device is not capable of reaching reverse-breakdown voltage levels of

the diode sample. Hence, the typical knee and increase in reverse-bias current found

in a typical I-V characteristic is not present in the figure shown.

A square wave source is used to characterize a diode using the reverse-recovery

response. The duration for which the reverse recovery current is nonzero depends on

the forward current, the doping level, width, area and the carrier life times [70]. When

fine-tuning the physical parameters, comparing the simulated and measured reverse-

recovery transients and using the above cues enables one to establish the physical

parameters with reasonable certainty.

The simulated and measured reverse-recovery or switching dynamics are com-

pared in Figure 5.6. The oscilloscope is triggered for a negative edge in the source

voltage. There is a negative transition at approximately 10 µs into the simulation.
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The measured data is shifted in time so that the negative transition measured and

simulated occur at same time for the purposes of comparison. The simulated diode

currents agree with the measurements with reasonable accuracy. The magnitude of

the simulated diode current is under-estimated, for a brief time for which the diode

current is negative. The reason for this could be due to the transmission-line effects

of a meter-long coaxial cable used as an interconnecting wire in the measurements.

There is a small difference in the current dynamics in the tail of the reverse-recovery

current. This is due to the approximation in the doping density and its distribution

near the 2 junctions in the PIN diode. The doping density distribution affects the

excess charge in the intrinsic region which plays a major role in the reverse recovery

dynamics.

The measured and simulated steady-state voltage drop across the diode also agree

with reasonable accuracy. There is some mismatch at the corners of the diode voltage

after the source voltage goes negative. This is attributed due to the difference in the
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Fig. 5.5.: comparison of I-V characteristics of the diode.
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Fig. 5.6.: PIN diode switching current (top) and voltage (bottom) dynamics.

current dynamics, specifically the transmission line effect. The simulated voltage

stays close to the on-state voltage as long as the negative current is almost constant

but the measured reverse current is already varying while the simulated current is
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constant. This results in the difference in the voltages near the negative transition. As

the diode current increases towards zero, the diode voltage increases in the negative

direction. The small differences in the voltage near the tail of the reverse recovery

is due to similar difference in the current dynamics. When the voltage has reached

close to the steady-state reverse-bias conditions, the diode turns off, whereupon both

measured and simulated voltages are the same.

5.4 Chapter Summary

An implicit integration algorithm is implemented to simulate the coupled device-

circuit problem. The backward Euler algorithm used in this research is a first-order

algorithm. It is possible to use higher order algorithms like backward differentia-

tion formulae due to Gear [71], implicit Runge-Kutta or semi-implicit Rosenbrock

methods [61]. A sophisticated step-size controller may be of use to avoid repeti-

tive step rejections. However, when using multi-step methods, it is common to use

the lowest order integration after every step-restart due to a step rejection. In a

variable-structure variable-order simulation, step-restarts are more likely to happen

due to varying structure and so it is prudent to choose single-step higher-order over

multi-step algorithms. The diode parameters are approximated by iteratively refin-

ing the initial parameter estimates from the datasheet of a device. It is possible to

convert this procedure into an optimization problem and to use more sophisticated

optimization algorithms to find the physical parameters of the diode [72].
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6. EXPERIMENTAL VALIDATION

The full system simulation and experimental measurements for an example single-

phase full-bridge rectifier are presented in this chapter. Close attention is paid to

the diode losses, one of the main motivations of this research. The computational

performance of the full system simulation is reported that lays the groundwork for

the variable-structure variable-order strategy to be described in the next chapter.

6.1 Full System Simulation

The circuit diagram of single-phase diode bridge rectifier is shown in Figure 6.1.

A high-power linear operational amplifier fed by a signal generator is used as the

source. The source-side resistor and inductor are that of the interconnecting wires

between the source and the rectifier input nodes n3 and n7. The rectifier is built

using S1A PIN diodes and the load-side circuit elements are commercially available

components. The circuit parameters are given in Table 6.1 described using netlist as

given in Table 6.2.

vs

Rs Ls

RL

LL

D1 D2

D3 D4

n1 n2

n3

n4

n5

n6

n7

Fig. 6.1.: Single-phase diode bridge rectifier.
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Table 6.1.: Single-phase diode bridge rectifier circuit parameters.

Part name Description Value

vs Source voltage 9.3 Vpk−pk, 5 kHz

Rs Source resistance 0.1 Ω

Ls Source inductance 500 nH

RL Load resistance 35.2 Ω

LL Load inductance 290 µH

Table 6.2.: Single-phase diode bridge rectifier netlist.

1 single-phase diode bridge rectifier
2 Rs 1 2 0.01
3 Ls 2 3 5e-7
4 RL 4 5 35.2
5 LL 5 6 290e-6
6 D1 3 4 cct init.m
7 D2 7 4 cct init.m
8 D3 6 3 cct init.m
9 D4 6 7 cct init.m

10 Vs 1 7 ac sin(0 4.65 5000 0)
11 .END

The incidence graph is generated after adding parasitic capacitors and ground

nodes as shown in Figure 6.2. The procedure proposed in Chapter 4 is used to setup

the system equations for simulation. The derived DAE system is integrated using

the backward Euler integration algorithm. Starting with (5.3), a Newton iterator

for the single-phase diode bridge rectifier system equation, as in (4.28), is explicitly

expressed. Identifying the block-matrix structure in this iterator is useful for the

strategy proposed in the next chapter.[
M

∆tm
−
(

A +
∂g(y)

∂y

)]
∆z = −M

z

∆tm
+ gz(z) (6.1)
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Fig. 6.2.: Incidence graph for the circuit with parasitic capacitors and ground node

added.
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(6.2)

where

Di = Mdi −
(

Adi +
∂fdi
∂ydi

)
Ci = Mckt −

(
Ackt +

∂uckt

∂yckt

)
Ei = −Ackt,di

Fi = −Adi,ckt

(6.3)

The indices 1 through 4 correspond to the diode number in the circuit. Partitions

Di and Ci are Jacobian block-matrices attributed to diode and circuit, respectively.

The matrices that map diode variable ydi to circuit variable yckt and vice versa

are Ackt,di and Adi,ckt, respectively. Left-hand side ∆z vectors are the incremental

updates for the diode and circuit partitions. Right-hand side z is the residual vector

with an appropriate diode or circuit partition identifier. The equation above has a

block-matrix arrow structure, that is the nonzero block partitions on the diagonal,
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last row, and column, form an arrow shape. This algebraic structure is conducive to

the domain decomposition method of solving linear systems [73] that is exploited in

the variable-structure variable-order strategy. Results presented in this chapter use

solutions of the linear system without decomposition as in,

J∆z = r. (6.4)

It is essential to discuss the measurement equipment capabilities before comparing

the simulated and measured data. Yokogawa DL850 scope with 720210 analog voltage

input modules are used for measurements. The module has a maximum sample

rate of 100 MS/s which means the data is acquired every 10−8 s. The current is

measured using Tektronix current probe TCP312 along with its amplifier TCPA300.

TCP312 is rated for 30 A dc and its bandwidth is 100 MHz. From the manufacturer’s

datasheet [74], for small currents that are used in this experiment, full 100-MHz

bandwidth is available. The 1 A/V output of the current probe amplifier TCPA 300

is connected to the voltage input module of Yokogawa DL850. Thus, voltage and

current measurements have a uniform data sampling rate of 100 MS/s.

6.1.1 Computational performance

For the purposes of run-time comparison all simulations are executed on the same

computer with specifications as listed in Appendix D. The one-dimensional mesh

carefully chosen for this performance evaluation has 72 nodes and hence 218 equa-

tions in the encapsulated model. Four such device models together with 10-circuit

variables results in an 882-dimensional DAE for the single-phase diode bridge rectifier

system. Commands tic and toc are used to measure run time of system simulation

for four cycles of the source waveform and are 53.10 and 81.8 s for full and quasi-NR

methods, respectively. The same simulation study is performed with the MATLAB

profiler to pinpoint the computational bottlenecks. The simulation times with and

without full-NR enabled are 55.92 and 83.32 s, respectively, which is greater than

toc-tic times indicating the small computational burden due to the profiler. A list
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Table 6.3.: Profiler output listing computational bottlenecks.

Computational task Quasi-NR time (s) Full-NR time (s)

Jacobian 8.61 18.58

Right-hand side residual 24.83 12.59

Linear solve in NR iteration 47.67 22.55

of computationally expensive tasks, shown in Table 6.3, are obtained from the profiler

results.

It is clear that for the same error tolerance as discussed in the next subsection, the

full-NR is faster than quasi-NR method. The former takes 1441 time steps, which is

900 steps fewer than that used by the latter. In both NR implementations, the linear

solve stage is the most expensive computationally . The next most expensive stage is

the residual computation stage in the quasi-NR method and Jacobian computation

stage in the full-NR method, respectively. The run times and numbers reported

corroborates the points made earlier in Chapter 5. Hereafter, all simulations use the

full-NR-based BE algorithm that is suitable for the problem considered in this thesis.

6.1.2 Step size and sample rate

The step size taken by the simulation and measurement interval is plotted in

Figure 6.3. The data is sampled at a uniform rate and hence measurement interval

plot is a straight line at log(10−8). The step size of the simulation is chosen by

the step-size controller discussed in Chapter 5. A relative tolerance of 5 × 10−4 and

absolute tolerance of 5×10−6 is used in the error estimator. Tightening the tolerances

further exhibits no improvement in simulation accuracy and increases the simulation

run time. The step size controller aggressively tries to increase the step size and

whenever there is a step rejection due to either divergence in the Newton iteration

or LTE not meeting the tolerance, the step size is reduced by a factor of ten. This
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effect can be seen as dips near 5×10−4 where the step size is drastically reduced due

to repetitive step rejections.
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Fig. 6.3.: Measured and simulated step-size comparison.

Step rejections due to exceeding the error tolerance is attributed to the limita-

tion of the controller where the step size changes only by a factor within facmin and

facmax. Whenever a step size beyond the limits is required, the size saturates at these

limits and results in a step rejection. An implementation of a sophisticated step-size

controller that looks at the history of LTE to predict the next step size for probable

step acceptance [61,75] is one possible solution. The step-size plot is zoomed in near

5×10−4 s as shown in Figure 6.4. Voltage, current, and power inset plots that follow

approximately span this interval. It is seen that near 5×10−4 s, the step size is within

an order of measurement bandwidth. This observation is kept in mind to judiciously

ascertain the reasons for the discrepancies between simulated and measured data.
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Fig. 6.4.: Step-size comparison zoomed near 5×10−4 s.

6.1.3 ac bus waveforms

The ac-voltage vac, measured between nodes n3 and n7 as vn3 − vn7, and ac-

current through Ls are plotted in Figure 6.5. The simulated low-frequency voltage

and current waveforms are in close agreement with measured ones. There are three

small voltage spikes in the inset plot where the measured voltage somewhat differs

from simulated. Coincidentally, these are the times where the step-size is close to

10−8 s. The measurement bandwidth limitation may be a cause for this difference.

The current waveform is qualitatively consistent with the measured current, especially

towards the later half in the inset plot. The differences in the peak value of current

is more readily seen in the inset plot. This is the duration of the commutation

interval where all four diodes conduct and current rises accordingly. The peak value

of current spikes are a function of the short-circuit impedance with conducting diodes

in the loop. The conductance of the diodes vary due to parameter variation resulting

in different current peaks.



77

-4.00

-2.00

0.00

2.00

4.00

v a
c

(V
)

-0.10

-0.07

-0.04

-0.01

0.02

0.05

0.08

4.0 4.5 5.0 5.5 6.0

i a
c

(A
)

time (×10−4 s)

meas sim

meas sim

Fig. 6.5.: Voltage (top) and current (bottom) waveforms on ac-side.

6.1.4 dc bus waveforms

The dc bus voltage vdc (vn4 − vn6) and the bus or inductor current are plotted

in Figure 6.6. The first spike in voltage as shown in the inset plot is simulated

accurately. This suggests that there should be appropriate spikes in voltage across

all diodes. Albeit uncertain, the small mismatch in the second voltage spike is likely

due to measurement bandwidth limitations. There is a small difference in voltage

waveforms during the slow transients. It is convenient to recall from Chapter 5

that a similar trend was seen during the parameter-extraction procedure. Hence,

the approximation errors in parameter extraction stage is responsible for this voltage

difference. The slowly varying current transients are in reasonable agreement even

during reverse recovery intervals. The fact that measured currents near 4× 10−4 and

6 × 10−4 s are slightly different evince the non-identical physical parameters of the

diodes.
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Fig. 6.6.: Voltage (top) and current (bottom) waveforms on dc-side.

