1,986 research outputs found

    Capacitor Mismatch Calibration Technique to Improve the SFDR of 14-Bit SAR ADC

    Get PDF
    This paper presents mismatch calibration technique to improve the SFDR in a 14-bit successive approximation register (SAR) analog-to-digital converter (ADC) for wearable electronics application. Behavioral Monte-Carlo simulations are applied to demonstrate the effect of the proposed method where no complex digital calibration algorithm or auxiliary calibration DAC needed. Simulation results show that with a mismatch error typical of modern technology, the SFDR is enhanced by more than 20 dB with the proposed technique for a 14-bit SAR ADC

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Low power data converters for specific applications

    Get PDF
    Due to increasing importance of portable equipment and reduction of the supply voltage due to technology scaling, recent efforts in the design of mixed-signal circuits have focused on developing new techniques to reduce the power dissipation and supply voltage. This requires research into new architectures and circuit techniques that enable both integration and programmability. Programmability allows each component to be used for different applications, reducing the total number of components, and increased integration by eliminating external components will reduce cost and power;Since data converters are used in many different applications, in this thesis new low voltage and low power data converter techniques at both the architecture and circuit design levels are investigated to minimize power dissipation and supply voltage. To demonstrate the proposed techniques, test the performance of the proposed architectures, and verify their effectiveness in terms of power savings, five prototype chips are fabricated and tested;First, a re-configurable data converter (RDC) architecture is presented that can be programmed as analog-to-digital converter (ADC), digital-to-analog converter (DAC), or both. The reconfigurability of the RDC to different numbers of ADCs and DACs having different speeds and resolutions makes it an ideal choice for analog test bus, mixed-mode boundary scan, and built-in self test applications. It combines the advantages of both analog test buses and boundary scan techniques while the area overhead of the proposed techniques is very low compared to the mixed-mode boundary scan techniques. RDC can save power by allowing the designer to program it as the right converter for desired application. This architecture can be potentially implemented inside a field programmable gate array (FPGA) to allow the FPGA communicate with the analog world. It can also be used as a stand-alone product to give flexibility to the user to choose ADC/DAC combinations for the desired application;Next, a new method for designing low power and small area ROMless direct digital frequency synthesizers (DDFSs) is presented. In this method, a non-linear digital-to-analog converter is used to replace the phase-to-sine amplitude ROM look-up table and the linear DAC in conventional DDFS. Since the non-linear DAC converts the phase information directly into analog sine wave, no phase-to-amplitude ROM look-up table is required;Finally, a new low voltage technique based on biased inverting opamp that can have almost rail-to-rail swing with continuously valid output is discussed. Based on this biasing technique, a 10-bit segmented R-2R DAC and an 8-bit successive approximation ADC are designed and presented

    Interval Bisection Quantization Circuit for an 8-Bit Analog to Digital Converter

    Get PDF
    A common type of analog to digital converter (ADC) is called the successive approximation ADC. It works by setting each bit in the digital output code individually and thus its conversion time is determined by the clock frequency and the resolution of the converter. A speed improvement may be made by using a quantization circuit that sets the entire output code at once. The goal of this project is to design such a quantization circuit based on the interval bisection algorithm. The circuit was designed using Cadence Schematic and Virtuoso and was simulated using spice. Spice simulations show that, on average, the circuit converts faster than the conventional successive approximation converter.Electrical and Computer Engineering, Department o

    High-speed and high-resolution analog-to-digital and digital-to-analog converters