6.1.5 Diode 1 variables

The diode D1 voltage and current plots are shown in Figure 6.7. The measured

and simulated currents match well and the reverse-recovery current is predicted with

reasonable accuracies. The small oscillation near the tail of the reverse-recovery

current is related to the spike in voltage across the diode. The simulated and measured

diode voltage vd1 are in reasonable agreement with the largest discrepancy occurring

during the voltage spike as shown in Figure 6.8. It may be tempting to attribute

this difference to measurement bandwidth limitation but its not the case. Using the

notation vij = vni − vnj, dc bus voltage vdc = v46 = v43 + v36 = vd1 + vd2 . Since

there are spikes in vdc and not in vd1 , they must appear in vd2 to satisfy the KVL

equation derived above. Consequently, the reason for difference in voltage spikes

measured may be due to the physical placement of diode and measurement probes

or physical parameter variations. This experimental measurement demonstrates the

difficulty in modeling the relevant physical phenomena in the example circuit. The
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Fig. 6.7.: Diode voltage (top) and current (bottom) waveforms.

instantaneous power loss in the diode is computed by finding the vd1id1 product as

shown in Figure 6.9. The second spike (positive) in power is due to the mismatch in

voltage spike. The average power then can be calculated by evaluating the average

of this instantaneous power loss curve.

6.1.6 Power and energy calculations

The ac and dc-side power is computed using the voltage-current product on the

respective sides. The instantaneous powers thus computed are shown in Figure 6.10.

The ac-side power agrees reasonably with the simulation. The differences in the dc-

side power is mainly due to the differences in measured and simulated vdc. The energy

into and out of the rectifier is the area under one-cycle of the Pac and Pdc waveforms,

respectively. Similarly, energy loss in Diode 1 is the area under one-cycle of the Pd1

waveform as in Figure 6.9. The converter loss is estimated as the difference in input

and output energy, that is ac-side less dc-side energy.



80

-3.00

-2.00

-1.00

0.00

1.00

v d
1

(V
)

-0.04

-0.01

0.02

0.05

0.08

4.0

i d
1

(A
)

5.0
time (×10−4 s)

meas sim

meas sim
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The per-cycle-energy is computed up to four decimal places, truncated and rounded

up, with appropriate metric prefix for measured and simulated waveforms as summa-

rized in Table 6.4. The relative error is computed as the ratio of absolute error to the

measured quantity and is expressed in percentage up to two decimal places. Simulated

and measured ac-side energies are almost same with a relative error of 0.05%. The

error in dc-side side energy is commensurate with the difference in power plots which,

in turn, is due to difference in the dc-bus voltage. Simulated and measured Diode

1 loss computation match exactly. The difference in ac and dc-side energies is used

in converter loss calculation and hence approximately a 12% error is found. When

the diode bridge rectifier loss is approximated as four times the loss in single diode,

a 0% error is obtained for the loss calculation. The accuracy of energy calculations,

mindful of measurement errors, is encouraging.
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Fig. 6.10.: Instantaneous power waveforms on ac (top) and dc (bottom) sides.
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Table 6.4.: Simulated and measured energy comparisons.

Quantity Simulated energy (mJ) Measured energy (mJ) Relative error %

ac 0.1695 0.1696 0.05

dc 0.1016 0.1088 6.65

Diode 1 0.0170 0.0170 0.00

diff(ac,dc) 0.0679 0.0608 11.68

6.2 Chapter Summary

The proposed equation assembly procedure is used to establish a detailed simula-

tion of single-phase diode bridge rectifier. Simulation results obtained using MATLAB

predict high-frequency phenomena, energies, and losses in the circuit with reasonable

detail and accuracy. The deviations are due to physical parameter variation in diodes

(that is, not all diodes are identical) and errors due to measurement. The doping pro-

file that is assumed in this work need not match exactly with that in the actual diode.

The same reasoning applies to the physical dimensions of the diode. Albeit thorough

knowledge of the physical parameter improves the simulation accuracy, there is still

some uncertainty due to the variations among non-identical diodes.
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7. VARIABLE-STRUCTURE VARIABLE-ORDER

SIMULATION PARADIGM

In this chapter, methods of improving the simulation speed are set forth and analyzed.

The principal contribution is a variable-structure variable-order (VSVO) simulation

paradigm in which inactive devices are assumed to be disconnected from the circuit,

thus modifying the structure of the tableau equation and reducing the number of

unknown to be solved. The general structure of the tableau equation is preserved thus

enabling the use of block Gaussian elimination as a means of improving simulation

speed through parallelism. Other factors that improve simulation speed are also

considered. In particular, recommendations as to the choice of mesh for PIN diodes

are made. Additionally, a comparison is made between direct and indirect (iterative)

approaches for solving the linear equations that are a part of the NR or quasi-NR

iterations performed at each time step. Another important aspect of VSVO-based

simulations is deciding when to disconnect or reconnect devices back into the circuit.

A device activity monitor is set forth that accomplishes this task accurately and

reliably.

7.1 Variable-Structure Variable-Order Paradigm

Although the coupled device-circuit simulation provides an accurate portrayal of

the transient performance of power electronic circuits, this approach is seldom used

by power electronic circuit designers and analysts due to the prohibitively long times

needed to solve the corresponding equations, which are of large dimension and nu-

merically stiff. Observation of the species distributions in a diode during typical

transients reveals that their spatial distributions are well behaved and resemble two

sigmoid-like functions for each of the p and n densities. It would appear that only a
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few dozen nodes in a spatial discretization would be more than adequate to portray

these distributions accurately. A good adaptive spatial mesh is capable of placing

these handful of nodes at appropriate places. However, due to the large drift-to-

diffusion current ratio in the depletion region, additional nodes are needed to satisfy

the Péclet constraint if a central differencing approach is used. This constraint must

be satisfied for purposes of numerical stability. Thus, a relatively large number of

nodes are needed inside and in the vicinity of the depletion region even though the

species densities do not vary significantly in this region. Moreover, if an adaptive

mesh is used the sparse tableau equations have to be completely rebuilt and refac-

tored symbolically and numerically several times for each time step. Thus, adaptive

meshing does not provide a significant computational advantage. The results of an

initial study, attached in Appendix C, for a single-diode problem with adaptive mesh

corroborates this conclusion. The Scharfetter-Gummel differencing method permits

a somewhat coarser mesh and, when applied to a reasonably resolved fixed mesh,

appears to provide the most efficient solution of an individual device.

For circuits containing multiple devices, however, maintaining a fixed tableau

structure does not appear to be the most efficient approach. At any given instant of

time, only a subset of the devices are active (e.g. diodes are forward biased). Inactive

devices such as reverse-biased diodes do not contribute to the circuit losses that are

of paramount concern to power electronic circuit designers. It would appear that

a variable-structure and hence variable-order simulation structure, in which inactive

devices are removed from the tableau formulation and subsequent solution, would

offer significant computational advantage since the dimension would be reduced cor-

respondingly. However, if this is done, it is important to monitor the voltage across

the inactive devices to anticipate their becoming active (e.g. diodes becoming forward

biased), at which point the structure of the tableau must change to accommodate the

soon-to-become-active device. Moreover, by excluding inactive devices, the number

of nodes required in the corresponding device models is significantly reduced since

the depletion region is small for forward-biased conditions.
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Each of these considerations lead to the proposed variable-structure variable-order

simulation paradigm. The key attributes are listed below.

• A fixed graded mesh of the semiconductor sufficient to capture the required

transients.

• Exploit the knowledge of the fixed block-matrix structure to speed up solution

of the linear system of equations.

• Automatically and seamlessly change to and from dimensionally different tableau

structures, due to part of the circuit that is active because of the active devices.

Each of these attributes are delineated in the following subsections.

7.1.1 Fixed graded mesh

The mesh is chosen with a finer mesh near the two junctions in a PIN diode.

During forward-bias and weak-reverse-bias operation of the diode, species densities

vary significantly near the junctions. Weak reverse bias is used to refer to negative

voltages that are a fraction of the rated or peak operating voltage, which in turn,

must be less than the reverse breakdown voltage. In PIN diodes, the p+ and n+

regions are heavily doped and i region is lightly doped. This results in a depletion

region that widens more in the i region compared to the p+ and n+ regions. The

depletion region width varies according to the applied reverse bias voltage. In order

to adequately resolve the charge densities under full reverse bias, a fine mesh over a

wide region surrounding the two junctions (actually wider in i region) is required when

compared to weak-reverse-bias conditions. Consequently, for forward- and weak-

reverse-bias conditions, the CCT equations can be solved with a smaller number of

nodes compared with a model that is needed to simulate the full range of operation

and still satisfy the error tolerance limits.
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7.1.2 Linear solver

A linear system of equations needs to be solved when an implicit integration

algorithm is used. The solution of a large linear system computed in each itera-

tion of the backward Euler algorithm in this research is a computational bottleneck.

The two most general approaches of solving a large linear system of equations are

iterative methods [73, 76] and direct methods [77–81]. Sparse direct methods like

UMFPACK [78], PARDISO [80], and SuperLU [81] are used to solve sparse linear

systems and consists of several stages. These stages are (1) symbolic factorization,

(2) numeric factorization, and (3) forward and backward substitutions. While for-

ward and backward substitution are the fastest and most straight-forward stages, the

differences in the aforementioned algorithms lies in the strategies used in the symbolic

and numeric factorization stages.

The linear system computed during each iteration and/or step is in general a

non-symmetric linear system and is invertible. A non-stationary iterative method

such as the Generalized Minimum Residual (GMRES) algorithm is suitable for such

systems. This method projects the original problem on to a smaller linear subspace

(Krylov space), computes the solution in this reduced space and projects it back

to the original space. The solution is improved iteratively until a certain tolerance

criteria is satisfied. The linear system should be well conditioned in order for the

algorithm to converge in a few iterations. When the eigenvalues of a linear system

are spread across a wide range of real and imaginary values, convergence requires a

large number of iterations. The eigenvalue spectrum for a typical Newton iterator

matrix computed at various operating points in Figure 7.1 are shown in Figure 7.2.

These figures imply that the Newton iterator has a very wide spectrum of eigen-

values. Moreover, the spectrum varies according to the operating conditions and is

widest at peak reverse-bias voltage (operating point 3). When iterative solution of

such an ill-conditioned linear system is desired, then preconditioning is used to bring

these widely spread eigenvalues together and make the iterative method converge



87

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

v d
(V

)

-0.01

0.02

0.05

0.08

0.11

0.14

0.17

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

i d
(A

)

time (×10−3 s)

1 2

3

4

Fig. 7.1.: Four Newton iterator matrices are sampled at the marked instances on

current and voltage response of a diode in RLD network.

faster. The best preconditioner is the inverse of the matrix that is to be precon-

ditioned but the computation of such a preconditioner is very expensive. A more

efficient way to compute a preconditioner is to use incomplete-LU factors.

A numerical experiment to compare the performance of iterative and direct solvers

is devised in MATLAB. The iterator matrices and right-hand sides are computed at

certain points of the response of a resistor-inductor-diode example circuit as shown in

Figure 7.1. The backslash operator used in MATLAB invokes a sparse direct solver,

UMFPACK [78] to be specific. MATLAB also has in-built iterative solvers such as

gmres which takes incomplete-LU factors that are computed using ilu, as inputs

for preconditioning. In order to reduce the uncertainties in total execution time,

the linear system is solved repeatedly so that the cumulative total execution time is

several seconds. Moreover, the experiment is repeated several times. The average

time from these experiments, when divided by the number of solves, gives the per
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Eigen spectrum at different operating points
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Fig. 7.2.: Eigen spectrum of respective Newton iterator matrices in clockwise starting

at top left for operating points marked left to right as in Figure 7.1.

linear system solution time. The execution time of iterative methods does not include

the computation time of the incomplete-LU factors.

The linear system solve times for the example RL and diode example is shown in

Table 7.1. This example network at each iteration solves a 224×224 linear system.

Table 7.1.: Average time for solving 224×224 linear system (smaller the better).

Operating point Direct (10−3 s) Iterative (10−3 s)

#1 0.37 46.27

#2 0.37 42.11

#3 0.39 43.88

#4 0.37 44.01
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It can be seen that sparse direct methods are consistently faster than the iterative

methods by two orders of magnitude. It is concluded that for the typical problem

size considered in this research, direct methods are preferable. The computational

complexity of sparse direct methods in general is super-linear. That is, the computa-

tional time of direct methods increases super-linearly as problem size gets bigger and

there may exist a break-even point beyond which iterative methods with an effective

preconditioner may prove to be efficient. It is possible to validate this claim, start-

ing from [82, 83] and references listed therein, and, using a mathematically rigorous

analysis and development of iterative method specially tailored for the problem con-

sidered. However, such mathematical rigor and development is beyond the scope of

this research.

The linear system obtained in a multiple device-circuit simulation has a block-

matrix structure which can be derived from (4.28). Block Gaussian elimination

(BGE) can be used to exploit this structure and reduce the linear solve time like

in the partitioned finite element method developed in [84]. The short-hand notations

created using (5.3) for a single-phase bridge rectifier in Chapter 6 is repeated here for

convenience. [
M

∆tm
−
(

A +
∂g(y)

∂y

)]
∆z = −M

z

∆tm
+ gz(z) (7.1)

D1 0 0 0 E1

0 D2 0 0 E2

0 0 D3 0 E3

0 0 0 D4 E4

F1 F2 F3 F4 C





∆zd1

∆zd2

∆zd3

∆zd4

∆zckt


=



rd1

rd2

rd3

rd4

rckt


(7.2)

where

Di = Mdi −
(

Adi +
∂fdi
∂ydi

)
Ci = Mckt −

(
Ackt +

∂uckt

∂yckt

)
Ei = −Ackt,di

Fi = −Adi,ckt

(7.3)
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Algorithm 7.1 Block Gaussian Elimination.

1: procedure BGE(J, ∆w, r)

2: E′i ← Di\Ei, r′di ← Di\rdi for i ∈ {1, 2, 3, 4} . Parallelizable

3: r′ckt ← rckt − Fir
′
di

4: S← C−
4∑
i=1

FiE
′
i

5: ∆zckt ← S\r′ckt

6: ∆zdi ← r′di − E′i∆zckt for i ∈ {1, 2, 3, 4} . Parallelizable

The BGE algorithm descried in Saad [73] is applied to this linear system. It is

convenient to recall from Chapter 6 that matrix partitions Di, C, Ei, and Fi are

attributed to diodes, circuit, circuit-diode interface, and diode-circuit interface, re-

spectively. The notations used originally in [73] is modified with the above notations

and is presented in Algorithm 7.1. The possible computations that can be performed

in parallel are the Steps 2 and 6 in Algorithm 7.1. Computing the right-hand side

of the reduced system and Schur complement as in the Steps 3 through 5 uses accu-

mulation. Hence, these steps cannot be parallelized or else they may result in data

race conditions. Data race in parallel computations usually results in numbers that

are not reliable and hence such sections are better left in their sequential form. Two

of the popular parallel programming paradigms [85] are Message Passing Interface

(MPI) [86] and OpenMP [87]. MPI is a specification for message passing libraries

that moves data from one address space of a process to the other in a coordinated

way, possibly over a computer network. MPI is primarily a parallel programming

paradigm on distributed memory architecture since data can be distributed among

different processes running on different hardware with physically separated memory.

OpenMP is an Application Program Interface (API) that is capable of spawning

multiple threads in a shared memory architecture, like in a desktop computer with

multiple CPU cores that are common these days.

The computational performance of a parallel programming paradigm relies on a

number of factors such as data locality, cost of data transfer and its volume, spawn-



91

ing thread/process, etc. MPI tries to spawn multiple processes on multiple CPUs.

A process in turn can spawn a number of threads, so spawning a thread is compu-

tationally cheaper than a process. Most of the data fits in the local memory for the

typical problem sizes of this research. This suggests OpenMP is more suitable, for

the problem considered in this research.

Either (7.2) or (7.1) can be solved to compute the next step solution ym in a

typical system simulation. The solution of (7.2) is referred to as full solve and that of

Algorithm 7.1 as BGE solve. Full and BGE solve use UMFPACK as its kernel linear

solver. These solution methodologies are implemented in C programming language by

calling appropriate functions from UMFPACK and OpenMP libraries. The compu-

tational performance of each strategy executed on a computer with specifications as

in Appendix D is compared in Table 7.2. The overall dimension of the full system for

a full bridge rectifier simulation is 882. There are 10 circuit variables and each diode

consists of 218 equations. Each Di is a 218×218 matrix and rdi a 218-dimensional

vector. The last two columns gives the measured and calculated speed-up. Amdahl’s

law [88] is used to calculate the speed-up by parallelizing the BGE algorithm Steps 2

and 6. The speed-up is calculated using the time taken by the serial (ts) and par-

allelizable (tp) part of the BGE algorithm running on a single thread. The times

obtained for the sample 10000 solves are ts = 0.49 s, tp = 30.57 s. Their sum is not

exactly equal to the total run time (30.9 s) because these times are obtained from

a consecutive run. The sum of times taken by BGE algorithm Step 2 and 6 is tp of

which Step 2 alone takes 30.54 s. This reveals that the computation in Step 2 of BGE

is the costliest. The time taken by the Steps 3 through 5 is ts. Informations ts and

tp are used to extrapolate speed-up using Nthrds threads [89],

Speed-up =
ts + tp

ts +
tp

Nthrds

. (7.4)

Even though speed-up calculations are optimistic, they are close to the measured

ones. This gives confidence that this metric can be used to calculate the speed-up in

the parallelization of the problems considered in this research. The measured speed-
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Table 7.2.: Performance comparison of 10000 solves of a linear system of 882 equa-

tions.

Speed-up

Threads Full solve time (s) BGE solve time (s) measured calculated

1 33.5 30.9 1.1 1.0

2 33.2 16.0 2.1 2.12

3 33.2 16.0 2.1 2.12

4 33.4 8.8 3.8 4.12

ups are discussed starting with the single-thread case. There is a speed improvement

of 10% over the full solve for this case. As mentioned earlier, sparse direct solvers

have a super-linear computational complexity and hence, when a sequence of smaller

linear systems are solved and solutions are assembled, there is a possibility to get

some additional computational gain.

The results for other cases are explained qualitatively with the help of Figure 7.3.

Main thread signifies the entry and exit point of the BGE algorithm. The width (not

to scale) of other shaded parts shows the time taken by the corresponding algorithm

states. It is obvious that when only one thread is used, the BGE solve time is

the longest corresponding to the figure length. The main thread forks into multiple

threads as they are spawned and one of them is the main thread itself executing the

parallel task. The OS kernel decides which thread (inclusive of main thread) executes

the parallel task. For the example in the Figure 7.3, either of the top or bottom

fork in the 2 thread case could be the main thread. Only one thread computes the

right-hand side of the reduced system and Schur complement to prevent data racing

and all other threads do no work during this interval. Once the Schur system is solved

by the active thread, the other solution variables are computed in parallel. It can be

seen that when two threads are used, BGE solve is 2X faster.
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In the three-thread scenario, while the active thread is working on the last parallel

task, the other two threads wait on this active thread. This is the reason that the

3- and 2-thread scenarios both have a 2X speed-up and essentially the computer

resource (thread) is wasted here. When the number of threads match the number

of diode partitions, the speed-up is maximum, and for this example it is close to 4X

as expected. There will not be a speedup with increase in the number of threads

beyond this point as excessively spawned threads will do no work and wait on the

other active threads. The figure gives a cue that when the number of parallel tasks

are unevenly matched with threads, the percentage of ’No work’ portion shown in

dots increases which brings down the speed-up. The problem division has only one

level in the example explained thus far, that is one big problem is divided into 5

tasks of which 4 can be executed in parallel. It is possible to increase the number of

levels, not to arbitrarily many, and follow a strategy like in [84]. Dividing the problem

1 thread

2 threads

3 threads

4 threads

Main thread

Algo. state: 2

Algo. state: 3-5

Algo. state: 6

No work

Fig. 7.3.: Qualitative figure to explain BGE solver’s performance.
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into arbitrary levels and hence a large number of parallel tasks will bring down the

speed-up because of the volume of data that needs to be exchanged between these

tasks.

7.1.3 Structurally varying tableau

The circuit variable vector uckt consists of all node voltages followed by the in-

ductor and source currents. Step 6 of Algorithm 7.1 computes the change in circuit

variables [∆v ∆iL ∆iV ]T . The corresponding right-hand side residual vector rckt

then has three partitions. The first partition corresponds to the mismatch in KCL

equations, the second to the mismatch in inductor voltage equations and finally the

third with the source voltage equations. This implies that the residual vector can be

partitioned as [∆i ∆vL ∆vs]
T . These two vectors are related to each other via the

Schur complement S. The Schur complement is partitioned accordingly as,
Y U1 U2

W1 Z 0

W2 0 0




∆v

∆iL

∆iV

 =


∆i

∆vL

∆vs

 . (7.5)

This indicates that when the Schur complement S is partitioned according to variables

mentioned, the top-left partition in it is an admittance matrix. The U and W

partitions correspond to current and voltage-gains respectively. The FE′ product or∑
FiE

′
i in Step 4 of the BGE represents the contribution to admittance matrix Y

partition of the Schur complement by the diode connected between the respective

nodes.

This key insight allows the addition and removal of a particular diode partition

easily to a simple block-column and row deletion in (7.1). Apart from removal of

appropriate Di matrix, deletion of Fi is equivalent to physically not applying voltages

to the diode and that of Ei is equivalent to diode not injecting currents into the circuit.

Hence the removal of block-column and row is equivalent to physically disconnecting

the particular diode from the circuit that is simulated. There will be only D, E and
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F in the Newton iterator for single resistor-inductor-diode network example. The

block-matrix structures of the Newton iterator for the on and off-state of the diode

is given below. D E

F C

 ∆zd

∆zckt

 =

 rd

rckt

 (7.6)

C∆zckt = rckt (7.7)

When the diode is not conducting, the admittance or conductance between the nodes

to which it is connected is near-zero or zero. BGE applied to the system (7.6) re-

sults in a Schur complement that is simply C − FE′. The physical observation of

zero/near-zero admittance is mathematically equivalent to stating that FE′ ≈ 0.

It is computationally advantageous to solve the small-dimensioned system in (7.7)

for the diode-off condition than to solve the entire system using BGE. As the sim-

ulation of this example network proceeds, switching the Newton iterator structure

between (7.6) and (7.7) seamlessly results in a structurally varying tableau. A metric

or measurement needs to be devised so that the decision to switch between these 2

structures can be made.

When the diode voltage crosses zero going positive, the diode starts to conduct.

Switching the structure of the tableau from (7.7) to (7.6) at this time is favorable. The

reason being precomputing the diode states for zero applied voltage and using it is

easier than computing the diode states for the diode cut-in voltage and initializing the

initial conditions of the DAE consistently [90]. A consistent set of initial conditions

is very important in DAE based simulations for the results to be meaningful.

The metric used to decide when to switch from (7.6) to (7.7) is more involved. A

metric based on the measurement of difference of anode and cathode terminal currents

used in the preliminary research is updated to a metric that measures spatial-average

of the time rate of change of the carrier densities within the diode. At the end of

each time-step, approximate ∂p/∂t and ∂n/∂t are computable. Spatial-numerical

integration of the rate ∂p/∂t over the body of the diode as in (7.8) is equivalent

to finding the difference in the terminal current densities due to holes (Divergence
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theorem). For small device currents, that in effect is the device current itself because

the hole current density is zero at the anode terminal and is the device current density

at the cathode terminal towards the end of the reverse recovery.

Dmon =

∫
Ω

∂p

∂t
dΩ = ac

∫
X

fp(p,n,ψ)dx (7.8)

Terminal current densities and hence currents are found using the spatial deriva-

tives of carrier densities and electric potential. The current-based metric then will

involve difference between these nearly equal currents and may be polluted with fi-

nite precision error. Integration is often preferred over differentiation in computations

owing to its numerical stability. The minority carriers in the i and n regions, which

constitutes the bulk of the device, are holes and it is sufficient to integrate the rate

of change of holes within the body of the diode to monitor the device activity. When

Dmon is lesser than a tolerance of 5%, the diode is deemed to be off. This tolerance

that relies on scaled hole density may seem large but when scaled by appropriate

parameters results in 65 µA. That is, an equivalent current-based metric tracks the

device-terminal current and triggers whenever it crosses 65 µA. Other circuit condi-

tions such as applied diode voltage and whether it is increasing or decreasing needs

to be tracked to ascertain the validity of trigger which is unlikely to happen with the

proposed activity monitor.

As the diode starts to conduct, the i-region is gradually flooded with holes and the

activity monitor will be much larger than the tolerance (0.05). Hence, the monitor

will not trigger while the diode is turning on. The monitor will not trigger when

the applied diode voltage goes negative briefly due to voltage spikes in the circuit

while the diode is conducting. This due to the fact that the excess holes in the i-

region needs to removed before the diode can get back to its reverse-blocking or off

state. The activity monitor value is well above the tolerance when the diode is on

and conducting. When the diode goes through reverse-recovery, the excess holes from

the i-region are removed to bring the diode to off state. The ∂p/∂t rate is nonzero

close to the ends of the depletion region formed at the p+i junction towards the end
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of the reverse-recovery. The spatial-integration of this rate approaches zero and the

activity monitor triggers promptly as the diode turns off.