    Get PDF

    A 12-bit SAR ADC for a flexible tactile sensor

    Get PDF
    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) are some of the most efficient ADC topologies available, allowing excellent performance values at low power consumption across a wide range of sampling frequencies. The proposed ADC is aimed at a tactile sensor application, requiring a low-noise and lowpower solution. In addition, it should have high SNDR to detect even the weakest signals with precision. This thesis presents a 12-bit 400 kS/s SAR ADC implemented in a 180 nm CMOS technology for such a task. The designed SAR ADC uses a hybrid R-C DAC topology consisting of a chargescaling MSB DAC and a voltage-scaling LSB DAC, allowing a good trade-off between power consumption, layout area and performance while keeping the total DAC capacitance under reasonable values. Bootstrapped switches have been implemented to preserve high-linearity during the sampling period. A double-tail dynamic comparator has been designed to obtain a low-noise measurement while ensuring suitable delay values. Finally, regarding the logic, an asynchronous implementation and the conventional switching algorithm provide a simple but effective solution to supply the digital signals of the design. Pre-layout noise simulations with input frequencies around 200 kHz show SNDR values of 72.07 dB, corresponding to an ENOB of 11.67 bits. The total power consumption is 365 ?W while the Walden and Schreier figure-of-merit (FoM) correspond to values of 275 fJ/conversion and 160 dB, respectively

    Research of Asynchronous SAR ADC Based on Hopfield Network

    Get PDF

    Data Acquisition System Using AT89c51 and PCL-207

    Get PDF
    A typical data acquisition system consists of individual sensors with necessary signalconditioning, data conversion, data processing, multiplexing, data handling and associated transmission, storage and display system. In order to optimize the characteristics of a system in terms of performance, handling capacity and cost, the relevant subsystem can be combined together. Analog data is generally acquired and converted into the digital form for the purpose of processing, transmission and display. Rapid advances in Personal Computer (PC) hardware and software technologies have resulted in easy and efficient adoption of PCs in various precise measurement and complex control applications. A PC based measurement or control application requires conversion of real world analog signal into digital format and transfer of digitized data into the PC. A data acquisition system that performs conversion of analog signal to digital data and the digital data to analog signal is interfaced to a pc to implement the functions of a measurement and control instrumentation applications. In this project we have used the electromagnetic sensor to acquire the data of a magnetic disk angular velocity, which we have got in mili volts range. This has been further converted approximately into the range of 5 volt by using an instrumentation amplifier of suitable gain (~20).We then converted the analog voltage into digital by using ADC 0808 and the processing part is done by using ATMEL89c51.In the second case we have used the data acquisition card PCL-207 to interface the amplified output to PC

    700mV low power low noise implantable neural recording system design

    Get PDF
    This dissertation presents the work for design and implementation of a low power, low noise neural recording system consisting of Bandpass Amplifier and Pipelined Analog to Digital Converter (ADC) for recording neural signal activities. A low power, low noise two stage neural amplifier for use in an intelligent Radio-Frequency Identification (RFID) based on folded cascode Operational Transconductance Amplifier (OTA) is utilized to amplify the neural signals. The optimization of the number of amplifier stages is discussed to achieve the minimum power and area consumption. The amplifier power supply is 0.7V. The midband gain of amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7 μVrms and 1.90 μW respectively. The measured result shows that the optimizing the number of stages can achieve lower power consumption and demonstrates the neural amplifier's suitability for instu neutral activity recording. The advantage of power consumption of Pipelined ADC over Successive Approximation Register (SAR) ADC and Delta-Sigma ADC is discussed. An 8 bit fully differential (FD) Pipeline ADC for use in a smart RFID is presented in this dissertation. The Multiplying Digital to Analog Converter (MDAC) utilizes a novel offset cancellation technique robust to device leakage to reduce the input drift voltage. Simulation results of static and dynamic performance show this low power Pipeline ADC is suitable for multi-channel neural recording applications. The performance of all proposed building blocks is verified through test chips fabricated in IBM 180nm CMOS process. Both bench-top and real animal test results demonstrate the system's capability of recording neural signals for neural spike detection

    A study of high-speed AD and DA converters using redundancy techniques Interim report, May 10, 1963 - May 9, 1964

    Get PDF
    High speed analog-to-digital converters compared using redundancy encoding technique
    corecore