The performance of this metric for the example RL and diode (RLD) network is

shown in Figure 7.4. The frequency of the source voltage is 100 Hz and the source

inductance is small. Due to these reasons the diode has a very small reverse recovery

and it is on for 50% of the time and off for the rest. The diode activity metric based

on the carrier density rates is shown in the lower subplot of Figure 7.4. The diode off

signal is triggered only after reverse recovery subsides. This results in a crisp diode on-

off signal. The diode partition does not have to be solved, and, the associated residual

and Jacobian calculations do not have to be performed during the 50% diode off

duration. This implies that qualitatively variable-structure variable-order simulation

will result in a little over 2X speed-up. Extending this idea to a single-phase bridge

rectifier shown in Figure 6.1 is straightforward. It is useful to consider an example

operating instance where diodes D1 and D4 are not conducting while D2 and D3
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Fig. 7.4.: Diode activity detector output for the example RLD network.
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are conducting. For this case, F1E
′
1 ≈ F4E

′
4 ≈ 0. It is computationally wasteful to

evaluate this zero or near-zero matrix in the BGE approach. The deletion of columns

and rows with {D1,D4} in (7.1) for the case considered, shown in the equation below,

computes only the relevant nonzero variables.
D2 0 E2

0 D3 E3

F2 F3 C




∆zd2

∆zd3

∆zckt

 =


rd2

rd3

rckt

 (7.9)

As the current commutes from one diode pair to the other, for a brief period all

diodes are on. Consequently, the three possible matrix structures that needs to be

solved in a bridge rectifier simulation are (7.1), (7.9) when Diodes 2, 3 are on, and

replacing indices {2, 3} with {1, 4} in (7.9) when Diodes 1, 4 are on. This is the basis

for the variable-structure variable-order (VSVO) simulation paradigm. The paradigm

is variable-structure due to the change in structure of the tableau, and variable-order

because of the change in the number of state variables as the simulation progresses.

7.2 Single-Phase Bridge Rectifier Simulation

All diode and circuit variables at each time step in a bridge rectifier simulation

for four cycles are saved. The diode carrier densities are then used to evaluate the

gradient functions which is approximately the rate of change of carrier densities. This

rate is distributed over the body of the diode and is integrated over the diode length

as in (7.8). When Dmon is less than the 5% tolerance (65×10−6 A), the corresponding

diode state is made zero. As soon as the voltage across the diode becomes positive

the corresponding diode state is set to one. The computed diode states of all four

diodes in the bridge rectifier is shown in Figure 7.5.

It can be seen that the diode pair D1 and D4 or D2 and D3 conduct most of the

time as expected. All four diodes are on for a brief duration between the change of

states of these pairs. The computed diode switch state is crisp without chattering

indicating that the metric is immune to false triggers. Diode 1 current and Diode 1
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Fig. 7.5.: Diode switch on-off states versus time.

state scaled by 0.1 are plotted together for illustration in Figure 7.6. At every even

integer multiple of 10−4 s, the diode briefly turns on and off. Hence the diode current

increases, reaches its peak, decreases, and, reaches its negative peak before turning

fully on. During this interval, the current crosses 65 µA two times for which a current

metric may trigger falsely but not Dmon. At each odd integer multiple of 10−4 s, the

diode goes through its reverse-recovery. This interval also has two instances where

a current metric may trigger but not Dmon. Diode off state is calculated accurately

using Dmon in an elegant, straightforward way.

This metric is readily implemented in the simulation to determine when a diode

is to be connected or disconnected. From Figure 7.5, it is obvious that only for a

fraction of the entire simulation time the full system needs to be simulated. At other

times, its enough to include the conducting diode pair equations in the tableau. The

diode states computed as shown in Figure 7.5 is further processed to estimate the

percentage of the computation time with 2 and 4 diodes on. Diode pairs D1 and
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Fig. 7.6.: Diode 1 current and its on-off state versus time.

D4 or D2 and D3 are on and needs to be in the tableau equations for 47.72% of the

computation time. All four diode equations needs to be in the tableau for 52.23% of

the computation time. Depending on the source and load-side inductance, and the

current levels, the ratio of these percentages may change. VSVO simulation has an

overhead of keeping track of the diode states using (7.8) and varying the dimension

of the Newton iterator. The different tableau structures that needs to be solved in

Newton iteration of single-phase diode bridge rectifier simulation is given below.
D2 0 E2

0 D3 E3

F2 F3 C




∆zd2

∆zd3

∆zckt

 =


rd2

rd3

rckt

 (7.10)


D1 0 E1

0 D4 E4

F1 F4 C




∆zd1

∆zd4

∆zckt

 =


rd1

rd4

rckt

 (7.11)
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D1 0 0 0 E1

0 D2 0 0 E2

0 0 D3 0 E3

0 0 0 D4 E4

F1 F2 F3 F4 C





∆zd1

∆zd2

∆zd3

∆zd4

∆zckt


=



rd1

rd2

rd3

rd4

rckt


(7.12)

The varying tableau structure allows changes in the circuit topology; however, the

circuit partition C does not change. This is not a coincidence but is only possible due

to the system assembly procedure set forth in Chapter 4. The assembly procedure

distributes certain portion of circuit equations, related to diode to be specific, across

the tableau in the form of Ei and Fi. This is a very desirable feature that ensues a

varying tableau structure with fixed circuit partition. Such a flexibility is not available

if the circuit is modeled using a state-space approach.

7.3 VSVO Simulation Results

The results of a VSVO simulation with a full linear system solve is presented and

discussed in this section. The VSVO simulation results are compared with reference

simulation results labeled as ’ref’ in the plots and are phase-shifted for clarity. These

are the same results that were presented in Chapter 6. A carefully chosen coarse

mesh with 57 nodes is used to discretize one-dimensional diode model. Four such

diode models together with 10 circuit variables results in a 702×702 system. Since

only two sets of diode model need to be simulated when two diodes are on, the system

dimension then becomes 352×352. The toc−tic timing is 37.42 s compared to 53.10

s of the full system simulation which gives a 1.4X speed-up. VSVO diode power

calculation is identical to the reference simulation waveform as shown in Figure 7.7 .

Switch-out (swo) refers to the action of removing diode equations from the simulation

at time tswo. Similarly, switch-in (swi) is used to refer to the action of inserting diode

model equations back in to the system at time tswi. There are no discernible glitches

in the power waveform due to swo or swi.
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The voltage and current waveforms of Diode 1 are shown in Figure 7.8 where

again no visible glitches appear due to swo or swi. These waveforms are zoomed near

the negative half-cycle of the source voltage as in Figure 7.9. The current waveform

is zoomed on the y-axis in the range ±0.1 mA to illustrate the change in id1 due

to swo and swi near 5.0×10−4 and 6.0×10−4 s, respectively. As the current crosses

−6.5 × 10−5 A, the diode model is switched out and the diode current is forced to

become zero near 5.0×10−4 s. The diode voltage crosses zero with a positive slope near

6.0×10−4 s when the diode equations are inserted back in to the simulation. It can be

seen that the diode current settles within two time-step computations after initializing

the diode with zero-voltage-biased solution because it is close to the consistent initial

condition. It is evident that Dmon performs very well in monitoring diode activity and

inserting diode equations with zero-voltage-biased solution at tswi works satisfactorily.

Plots of ac and dc variables are included for the sake of completeness. The

differences in ac quantities are really small. The dc quantities exhibit some difference
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Fig. 7.7.: Instantaneous power waveforms of Diode 1 using VSVO.
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Table 7.3.: Simulated and measured energy comparisons.

Quantity VSVO energy (mJ) Measured energy (mJ) Relative error %

ac 0.1690 0.1696 0.35

dc 0.1012 0.1088 6.98

Diode 1 0.0170 0.0170 0.00

diff(ac,dc) 0.0678 0.0607 11.70

in voltage spikes. The dc bus voltage is the sum of vd1 and vd2 , which pinpoints the

source for this difference to that in diode voltages and the mesh used for the two

simulations are different. The energy calculations done in Table 6.4 is repeated in

Table 7.3. The relative error is computed as the ratio of absolute error and measured

quantity expressed as percentage. The errors are not too far from Table 6.4 indicating

that by using a coarser mesh for the diode discretization and including the diode

model on an as-needed basis does not affect the simulation and energy calculations

significantly.

7.4 Speed-up calculations

MATLAB’s parallel computing toolbox can be used to parallelize certain sections

of the VSVO simulation program. The inbuilt parfor and/or spmd commands work

on the concept of shared-memory programming. The main MATLAB client instan-

tiates so-called MATLAB workers and a large computational task referred as job is

split into tasks and sent to these workers [91]. The solution is reassembled by the

client after the workers complete their tasks. A computer with multi-core central

processing units can use parallel computing toolbox on so-called local cluster. The

overhead due to instantiation of MATLAB client and workers, and communication

between them overwhelms the speed-up achievable for the problem size considered

in this research. A low-level C/C++ program with multi-thread capability is rec-
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Table 7.4.: VSVO profile results.

VSVO Time (s)

Computation Description on off

Jacobian Compute Jacobian once per step 15.61 18.62

Residual Compute the right-hand side residual 9.46 10.92

Linear solve Solve the linear system inside Newton iteration 10.61 13.30

Diode monitor Monitor diode activity 1.38 1.50

ommended for realizing the simulation speed-up for the problem considered in this

thesis. A theoretical calculation of achievable speed-up is deduced from the profile

results of MATLAB-based VSVO implementation.

It is convenient to recall the full system simulation performance analysis from

Chapter 6. The toc−tic timing is 53.10 s and the profiler timing is 55.92 s. Jacobian,

residual computation, and, linear system solve time are all parallelizable. The serial

portion of the linear solve stage is small and neglected in the calculation. A coarser

diode mesh with 57 nodes make the dimension of encapsulated diode model to be

171. The dimension of the full system becomes 702×702. The toc−tic timing

is 37.42 s and the profiler timing is 40.22 s. The dimension of the linear system

solved is 702×702 and 352×352, when four and two diodes conduct, respectively.

The percentage of these durations with respect to computation time is found to be

52% and 48%, respectively.

A speed-up calculation formula is derived based on VSVO simulation profile re-

sults in MATLAB as shown in Table 7.4. Solution of the full set of linear equations

is replaced with BGE for a speed-up and it has a sequential part that cannot be

parallelized. The sequential portion of BGE solve requires only a few milli-seconds

on average for the circuit considered and is neglected. The time taken for the com-

putational tasks are given for two cases where VSVO is enabled (on) and disabled

(off). VSVO-enabled simulation uses a structurally-varying tableau whereas VSVO-
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disabled simulation uses a fixed tableau since all diodes are always included. It can

be seen that the times taken by each computation for VSVO-on case is on average

83% that of the VSVO-off case or takes 17% lesser time.

The reference-simulation-profile time is denoted as tref = 55.92 s. In VSVO-off

scenario, the serial portion is takes 2.13 s and parallelizable part takes 45.42 s. This

information together with the fact that VSVO-on computations takes 83% of the time

taken by VSVO-off case is used in (7.4) to calculate speed-up,

Speed-up =
tref

ts +
0.83tp
Nthrds

, (7.13)

where, ts and tp are the respective times taken by serial and parallel portion of the

code. This calculation is applicable when 1, 2 or 4 threads are used. When the number

of diodes and threads are not evenly matched, computational resources are wasted

and speed-up for 2 and 3 thread case will be same. Using VSVO strategy, two diodes

are on for 52% and four diodes are on for 48% of the computation time. Figure 7.12,

an adaptation of Figure 7.3, is used to depict the speed-up achieved due to VSVO

strategy qualitatively. It can be seen that one-step calculations with 2 diodes on will

be twice as fast than when 4 diodes are on. This implies that the speed-up for the

3-thread scenario is the weighted average of 2- and 4-thread cases with weights 52%

and 48%, respectively. As a sanity check for the speed-up calculation (7.13), the

speed-up for single-thread case is computed and compared.

55.92

40.22
= 1.39 ≈ 55.92

2.13 +
0.83× 45.42

1

= 1.40 (7.14)

It is apparent that the measured and calculated speed-ups are reasonably close.

This equation is used to estimate the speed-up for different number of threads as in

Table 7.5 with weighted-averaging for three-thread case. The achievable speed with

4 parallel computing threads is 484%.
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Table 7.5.: Estimated speed-up.

Thread Speed-up

One 1.40

Two 2.66

Three 3.71

Four 4.84

7.5 Chapter Summary

The numerical solution of PDEs that model drift-diffusion is still an active area

of research [92]. Spatial adaptivity for such a problem is in its infancy. The coupled

charge transport (CCT) equation involves coupled drift-diffusion equations along with

a Poisson’s equation, that comprise a system of PDEs. Until a reliable, robust, spatial

adaptive strategy is developed, it is argued that a carefully chosen fixed mesh is pre-

ferred for the CCT equation. The matrix structure of the system tableau is exploited

to speed up the linear solve stage using sparse direct solvers. VSVO strategy utilizes

less computational effort for a given system compared with full system simulation.

The activity metric needs a revision when other devices like IGBT, FET and BJT are

2-diodes on

4-diodes on

Main thread

Parallelizable

Sequential

No work

Fig. 7.12.: Thread utilization with 3 threads for 2 and 4-diodes on cases.
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considered. A VSVO simulation using 4 threads is capable of simulating the example

single-phase diode bridge rectifier 4.84 times faster than the conventional simulation.

This speed-up is further expected to increase with the dimension of the device model

and number of devices in the simulated circuit.
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8. SUMMARY, CONCLUSIONS, AND FUTURE

RESEARCH

The primary contributions, main conclusions, and suggestions for future research are

summarized herein. First, an extensive survey of coupled device-circuit simulation

approaches was provided in Chapter 1. Next, the relevant physical phenomena asso-

ciated with power semiconductor diodes were reviewed in Chapter 2 culminating in

the well-established coupled drift, diffusion, and continuity (CDDC) equations.

Practicable discretization procedures for numerically solving the CDDC equations

were identified and analyzed in Chapter 3. Therein, an encapsulated device model

was set forth setting the stage for its inclusion into potentially complex power elec-

tronic circuits. The hole and electron densities at selected nodes represent indepen-

dent state variables whereas the corresponding electric potentials represent dependent

states. The inputs to the encapsulated device model are the applied voltages at the

anode and cathode, which are used as Dirichlet boundary conditions in the solution

of the CCDC equations, while the outputs are the net anode and cathode currents.

Although a one-dimensional spatial discretization was used, the model and discretiza-

tion approach is readily extended to two dimensions, if needed. Possible extensions

include the incorporation of other potentially relevant physical phenomena such as

impact ionization or Auger recombination, for example.

Next, a systematic procedure of incorporating the encapsulated device models into

power electronic circuits containing voltage sources, current sources, resistors, induc-

tors, and/or capacitors was set forth in Chapter 4. The circuit equations establish

and supply the anode and cathode voltages to the encapsulated device models while

the device models establish and supply the anode and cathode currents to the circuit

equations via dependent current sources. The circuit equations constitute border ma-

trices of a sparse block-structured system of equations (i.e. tableau). Extension to
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include multi-dimensional device models and/or multi-terminal devices will not affect

the block structure of the tableau equations.

In order to validate the device models and simulation methodology set forth in

Chapter 4, a simple power electronic circuit, consisting of a single-phase square-wave

voltage source, resistor, inductor, and diode, was both simulated and constructed us-

ing a commercially available PIN diode. Using this test circuit, a parameter extrac-

tion procedure was set forth in Chapter 5 to establish the diode’s physical parameters

needed for circuit-level simulations. Therein, it was shown that, once the physical

diode parameters are established, the simulated and measured reverse-recovery char-

acteristics of the diode are in excellent agreement.

To evaluate and validate the simulation approach for a more practical power elec-

tronic circuit, a single-phase full-bridge rectifier was both simulated and constructed.

The results of an extensive set of experimental and computer studies were presented

in Chapter 6. Therein, the time-step requirements and overall computational per-

formance was discussed for a conventional single-threaded solution of the discretized

equations. Comparisons of the simulated and measured responses revealed excellent

agreement in terms of voltages, currents, and power losses.

After establishing the validity of the modeling and simulation approach, attention

then focused on analyzing and improving its computational performance. Computa-

tional bottlenecks in the simulation were identified in Chapter 7 and a block Gaussian

elimination (BGE) technique was used to solve a block-structured system of linear

equations that must be solved, typically several times per time step. BGE allows

computationally intensive tasks to be performed in parallel using multi-threaded pro-

gramming techniques thereby improving simulation speed. Other parallizable tasks

such as Jacobian and gradient evaluation, and residual computation were also iden-

tified.

To further improve computational performance, a variable-structure variable-order

(VSVO) simulation paradigm was also set forth in Chapter 7. In this paradigm,

inactive devices (e.g., reverse-biased diodes) are assumed to be disconnected from
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the circuit (hence variable structure) resulting in a system of equations of much lower

order (hence variable order). An indirect and not-so-obvious benefit of a VSVO-based

simulation is that a much coarser mesh can be used for all diodes within the circuit

since the depletion region is physically much wider when a diode is reverse-biased or

inactive and since a relatively fine mesh is required throughout the deletion region.

Thus, VSVO-based simulations will involve significantly fewer variables.

Essential to a VSVO simulation is the determination of when to disconnect an

active device or reconnect an inactive one. For this purpose, a simple-to-implement

and reliable (immune to false triggers) diode activity monitor was set forth. The

observed variations of species densities within the device can be used to implement

activity monitors for other devices such as IGBTs, MOSFETs, and BJTs. The activity

monitor is used to vary the tableau matrix structure seamlessly between different

possible circuit topologies and is capable of utilizing the available computational

resources (threads) to the maximum extent possible. In the example simulation of a

full-bridge rectifier with four diodes, it was shown that a VSVO simulation is capable

of achieving a 484% improvement over a conventional single-threaded simulation with

no observable loss of accuracy.

8.1 Future Work

The areas in which the research can be extended are discussed in the following

subsections.

8.1.1 Multi-dimensional/multi-terminal devices

IGBTs can be modeled using its inherent bipolar p+n−p+ structure [93]. The

currents entering and leaving the two p+-regions are used to model the device current.

Following the approaches described in references [93, 94], it is possible to readily

extend this thesis to include IGBTs in circuit simulations. In three-terminal devices,

three dependent-current sources are needed to couple the device and circuit equations.
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In some devices, it may be needed to represent spatial effects in two-dimensional.

Accordingly, the procedure set forth in Chapter 4 must modified to build the neces-

sary border matrices. A two dimensional discretization based upon the Scharfetter-

Gummel approach is described in [95] and can be readily applied without affecting

the other procedures or block structure of the tableau equation.

8.1.2 Coupled Electro-thermal modeling

Since many of the physical parameters, hence device terminal behaviors, are tem-

perature dependent, it is desirable to incorporate a thermal model into the CDDC

equations. The heat conduction equation is very similar to Poisson’s equation (one

of the CDDC equations) with right-hand side being the heat source term divided

by the thermal conductivity. A model for heat source terms needs can be derived

starting with the equations in references [96, 97]. At a macroscopic level in power

semiconductor devices, thermal phenomena are temporally slower than the transport

phenomena. Consequently, a relaxation technique can be used wherein a coarser mesh

is used for the thermal system, which is solved at fixed intervals, whose solution is

then used to update the temperature-dependent semiconductor material properties.

In this case, the coupling matrix representing the coupling between thermal and trans-

port phenomena is zero. It is also possible to include a fully coupled electro-thermal

simulation with more computational effort. A time-dependent heat equation aug-

mented with the transport model in [98] is capable of predicting the electro-thermal

behavior more accurately than the aforementioned techniques.

8.1.3 Numerical aspects

In this thesis, MATLAB was used to implement both the full and VSVO sim-

ulations. A C/C++ implementation using shared memory programming can result

in additional improvements in speed because of the fundamental difference between

interpreted and compiled languages. However, for more complex circuits involving
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multi-dimensional device models, a combination of shared and distributed (OpenMP

and MPI) programming approaches may prove to be more appropriate [99]. It is

prudent to consider freely available libraries, with large user base, and with long term

support such as Trilinos [100] and PETSc [101] for development to include such ad-

vanced capabilities. The C/C++ implementation with the capability of simulating

multi-terminal devices appears to be the most logical extension of this thesis.

Dividing the overall simulation hierarchically into devices and then further into

smaller problems can achieve further improvements using thread numbers greater

than the number devices in the circuit. A strategy similar to that used in the dis-

sertation [84] can be used to geometrically divide the device into smaller geometric

domains to increase simulation speed. An algebraic partitioning of the matrix as

in [102] can also be used to achieve similar results.

Finally, for systems with a very large number of variables, there exists a class of

iterative methods that do not require explicit formation of the full Jacobian matrix.

Specifically, the so-called Jacobian-free Newton-Krylov [82] method may prove useful

for simulating complex circuits with multi-dimensional devices. Such circuits will

involve a tableau with a very large number of variables. If the computational gain of

not having to explicitly form the Jacobian exceeds the computational effort needed

to precondition and iteratively solve the linear system of equations, iterative methods

can be more competitive than direct methods. Such a problem-specific iterative

method can be formulated using the references [76,82,83].
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[7] M. Zláal, “Finite element solution of the fundamental equations of
semiconductor devices,” Math. Comput., vol. 46, pp. 27–43, January 1986.
[Online]. Available: http://portal.acm.org/citation.cfm?id=21230.21232

[8] R. Verfürth, “Adaptive finite element methods lecture notes winter term
2007/08.”

[9] ——, “Computaional fluid dynamics lecture notes summer term 2007.”

[10] L. F. Shampine and M. W. Reichelt, “The matlab ode suite.”

[11] L. R. Petzold, “A description of dassl: a differential/algebraic system solver,”
in International Conference on Scientific Computing, 1983.

[12] J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems.
Springer, 2001.

[13] H. Gummel, “A self-consistent iterative scheme for one-dimensional steady
state transistor calculations,” Electron Devices, IEEE Transactions on, vol. 11,
no. 10, pp. 455 – 465, oct 1964.

[14] E. M. Buturla, P. E. Cottrell, B. M. Grossman, and K. A. Salsburg, “Finite-
element analysis of semiconductor devices: The fielday program,” IBM Journal
of Research and Development, vol. 25, no. 4, pp. 218 –231, july 1981.

[15] A. Brown, A. Asenov, S. Roy, and J. Barker, “Development of a parallel 3d
finite element power semiconductor device simulator,” in Physical Modelling of
Semiconductor Devices, IEE Colloquium on, apr 1995, pp. 2/1 –2/6.



116

[16] O. Heinreichsberger, S. Selberherr, M. Stiftinger, and K. P. Traar, “Fast
iterative solution of carrier continuity equations for three-dimensional device
simulation,” SIAM J. Sci. Stat. Comput., vol. 13, pp. 289–306, January 1992.
[Online]. Available: http://portal.acm.org/citation.cfm?id=132131.132155

[17] M. Davis and G. Carey, “Multilevel solution of augmented drift-diffusion equa-
tions,” COMPEL: International Journal of Computations and Mathematics in
Electrical, vol. 15, pp. 4–18(15), 1 February 1996.

[18] D. Scharfetter and H. Gummel, “Large-signal analysis of a silicon read diode
oscillator,” Electron Devices, IEEE Transactions on, vol. 16, no. 1, pp. 64 – 77,
jan 1969.

[19] G. Heiser, C. Pommerell, J. Weis, and W. Fichtner, “Three-dimensional nu-
merical semiconductor device simulation: algorithms, architectures, results,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 10, no. 10, pp. 1218 –1230, oct 1991.

[20] M. Reiser, “A two-dimensional numerical fet model for dc, ac, and large-signal
analysis,” Electron Devices, IEEE Transactions on, vol. 20, no. 1, pp. 35 – 45,
jan 1973.

[21] C. M. Snowden, “Semiconductor device modelling,” Reports on Progress
in Physics, vol. 48, no. 2, p. 223, 1985. [Online]. Available: http:
//stacks.iop.org/0034-4885/48/i=2/a=002

[22] R. Bank, D. Rose, and W. Fichtner, “Numerical methods for semiconductor
device simulation,” Electron Devices, IEEE Transactions on, vol. 30, no. 9, pp.
1031 – 1041, sep 1983.
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A. DERIVATIONS IN ONE DIMENSION

A.1 Poisson’s Equation

A one-dimensional partition of the space, 0 = x1 < x2 . . . < xi < . . . < xN = X,

with piecewise linear functions is shown in Figure A.1. In Figure A.1 it can be seen

that ith basis function overlaps with {i − 1, i, i + 1} basis functions. The Poisson’s

equation after integration by parts is shown here for convenience.∫ X

0

εψ′(x)
N∑
i=1

ϕ′idx =

∫ X

0

ρ(x)
N∑
i=1

ϕidx (A.1)

x1 x2 x3 x4 x5 xN−3 xN−2 xN−1 xN

ϕN−2 ϕN−1 ϕN

h1

Fig. A.1.: One-dimensional discretization.

The piecewise linear function ϕi is used in (A.1). It is shown again here for

reference.

ϕi(x) =



x− xi−1

xi − xi−1

, x ∈ [xi−1, xi]

xi+1 − x
xi+1 − xi

, x ∈ [xi, xi+1]

0, otherwise

(A.2)

For a given i, this integration over the entire domain is split into intervals. The

integral evaluation is nonzero for only for the interval [xi−1, xi+1]. That is,∫ X

0

εψ′(x)ϕ′i(x)dx =

∫ xi

xi−1

εψi−1ϕ
′
i−1ϕ

′
idx+

∫ xi+1

xi−1

εψiϕ
′
iϕ
′
idx+

∫ xi+1

xi

εψi+1ϕ
′
i+1ϕ

′
idx.

(A.3)
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It is convenient to work with canonical elements for the derivations in the intervals

[xi−1, xi+1]. The elements in interval hi−1 with [xi−1, xi] are mapped onto canonical

element with x̂ ∈ [0, 1] (refer Figure A.2).

x = xi−1 + x̂hi−1

x̂ =
x− xi−1

hi−1

dx = dx̂hi−1

In interval hi−1, the nonzero basis functions are ϕi−1 and ϕi. These functions

transformed to x̂ coordinate are given as,

ϕi(x̂) =
x̂

hi−1

,

d ϕi(x̂)

dx̂
=

1

hi−1

,

ϕi−1(x̂) =
1− x̂
hi−1

,

d ϕi−1(x̂)

dx̂
=
−1

hi−1

.

(A.4)

x̂0 1

1

Fig. A.2.: Canonical element.

The terms in (A.3) are evaluated with the help of coordinate transformation as in

the following equations.∫ xi

xi−1

ϕ′i−1ϕ
′
idx =

∫ 1

0

−1

hi−1

1

hi−1

hi−1dx̂ = − 1

hi−1

(A.5)∫ xi+1

xi−1

ϕ′iϕ
′
idx =

∫ xi

xi−1

ϕ′iϕ
′
idx+

∫ xi+1

xi

ϕ′iϕ
′
idx

=

∫ 1

0

1

hi−1

1

hi−1

hi−1dx̂+

∫ 1

0

−1

hi

−1

hi
hidx̂
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=
1

hi−1

+
1

hi
(A.6)∫ xi+1

xi

ϕ′i+1ϕ
′
idx =

∫ 1

0

1

hi

−1

hi
hidx̂ = − 1

hi
(A.7)

So the ith equation is written as,∫ X

0

εψ′(x)ϕ′i(x)dx = − ε

hi−1

ψi−1 +

(
ε

hi−1

+
ε

hi

)
ψi −

ε

hi
ψi+1. (A.8)

It is assumed that right-hand side function ρ can be approximated by piecewise

linear functions similar to the electrical potential. The ith equation is derived similar

to the left-hand side with nodal values of the electric charge ρi = ρ(xi).∫ X

0

ρ(x)ϕi(x)dx =

∫ xi

xi−1

ρi−1ϕi−1ϕidx+

∫ xi+1

xi−1

ρiϕiϕidx+

∫ xi+1

xi

ρi+1ϕi+1ϕidx (A.9)

Using the canonical element as derived above the individual integrals are evalu-

ated. ∫ xi

xi−1

ϕi−1ϕidx =

∫ 1

0

x̂(1− x̂)hi−1dx̂

=
hi−1x̂

2

2

∣∣∣∣1
0

− hi−1x̂
3

3

∣∣∣∣1
0

=
hi−1

6
(A.10)∫ xi+1

xi−1

ϕiϕidx =

∫ xi

xi−1

ϕiϕidx+

∫ xi+1

xi

ϕiϕidx

=

∫ 1

0

x̂2hi−1dx̂+

∫ 1

0

(1− x̂)2hidx̂

=
hi−1x̂

3

3

∣∣∣∣1
0

− hi(1− x̂)3

3

∣∣∣∣1
0

=
hi−1

3
+
hi
3

(A.11)∫ xi+1

xi

ϕi+1ϕidx =

∫ 1

0

x̂(1− x̂)hidx̂

=
hi
6

(A.12)

The ith equation of the right-hand side is then written as,∫ X

0

ρ(x)ϕi(x)dx =
hi−1

6
ρi−1 +

(
hi−1

3
+
hi
3

)
ρi +

hi
6
ρi+1, (A.13)
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where ρi = qeNM(pi − ni +N+
D,i −N−A,i).

The source vector can be rewritten as a product of a matrix-vector product ρ =

Ďρ̌. Equations (A.8) and (A.13) are assembled into a matrix structure as follows,

(A.14)



ε
h1

− ε
h1

0 · · · 0 0

− ε
h1

ε
h1

+ ε
h2
− ε
h2
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ε
hN−2

+ ε
hN−1

− ε
hN−1

0 0 0 · · · − ε
hN−1

ε
hN−1





ψ1

ψ2

...

ψN−1

ψN



= qeNM



h1
3

h1
6

0 · · · 0 0

h1
6

h1+h2
3

h2
6
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · hN−2+hN−1

3

hN−1

6

0 0 0 · · · hN−1

6

hN−1

3





ρ1

ρ2

...

ρN−1

ρN


.

The matrix on the left-hand side is known as stiffness matrix Š and that on

the right-hand side is mass matrix Ď. These matrices are further modified to take

boundary conditions into account.

A.2 Derivation of Jacobian Elements

The Newton-Raphson iterator (3.31) is given here for reference. This is rewritten

directly to compute the next iterate solution (pm,k+1,nm,k+1,ψm,k+1) as in (A.16).

(A.15)


I/∆tm − fp,p −fp,n −fp,ψ

−fn,p I/∆tm − fn,n −fn,ψ

fψ,p fψ,n fψ,ψ




∆p

∆n

∆ψ



=


−(pm,k − pm−1,∞)/∆tm + fp(pm,k,nm,k,ψm,k)

−(nm,k − nm−1,∞)/∆tm + fn(pm,k,nm,k,ψm,k)

−fψ(pm,k,nm,k,ψm,k,N−
A ,N

+
D )
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(A.16)


I−∆tmfp,p −∆tmfp,n −∆tmfp,ψ

−∆tmfn,p I−∆tmfn,n −∆tmfn,ψ

fψ,p fψ,n fψ,ψ




pm,k+1

nm,k+1

ψm,k+1



=


pm,k + ∆tm

(
fp
m,k − fp,ppm,k − fp,nnm,k − fp,ψψ

m,k
)

nm,k + ∆tm
(
fn
m,k − fn,ppm,k − fn,nnm,k − fn,ψψ

m,k
)

−fm,kψ + fψ,ppm,k + fψ,nnm,k + fψ,ψψ
m,k


The iterator (A.15) or (A.16) can be used in the simulation. It can be seen that

in (A.16) there are a couple of sparse Jacobian matrix-vector products as opposed to

(A.15). Hence, the implementation using the Newton-Raphson iterator in (A.15) is

more efficient. The derivation of the top two block-row Jacobian partitions in (A.16)

are due to two different discretization methods and are different. The last block-row

of the Jacobian in (A.16) is common to both discretization methods and it is derived

first in the next subsection.

A.2.1 Poisson’s equation

The last row of the iterator above is written explicitly along with fψ as in the

following set of equations.

fψ,ppm,k+1 + fψ,nnm,k+1 + fψ,ψψ
m,k+1 = −fψ + fψ,ppm,k + fψ,nnm,k + fψ,ψψ

m,k

fψ = Sψ−D(p− n + N+
D −N−

A )− b(va, vc)

(A.17)

The Jacobian elements are derived in order as follows,

fψ,p =
∂ fψ
∂p

= −D, (A.18)

fψ,n =
∂ fψ
∂n

= +D, (A.19)

fψ,ψ =
∂ fψ
∂ψ

= S. (A.20)
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These values plugged in (A.17) and manipulated to establish the following equations.

−Dpm,k+1 + Dnm,k+1 + Sψm,k+1 = −Sψm,k + Dpm,k −Dnm,k

+ D(N+
D −N−

A ) + b(va, vc)

−Dpm,k + Dnm,k + Sψm,k (A.21)

−Dpm,k+1 + Dnm,k+1 + Sψm,k+1 = D(N+
D −N−

A ) + b(va, vc) (A.22)

In implementation either (A.17) or (A.22) is used depending on whether the Newton-

Raphson iteration seeks χm,∞ or the increment χm,∞ − χm−1,∞ respectively.

A.2.2 Central difference method

The right-hand side of the continuity equation is discretized in the following man-

ner under central difference method. This equation is used as basis for the derivation

of the Jacobian block matrices.

fp(i) = − 2

(hi−1 + hi)

[
µp

(
pi + pi+1

2

ψi − ψi+1

hi
− pi−1 + pi

2

ψi−1 − ψi
hi−1

)
−Dp

(
pi+1 − pi

hi
− pi − pi−1

hi−1

)]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(A.23a)

fn(i) =
2

(hi−1 + hi)

[
µn

(
ni + ni+1

2

ψi − ψi+1

hi
− ni−1 + ni

2

ψi−1 − ψi
hi−1

)
+Dn

(
ni+1 − ni

hi
− ni − ni−1

hi−1

)]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(A.23b)

The right-hand side of these equations involve {i − 1, i, i + 1} nodal values of

(p, n, ψ) distributions. Then the nonzero entries of the block matrices correspond to

{i − 1, i, i + 1} columns of the ith-row. The term common to fp and fn is the R-G

term and it involves only ith nodal values. Defining a notation for R-G (Ri) term

makes the derivation of this term’s contribution to the Jacobian entries easy.

Ri =
nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(A.24a)

∂Ri

∂pi
=

ni
τn(pi + p1) + τp(ni + n1)

− τn(nipi − n2
ie)

(τn(pi + p1) + τp(ni + n1))2 (A.24b)
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∂Ri

∂ni
=

pi
τn(pi + p1) + τp(ni + n1)

− τp(nipi − n2
ie)

(τn(pi + p1) + τp(ni + n1))2 (A.24c)

A.2.2.1 fp,p, fp,n, fp,ψ matrices

The entries of matrices fp,p, fp,n, fp,ψ are derived in the following set of equations

with the use of (A.23). The ith-row and jth-column entry of the Jacobian partition

is referred with the help fp,p(i, j).

fp,p(i, i− 1) =
∂fp(i)

∂pi−1

=
2

(hi−1 + hi)

[
µp
2

∆ψi−1/2

hi−1

+Dp
1

hi−1

]
(A.25a)

fp,p(i, i) =
∂fp(i)

∂pi

= − 2

(hi−1 + hi)

[
µp
2

(−∆ψi+1/2

hi
− −∆ψi−1/2

hi−1

)
+Dp

(
1

hi−1

+
1

hi

)]
− ∂Ri

∂p
(i) (A.25b)

fp,p(i, i+ 1) =
∂fp(i)

∂pi+1

=
2

(hi−1 + hi)

[
µp
2

∆ψi+1/2

hi
+Dp

1

hi

]
(A.25c)

fp,n(i, i− 1) =
∂fp(i)

∂ni−1

= 0 (A.25d)

fp,n(i, i) =
∂fp(i)

∂ni
= −∂Ri

∂ni
(A.25e)

fp,n(i, i+ 1) =
∂fp(i)

∂ni+1

= 0 (A.25f)

fp,ψ(i, i− 1) =
∂fp(i)

∂ψi−1

=
µp

(hi−1 + hi)

(pi−1 + pi)

hi−1

(A.25g)

fp,ψ(i, i) =
∂fp(i)

∂ψi
= − µp

(hi−1 + hi)

[
pi−1 + pi
hi−1

+
pi+1 + pi

hi

]
(A.25h)

fp,ψ(i, i+ 1) =
∂fp(i)

∂ψi+1

=
µp

(hi−1 + hi)

(pi+1 + pi)

hi
(A.25i)

A.2.2.2 fn,p, fn,n, fn,ψ matrices

The entries of matrices fn,p, fn,n and fn,ψ are derived with the use of (A.23). The

same matrix index notation from previous section is followed here.

fn,p(i, i− 1) =
∂fn(i)

∂pi−1

= 0 (A.26a)



130

fn,p(i, i) =
∂fn(i)

∂pi
= −∂Ri

∂pi
(A.26b)

fn,p(i, i+ 1) =
∂fn(i)

∂pi+1

= 0 (A.26c)

fn,n(i, i− 1) =
∂fn(i)

∂ni−1

=
2

(hi−1 + hi)

[
µn
2

−∆ψi−1/2

hi−1

+Dn
1

hi−1

]
(A.26d)

fn,n(i, i) =
∂fn(i)

∂ni

=
2

(hi−1 + hi)

[
µn
2

(−∆ψi+1/2

hi
− −∆ψi−1/2

hi−1

)
−Dn

(
1

hi−1

+
1

hi

)]
− ∂Ri

∂n
(i) (A.26e)

fn,n(i, i+ 1) =
∂fn(i)

∂ni+1

=
2

(hi−1 + hi)

[
µn
2

−∆ψi+1/2

hi
+Dn

1

hi

]
(A.26f)

fn,ψ(i, i− 1) =
∂fn(i)

∂ψi−1

= − µn
(hi−1 + hi)

(ni−1 + ni)

hi−1

(A.26g)

fn,ψ(i, i) =
∂fn(i)

∂ψi
=

µn
(hi−1 + hi)

[
ni−1 + ni
hi−1

+
ni + ni+1

hi

]
(A.26h)

fn,ψ(i, i+ 1) =
∂fn(i)

∂ψi+1

= − µn
(hi−1 + hi)

(ni + ni+1)

hi
(A.26i)

A.2.3 Scharfetter-Gummel method

The equations used for the Jacobian derivations is given in (A.27). It is necessary

to discuss the derivatives of the repeated terms before the derivation of Jacobian

elements. Then, compact equations can be derived with definition of notations for

these repeated terms.

fp(i) =
2Dp

hi + hi−1

[B(−zi+1/2)

hi
pi+1

−
(B(zi+1/2)

hi
+
B(−zi−1/2)

hi−1

)
pi +

B(zi−1/2)

hi−1

pi−1

]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(A.27a)
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fn(i) =
2Dn

hi + hi−1

[B(zi+1/2)

hi
ni+1

−
(B(−zi+1/2)

hi
+
B(zi−1/2)

hi−1

)
ni +

B(−zi−1/2)

hi−1

ni−1

]
− nipi − n2

ie

τp(ni + n1) + τn(pi + p1)
(A.27b)

The term to be considered is the derivative of the Bernoulli function B(zi±1/2) with

respect to ψi−1, ψi and ψi+1. The variable zi±1/2 is defined in (A.28).

zi+1/2 =
∆ψi+1/2

VT
=
ψi+1 − ψi

VT
(A.28a)

zi−1/2 =
∆ψi+1/2

VT
=
ψi − ψi−1

VT
(A.28b)

Using (A.28) the following derivatives can be derived.

∂zi±1/2

∂ψi+1

= ± 1

VT
(A.29a)

∂zi±1/2

∂ψi
= ∓ 1

VT
(A.29b)

The definition of zi±1/2 and its derivative is used to express the derivatives of the

Bernoulli function (B(±zi±1/2)) with respect to ψi−1, ψi and ψi+1 as follows.

∂B(±zi±1/2)

∂zi±1/2

=
±1

exp(±zi±1/2)− 1
− zi±1/2 exp(±zi±1/2)

(exp(±zi±1/2)− 1)2
(A.30a)

∂B(±zi±1/2)

∂ψi
=
∂B(±zi±1/2)

∂zi±1/2

±∂zi±1/2

∂ψi

=
∂B(±zi±1/2)

∂zi±1/2

(
1

VT

)
(A.30b)

∂B(±zi±1/2)

∂ψi+1

=
∂B(±zi±1/2)

∂zi±1/2

±∂zi±1/2

∂ψi+1

=
∂B(±zi±1/2)

∂zi±1/2

(−1

VT

)
(A.30c)
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A.2.3.1 fp,p, fp,n, fp,ψ matrices

The entries of matrices fp,p, fp,n and fp,ψ are derived with the help of (A.27),

(A.30) and previously defined index notations.

fp,p(i, i− 1) =
∂fp(i)

∂pi−1

=
2Dp

(hi−1 + hi)

[B(zi−1/2)

hi−1

]
(A.31a)

fp,p(i, i) =
∂fp(i)

∂pi

= − 2Dp

(hi−1 + hi)

[B(−zi−1/2)

hi−1

+
B(zi+1/2)

hi

]
− ∂Ri

∂pi
(A.31b)

fp,p(i, i+ 1) =
∂fp(i)

∂pi+1

=
2Dp

(hi−1 + hi)

[B(zi+1/2)

hi

]
(A.31c)

fp,n(i, i− 1) =
∂fp(i)

∂ni−1

= 0 (A.31d)

fp,n(i, i) =
∂fp(i)

∂ni
= −∂Ri

∂ni
(A.31e)

fp,n(i, i+ 1) =
∂fp(i)

∂ni+1

= 0 (A.31f)

fp,ψ(i, i− 1) =
∂fp(i)

∂ψi−1

=
2Dp

(hi−1 + hi)

[
−pi−1

hi−1

∂B(zi−1/2)

∂ψi−1

+
pi−1

hi−1

∂B(−zi−1/2)

∂ψi−1

]
(A.31g)

fp,ψ(i, i) =
∂fp(i)

∂ψi
= −

[
∂fp(i)

∂ψi−1

+
∂fp(i)

∂ψi+1

]
(A.31h)

fp,ψ(i, i+ 1) =
∂fp(i)

∂ψi+1

=
2Dp

(hi−1 + hi)

[
−pi
hi

∂B(−zi+1/2)

∂ψi+1

+
pi+1

hi

∂B(zi+1/2)

∂ψi+1

]
(A.31i)

A.2.3.2 fn,p, fn,n, fn,ψ matrices

The entries of matrices fn,p, fn,n and fn,ψ are derived using (A.27), (A.30) and

usual matrix index notation.

fn,p(i, i− 1) =
∂fn(i)

∂pi−1

= 0 (A.32a)
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fn,p(i, i) =
∂fn(i)

∂pi
= −∂Ri

∂pi
(A.32b)

fn,p(i, i+ 1) =
∂fn(i)

∂pi+1

= 0 (A.32c)

fn,n(i, i− 1) =
∂fn(i)

∂ni−1

=
2Dn

(hi−1 + hi)

[B(−zi−1/2)

hi−1

]
(A.32d)

fn,n(i, i) =
∂fn(i)

∂ni

= − 2Dn

(hi−1 + hi)

[B(zi−1/2)

hi−1

+
B(−zi+1/2)

hi

]
− ∂Ri

∂ni
(A.32e)

fn,n(i, i+ 1) =
∂fn(i)

∂ni+1

=
2Dn

(hi−1 + hi)

[B(zi+1/2)

hi

]
(A.32f)

fn,ψ(i, i− 1) =
∂fn(i)

∂ψi−1

=
2Dn

(hi−1 + hi)

[
ni−1

hi−1

∂B(−zi−1/2)

∂ψi−1

− ni
hi−1

∂B(zi−1/2)

∂ψi−1

]
(A.32g)

fn,ψ(i, i) =
∂fn(i)

∂ψi
= −

[
∂fn(i)

∂ψi−1

+
∂fn(i)

∂ψi+1

]
(A.32h)

fn,ψ(i, i+ 1) =
∂fn(i)

∂ψi+1

=
2Dn

(hi−1 + hi)

[
−ni
hi

∂B(−zi+1/2)

∂ψi+1

+
ni+1

hi

∂B(−zi+1/2)

∂ψi+1

]
(A.32i)

A.2.4 Newton-Raphson iterator

The Newton-Raphson iterator in (A.16) is modified with (A.22) to

(A.33)


I−∆tmfp,p −∆tmfp,n −∆tmfp,ψ

−∆tmfn,p I−∆tmfn,n −∆tmfn,ψ

−D D S




pm,k+1

nm,k+1

ψm,k+1



=


pm,k + ∆tm

(
fp
m,k − fp,ppm,k − fp,nnm,k − fp,ψψ

m,k
)

nm,k + ∆tm
(
fn
m,k − fn,ppm,k − fn,nnm,k − fn,ψψ

m,k
)

D(N+
D −N−A) + b(va, vc)
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Either (3.31) or (A.33) can be used in code implementation. In former the small

change in solution between time steps are computed while in the latter the next step

solution is computed directly.

A.2.5 fi,χ matrices

The Jacobian partitions considered here for derivation involves the coupling of ter-

minal currents and the semiconductor carrier-charge densities at its boundaries (ohmic

contacts). The diode terminal current equations are augmented to CCT equations for

device model encapsulation. Jacobian contributions derived in this subsection is due

to this augmentation of diode terminal current equations. The partitions are different

for central difference and Scharfetter-Gummel methods. These contributions are de-

rived here from the terminal current equations for these two discretization methods.

A.2.5.1 Central difference method

The terminal current equations (3.34) is used in the following derivations.

fi,p(1, 1) =
∂ia
∂p1

= qeNMac

[
ψ1 − ψ2

h1

− Dp

h1

]
(A.34a)

fi,p(1, 2) =
∂ia
∂p2

= qeNMac

[
ψ1 − ψ2

h1

+
Dp

h1

]
(A.34b)

fi,p(2, N − 1) =
∂ic

∂pN−1

= qeNMac

[
ψN−1 − ψN

hN−1

+
Dp

hN−1

]
(A.34c)

fi,p(2, N) =
∂ic
∂pN

= qeNMac

[
ψN−1 − ψN

hN−1

− Dp

hN−1

]
(A.34d)

fi,n(1, 1) =
∂ia
∂n1
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= qeNMac

[
ψ1 − ψ2

h1

− Dn

h1

]
(A.34e)

fi,n(1, 2) =
∂ia
∂n2

= qeNMac

[
ψ1 − ψ2

h1

+
Dn

h1

]
(A.34f)

fi,n(2, N − 1) =
∂ic

∂nN−1

= qeNMac

[
ψN−1 − ψN

hN−1

− Dn

hN−1

]
(A.34g)

fi,n(2, N) =
∂ic
∂nN

= qeNMac

[
ψN−1 − ψN

hN−1

+
Dn

hN−1

]
(A.34h)

fi,ψ(1, 1) =
∂ia
∂ψ1

= qeNMac

[
µp(p1 + p2)

2h1

+
µn(n1 + n2)

2h1

]
(A.34i)

fi,ψ(1, 2) =
∂ia
∂ψ2

= −qeNMac

[
µp(p1 + p2)

2h1

+
µn(n1 + n2)

2h1

]
(A.34j)

fi,ψ(2, N − 1) =
∂ic

∂ψN−1

= qeNMac

[
µp(pN−1 + pN)

2hN−1

+
µn(nN−1 + nN)

2hN−1

]
(A.34k)

fi,ψ(2, N) =
∂ic
∂ψN

= −qeNMac

[
µp(pN−1 + pN)

2hN−1

+
µn(nN−1 + nN)

2hN−1

]
(A.34l)

A.2.5.2 Scharfetter-Gummel method

The terminal current equations (3.35) is used in the following derivations along

with the Bernoulli function derivatives (A.30).

fi,p(1, 1) =
∂ia
∂p1

=
qeNMacDp

h1

B(z3/2) (A.35a)
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fi,p(1, 2) =
∂ia
∂p2

= −qeNMacDp

h1

B(−z3/2) (A.35b)

fi,p(2, N − 1) =
∂ic

∂pN−1

=
qeNMacDp

hN−1

B(zN−1/2) (A.35c)

fi,p(2, N) =
∂ic
∂pN

= −qeNMacDp

hN−1

B(−zN−1/2) (A.35d)

fi,n(1, 1) =
∂ia
∂n1

= −qeNMacDn

h1

B(−z3/2) (A.35e)

fi,n(1, 2) =
∂ia
∂n2

=
qeNMacDn

h1

B(z3/2) (A.35f)

fi,n(2, N − 1) =
∂ic

∂nN−1

= −qeNMacDp

hN−1

B(−zN−1/2) (A.35g)

fi,n(2, N) =
∂ic
∂nN

=
qeNMacDp

hN−1

B(zN−1/2) (A.35h)

fi,ψ(1, 1) =
∂ia
∂ψ1

=
qeNMac
h1

[
(Dpp1 +Dnn2)

∂B(z3/2)

∂ψ1

−(Dpp2 +Dnn1)
∂B(−z3/2)

∂ψ1

]
(A.35i)

fi,ψ(1, 2) =
∂ia
∂ψ2

=
qeNMac
h1

[
(Dpp1 +Dnn2)

∂B(z3/2)

∂ψ2

−(Dpp2 +Dnn1)
∂B(−z3/2)

∂ψ2

]
(A.35j)
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fi,ψ(2, N − 1) =
∂ic

∂ψN−1

=
qeNMac
hN−1

[
(DppN−1 +DnnN)

∂B(zN−1/2)

∂ψN−1

−(DppN +DnnN−1)
∂B(−zN−1/2)

∂ψN−1

]
(A.35k)

fi,ψ(2, N) =
∂ic
∂ψN

=
qeNMac
hN−1

[
(DppN−1 +DnnN)

∂B(zN−1/2)

∂ψN

−(DppN +DnnN−1)
∂B(−zN−1/2)

∂ψN

]
(A.35l)
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B. MANUAL TABLEAU DERIVATION

+
−vs

R L iL

ia

ic

+

−
vd

Ca

Cc

Fig. B.1.: A simple RL and diode circuit.

The state-space model of the circuit shown in Figure B.1 is derived by writing KCL

and KVL equations for the switch-on condition. The voltage across the capacitors

Ca and Cc are va and vc, respectively. The single KVL, two KCL, and diode voltage

equations are written in state-space form as follows,

d

dt


iL

va

vc

 =


−R/L −1/L 1/L

1/Ca 0 0

−1/Cc 0 0



iL

va

vc

+


0 0

−1/Ca 0

0 1/Cc


ia
ic

+


1/L

0

0

 vs,
(B.1a)

vd =
[
0 1 −1

]
iL

va

vc

 . (B.1b)
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A compact representation of the equations above is given in the following set of

equations.

ẏ = Ay + B1id + B2vs = fy (B.2a)

vd = Cy (B.2b)

where,

y =
[
iL va vc

]T
, (B.3a)

id =
[
ia ic

]T
, (B.3b)

A =


−R/L −1/L 1/L

1/Ca 0 0

−1/Cc 0 0

 , (B.3c)

B1 =


0 0

−1/Ca 0

0 1/Cc

 , (B.3d)

B2 =
[
1/L 0 0

]T
, (B.3e)

C =
[
0 1 −1

]
. (B.3f)

The diode terminal currents are given below.

id =

ia
ic

 =

 f(p1, p2, n1, n2, ψ1, ψ2)

f(pN−1, pN , nN−1, nN−1, ψN−1, ψN)


= fid(p,n,ψ) (B.4)

Equations (B.1) and (B.4) are augmented to the system of equations in (3.29). The

augmented system of equations below is further supplemented with boundary condi-

tions.

dp

dt
= fp(p,n,ψ) (B.5a)

dn

dt
= fn(p,n,ψ) (B.5b)



140

0 = Sψ−D(p− n + N+
D −N−

A )− b(vd) = fψ(p,n,ψ) (B.5c)

dy

dt
= fy(y, id, vs) (B.5d)

0 = id − fid (B.5e)

0 = vd −Cy (B.5f)

with boundary conditions

n(xc) =
N+
D

2
+

√(
N+
D

2

)2

+ n2
ie ≈ N+

D (B.6a)

p(xc) =
n2
ie

N+
D

(B.6b)

ψ(xc) =
kT

q
ln

(
n(xc)

nie

)
(B.6c)

n(xa) =
n2
ie

N−A
(B.6d)

p(xa) =
N−A
2

+

√(
N−A
2

)2

+ n2
ie ≈ N−A (B.6e)

ψ(xa) = vd −
kT

q
ln

(
p(xa)

nie

)
(B.6f)

The boundary condition ψ(xa) depends on the voltage across the diode vd, which is,

in turn, a function of the circuit states. The external circuit dynamics gives voltage

as input to the diode model. The terminal currents ia and ic are algebraic functions

of {p,n,ψ}, which are “current like” inputs to the external circuit model. It can be

inferred that the diode model is a voltage-in current-out model.

Applying backward Euler algorithm to (B.5) gives a fully discretized system of

equations. Due to the nonlinearities, an iterative approach such as the Newton-

Raphson method is needed to solve these equations. Jacobian partitions related

to the charge densities and electric potential are as derived in Appendix A.2. These

partitions do not change when coupled with external circuits. The Jacobian partitions

involving the variables y, id and vd are denoted fy,y, fid,id and fvd,vd , respectively. The

last two of these are identity matrices of appropriate dimensions.
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The circuit-device coupling is between the variable pairs (ψ, vd), (id,p), (id,n),

(id,ψ) and (id,y). The circuit-device coupling Jacobian partitions composed of these

variable pairs are fψ,vd , fid,p, fid,n, fid,ψ and fid,y respectively. A Taylor’s series ex-

pansion of the equations involving these variables about χm up to first-order terms,

extending the notations (3.32) to circuit variables, and equating the system zero gives

the following system of equations.

(pm,k − pm−1,∞)/∆tm − fp + (I/∆tm − fp,p)∆p− fp,n∆n− fp,ψ∆ψ = 0 (B.7a)

(nm,k − nm−1,∞)/∆tm − fn + (I/∆tm − fn,n)∆n− fn,p∆p− fn,ψ∆ψ = 0 (B.7b)

fψ + fψ,p∆p + fψ,n∆n + fψ,ψ∆ψ+ fψ,vd∆vd = 0 (B.7c)

im,k − fid + I∆id + fid,p∆p + fid,n∆n + fid,ψ∆ψ = 0 (B.7d)

(ym,k − ym−1,∞)/∆tm − fy + (I− fy,y)∆y − fy,id∆id = 0 (B.7e)

vm,kd −Cym,k + ∆vd −C∆y = 0 (B.7f)

The additional Jacobian partitions that needs to be derived are fid,p, fid,n, fid,ψ,

fy,y, fy,id and fψ,vd . The last three partitions are the same for both central difference

and Scharfetter-Gummel discretization methods. They are derived in the following

equations.

fy,y =
∂

∂y
(Ay + B1id + B2vs)

= A (B.8a)

fy,id =
∂

∂i
(Ay + B1id + B2vs)

= B1 (B.8b)

fψ,vd =
∂

∂vd
fψ

=
[
1 0 . . . 0

]T
(B.8c)

The remaining Jacobian partitions rely on the total terminal current formulae

(B.4). These formulae differ depending upon the spatial discretization method used.

The terminal current formulae due to central difference and Scharfetter-Gummel

methods are given in (3.34) and (3.35) respectively.
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The entries of each partition is derived in Appendix A.2. After some manipulation,

all the partitions derived for both the semiconductor and circuit is used to assemble

the Newton-Raphson iterator (B.9). The horizontal and vertical lines in the matrix

and vectors show a partitioning of this iterator to form a block partitioned linear

system. The first diagonal block corresponds to the Jacobian partitions of the diode

alone while the second diagonal block corresponds to that of the external circuit. The

super-diagonal block describes the device-circuit coupling and the sub-diagonal block

the circuit-device coupling. This partitioning of the iterator is useful to efficiently

implement the variable-structure strategy proposed in Chapter 7.

(B.9)



I/∆tm − fp,p −fp,n −fp,ψ 0 0 0

−fn,p I/∆tm − fn,n −fn,ψ 0 0 0

fψ,p fψ,n fψ,ψ 0 0 fψ,vd

fid,p fid,n fid,ψ I 0 0

0 0 0 −B1 I/∆tm −A 0

0 0 0 0 −C 1





∆p

∆n

∆ψ

∆id

∆y

∆vd



=



−(pm,k − pm−1,∞)/∆tm + fp(pm,k,nm,k,ψm,k)

−(nm,k − nm−1,∞)/∆tm + fn(pm,k,nm,k,ψm,k)

−fψ(pm,k,nm,k,ψm,k,N−
A ,N

+
D )

0

−(ym,k − ym−1,∞)/∆tm + fy(ym,k, im,kd , vs)

0


B.1 Appendix Summary

It can be seen that manual derivation of tableau is tedious, needs to be repeated

for each circuit considered and is error prone. Only a handful of inductor currents

and capacitor voltages can be considered as states while others can be expressed al-

gebraically using these chosen states. The book keeping effort to derive the state

equations and border matrices in the iterator increases as the number of semiconduc-
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tor devices in the circuit increases. An algorithmic way of building system equations

set forth in Chapter 4.2 is an alternative to circumvent the aforementioned issues.
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C. ADAPTIVE SPATIAL MESH

The central difference and Scharfetter-Gummel methods used to discretize the CCT

equations on a fixed grid can also be applied to spatial grids that evolve as time

progresses. The results of a preliminary study using an adaptive spatial mesh is

described in this section. In this study, the central difference method is used for

spatial discretization. A strategy to measure or estimate the spatial error in the

solution is described and used to add or delete node as the simulation progresses.

The error estimator relies on the difference in the solutions for two meshes with

different spatial resolutions at each time step.
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Fig. C.1.: Charge densities computed on adaptive mesh.

A hierarchical mesh can be generated by uniformly bisecting the mesh throughout

the spatial domain at time tm−1. A bisected mesh in one dimension has a node inserted

midway between two nodes of the coarser mesh. On the bisected mesh, the charge
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densities are computed using linear interpolation. The electric potential is computed

by solving the Poisson’s equation on the finer mesh at tm−1. All of the information

needed to compute the solution at the next time step tm using the bisected mesh is

available at this point. The spatial solutions using the coarse and finer meshes at

tm are computed using the iterators previously derived. The solutions based upon

the coarse mesh and the uniformly bisected mesh are used for error estimation. At

the midpoint of each interval in the coarse mesh, there exist a node in the bisected

mesh. A triangle is formed by the charge densities at these three nodes, two from

coarse mesh and one from fine mesh. The error introduced by removing an inserted

node is computed by scaling the area of this triangle appropriately. A small area

implies that the charge density of the inserted node can be approximated as a linear

interpolate of its neighboring nodes. Therefore, it is not needed. Thus, if the error

exceeds a spatial error tolerance, that node is retained and, if not, the node is not

needed and is therefore eliminated. The original coarse mesh is then replaced with

the bisected mesh after eliminating unnecessary nodes. This process is repeated until

the spatial mesh and corresponding solution converge at time tm. Upon convergence,

the solution at the given time step is accepted, and the simulation proceeds to the

next time step.

For illustration purposes, a diode with a coarse mesh is discretized using the

central difference method. The parameters of the diode are as in Table 3.1. The

charge densities computed using an adaptive mesh for a −50 V bias is shown in

Figure C.1. This strategy results in an adaptive mesh that tends to remove the

nodes where the charge densities do not vary significantly, that is in the neutral

and depletion regions. The electric potential, although an algebraic function of the

charge densities, varies significantly within the depletion region. Consequently, the

drift component of the current density dominates the diffusion component, especially

when the diode is reverse biased. In finite volume methods, the discretizing schemes

should satisfy transportiveness under such conditions.
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Fig. C.2.: Number of nodes (# Nodes) versus time-step index for adaptive mesh.

From (3.19) and the Péclet constraint Pe ≤ 2 discussed in Section 3.3.1, it is

clear that |ψi − ψi+1| ≤ 2VT . Thus, the spatial discretization should also ensure that

the difference in electrical potentials between the neighboring nodes is less than 2VT

throughout the simulation. In order to satisfy this criterion, the depletion region

should have more nodes even though they are not required to resolve the charge

densities. The evolution of the number of nodes as the simulation progresses is shown

in Figure C.2. The number of steady-state nodes is 112 and the simulation required

approximately 258.28 s to simulate 2.5 µs of a diode-only model.

The adaptive feature is attractive but the computational overhead is significant,

even though it provides guidance on where the nodes should be placed. The compu-

tational overhead of using adaptive meshes involves the repeated solutions computed

on finer meshes. Moreover, as the mesh changes, the matrix-vector dimension of the

iterative difference equations changes. As a result, the sparse tableau matrices have to

be completely rebuilt and refactored prior to the solution of the difference equations,

both of which are computationally expensive steps. Finally, since the adaptive mesh
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targets the node placement in the regions of significant change in the charge densi-

ties, the time step control mechanism chooses smaller time steps to limit the temporal

error in these nodes. All of these factors when put together results in a simulation

that is much slower than a fixed-mesh simulation. A fast simulation using adaptive

mesh needs a more effective linear-equation solver and an error estimator that does

not rely on multiple solutions involving finer meshes. While such an approach may

be possible, it was concluded that an appropriately selected fixed mesh will provide

a computationally efficient and accurate solution for individual devices.

C.1 Appendix Summary

Computing accurate solutions on different meshes before converging to a solution

on spatially adapted mesh is computationally wasteful. There is a class of a-posteriori

error estimation techniques available that rely on a solution computed on the current

mesh to indicate where the mesh needs to refined or coarsened. Formulating such a

reliable error estimator for system of PDEs is an active area of research. Instead, a

carefully chosen fixed mesh that is capable of resolving the solution with sufficient

accuracy is recommended for this type of problem.
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D. COMPUTER SPECIFICATIONS

Engineering Computer Network at Purdue University hosts riptide server for computation-

intensive applications. This computer with the following hardware specification is

capable of performing both shared-memory and distributed-memory computations.

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 8

NUMA node(s): 8

Vendor ID: AuthenticAMD

CPU family: 16

Model: 2

Stepping: 3

CPU MHz: 2293.808

BogoMIPS: 4589.07

Virtualization: AMD-V

L1d cache: 64K

L1i cache: 64K

L2 cache: 512K

L3 cache: 2048K

NUMA node0 CPU(s): 0-3
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NUMA node1 CPU(s): 4-7

NUMA node2 CPU(s): 8-11

NUMA node3 CPU(s): 12-15

NUMA node4 CPU(s): 16-19

NUMA node5 CPU(s): 20-23

NUMA node6 CPU(s): 24-27

NUMA node7 CPU(s): 28-31
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